Lecture 9: Corporate taxation

Antoine Bozio

Paris School of Economics (PSE) École des hautes études en sciences sociales (EHESS)

> Master APE and PPD Paris – November 2024

> > <ロ> (四) (四) (三) (三) (三) 三

1/135

• Firms are ubiquitous in tax debate

- e.g., "taxes harm business"
- e.g., "corporations should pay their fair share"

• Firms are ubiquitous in tax debate

- e.g., "taxes harm business"
- e.g., "corporations should pay their fair share"

• Firms are largely absent of tax theory

• Firms are just mechanical vehicles to combine inputs into outputs (Diamond and Mirrlees, 1971)

• Firms are ubiquitous in tax debate

- e.g., "taxes harm business"
- e.g., "corporations should pay their fair share"

• Firms are largely absent of tax theory

• Firms are just mechanical vehicles to combine inputs into outputs (Diamond and Mirrlees, 1971)

Firms remit most taxes

- 90% of taxes remitted by firms (OECD, 2017)
- Optimal taxation should depend on enforcement structure (Kopczuk and Slemrod, AER 2006)

• Firms are ubiquitous in tax debate

- e.g., "taxes harm business"
- e.g., "corporations should pay their fair share"

• Firms are largely absent of tax theory

• Firms are just mechanical vehicles to combine inputs into outputs (Diamond and Mirrlees, 1971)

Firms remit most taxes

- 90% of taxes remitted by firms (OECD, 2017)
- Optimal taxation should depend on enforcement structure (Kopczuk and Slemrod, AER 2006)

• Extreme equity-efficiency trade-off

- Equities highly concentrated in top incomes
- Investment decisions matter highly for growth
 Investment decisions matter highly for growth

Opposite views in the debate

1 Corporate taxes as tax on top incomes

- Equities highly concentrated in top incomes/top wealth
- CIT to reduce tax avoidance on income tax
- Dramatic increase in inequality fueled by untaxed corporate profit

Opposite views in the debate

1 Corporate taxes as tax on top incomes

- Equities highly concentrated in top incomes/top wealth
- CIT to reduce tax avoidance on income tax
- Dramatic increase in inequality fueled by untaxed corporate profit
- **2** Corporate taxes as inefficient tax on labour
 - CIT largely shifted to workers
 - CIT hinders investment hence growth
 - Cutting CIT is efficient and benefit large shares of the population

Outline of the lecture

I. Institutions

- 1 What are corporations?
- 2 Why corporate taxes?
- 8 Fiscal facts

II. Incidence

- Shareholder approach
- 2 Closed economy : Harberger model
- Open economy case
- 4 Empirical evidence

III. Efficiency costs

- 1 Impact of corporate income tax
- 2 Impact of payout taxes

I. Institutions

- What are corporations?
- 2 Why tax firms?
- **3** Typology of corporate taxation
- 4 Trends in firm taxation

What are corporations?

• Definition

- A *corporation* is a legal entity separate from the persons that form it
- Owners of a corporation are called *shareholders*

What are corporations?

• Definition

- A *corporation* is a legal entity separate from the persons that form it
- Owners of a corporation are called *shareholders*

• Corporate firms : limited liability

- Shareholders are not required to use their personal assets to pay the debt of a failed company
- They can only lose the amount they have invested
- \Rightarrow Corporate firms subjected to corporate income tax

What are corporations?

• Definition

- A *corporation* is a legal entity separate from the persons that form it
- Owners of a corporation are called *shareholders*

• Corporate firms : limited liability

- Shareholders are not required to use their personal assets to pay the debt of a failed company
- They can only lose the amount they have invested
- \Rightarrow Corporate firms subjected to corporate income tax
- Non corporate firms ("pass-through firms")
 - Liability for non corporate firms is linked to firm's owners i.e., liable for any outstanding debt on their personal wealth
 ⇒ Non-corporate firms subjected to personal income tax

・ロト ・ 四ト ・ ヨト ・ ヨ

Choice of organizational form

- In the United States
 - 1 Sole proprietorship : liable to personal income tax
 - 2 Partnerships : liable to personal income tax
 - *Limited liability company (LLC)* : liable to personal income tax
 - 4 S-corporations : liable to personal income tax
 - 5 C-corporations : liable to CIT

Choice of organizational form

- In the United States
 - 1 Sole proprietorship : liable to personal income tax
 - **2** *Partnerships* : liable to personal income tax
 - 3 Limited liability company (LLC) : liable to personal income tax
 - 4 S-corporations : liable to personal income tax
 - 5 C-corporations : liable to CIT

