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Oversubscribed treatments are often allocated using randomized waiting lists. Ap-
plicants are ranked randomly, and treatment offers are made following that ranking
until all seats are filled. To estimate causal effects, researchers often compare appli-
cants getting and not getting an offer. We show that those two groups are not statisti-
cally comparable. Therefore, the estimator arising from that comparison is inconsistent
when the number of waitlists goes to infinity. We propose a new estimator, and show
that it is consistent, provided the waitlists have at least two seats. Finally, we revisit an
application, and we show that using our estimator can lead to a statistically significant
difference with respect to the results obtained using the commonly used estimator.

KEYWORDS: Waiting lists, non-takers, non compliance, instrumental variable, local
average treatment effect, randomized controlled trials.

1. INTRODUCTION

OFTENTIMES, SOME INDIVIDUALS WHO APPLY for a treatment are non-takers. They de-
cline to get treated when they receive an offer, for instance because they then realize that
their benefit from treatment is lower than they thought. When a treatment is oversub-
scribed but some applicants are non-takers, an appealing way of allocating the available
seats is to use randomized waitlists. First, applicants are ranked randomly. Then, if S seats
are available, an initial round of offers takes place, whereby the first S applicants get an
offer. If r of them decline it, a subsequent round of offers takes place whereby the next
r applicants get an offer. Offers stop when all the seats have been filled. This allocation
method is fair: each taker has the same probability of being treated; it is also efficient:
no seat for treatment remains unused, despite the presence of non-takers. Therefore,
oversubscribed treatments with non-takers are often allocated by randomized waitlists.
We conducted a survey, and found 43 articles studying treatments allocated by random-
ized waitlists, ranging from charter schools in the United States to agricultural trainings
in Liberia. These treatments often have capacity constraints for various groups of appli-
cants. For instance, a charter school may have 20 seats available in 7th grade and 25 seats
in 8th grade. Then, a lottery takes place in each group.
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As applicants are ranked randomly, it may be possible to form two comparable groups
with different likelihoods of getting an offer. One could then compare those two groups to
estimate the effect of the treatment. In practice, researchers have used two types of com-
parisons. Some researchers have compared applicants getting and not getting an initial
offer, thus giving rise to the so-called initial-offer (IO) estimators. Other researchers have
compared applicants ever and never getting an offer, thus giving rise to the so-called ever-
offer (EO) estimators. When several lotteries were conducted, as in the charter school
example above, researchers have often included waitlist fixed effects in their specifica-
tions, to ensure they compare applicants within and not across waitlists. In our survey,
22 articles used the EO estimator, 20 used the IO estimator, and a handful used other
estimators. Overall, practices are not standardized.

We start by showing that the expected proportion of takers is strictly greater among
applicants ever getting an offer than among applicants never getting one. Intuitively, this
is because offers continue until all seats are filled, so the last applicant getting an offer
must by construction be a taker. Moreover, when waitlist fixed effects are included in
the estimation, they induce an endogenous reweighting of waitlists that usually further
increases this imbalance between the two groups, as we explain in more detail in Section 2.

Then, we show that due to this imbalance, the EO estimator is inconsistent when the
number of waitlists goes to infinity. In our survey, the median of the number of waitlists
divided by the number of applicants per waitlist is 1.9, and 25% of the articles have more
than 100 waitlists and less than 40 applicants per waitlist. This motivates the asymptotic
sequence we consider. By contrast, if the number of applicants and takers per waitlist goes
to infinity, the asymptotic bias of the EO estimator goes to 0.

We show that dropping the last applicant getting an offer in each waitlist is sufficient to
restore the comparability between applicants getting and not getting an offer. Based on
this result, we propose a new estimator of the treatment effect. It is built out of compar-
isons of applicants that get and do not get an offer in each waitlist, downweighting appli-
cants that accept their offer by an amount equivalent to dropping one of them. Then, our
estimator takes a weighted average of those within-waitlist comparisons, with a weighting
scheme that avoids the endogenous reweighting induced by the waitlist fixed effects. We
refer to that estimator as the doubly-reweighted ever-offer (DREO) estimator. We show
that our estimator is consistent and asymptotically normal when the number of waitlists
goes to infinity.

Contrary to subsequent-round offers, initial offers are only a function of applicants’
random ranks in the waitlist. Therefore, applicants getting and not getting an initial offer
are statistically comparable, and the IO estimator is also consistent. However, we show
that the asymptotic variance of that estimator is often much larger than that of the DREO
estimator, so using it will often result in large efficiency losses.

We use our results to revisit Blattman and Annan (2016), who studied the effects of
an agricultural training. The difference between the DREO estimator and the EO esti-
mator computed by the authors is statistically significant for some of the outcomes they
considered.1

The remainder of the paper is organized as follows. Section 2 uses a simple example to
give the intuition of our results. Section 3 presents our main results. Section 4 presents
our empirical application. Appendix 5 presents the proofs. In the Supplemental Material
(de Chaisemartin and Behaghel (2020)), we present our survey of articles that have used
randomized waitlists, and some additional results and proofs as well as some simulations.

1A Stata adofile computing the DREO estimator is available from the authors’ website.
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2. INTRODUCING THE RESULTS THROUGH A SIMPLE EXAMPLE

We start with a simple example. We consider a waitlist where five applicants compete
for three seats. Four applicants are takers (T ) and one is a non-taker (NT), meaning that
she will refuse to get treated if she gets an offer. Applicants are randomly ranked, and
treatment offers are made following that ranking until all seats are filled. There are 5!
possible orderings of the applicants, that can be divided into five groups of 4! orderings,
according to the rank of the non-taker. Table I displays those five groups of orderings,
hereafter referred to, slightly abusively, as “orderings” rather than groups of orderings.
For each ordering, applicants getting an offer are depicted in italics, while those not get-
ting an offer are depicted in bold. In orderings 1 and 2, the first three applicants are takers,
so offers stop after the third offer. In orderings 3, 4, and 5, one of the first three applicants
is a non-taker, so a fourth offer is made; then the next applicant is a taker so offers stop,
as the available seats have been filled.

The first issue with the EO estimator is that, on average, applicants getting an offer
bear a higher proportion of takers than applicants not getting an offer. Each ordering
has a 0�20 probability of being selected. Across the five orderings, the expected share
of takers among applicants getting an offer is 0�2 × (1 + 1 + 3/4 + 3/4 + 3/4) = 17/20.
On the other hand, the expected share of takers among applicants not getting an offer is
0�2 × (1/2 + 1/2 + 1 + 1 + 1) = 4/5. Intuitively, this imbalance arises because offers stop
when sufficiently many takers have accepted an offer. This endogenous stopping rule cre-
ates a positive correlation between getting an offer and being a taker. When the average
potential outcomes of takers and non-takers differ,2 this imbalance implies that appli-
cants getting and not getting an offer are not statistically comparable: those two groups
have different average potential outcomes. The second issue with the EO estimator arises
from the inclusion of fixed effects when pooling waitlists. Assume that one pools waitlists
that all have four takers, one non-taker, and three seats. In some waitlists, the realized
ordering of takers and non-takers is Ordering 1 in Table I; in other waitlists, the realized
ordering is Ordering 2, etc. With several waitlists, it follows from, for example, Equa-
tion (3.3.7) in Angrist and Pischke (2008), that the EO estimator with waitlist fixed effects
is a weighted average of the EO estimators in each waitlist, that gives more weight to wait-
lists where the share of applicants getting an offer is closer to 1/2. In our example, 3/5 of
applicants get an offer in waitlists with Ordering 1 or 2, while 4/5 of applicants get an of-
fer in waitlists with Ordering 3, 4, or 5. Accordingly, waitlists with Ordering 1 or 2 receive
more weight. But those are precisely the waitlists where the proportion of takers among

TABLE I

APPLICANTS GETTING AND NOT GETTING AN OFFER IN AN EXAMPLE

Ordering 1 Ordering 2 Ordering 3 Ordering 4 Ordering 5

T T T T NT
T T T NT T
T T NT T T
T NT T T T
NT T T T T

2This is often the case. Abadie, Angrist, and Imbens (2002) and Crépon, Devoto, Duflo, and Parienté (2015)
are just a few examples of the many papers that have found large differences between the average potential
outcomes of takers and non-takers.
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TABLE II

APPLICANTS GETTING AND NOT GETTING AN OFFER,
DROPPING THE LAST TAKER GETTING AN OFFER

Ordering 1 Ordering 2 Ordering 3 Ordering 4 Ordering 5

T T T T NT
T T T NT T

NT T T
T NT
NT T T T T

applicants getting an offer is the highest. Therefore, the reweighting of waitlists induced
by the fixed effects aggravates the over-representation of takers among applicants getting
an offer.3

The DREO estimator we propose addresses those two issues. First, in our example,
dropping the last taker getting an offer is sufficient to solve the endogenous stopping rule
issue. Table II shows that then, the expected share of takers among applicants getting an
offer is equal to 0�2 × (1 + 1 + 2/3 + 2/3 + 2/3)= 4/5, the same as among applicants not
getting an offer. Still, dropping the last taker getting an offer is arbitrary: dropping the
first or the second would have the same effect. Besides, doing so reduces the sample size
and statistical precision. Instead, one can give to the three of them a weight equal to 2/3:
this reduces the expected share of takers among applicants getting an offer by the same
amount as dropping one. Second, instead of using fixed effects to pool waitlists, we simply
take an average of the estimators in each waitlist, weighting waitlists proportionally to
their number of applicants. These weights are independent of how many offers one has
to make to fill the available seats, which solves the second issue of the EO estimator.
Table II shows that this second reweighting is necessary. Even after downweighting takers
getting an offer, including waitlist fixed effects would still lead to over-represent takers
among applicants getting an offer. Indeed, doing so gives more weight to waitlists with
Ordering 1 or 2, where 1/2 of applicants get an offer, while those are the waitlists where
the proportion of takers among applicants getting an offer is the highest.