In France

- 1 Société par action simplifiée (SAS) : liable to CIT
- 2 Société à responsabilité limitée (SARL) : liable to CIT
- 3 Société anonyme (SA) : liable to CIT
- Entreprise unipersonnelle à responsabilité limitée (EURL) : liable to personal income tax
- Société par actions simplifiée unipersonnelle (SASU) : liable to CIT

Corporate taxation

1 Taxes on firms' profits

- Corporate income tax (CIT)
- Income tax on profit from pass-through firms

2 After-tax profit distributed to individuals as payouts

- Dividends : taxed with personal income tax
- Share repurchase : capital gains tax
- Retained earnings : profits kept by the firm (taxed only by CIT)

International tax provisions

- Transfer pricing
- Tax havens

Why have corporation tax?

1 Corporation tax as a benefit tax

- Limited liability status as major benefit
- State insurance for 'too big to fail'
- Other benefits (infrastructure, education, etc.)

Why have corporation tax?

1 Corporation tax as a benefit tax

- Limited liability status as major benefit
- State insurance for 'too big to fail'
- Other benefits (infrastructure, education, etc.)

2 Backstop for personal income taxation

- In order to escape income taxation, individuals could accumulate earnings tax-free within the corporation
- Similar problem with capital gains
- Corporate taxation is a way to limit income tax avoidance

Why have corporation tax?

1 Corporation tax as a benefit tax

- Limited liability status as major benefit
- State insurance for 'too big to fail'
- Other benefits (infrastructure, education, etc.)

2 Backstop for personal income taxation

- In order to escape income taxation, individuals could accumulate earnings tax-free within the corporation
- Similar problem with capital gains
- Corporate taxation is a way to limit income tax avoidance

3 Taxation of pure profit or rents

- Returns that exceed the return to both labour and capital e.g., rent from extracting oil
- Pure profit taxation does not distort investment decisions
- Hence low efficiency cost of taxing rents

Corporate income tax (CIT)

• CIT schedule

- Statutory corporation tax rate τ_{cit}
- Corporate tax base Y = [Revenues Expenses]

$$CIT = \tau_{cit}Y - ITC - RTC$$

• Revenues are sales of goods and services

Corporate income tax (CIT)

• CIT schedule

- Statutory corporation tax rate τ_{cit}
- Corporate tax base Y = [Revenues Expenses]

$$CIT = \tau_{cit}Y - ITC - RTC$$

- Revenues are sales of goods and services
- Investment tax credit (ITC)
 - A tax credit amounting to a percentage of the firm's qualified investment expenditures
 - Equivalent to accelerated depreciation

Corporate income tax (CIT)

• CIT schedule

- Statutory corporation tax rate τ_{cit}
- Corporate tax base Y = [Revenues Expenses]

$$CIT = \tau_{cit}Y - ITC - RTC$$

- Revenues are sales of goods and services
- Investment tax credit (ITC)
 - A tax credit amounting to a percentage of the firm's qualified investment expenditures
 - Equivalent to accelerated depreciation
- Research tax credit (RTC)
 - RTC is based on R&D spending, and can lead to negative CIT (i.e., subsidy to R&D)

CIT tax base : expenses

- 1 Current costs C
 - compensation to employees
 - intermediate inputs

CIT tax base : expenses

- 1 Current costs C
 - compensation to employees
 - intermediate inputs
- **2 Depreciation costs**, *Dep*
 - Economic depreciation : capital investments lose value over time
 - Depreciation allowances are legally specified in CIT e.g., 5 years depreciation for computers e.g., 30 years for building

CIT tax base : expenses

- 1 Current costs C
 - compensation to employees
 - intermediate inputs
- **2** Depreciation costs, *Dep*
 - Economic depreciation : capital investments lose value over time
 - Depreciation allowances are legally specified in CIT e.g., 5 years depreciation for computers e.g., 30 years for building

3 Financing costs (return on capital)

- Interest payments, I
- Opportunity cost of equity, OCE

Corporate income tax systems Income included in the tax base

1 Full return to equity

• Tax base includes equity finance

$$Y = R - (C + Dep + I)$$

Corporate income tax systems Income included in the tax base

- **1** Full return to equity
 - Tax base includes equity finance

$$Y = R - (C + Dep + I)$$

- **2** Full return to capital
 - Debt is treated like equity finance and not deducted

$$Y = R - (C + Dep)$$

Corporate income tax systems Income included in the tax base

- Full return to equity
 - Tax base includes equity finance

$$Y = R - (C + Dep + I)$$

- Pull return to capital
 - Debt is treated like equity finance and not deducted Y = R (C + Dep)