3. MAIN RESULTS

3.1. Assumptions and Parameter of Interest

Throughout the paper, we consider the following setup.

ASSUMPTION 1—Setup: (a) Applicants for a binary treatment are divided into K mutually
exclusive waitlists. For every k ∈ {1� � � � �K}, Nk denotes the number of applicants in waitlist k.
Nk is non-stochastic.

(b) In each waitlist, Sk seats are available, and are allocated as follows: applicants are
ranked, and treatment offers are made following that order until Sk applicants have accepted
to get treated or all applicants have received an offer. Sk is non-stochastic.

(c) Applicants that do not get an offer cannot get treated.

3Note that the fixed effects do not always aggravate the over-representation of takers. In applications with
few seats and many takers per waitlist, the waitlists with a share of offers closer to 1/2 are those where the
most offers had to be made, which are also those with the lowest proportion of takers among applicants getting
an offer. Then, the fixed effects would counteract the over-representation of takers due to the endogenous
stopping rule, but it is very unlikely that they would exactly cancel it.
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In a previous version of this paper (see de Chaisemartin and Behaghel (2018)), we con-
sidered various extensions of this setup. For instance, we showed that our results remain
unchanged if we allow for the possibility that some applicants manage to get treated even
if they do not receive an offer. Similarly, we allowed for the possibility that some appli-
cants may participate in several waiting lists, or that the treatment may not be binary.
Those extensions are not of essence, so we focus on the basic setup outlined in Assump-
tion 1.

Then, we assume that ranks are randomly assigned to applicants. Let Rik denote the
rank assigned to applicant i in waitlist k, let Rk = (R1k� � � � �RNkk) denote the ranks as-
signed to applicants 1 to Nk in waitlist k, let Lk denote the number of applicants getting
an offer in waitlist k, and let Zik = 1{Rik ≤ Lk} denote whether applicant i gets an offer,
the so-called ever-offer instrument. Let Dik(1) denote her potential treatment if she gets
an offer, and let Dik denote her observed treatment. Under point (c) of Assumption 1,
Dik =ZikDik(1). For every d ∈ {0�1}, let Yik(d) denote her potential outcome if Dik = d,4
and let Yik = Yik(Dik) denote her observed outcome. Let

Pk = ((D1k(1)�Y1k(0)�Y1k(1)
)
� � � � �

(
DNkk(1)�YNkk(0)�YNkk(1)

))
be a vector stacking the potential treatments and outcomes of the applicants in waitlist k.
We consider those vectors as random: for instance, students’ test scores may be influenced
by stochastic shocks affecting their health on the day of the exam. Thereafter, expectations
are taken with respect to the distribution of (Pk�Rk)1≤k≤K . For any integer j, let Πj denote
the set of permutations of {1� � � � � j}.

ASSUMPTION 2—Randomly Assigned Ranks: For all k ∈ {1� � � � �K} and (r1� � � � � rNk
) ∈

ΠNk
, P(Rk = (r1� � � � � rNk

)|Pk)= 1
Nk! .

Assumption 2 requires that the ranks assigned to applicants be independent of their
potential treatments and outcomes, and uniformly distributed on ΠNk

. It implies that
each applicant has the same probability of being in the first, second, . . . , or last rank.

Finally, we consider a last assumption. Let applicants with Dik(1)= 1 (resp. Dik(1)= 0)
be referred to as takers (resp. non-takers). For every k ∈ {1� � � � �K}, let Tk =∑Nk

i=1 Dik(1)
denote the number of takers in waitlist k.

ASSUMPTION 3—Strictly More Takers Than Seats: For every k ∈ {1� � � � �K}, 2 ≤
Sk < Tk.

Assumption 3 requires that each waitlist have at least two seats, so waitlists with less
than two seats have to be dropped from the analysis. Assumption 3 also requires that each
waitlist have strictly more takers than seats. If there are as many takers as seats, offers will
stop at the last taker, so there will not be any taker in the group of applicants that do not
receive an offer, and dropping one taker from the group of applicants that receive an offer
will not be sufficient to restore the balance between the two groups. When all the seats
available in a waitlist get filled, it must be that Sk ≤ Tk, but it is still possible that Sk = Tk:
offers may have stopped at the last taker, and all applicants not getting an offer might be

4We implicitly assume that getting an offer does not have a direct effect on the outcome, the so-called
exclusion restriction; see Angrist, Imbens, and Rubin (1996).
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non-takers. Still, in a previous version of this paper (see de Chaisemartin and Behaghel
(2018)), we proposed a statistical test of whether Sk < Tk for all k, or Sk = Tk for some k.

Let T =∑K

k=1 Tk denote the total number of takers. Our parameter of interest is

�K = E

(
1
T

∑
(i�k):Dik(1)=1

[
Yik(1)−Yik(0)

])
�

the local average treatment effect of the takers.

3.2. The Doubly Reweighted Ever-Offer Estimator

Let N =∑K

k=1 Nk and N = N
K

respectively denote the total number of applicants and
the average number of applicants per waitlist. Let I = {(i�k) ∈ N

2 : i ∈ {1� � � � �Nk}�
k ∈ {1� � � � �K}}, and for every (i�k) ∈ I , let wik = 1 − ZikDik

Sk
. wik is equal to 1 − 1

Sk
for

applicants that get and accept an offer, and to 1 for everyone else. As Sk takers receive
an offer in each waitlist, weighting applicants getting an offer by wik decreases the share
of takers among them by the same amount as dropping one taker, as illustrated in the
numerical example in Section 2.

The DREO estimator of �K is defined as

�̂ =

1
K

K∑
k=1

Nk

N

(
1

Lk − 1

∑
i:Zik=1

wikYik − 1
Nk −Lk

∑
i:Zik=0

Yik

)
1
K

K∑
k=1

Nk

N

1
Lk − 1

∑
i:Zik=1

wikDik

� (1)

Importantly, note that under Assumption 1, Sk = ∑Nk
i=1 ZikDik, so observing

(Zik�Dik�Yik)(i�k)∈I is sufficient to compute �̂. �̂ can be computed through a 2SLS re-
gression. Let L=∑K

k=1 Lk, and let

wDR
ik = wik

(
Zik × L−K

N −K
× Nk

Lk − 1
+ (1 −Zik)× N −L

N −K
× Nk

Nk −Lk

)
be a weighting scheme combining wik with propensity score reweighting. One can show
that �̂ is equal to the coefficient of Dik in a 2SLS regression of Yik on Dik using Zik as the
instrument, and weighted by wDR

ik .
Our main result relies on the following lemma:

LEMMA 3.1: If Assumptions 1–3 hold, then for all k ∈ {1� � � � �K},
(a)

E

(
1
K

K∑
k=1

Nk

N

(
1

Lk − 1

∑
i:Zik=1

wikYik − 1
Nk −Lk

∑
i:Zik=0

Yik

))

=E

(
1
N

∑
(i�k)∈I

[
Yik

(
Dik(1)

)−Yik(0)
])

�
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(b)

E

(
1
K

K∑
k=1

Nk

N

1
Lk − 1

∑
i:Zik=1

wikDik

)
=E

(
1
N

∑
(i�k)∈I

Dik(1)
)
�

The intuition of point (a) of the lemma goes as follows. As the numerical example in
Section 2 illustrates, one can show that in each waitlist, wik-reweighted applicants getting
an offer are statistically comparable to applicants not getting an offer. Therefore, the only
difference between these two groups is that one receives an offer and not the other one.
Accordingly, 1