8 Economic rent

Both debt and equity finance are deducted

$$Y = R - (C + Dep + I + OCE)$$

・ロト ・四ト ・ヨト ・ヨト … ヨ

Corporate income tax systems Relationship with personal income

Classical system

- Tax liability of companies completely separated from tax liabilities of individual shareholders
- No relief for distributed profits (dividends)
- *"Double taxation" of dividends* : once through the corporation tax, once as income of the shareholders

Corporate income tax systems Relationship with personal income

Classical system

- Tax liability of companies completely separated from tax liabilities of individual shareholders
- No relief for distributed profits (dividends)
- *"Double taxation" of dividends* : once through the corporation tax, once as income of the shareholders

Imputation system

- Shareholders receive credits for the corporation tax paid on distributed profit.
- "Full imputation" means all the domestic corporation tax paid on distributed profits is credited to shareholders

Corporate income tax systems

Table 1 – Classical vs imputation system

	Classical	Imputation
Corporation		
Profits before tax	€1000	€1000
CIT 30%	€300	€300
Profits after tax	€700	€700
Shareholder Dividend income Imputed CIT <i>Taxable income</i>	€700 - €700	€700 €300 €1000
Income tax 40% Tax credit for CIT <i>Net income</i>	€280 - €420	€400 €300 €600
Total tax paid	€580	€400

Trends in corporate taxation

Trend 1 : Decrease in statutory corporate tax rates

• Large cuts in the 1980s

Ireland from 45% to 10% in 1981 U.K. from 50% to 35% in 1983-86 U.S. from 50% to 38% in 1986 Sweden from 57% to 30% in 1989-91 Trends in corporate taxation

Trend 1 : Decrease in statutory corporate tax rates

Large cuts in the 1980s

Ireland from 45% to 10% in 1981 U.K. from 50% to 35% in 1983-86 U.S. from 50% to 38% in 1986 Sweden from 57% to 30% in 1989-91

• Recent cuts in statutory CIT

U.K. cut from 30% to 19% (back to 25% in 2023)

U.S. cut from 35% to 21% (Tax Cuts and Jobs Act, TCJA 2017)

France cut from 33.3% to 25% by 2022

Sweden cut from 26% to 22% in 2013, 20.4% in 2021

Belgium cut from 29.6% to 25% in 2021

Figure 1 – Statutory Corporate Tax Rates

SOURCE : Devereux, Griffith and Klemm (2002); OECD.stat from 2005 to 2018; planned changes up to 2021.

16/135

Trends in corporate taxation Trend 2 : Decrease in depreciation allowances

• Broadening of the tax base while reduction in rates

 Present discounted value (PDV) of allowances for investment reduced from 90-100% to 60-70%

<ロ> (四) (四) (三) (三) (三) 三

17 / 135

• In particular in the U.K. in the 1980s

Increase in R&D allowances

• Introduction of research tax credit (RTC)

Trends in corporate taxation

Figure 2 – PDV of depreciation allowances

SOURCE : Devereux, Griffith and Klemm (2002), updated 2005.

Trends in corporate taxation

Trend 3 : Little evidence of decrease in tax revenues

High volatility

- CIT represents between 1.5% to 3.5% of GDP
- Corporation tax revenues have high volatility
- Decrease during recession and increases during boom

• Little decrease in tax revenues (except in the U.S.)

- Decrease in the U.S. during the 1960s and 1970s due to decline in profitability (Auerbach and Poterba, 1987)
- No decrease in the U.K. with increased profitability (financial sector)
- Little decrease in the E.U. (Devereux and Sørensen, 2006)
Trends in corporate taxation

Figure 3 – CIT revenues as a share of GDP (OECD unweighted average)

SOURCE : OECD Revenue Statistics

イロト イヨト イヨト イヨト

Trends in corporate taxation

Figure 4 – CIT statutory tax rates and CIT revenues (OECD weighted average)

SOURCE : Fuest and Neumeier (2023), Fig. 1, OECD Revenue Statistics, weighted by GDP.

Trends in corporate taxation

Figure 5 – Corporate taxation as a share of GDP

SOURCE : OECD Revenue Statistics

Trends in corporate taxation Trend 4 : Increase in tax avoidance and evasion

Figure 6 – Share of Tax Havens in U.S. Corporate Profits Made Abroad

SOURCE : Zucman (2014), Fig. 2.

II. Incidence of corporate taxation

• Remittance vs. incidence

- Firms remit large amount of taxes e.g., CIT, SSCs, VAT, income tax, etc.
- Economic incidence is about change in individual welfare
- Corporations don't pay taxes!

II. Incidence of corporate taxation

• Remittance vs. incidence

- Firms remit large amount of taxes e.g., CIT, SSCs, VAT, income tax, etc.
- Economic incidence is about change in individual welfare
- Corporations don't pay taxes!

• Individuals potentially "paying" CIT

- 1 Capital owners (through lower profits)
- 2 Workers (through lower wage)
- **3** Consumers (through higher prices)
- One of the most contentious debate of tax policy !

II. Incidence of corporate taxation

- 1 Initial approach : assignment of ownership
- 2 Closed economy : Harberger model
- Open economy case
- 4 Empirical approaches

Shareholder incidence theory

• Simplest and oldest theory

- CIT falls on corporate shareholders in proportion of their ownership (see e.g., Saez and Zucman, 2023)
- Individual share ownership highly concentrated e.g., U.S. top 0.01% wealth, equity = 45% e.g., U.S. bottom 90% wealth, equity = 1%
- \Rightarrow With this theory, CIT is very progressive

Shareholder incidence theory

• Simplest and oldest theory

- CIT falls on corporate shareholders in proportion of their ownership (see e.g., Saez and Zucman, 2023)
- Individual share ownership highly concentrated e.g., U.S. top 0.01% wealth, equity = 45% e.g., U.S. bottom 90% wealth, equity = 1%
- \Rightarrow With this theory, CIT is very progressive

• Assignment not so simply applied (Auerbach, 2006)

- Different class of shares, with different rights to firms' profits
- Indirect holding of equity (through other corporations, mutual fund, retirement funds, life insurance, etc.)

Table 2 – U.S. Corporate Equity Ownership (2004)

Asset Holder	Amount	Percentage of Total		
Direct holding of equity				
Households	5,979	42.1%		
Indirect holding of equity				
Mutual funds	3,694	26.0%		
Retirement funds	2,993	21.1%		
Life insurance companies	1,065	7.5%		
Nonprofit organizations	597	4.2%		
Bank personal trusts and estates	221	1.6%		
State and local governments	89	0.6%		
Savings institutions	28	0.2%		
Rest of the world	-467	-3.3%		

 NOTE : Amounts net out inter-corporate holdings, in billions of U.S. dollars, end of the year amounts.

 ${
m Source}$: Auerbach (2006), Tab. 1.1, p. 6; based on data from Board of Governors of the Federal Reserve System.

Data on shareholder ownership

Bach, Bozio, Guillouzouic and Malgouyres (2023)

- Data on French ownership of reference shareholder (2016)
- Matched between firm and personal income tax files
- Degree of control over firms (not minority shareholder)
- Highly concentrated reference shareholder ownership

Data on shareholder ownership

Bach, Bozio, Guillouzouic and Malgouyres (2023)

- Data on French ownership of reference shareholder (2016)
- Matched between firm and personal income tax files
- Degree of control over firms (not minority shareholder)
- Highly concentrated reference shareholder ownership

• Distribution of CIT by ownership

- Attribute both net profits and CIT proportionately to individual tax units
- Incorporate also foreign CIT on profits made abroad (CBCR data)
- CIT appears as backstop for income taxation
- Leaves out the incidence of dispersed ownership of large multinationals

Figure 7 – Personal and corporate taxation along the comprehensive income distribution (France, 2016)

Comprehensive income G-percentile

SOURCE : Bach, Bozio, Guillouzouic and Malgouyres (2023).

 Figure 8 – Personal and corporate taxation along the comprehensive income distribution (France, 2016)

Comprehensive income G-percentile

SOURCE : Bach, Bozio, Guillouzouic and Malgouyres (2023).