Lk−1

∑
i:Zik=1 wikYik − 1

Nk−Lk

∑
i:Zik=0 Yik, the difference between the average

outcome of the two groups, is an unbiased estimator of E( 1
Nk

∑Nk
i=1[Yik(Dik(1))−Yik(0)]),

the intention to treat (ITT) effect of getting an offer on applicants’ outcome in waitlist k.
The numerator of �̂ is an average of those unbiased within-waitlist comparisons, that
gives to each waitlist a weight proportional to its number of applicants. Therefore, this
numerator is an unbiased estimator of E( 1

N

∑
(i�k)∈I[Yik(Dik(1))−Yik(0)]), the intention

to treat effect among all applicants. The intuition of point (b) is similar.
Lemma 3.1 implies that the numerator of �̂ is an unbiased estimator of the inten-

tion to treat effect, while its denominator is an unbiased estimator of the first-stage ef-
fect. As usual with instrumental variables, this does not imply that �̂ is an unbiased
estimator of �K , but we now show that �̂ − �K goes to 0. In our survey of articles
that have used randomized waitlists, the median number of waitlists used in the anal-
ysis is equal to 64. Therefore, we consider a sequence where K, the number of wait-
lists, goes to infinity. An alternative would be to consider a sequence where the num-
ber of applicants per waitlist goes to infinity, but in our survey the median of wait-
lists divided by applicants per waitlist is equal to 1.9, so the former asymptotic may
be more appropriate in a majority of applications. For all k ∈ {1� � � � �K}, let RFk =
Nk

N
[ 1
Lk−1

∑
i:Zik=1 wikYik − 1

Nk−Lk

∑
i:Zik=0 Yik] and FSk = Nk

N

1
Lk−1

∑
i:Zik=1 wikDik. Let also

FS = limK→+∞ 1
K

∑K

k=1 E(FSk) and � = limK→+∞ 1
K

∑K

k=1 E(RFk)/FS, where Assumption 4
below ensures that those limits exist. Finally, for all k, let Λk = RFk−�FSk

FS .

ASSUMPTION 4—Technical Assumptions to Derive the Asymptotic Distribution
of �̂: (a) The vectors (Pk�Rk)1≤k≤K are mutually independent.

(b) For every k, Nk ≤N+, for some integer N+.
(c) There is a constant M such that for all k ∈ N

∗, for all (i1� i2� i3� i4) ∈ {1� � � � �Nk}4, and
for all (d1� d2� d3� d4) ∈ {0�1}4, E(|Yi1k(d1)||Yi2k(d2)||Yi3k(d3)||Yi4k(d4)|) <M .

(d) The following sequences have finite limits when K → +∞: (i) 1
K

∑K

k=1 E(RFk),
(ii) 1

K

∑K

k=1 E(FSk), (iii) 1
K

∑K

k=1 V (RFk), (iv) 1
K

∑K

k=1 V (FSk), (v) 1
K

∑K

k=1 E(RFkFSk),
(vi) 1

K

∑K

k=1 E(|RFk −E(RFk)|4), (vii) 1
K

∑K

k=1 E(|FSk −E(FSk)|4), (viii) 1
K

∑K

k=1 E(|Λk −
E(Λk)|4), (ix) 1

K

∑K

k=1 E(Tk), (x) 1
K

∑K

k=1 E(
∑

i:Dik=1 Yik(1) − Yik(0)), (xi) 1
K

∑K

k=1 V (Tk),
and (xii) 1

K

∑K

k=1 V (
∑

i:Dik=1 Yik(1)−Yik(0)).

Typically, the lotteries determining applicants’ ranks are independent across waitlists,
so by design the vectors (Rk)1≤k≤K are independent, and (Rk)1≤k≤K is independent of
(Pk)1≤k≤K . Then, point (a) of Assumption 4 only requires that the vectors (Pk)1≤k≤K be
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independent. This is often plausible, for instance when the waitlists correspond to dif-
ferent schools. Point (b) requires that the number of applicants per waitlist be uniformly
bounded by some constant N+. Point (c) requires that the vectors (Yik(0)�Yik(1))1≤i≤Nk

have bounded fourth moments. One can show that this implies that (RFk)k∈N∗ also has
bounded fourth moments. Together with point (d), this then ensures that we can apply
Liapunov’s central limit theorem to (RFk)k∈N∗ , (FSk)k∈N∗ , and (Λk)k∈N∗ , and the weak law
of large numbers in Gut (1992) to (RFk)k∈N∗ , (FSk)k∈N∗ , (RF2

k)k∈N∗ , and (FS2
k)k∈N∗ .5

Let σ2 = limK→+∞ 1
K

∑K

k=1 V (Λk), σ2
+ = limK→+∞[ 1

K

∑K

k=1 E(Λ
2
k) − ( 1

K

∑K

k=1 E(Λk))
2],

Λ̂k = RFk−�̂FSk
1
K

∑K
k=1 FSk

, and σ̂2
+ = 1

K

∑K

k=1(Λ̂k − 1
K

∑K

j=1 Λ̂j)
2.

THEOREM 3.1: If Assumptions 1–4 hold,
√
K(�̂ − �K)

d−→ N (0�σ2) and σ̂2
+

p−→ σ2
+ ≥

σ2.

Theorem 3.1 implies that �̂ is an asymptotically normal estimator of �K when the num-
ber of waitlists goes to infinity. As is usually the case for estimators constructed using
independent but not identically distributed random variables (see, e.g., Liu and Singh
(1995)), the asymptotic variance σ2 of �̂ can only be conservatively estimated: we provide
a consistent estimator of σ2

+, an upper bound of σ2. That estimator can then be used to
build conservative confidence intervals for �K .6 When all the Λk have the same expec-
tation, something that for instance happens when all waitlists have the same number of
applicants, the same expectation of the proportion of takers, and the same expectations
of takers’ and non-takers’ potential outcomes, σ2

+ = σ2 so those confidence intervals are
exact. Finally, in simulations shown in Section S3.4 of the Supplemental Material, we find
that the asymptotic distribution in Theorem 3.1 approximates the distribution of �̂ well if
20 waitlists or more are used in the analysis. This suggests that articles using more than 20
waitlists may rely on Theorem 3.1 for inference, while articles using less than 20 waitlists
may not.

3.3. Comparison With the Ever-Offer and Initial-Offer Estimators

3.3.1. Comparison With the Ever-Offer Estimator

Let β̂E
FE be the coefficient of Dik in a 2SLS regression of Yik on Dik and waitlist fixed

effects, using Zik as the instrument for Dik. We refer to β̂E
FE as the EO estimator. The

derivation of its limit relies on Assumption 7, another technical assumption, that is stated
in the proof of the theorem, in Section S4 of the Supplemental Material. Assumption 7

5To apply those theorems, one only needs that (RFk)k∈N∗ has bounded moments of order 2 + δ for some
strictly positive δ. However, applying the central limit theorem to (RFk)k∈N∗ and (FSk)k∈N∗ would only

yield that
√
K(�̂ − 1

K

∑K
k=1 E(RFk)

1
K

∑K
k=1 E(FSk)

) is asymptotically normal. This is not the result stated in Theorem 3.1, as
1
K

∑K
k=1 E(RFk)

1
K

∑K
k=1 E(FSk)

	= �K . Assuming fourth moments, one can show that limK→∞
√
K(

1
K

∑K
k=1 E(RFk)

1
K

∑K
k=1 E(FSk)

− �K) = 0, thus

ensuring that
√
K(�̂−�K) is asymptotically normal.

6Conservative variance estimators arise in articles studying treatment effect estimation in randomized exper-
iments, when one does not assume that the experimental units are a random sample from an infinite population
(see, e.g., Neyman (1990)).
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ensures that the limits in the definition of wk and B below exist. Let

wk =

Sk

(
Nk − Sk

Nk + 1
Tk + 1

)
Nk

lim
K→+∞

1
K

K∑
j=1

E

⎛⎜⎜⎝Sj

(
Nj − Sj

Nj + 1
Tj + 1

)
Nj

⎞⎟⎟⎠
�

B =

lim
K→+∞

1
K

K∑
k=1

E

⎛⎜⎜⎝Sk

(
Nk − Tk

Nk + 1
Tk + 1

)
Nk

[
1
Tk

∑
i:Dik(1)=1

Yik(0)− 1
Nk − Tk

∑
i:Dik(1)=0

Yik(0)
]⎞⎟⎟⎠

lim
K→+∞

1
K

K∑
k=1

E

⎛⎜⎜⎝Sk

(
Nk − Sk

Nk + 1
Tk + 1

)
Nk

⎞⎟⎟⎠
�

THEOREM 3.2: If Assumptions 1–4 and 7 hold,

β̂E
FE

p−→ lim
K→+∞

1
K

K∑
k=1

E

(
wk

1
Tk

∑
i:Dik(1)=1

[
Yik(1)−Yik(0)

])+B� (2)

Under Assumptions 1–4 and 7, β̂E
FE converges towards the sum of two terms. The first

is a weighted average of the LATEs of takers in each waitlist. If those LATEs vary across
waitlists, this weighted average is not equal to the LATE of all takers, because it over-
represents waitlists with a ratio of seats to takers closer to 1/2.7 The second term, B, is
a bias term. As explained in Section 2, this bias arises from the endogenous stopping of
offers in each waitlist, and from the waitlist fixed effects.

We start by performing comparative statics on |B|, assuming that waitlists are homoge-
neous: there exist real numbers N0, T0, S0, and �Y(0) such that for all k, Nk =N0, Tk = T0,
Sk = S0, and E([ 1

Tk

∑
i:Dik(1)=1 Yik(0)− 1

Nk−Tk

∑
i:Dik(1)=0 Yik(0)])= �Y(0). Then,

|B| = 1 − t0

1 − s0 +N0(t0 − s0)
|�Y(0)|� (3)

where t0 = T0/N0 and s0 = S0/N0 respectively denote the proportion of takers and the
ratio of seats to applicants in the waitlist. The right-hand side of (3) is decreasing in N0,
decreasing in t0, increasing in s0, and increasing in |�Y(0)|.8

Then, we study how waitlists’ heterogeneity affects |B|. Let (Sa
0 � S

b
0) ∈ {2� � � � �T0 − 1}2,

let (T a
0 �T

b
0 ) ∈ {3� � � � �N0}2, and let

�Y(0)�k = E

[
1
Tk

∑
i:Dik(1)=1

Yik(0)− 1
Nk − Tk

∑
i:Dik(1)=0

Yik(0)

]
�

7This can be seen from the fact that
Sk(Nk−Sk

Nk+1
Tk+1 )

Nk
= Tk

Sk
Tk
(1 − Sk

(Tk+1)Nk/(Nk+1) )≈ Tk
Sk
Tk
(1 − Sk

Tk
).

8These results remain true if waitlists are heterogeneous; see Section S2.1 of the Supplemental Material.
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The three following results hold:
1. If (Nk�Tk��Y(0)�k) = (N0�T0��Y(0)) for all k, |B| is larger if α% of the waitlists have

Sa
0 seats and (1 − α)% have Sb

0 seats than if all of them have αSa
0 + (1 − α)Sb

0 seats.
2. If (Nk�Sk��Y(0)�k) = (N0� S0��Y(0)) for all k, |B| is larger if α% of the waitlists have

Ta
0 takers and (1 − α)% have Tb

0 takers than if all of them have αTa
0 + (1 − α)T b

0 takers.
3. If ( Tk

Nk
� Sk
Nk
��Y(0)�k)= (t0� s0��Y(0)) for all k, |B| is larger if α% of the waitlists have Na

0

applicants and (1 −α)% have Nb
0 applicants than if all have αNa

0 + (1 −α)Nb
0 applicants.

Overall, |B| seems to be higher when waitlists have heterogeneous numbers of applicants,
takers, and seats. The impact of waitlists’ heterogeneity on |B| can be large. For instance,
if (Nk�Sk��Y(0)�k) = (40�20��Y(0)), |B| is 17.1% larger if 50% of waitlists have 25 takers
and 50% have 35 takers than if all have 30 takers.

3.3.2. Comparison With the Initial-Offer Estimator

Let Z′
ik = 1{Rik ≤ Sk} be an indicator for applicants in the initial round of offers, the so-

called initial-offer instrument. Let S =∑K

k=1 Sk. Let wI
ik =Z′

ik× S
N

× Nk

Sk
+(1−Z′

ik)× N−S
N

×
Nk

Nk−Sk
be the propensity score weights attached to initial offers. Let β̂I

PS be the coefficient
of Dik in a 2SLS regression of Yik on Dik, using Z′

ik as the instrument, and weighted by
wI

ik. We call β̂I
PS the IO estimator.9

Under Assumptions 1–2 and a technical condition similar to Assumption 4,
√
K(β̂I

PS −
�K) converges towards a normal distribution. Contrary to Zik, Z′

ik is only a function of
applicants’ random numbers and of the number of seats in their waitlist. Thus, it satisfies
the exogeneity assumption in Imbens and Angrist (1994). Under Assumption 1, it also
satisfies the monotonicity condition therein. Then, one can show that β̂I

PS is an asymptoti-
cally normal estimator of the LATE of applicants complying with an initial offer. As those
are a random subset of the takers, this LATE is equal to �K .

However, using β̂I
PS instead of �̂ may result in a large loss of precision, as shown in

Theorem 3.3. For every k, let Dk = (D1k(1)� � � � �DNkk(1)).

ASSUMPTION 5—Assumptions to Compare the Asymptotic Variances of �̂ and
β̂I

PS: (a) For every (i�k) 	= (i′�k′) ∈ I2, cov(Yik(0)�Yi′k′(0)|(Dk�Rk)1≤k≤K)= 0.
(b) For every (i�k) ∈ I , V (Yik(0) | (Dk�Rk)1≤k≤K)= σ2

Y(0).
(c) For every k ∈ {1� � � � �K}, for every i ∈ {1� � � � �Nk}, E(Yik(0) | (Dk�Rk)1≤k≤K)= μk.
(d) For every (i�k) ∈ I , Yik(1)−Yik(0)= τ.
(e) For every k ∈ {1� � � � �K}, Nk = N0, Sk = S0, Tk = T0, for some integers N0, S0, and T0.
(f) S0(N0 − S0)−N0(N0 − T0) > 0.

Point (a) of Assumption 5 requires that the potential outcomes Yik(0) be uncorrelated
across applicants, point (b) requires that they be homoscedastic, and point (c) requires
that in each waitlist, E(Yik(0) | (Dk�Rk)1≤k≤K) be constant. Point (d) requires that the
treatment effect be constant. Point (e) requires that all waitlists have the same number
of applicants, takers, and seats. Point (f) ensures that the denominator of the IO estima-
tor differs from 0 with probability 1. The conditions in Assumption 5 help simplify the

9In our survey of articles that have used randomized waitlists, three articles used the initial-offer instrument
with propensity score weights. Other papers used that instrument with lottery fixed effects. We focus on the
initial-offer estimator with propensity score weights, as it estimates the same parameter as the DREO esti-
mator, so a comparison of their precision is meaningful. The initial-offer estimator with lottery fixed effects is
consistent for a different causal effect.
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formulas of V (�̂) and V (β̂I
PS), thus ensuring that these variances can be compared ana-

lytically. Some of these conditions may not be plausible in practice. For instance, point
(c) fails if the expected value of Yik(0) differs across takers and non-takers. However, in
simulations shown in Section S3.2 of the Supplemental Material, we find that the variance
formulas derived in Theorem 3.3 still provide good approximations of V (�̂) and V (β̂I

PS)
when points (c), (d), and (f) of Assumption 5 are violated.

THEOREM 3.3: (a) If Assumptions 1–4 and (a)–(e) of Assumption 5 hold,

lim sup
K→+∞

V
(√

K(�̂−�K)
)≤ σ2

Y(0)

1
S0 − 1

+ 1
T0 − S0

T0

N0

�

(b) If Assumptions 1–5 hold,

lim
K→+∞

V
(√

K
(
β̂I

PS −�K

))= σ2
Y(0)

1
S0

+ 1
N0 − S0(

T0 − S0

N0 − S0

)2 �

Point (a) of Theorem 3.3 gives an upper bound of the limsup of V (
√
K(�̂−�K)),10 while

point (b) gives the limit of V (
√
K(β̂I

PS − �K)). In order to compare these parameters,

note that 0 < T0
N0

≤ 1 − 1
S0
< 1 is a sufficient condition to have

1
S0−1 + 1

T0−S0
T0
N0

≤
1
S0

+ 1
N0−S0

(
T0−S0
N0−S0

)2
. This

condition usually holds in practice. For instance, if T0
N0

= 0�75, the condition will hold as
soon as there are more than 4 seats per waitlist. Then, the upper bound in point (a)
is lower than the limit of V (

√
K(β̂I

PS − �K)). In practice, using the IO rather than the
DREO estimator can lead to large efficiency losses. For instance, if N0 = 40, T0 = 30, and
S0 = 20, the asymptotic variance of the IO estimator is 1.97 times larger than that of the
DREO one. Still, there are also instances where Assumption 5 holds and the variance in
point (a) of Theorem 3.3 is higher than that in point (b). For instance, that is the case if
all waitlists have 3 seats, 38 takers, and 40 applicants.

4. APPLICATION TO BLATTMAN AND ANNAN (2016)

After the second Liberian civil war, some ex-fighters started engaging in illegal activi-
ties, and working abroad as mercenaries. Blattman and Annan (2016)11 studied the effect
of an agricultural training on their employment and on their social networks. By improv-
ing their labor market opportunities, the program hoped to reduce their interest in illegal
and mercenary activities, and to sever their relationships with other ex-combatants. To

10Under technical conditions, for instance if one assumes that the potential outcomes have a bounded sup-
port, it follows from Theorem 2.20 in Van der Vaart (2000) and Theorem 3.1 that

√
K(�̂ − �K) converges in

L2, so lim supK→+∞ V (
√
K(�̂ − �K)) is actually a simple limit, and it is equal to σ2, the asymptotic variance

of �̂.
11Blattman and Annan (2016) is one of the few articles in our survey in Section S1 of the Supplemental

Material whose data are not proprietary.
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allocate the treatment, the authors divided applicants into 70 waitlists, according to the
training site they applied for, their former military rank, and their community. In each
waitlist, they randomly ranked applicants, and offers were made following that ranking
until the seats available were filled.

Blattman and Annan (2016) estimated the training’s effect on 62 outcomes, that are ei-
ther applicants’ answers to survey questions, or indexes averaging their answers to several
related questions. To preserve space, we only consider the main outcomes. Here are the
rules we used to make our selection: we chose indexes rather than questions averaged into
an index; among questions not averaged into an index, we discarded those asking appli-
cants to give a subjective opinion; finally, we discarded a few measures the authors did not
comment on in the paper. We end up with four measures of employment, one measure of
applicants’ interest in working as mercenaries, and five measures of their social network.

For each outcome, Table III shows the EO estimator computed by the authors, and
the DREO estimator computed with the same controls as those used by the authors.12

An estimate of σ̂+/
√
K − 1 is shown next to each DREO estimator.13 In Theorem S2.1

in the Supplemental Material, we derive the asymptotic distribution of the EO estimator.
Accordingly, an estimate of σ̂2

E�+/
√
K − 1, defined in Section S2.2 of the Supplemental

Material, is shown next to each EO estimator. The table then shows the p-value of a
t-test that the estimands of the EO and DREO estimators are equal,14 also computed fol-
lowing Theorem S2.1 in the Supplemental Material. Finally, the table shows the estimated
difference between the mean of Yik(0) among non-takers and takers, denoted �Y(0). The
EO and DREO estimators are close for all employment outcomes, but they significantly

TABLE III

ESTIMATORS OF THE LATE IN BLATTMAN AND ANNAN (2016)a

EO (s.e.) DREO (s.e.) EO = DREO �Y(0)

Works in agriculture 0�155 (0�037) 0�167 (0�037) 0.214 0�020
Hours illegal work −3�697 (1�822) −3�188 (1�614) 0.183 −2�807
Hours farming work 4�090 (1�511) 4�319 (1�472) 0.468 3�070
Income index 0�157 (0�075) 0�169 (0�069) 0.400 −0�087
Interest mercenary work −0�239 (0�140) −0�361 (0�155) 0.010 0�307
Relations ex-combatants 0�073 (0�091) 0�050 (0�097) 0.388 −0�079
Relations ex-commanders −0�154 (0�113) −0�227 (0�109) 0.011 0�251
Social network quality 0�027 (0�068) 0�082 (0�068) 0.013 −0�041
Social support 0�188 (0�091) 0�161 (0�089) 0.166 −0�165
Relationships families 0�133 (0�075) 0�161 (0�079) 0.205 −0�059
N 1,025 1,016

aColumns 2 and 3 show the EO and DREO estimators in Blattman and Annan (2016), for the outcome variables in Column 1, and
with the same controls as in Blattman and Annan (2016). The EO estimators are computed using all the waitlists, while the DREO
estimators are computed excluding two waitlists that had less than two seats. An estimate of σ̂+/

√
K − 1 is shown next to each DREO

estimator, in parentheses. An estimate of σ̂2
E�+/

√
K − 1 (see Section S2.2 of the Supplemental Material) is shown next to each EO

estimator, in parentheses. Column 4 shows the p-value of a t-test that the EO and DREO estimators are equal, where we follow
Theorem S2.1 in the Supplemental Material to compute the standard error of the difference between the two estimators. Column 5
shows the estimated difference between the mean of Yik(0) among takers and non-takers.

12The DREO estimator with controls is defined in Section S2.5 of the Supplemental Material.
13To account for the controls included in the estimation, Yik and Dik are regressed on the controls, and then

the residuals from those two regressions are used instead of Yik and Dik in the computation of σ̂+.
14Under homogeneous effects, this test is equivalent to testing the absence of bias in the EO estimator

(B = 0).
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differ for three of the other outcomes. For applicants’ interest in mercenary work, the
DREO estimator is 51.0% larger in absolute value than the EO one, and it is statistically
significant while the EO estimator is only marginally significant; for applicants’ relations
with their ex-commanders, the DREO estimator is 47.4% larger, and it is statistically sig-
nificant while the EO estimator is not; for applicants’ social network quality, the DREO
estimator is three times larger, but neither of the two estimators is statistically significant.
For the first two outcomes, the estimated difference between the mean of Yik(0) of takers
and non-takers is large (30.7% and 25.1% of the standard deviation of these variables,
respectively), which may explain why the EO and DREO estimators differ.

5. CONCLUSION

When the seats available for a treatment are allocated using randomized waitlists, we
show that applicants getting and not getting an offer are not statistically comparable.
Accordingly, a commonly used estimator of the treatment effect, the ever-offer estimator,
is inconsistent when the number of waitlists goes to infinity. We propose a new estimator,
the doubly-reweighted ever-offer (DREO) estimator, and we show that it is consistent and
asymptotically normal. Finally, we show that the DREO estimator is often more efficient
than another consistent estimator, the initial-offer estimator. Overall, we recommend that
practitioners use the DREO estimator when they analyze randomized waitlists.

APPENDIX: PROOFS

This appendix contains the proofs of the paper’s main results. Theorems 3.2 and 3.3
are proven in the Supplemental Material. The next lemma shows that the expectation
of the average of any function of potential treatments and outcomes is the same among
wik-reweighted applicants getting an offer and those not getting an offer. ∀(i�k) ∈ I , let
Pik = (Dik(1)�Yik(0)�Yik(1)).

LEMMA A.1: If Assumptions 1–3 hold, then ∀k ∈ {1� � � � �K} and for any function φ :
R

3 
→ R,

E

(
1

Lk − 1

∑
i:Zik=1

wikφ(Pik)
∣∣∣Pk

)
= E

(
1

Nk −Lk

∑
i:Zik=0

φ(Pik)
∣∣∣Pk

)
= 1

Nk

Nk∑
i=1

φ(Pik)�

PROOF: We start by showing that

E

(
1

Lk − 1

∑
i:Zik=1

wikφ(Pik)
∣∣∣Pk

)
= 1

Nk

Nk∑
i=1

φ(Pik)� (4)

First, we show that (4) holds when Pk is such that Tk <Nk. Then, we have

E

(
1

Lk − 1

∑
i:Zik=1

wikφ(Pik)
∣∣∣Pk

)

=E

(
Nk∑
i=1

1
Lk − 1

(
1 − Dik(1)

Sk

)
φ(Pik)1{Rik ≤ Lk}

∣∣∣Pk

)
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=
Nk∑
i=1

(
1 − Dik(1)

Sk

)
φ(Pik)E

(
1

Lk − 1
1{Rik ≤ Lk}

∣∣∣Pk

)

=
Nk∑
i=1

(
1 − Dik(1)

Sk

)
φ(Pik)

Nk−Tk+Sk∑
l=Sk

P(Lk = l |Pk)
1

l − 1
E
(
1{Rik ≤ l} |Lk = l�Pk

)

=
Nk∑
i=1

(
1 − Dik(1)

Sk

)
φ(Pik)

×
Nk−Tk+Sk∑

l=Sk

(
l − 1
Sk − 1

)(
Nk − l
Tk − Sk

)
(
Nk

Tk

) 1
l − 1

E
(
1{Rik ≤ l} | Lk = l�Pk

)

=
Nk∑
i=1

(
1 − Dik(1)

Sk

)
φ(Pik)

×
Nk−Tk+Sk∑

l=Sk

(
l − 1
Sk − 1

)(
Nk − l
Tk − Sk

)
(
Nk

Tk

) 1
l − 1

(
Dik(1)

Sk

Tk

+ (1 −Dik(1)
) l − Sk

Nk − Tk

)

= 1
Nk

Nk∑
i=1

φ(Pik)

⎛⎜⎜⎝Dik(1)
Nk−Tk+Sk∑

l=Sk

(
l − 1
Sk − 1

)(
Nk − l
Tk − Sk

)
Sk − 1
l − 1(

Nk

Tk

)
Tk

Nk

+ (1 −Dik(1)
)Nk−Tk+Sk∑

l=Sk+1

(
l − 1
Sk − 1

)(
Nk − l
Tk − Sk

)
l − Sk

l − 1(
Nk

Tk

)
Nk − Tk

Nk

⎞⎟⎟⎠

= 1
Nk

Nk∑
i=1

φ(Pik)

⎛⎜⎜⎝Dik(1)
Nk−Tk+Sk−1∑

l=Sk−1

(
l − 1
Sk − 2

)(
Nk − 1 − l
Tk − Sk

)
(
Nk − 1
Tk − 1

)

+ (1 −Dik(1)
)Nk−1−Tk+Sk∑

l=Sk

(
l − 1
Sk − 1

)(
Nk − 1 − l
Tk − Sk

)
(
Nk − 1
Tk

)
⎞⎟⎟⎠

= 1
Nk

Nk∑
i=1

φ(Pik)� (5)

The first equality follows from the definitions of wik, Zik, and Dik. The second equality
holds because Dik(1) and φ(Pik) are functions of Pk, Nk and Sk are non-stochastic, and
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the conditional expectation is linear. The third follows from the law of iterated expecta-
tions, and the fact that Lk is included between Sk and Nk − Tk + Sk under Assumptions 1
and 3.

Then, under Assumption 1, having Lk = l is equivalent to having Sk − 1 takers with
Rik ≤ l − 1, one with Rik = l, and Tk − Sk with Rik ≥ l + 1.

(
l−1
Sk−1

)(
Nk−l

Tk−Sk

)
Tk!(Nk − Tk)!

possible values of Rk satisfy these constraints. Under Assumption 2, conditional on Pk

each of those values has a probability 1
Nk! of being realized. Hence the fourth equality.

Then,

E
(
1{Rik ≤ l} |Lk = l�Pk

)
=Dik(1)E

(
1{Rik ≤ l} |Lk = l�Dik(1)= 1�Pk \Dik(1)

)
+ (1 −Dik(1)

)
E
(
1{Rik ≤ l} |Lk = l�Dik(1)= 0�Pk \Dik(1)

)
� (6)

Conditional on Lk = l, Sk takers out of Tk satisfy Rik ≤ l, and Assumption 2 ensures that
each taker has the same probability of satisfying this condition, so

E
(
1{Rik ≤ l} |Lk = l�Dik(1)= 1�Pk \Dik(1)

)= Sk

Tk

� (7)

Similarly, conditional on Lk = l and Tk < Nk, l − Sk non-takers out of Nk − Tk satisfy
Rik ≤ l, and Assumption 2 ensures that each has the same probability of satisfying this
condition, so

E
(
1{Rik ≤ l} | Lk = l�Dik(1)= 0�Pk \Dik(1)

)= l − Sk

Nk − Tk

� (8)

Plugging (7) and (8) into (6) yields the fifth equality. The sixth and seventh equalities
follow after some algebra.

Then, we prove the eighth equality. Before that, note that Tk < Nk and Assumption 3
ensure that 1 ≤ Sk − 1 ≤ Tk − 1 ≤ Nk − 1 and 1 ≤ Sk ≤ Tk ≤ Nk − 1, thus ensuring that
all the quantities that follow are well-defined. There are

(
Nk−1
Tk−1

)
ways of distributing Tk − 1

units over Nk −1 ranks. The rank of the Sk−1th unit must be included between Sk −1 and
Nk − Tk + Sk − 1, and for every l ∈ {Sk − 1� � � � �Nk − Tk + Sk − 1}, there are

(
l−1
Sk−2

)(
Nk−1−l

Tk−Sk

)
ways of distributing those Tk −1 units while having that the Sk −1th unit is at the lth rank.
Therefore,

Nk−Tk+Sk−1∑
l=Sk−1

(
l − 1
Sk − 2

)(
Nk − 1 − l
Tk − Sk

)
=
(
Nk − 1
Tk − 1

)
� (9)

Similarly, when distributing Tk units over Nk − 1 ranks, the rank of the Skth unit must
lie between Sk and Nk − 1 − Tk + Sk. For every l ∈ {Sk� � � � �Nk − 1 − Tk + Sk}, there are(

l−1
Sk−1

)(
Nk−1−l

Tk−Sk

)
ways of distributing those Tk units while having the Skth unit at the lth rank.

Thus,
Nk−1−Tk+Sk∑

l=Sk

(
l − 1
Sk − 1

)(
Nk − 1 − l
Tk − Sk

)
=
(
Nk − 1
Tk

)
� (10)

The eighth equality follows from (9) and (10). This concludes the proof of (5).
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Second, we show that (4) holds when Pk is such that Tk =Nk. Then, we have

E

(
1

Lk − 1

∑
i:Zik=1

wikφ(Pik)
∣∣∣Pk

)
= E

(
Nk∑
i=1

φ(Pik)
1
Sk

1{Rik ≤ Sk}
∣∣∣Pk

)

=
Nk∑
i=1

φ(Pik)
1
Sk

E
(
1{Rik ≤ Sk} |Pk

)
= 1

Nk

Nk∑
i=1

φ(Pik)� (11)

The first equality follows from the definition of wik and from the fact that if Tk = Nk,
Lk = Sk. The second equality holds because φ(Pik) is a function of Pk, Nk and Sk are
non-stochastic, and the conditional expectation is linear. The third equality follows from
the fact that under Assumption 2, if Tk =Nk, then, conditional on Pk, each applicant has
a probability Sk

Nk
of having Rik ≤ Sk. This proves (11). Equations (5) and (11) prove (4).

We then show that

E

(
1

Nk −Lk

∑
i:Zik=0

φ(Pik)
∣∣∣Pk

)
= 1

Nk

Nk∑
i=1

φ(Pik)� (12)

First, we show that (12) holds when Pk is such that Tk <Nk. Then, we have

E

(
1

Nk −Lk

∑
i:Zik=0

φ(Pik) |Pk

)

=
Nk∑
i=1

φ(Pik)E

(
1

Nk −Lk

1{Rik > Lk} |Pk

)

=
Nk∑
i=1

φ(Pik)

Nk−Tk+Sk∑
l=Sk

×

(
l − 1
Sk − 1

)(
Nk − l
Tk − Sk

)
(
Nk

Tk

) 1
Nk − l

E
(
1{Rik > l} |Lk = l�Pk

)

=
Nk∑
i=1

φ(Pik)

Nk−Tk+Sk∑
l=Sk

(
l − 1
Sk − 1

)(
Nk − l
Tk − Sk

)
(
Nk

Tk

)
× 1

Nk − l

(
Dik(1)

Tk − Sk

Tk

+ (1 −Dik(1)
)Nk − Tk − l + Sk

Nk − Tk

)



TREATMENTS ALLOCATED BY RANDOMIZED WAITING LISTS 1469

= 1
Nk

Nk∑
i=1

φ(Pik)

⎛⎜⎜⎝Dik(1)
Nk−Tk+Sk∑

l=Sk

(
l − 1
Sk − 1

)(
Nk − l
Tk − Sk

)
Tk − Sk

Nk − l(
Nk

Tk

)
Tk

Nk

+ (1 −Dik(1)
)Nk−1−Tk+Sk∑

l=Sk

(
l − 1
Sk − 1

)(
Nk − l
Tk − Sk

)
Nk − Tk − l + Sk

Nk − l(
Nk

Tk

)
Nk − Tk

Nk

⎞⎟⎟⎠

= 1
Nk

Nk∑
i=1

φ(Pik)

⎛⎜⎜⎝Dik(1)
Nk−Tk+Sk∑

l=Sk

(
l − 1
Sk − 1

)(
Nk − 1 − l
Tk − 1 − Sk

)
(
Nk − 1
Tk − 1

)

+ (1 −Dik(1)
)Nk−1−Tk+Sk∑

l=Sk

(
l − 1
Sk − 1

)(
Nk − 1 − l
Tk − Sk

)
(
Nk − 1
Tk

)
⎞⎟⎟⎠

= 1
Nk

Nk∑
i=1

φ(Pik)� (13)

This derivation follows from arguments similar to those used when deriving (5). We only
prove the last equality. Note that Assumption 3 ensures that 1 ≤ Sk ≤ Tk − 1 ≤ Nk − 1,
thus ensuring that all the quantities that follow are well-defined. There are

(
Nk−1
Tk−1

)
ways

of distributing Tk − 1 units over Nk − 1 ranks. The rank of the Skth unit must be in-
cluded between Sk and Nk − Tk + Sk, and for every l ∈ {Sk� � � � �Nk − Tk + Sk}, there are(

l−1
Sk−1

)(
Nk−1−l

Tk−1−Sk

)
ways of distributing those Tk − 1 units while having that the Skth unit is at

the lth rank. Therefore,

Nk−Tk+Sk∑
l=Sk

(
l − 1
Sk − 1

)(
Nk − 1 − l
Tk − 1 − Sk

)
=
(
Nk − 1
Tk − 1

)
� (14)

The last equality in the derivation of (13) follows from (10) and (14).
Second, we show that (12) holds when Pk is such that Tk = Nk. Then, we have

E

(
1

Nk −Lk

∑
i:Zik=0

φ(Pik)
∣∣∣Pk

)
=

Nk∑
i=1

φ(Pik)
1

Nk − Sk

E
(
1{Rik > Sk} |Pk

)

= 1
Nk

Nk∑
i=1

φ(Pik)� (15)

This derivation follows from arguments similar to those used when deriving (11). Equa-
tions (13) and (15) prove (12). Q.E.D.
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PROOF OF LEMMA 3.1: We only prove point (a); point (b) follows from a similar argu-
ment:

E

(
1
K

K∑
k=1

Nk

N

(
1

Lk − 1

∑
i:Zik=1

wikYik − 1
Nk −Lk

∑
i:Zik=0

Yik

))

= 1
K

K∑
k=1

Nk

N
E

(
E

(
1

Lk − 1

∑
i:Zik=1

wikYik

(
Dik(1)

) ∣∣∣Pk

)

−E

(
1

Nk −Lk

∑
i:Zik=0

Yik(0)
∣∣∣Pk

))

= 1
K

K∑
k=1

Nk

N
E

(
1
Nk

Nk∑
i=1

[
Yik

(
Dik(1)

)−Yik(0)
])

= E

(
1
N

∑
(i�k)∈I

[
Yik

(
Dik(1)

)−Yik(0)
])

�

The first equality follows from the linearity of the expectation, from the fact Nk and N
are not stochastic, from point (c) of Assumption 1 and the definitions of Yik and Dik,
from the law of iterated expectations, and from the linearity of the conditional expec-
tation. The second equality follows from Lemma A.1, with φ(Pik) = Yik(Dik(1)) for the
first conditional expectation, and φ(Pik) = Yik(0) for the second one. The third equality
follows after some algebra. Q.E.D.

The proof of Theorem 3.1 makes use of the following lemma, where Op(1) (resp. op(1))
stands for a sequence of random variables bounded in probability (resp. converging to-
wards 0 in probability); see, for example, Van der Vaart (2000).

LEMMA A.2: Let (AK)K∈N and (BK)K∈N be two sequences of real numbers such that, for
every K, BK ≥ C for some real number C > 0, and AK

BK
converges towards a finite limit. Let

(ÂK)K∈N and (B̂K)K∈N be two sequences of random variables such that
√
K(ÂK − AK) =

Op(1) and
√
K(B̂K −BK)= Op(1). Then,

√
K

(
ÂK

B̂K

− AK

BK

)
= √

K
1
BK

(
(ÂK −AK)− AK

BK

(B̂K −BK)

)
+ oP(1)�

PROOF:
√
K(ÂK − AK) = Op(1) and

√
K(B̂K − BK) = Op(1) imply that ÂK − AK =

op(1) and B̂K − BK = op(1). Therefore, with probability approaching 1, max(ÂK − AK�

B̂K − BK) ≤ C
2 . Then, Lemma S3 in de Chaisemartin and D’Haultfœuille (2018) implies

that with probability approaching 1,∣∣∣∣√K

(
ÂK

B̂K

− AK

BK

)
− √

K
1
BK

(
(ÂK −AK)− AK

BK

(B̂K −BK)

)∣∣∣∣
≤

2
(

1 + AK

BK

)
C2 max

(√
K(ÂK −AK)�

√
K(B̂K −BK)

)
max(ÂK −AK� B̂K −BK)�
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The right-hand side of the inequality in the previous display is an op(1). With probability
approaching 1, the left-hand side is bounded by an op(1), so it is itself an op(1). Q.E.D.

PROOF OF THEOREM 3.1: 1. Proof of the asymptotic normality of �̂.
Let ITTK = 1

K

∑K

k=1

∑Nk
i=1[Yik(Dik(1)) − Yik(0)], let TK = 1

K

∑K

k=1 Tk, and let �̃K =
E(ITTK)

E(TK)
. We prove the asymptotic normality of �̂ in two steps. First, we prove that√

K(�̂ − �̃K) is asymptotically normal. Second, we show that
√
K(�̃K − �K) converges

towards 0.
Proof that

√
K(�̂− �̃K)

d−→N (0�σ2).
First, notice that

�̃K =
E

(
1
N

∑
(i�k)∈I

[
Yik

(
Dik(1)

)−Yik(0)
])

E

(
1
N

∑
(i�k)∈I

Dik(1)
)

=
E

(
1
K

K∑
k=1

RFk

)

E

(
1
K

K∑
k=1

FSk

) � (16)

The first equality follows from some algebra, and from point (a) of Assumption 1. The
second equality follows from points (a) and (b) of Lemma 3.1 and the definitions of RFk

and FSk.
Then,

√
K

(
1
K

K∑
k=1

RFk −E

(
1
K

K∑
k=1

RFk

))

=

K∑
k=1

(
RFk −E(RFk)

)
√√√√ K∑

k=1

V (RFk)

√√√√ 1
K

K∑
k=1

V (RFk)� (17)

Point (a) of Assumption 1 and point (a) of Assumption 4 ensure that the RFk’s are in-
dependent. It follows from a few lines of algebra and point (c) of Assumption 4 that the
fourth moment of RFk is bounded for all k, thus ensuring that its expectation and vari-
ance exist. Finally, points (d.iii) and (d.vi) of Assumption 4 ensure that (RFk)k∈N∗ satisfies
the Liapunov condition for δ = 2. Then, the Liapunov central limit theorem (see, e.g.,
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Billingsley (1986, Theorem 27.3)) implies that

K∑
k=1

(
RFk −E(RFk)

)
√√√√ K∑

k=1

V (RFk)

d−→N (0�1)� (18)

Point (d.iii) of Assumption 4 ensures that
√

1
K

∑K

k=1 V (RFk) has a finite limit, denoted
σRF. Therefore, combining (17), (18), and the Slutsky lemma,

√
K

(
1
K

K∑
k=1

(
RFk −E

(
1
K

K∑
k=1

RFk

)))
d−→N

(
0�σ2

RF

)
� (19)

Similarly, let σFS be the limit of
√

1
K

∑K

k=1 V (FSk). One can show that

√
K

(
1
K

K∑
k=1

(
FSk −E

(
1
K

K∑
k=1

FSk

)))
d−→N

(
0�σ2

FS

)
� (20)

Finally,

√
K(�̂− �̃K)

= √
K

( 1
K

K∑
k=1

RFk

1
K

K∑
k=1

FSk

−
E

(
1
K

K∑
k=1

RFk

)

E

(
1
K

K∑
k=1

FSk

))

= √
K

1

E

(
1
K

K∑
k=1

FSk

)( 1
K

K∑
k=1

RFk −E

(
1
K

K∑
k=1

RFk

)

−
E

(
1
K

K∑
k=1

RFk

)

E

(
1
K

K∑
k=1

FSk

)( 1
K

K∑
k=1

FSk −E

(
1
K

K∑
k=1

FSk

)))
+ oP(1)

= √
K

1

E

(
1
K

K∑
k=1

FSk

)( 1
K

K∑
k=1

RFk −E

(
1
K

K∑
k=1

RFk

)
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−�

(
1
K

K∑
k=1

FSk −E

(
1
K

K∑
k=1

FSk

)))
+ oP(1)

= FS

E

(
1
K

K∑
k=1

FSk

)√
K

(
1
K

K∑
k=1

(
Λk −E(Λk)

))+ oP(1)
d−→N

(
0�σ2

)
�

The first equality follows from the definitions of FSk and RFk and from (16).
The second equality follows from the fact E( 1

K

∑K

k=1 RFk), E( 1
K

∑K

k=1 FSk), 1
K

∑K

k=1 RFk,
and 1

K

∑K

k=1 FSk satisfy the assumptions of Lemma A.2. Indeed, point (b) of Lemma 3.1,
point (b) of Assumption 4, and Assumption 3 imply that E( 1

K

∑K

k=1 FSk)≥ 3
N+ > 0. More-

over, points (d.i) and (d.ii) of Assumption 4 imply that E( 1
K

∑K

k=1 RFk)/E(
1
K

∑K

k=1 FSk)
converges towards a finite limit. Finally, it follows from (19), (20), and the fact that con-
vergence in distribution implies boundedness in probability, that

√
K

(
1
K

K∑
k=1

RFk −E

(
1
K

K∑
k=1

RFk

))
= Op(1)�

√
K

(
1
K

K∑
k=1

FSk −E

(
1
K

K∑
k=1

FSk

))
= Op(1)�

Points (d.i) and (d.ii) of Assumption 4 and (20) ensure that

1

E

(
1
K

K∑
k=1

FSk

)(�−
E

(
1
K

K∑
k=1

RFk

)

E

(
1
K

K∑
k=1

FSk

))√
K

(
1
K

K∑
k=1

FSk −E

(
1
K

K∑
k=1

FSk

))
= oP(1)�

hence the third equality. The fourth equality follows from the definition of Λk. The con-
vergence in distribution arrow follows from a reasoning similar to that used to prove (19),
and from the Slutsky lemma and the definition of FS.

Proof that limK→∞
√
K(�̃K −�K)= 0.

Let D(1) = (Di�k(1))(i�k)∈I , ĨTTK = E(ITTK|D(1)), and I = 1{|TK − E(TK)| < εK},
where εK > 0 will be specified below. By point (d.ix) of Assumption 4 and Assumption
3, limK→∞ E(TK) > 0. Thus, it suffices to prove that

√
K(E(TK)�K −E(ITTK))→ 0. Be-

cause �K = E(ITTK/TK), we have

√
KE(TK)�K −E(ITTK)

= √
KE

[
ĨTTK

(
E(TK)− TK

)
/TK

]
= √

KE
[
ĨTTKI

(
E(TK)− TK

)
/TK

]+ √
KE

[
ĨTTK(1 − I)

(
E(TK)− TK

)
/TK

]
� (21)



1474 C. DE CHAISEMARTIN AND L. BEHAGHEL

We first show that the second term on the right-hand side goes to 0. By applying twice the
Cauchy–Schwarz inequality, we get

√
K
∣∣E[ĨTTK(1 − I)

(
E(TK)− TK

)
/TK

]∣∣
≤ √

KV (TK)
1/2
[
E
[
(ĨTTK/TK)

4
]

Pr(I = 0)
]1/4

� (22)

By points (a) and (d.xi) of Assumption 4,
√
KV (TK)

1/2 converges towards a finite limit.
Thus, it suffices to show that the term in brackets in the right-hand side tends to 0. Note
that

E
[
ITTK|D(1)

]= 1
K

∑
(i�k)∈I

Dik(1)E
(
Yik(1)−Yik(0)|D(1)

)
�

Then,

E

[(
ĨTTK

TK

)4]
≤E

⎡⎢⎢⎢⎣
⎛⎜⎜⎝
∑

(i�k)∈I
Dik(1)

∣∣E(Yik(1)−Yik(0)|D(1)
)∣∣

∑
(i�k)∈I

Dik(1)

⎞⎟⎟⎠
4⎤⎥⎥⎥⎦

≤E
[(

max
(i�k)∈I

(
E
(
Yik(1)−Yik(0)|D(1)

))4
)]

≤E

[ ∑
(i�k)∈I

(
E
(
Yik(1)−Yik(0)|D(1)

))4
]

≤E

[ ∑
(i�k)∈I

E
((
Yik(1)−Yik(0)

)4|D(1)
)]

=
∑

(i�k)∈I
E
((
Yik(1)−Yik(0)

)4)
≤ C1N

+K (23)

for some constant C1. The first inequality follows from the fact x 
→ x4 is increasing in
|x| and from the triangle inequality. The second inequality follows from the fact that a
weighted average of some numbers is smaller than the largest of those numbers. The
fourth inequality follows from Jensen’s inequality. The equality follows from the law of
iterated expectations. The last inequality follows from points (b) and (c) of Assumption 4.

Moreover, by Hoeffding’s inequality, point (a) of Assumption 4, Assumption 3, and
point (b) of Assumption 4,

Pr(I = 0)≤ 2 exp
(−2Kε2

K(
N+)2

)
�

Let εK = (C ln(K)/K)1/2, for some C > (N+)2

2 . Then, K Pr(I = 0) → 0. Combining this
with (22) and (23), we obtain that the second term of the right-hand side of (21) tends to
zero.
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Now, let us move to the first term of the right-hand side of (21). We have
√
K
∣∣E[ĨTTKI

(
E(TK)− TK

)
/TK

]∣∣
= √

K
∣∣E[I(ĨTTK −E(ĨTTK)

)(
E(TK)− TK

)
/TK

]
+E(ĨTTK)

(
E(TK)E(I/TK)−E(I)

)∣∣
≤E(TK)

√
KV (ĨTTK)

1/2
(
E
[
I
(
1/TK − 1/E(TK)

)2])1/2

+ √
K
∣∣E(ITTK)

∣∣E(TK)
∣∣E(I/TK)−E(I)/E(TK)

∣∣� (24)

where the inequality follows from the triangle and Cauchy–Schwarz inequalities.
We start by proving that the first term on the right-hand side of (24) converges to zero.

By definition of ĨTTK , KV (ĨTTK) ≤ KV (ITTK). Moreover, KV (ITTK) and E(TK) con-
verge towards finite limits by points (a), (d.xii) and (d.ix) of Assumption 4. Therefore, to
prove the result, it will be sufficient to prove that E[I(1/TK − 1/E(TK))

2] goes to 0. By
a Taylor expansion of x 
→ 1/x around E(TK), there exists T1 in the interval between TK

and E(TK) such that

1

TK

= 1

E(TK)
− TK −E(TK)

T 2
1

� (25)

Then, for K large enough,

E
[
I
(
1/TK − 1/E(TK)

)2]=E

[
I

(
TK −E(TK)

T 2
1

)2]

≤ V (TK)(
E(TK)− εK

)4 → 0�

The equality follows from (25). The inequality follows from the fact that when I = 1,
|T1 − E(TK)| < εK , so T1 > E(TK) − εK , and E(TK) − εK > 0 for K large enough,
as limK→∞ E(TK) > 0 as shown above. Finally, convergence to 0 follows from the fact
limK→∞ V (TK)= 0 by points (a) and (d.xi) of Assumption 4, and limK→∞ E(TK) > 0.

We now prove that the second term on the right-hand side of (24) converges to zero. As
E(TK) and E(ITTK) converge towards finite limits by points (d.ix) and (d.x) of Assump-
tion 4, it is sufficient to show that

√
K|E(I/TK) − E(I)/E(TK)| goes to 0. Multiplying

(25) by I and taking expectations, we obtain, for K large enough,

√
K
∣∣E(I/TK)−E(I)/E(TK)

∣∣= √
K

∣∣∣∣E[I
(
TK −E(TK)

)
T 2

1

]∣∣∣∣
≤
∣∣∣∣
[
K Pr(I = 0)V (TK)

]1/2(
E(TK)− εK

)2

∣∣∣∣→ 0�

The inequality follows from the fact that when I = 1, T1 > E(TK) − εK > 0 for K large
enough, from E[I(TK − E(TK))] = −E[(1 − I)(TK − E(TK))], and from the Cauchy–
Schwarz inequality. Convergence to 0 follows from the fact that K Pr(I = 0)→ 0 as shown
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above, V (TK)→ 0 by points (a) and (d.xi) of Assumption 4, and E(TK) converges toward
a finite limit by point (d.ix) of Assumption 4.

2. Proof that σ̂2
+

p−→ σ2
+ ≥ σ2.

By point (a) of Assumption 1, point (a) of Assumption 4, the fact that, for all k, RFk

has a fourth moment by point (c) of Assumption 4, the weak law of large numbers in Gut
(1992), and points (d.i) and (d.ii) of Assumption 4,

1
K

K∑
k=1

RFk

p−→ lim
K→+∞

1
K

K∑
k=1

E(RFk)�

1
K

K∑
k=1

FSk

p−→ lim
K→+∞

1
K

K∑
k=1

E(FSk)� (26)

Then, (26) and the continuous mapping theorem imply that

�̂
p−→ �� (27)

Then, (26), (27), and the continuous mapping theorem imply that

1
K

K∑
k=1

Λ̂k = 1

1
K

K∑
k=1

FSk

(
1
K

K∑
k=1

RFk − �̂
1
K

K∑
k=1

FSk

)
p−→ lim

K→+∞
1
K

K∑
k=1

E(Λk)� (28)

Similarly, one can show that

1
K

K∑
k=1

Λ̂2
k

p−→ lim
K→+∞

1
K

K∑
k=1

E
(
Λ2

k

)
� (29)

Then, (28), (29), and the continuous mapping theorem imply that

σ̂2
+ = 1

K

K∑
k=1

Λ̂2
k −

(
1
K

K∑
k=1

Λ̂k

)2
p−→ σ2

+� (30)

Finally, the convexity of x 
→ x2 implies that 1
K

∑K

k=1 E(Λk)
2 ≥ ( 1

K

∑K

k=1 E(Λk))
2, so

σ2
+ ≥ σ2. Q.E.D.
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