• Harberger (JPE, 1962)

- A static GE model in a closed economy
- Two sectors : corporate X and non-corporate Y
- Two factors : labour L and capital K
- Pioneering work in GE incidence

• Harberger (JPE, 1962)

- A static GE model in a closed economy
- Two sectors : corporate X and non-corporate Y
- Two factors : labour L and capital K
- Pioneering work in GE incidence

Main assumptions

- 1 Fixed supply of factors (short-run, closed economy)
- 2 Free factor mobility across sectors
- 3 Full employment of factors
- 4 Constant returns to scale in both production sectors
- 6 Perfect competition
- See Atkinson and Stiglitz (1980, chap. 6) or Kotlikoff and Summers (1987, 2.2)
 Harberger model

• Increase in CIT

- Assume small tax d au on capital in sector X
- Harberger assumes that CIT is an additional tax on capital income from corporate sector on top of income tax

Increase in CIT

- Assume small tax d au on capital in sector X
- Harberger assumes that CIT is an additional tax on capital income from corporate sector on top of income tax

1 Factor substitution effect : capital bears the tax

- Depending on elasticity of substitution between capital and labour $(\sigma_X > 0)$
- Tax shifts production in sector X away from K
- Aggregate demand for K decreases
- As K is fixed, r decreases
 - \Rightarrow capital bears the burden of the tax

2 Output effect : capital may not bear the tax

- Shift of demands towards other sector Y
- Consequences for factor demands depend on relative factor intensities
- a If X capital intensive
 - it reduces demand for capital
 - capital bears more of the tax
- **b** If X labour intensive
 - it increases demand for capital
 - labour may bear some or all the tax

2 Output effect : capital may not bear the tax

- Shift of demands towards other sector Y
- Consequences for factor demands depend on relative factor intensities
- a If X capital intensive
 - it reduces demand for capital
 - capital bears more of the tax
- **b** If X labour intensive
 - it increases demand for capital
 - labour may bear some or all the tax

3 Substitution + output effects : overshifting effects

- If corporate sector capital intensive, could lead to more than 100% incidence (overshifting)
- If corporate sector labour intensive, could lead to all incidence on labour

∽ ۹ (° 34 / 135

• A deceptive theoretical results

- In the Harberger model "anything goes"
- Ultimate incidence depends on all the set of elasticities

• A deceptive theoretical results

- In the Harberger model "anything goes"
- Ultimate incidence depends on all the set of elasticities

• Harberger's estimations

- Application in the case of two sectors (housing and corporate)
- Estimates with plausible parameters for the U.S.
- "plausible alternative sets of assumptions about the relevant elasticities all yield results in which capital bears very close to 100 per cent of the tax burden" (Harberger, 1962, p. 234)

Implications

- Capital bears the entire CIT (not shifted to labour or consumers)
- 2 All capital bears CIT (not only corporate sector)
- **3** CIT is less progressive than under the shareholder-incidence assumption but contributes still to tax progressivity
- CIT distorts allocation of capital between corporate and non-corporate sector

Implications

- Capital bears the entire CIT (not shifted to labour or consumers)
- 2 All capital bears CIT (not only corporate sector)
- 3 CIT is less progressive than under the shareholder-incidence assumption but contributes still to tax progressivity
- CIT distorts allocation of capital between corporate and non-corporate sector

• Limits to Harberger model

- CIT is not exactly an additional tax to income tax (cf. tax base and relationship with income tax)
- Perfect competition
- Closed economy assumption is key

Open economy case

• Small open economy

- Survey by Kotlikoff and Summers (HPE, 1987, section 3.1)
- Assume that capital is mobile internationally and labour immobile
 - Sector 1 (small open economy), L_1 fixed, and K_1 mobile
 - Sector 2 (rest of the world), L_2 fixed, and K_2 mobile
 - Total capital $K = K_1 + K_2$ is fixed

Open economy case

• Small open economy

- Survey by Kotlikoff and Summers (HPE, 1987, section 3.1)
- Assume that capital is mobile internationally and labour immobile
 - Sector 1 (small open economy), L_1 fixed, and K_1 mobile
 - Sector 2 (rest of the world), L_2 fixed, and K_2 mobile
 - Total capital $K = K_1 + K_2$ is fixed
- Introduction of tax on capital K₁
 - After-tax returns must be equal

$$r^* = F_{2K} = (1 - \tau)F_{1K}$$

Capital moves until after-tax returns are equal
 ⇒ Labour bears all the tax burden

Incidence of corporate tax : empirical evidence

• Limited evidence

- Few variations : cross-country or local variations
- · Hard to identify direct effects and GE effects
- Most of the lit. draws conclusion from sophisticated GE models

Incidence of corporate tax : empirical evidence

• Limited evidence

- Few variations : cross-country or local variations
- · Hard to identify direct effects and GE effects
- Most of the lit. draws conclusion from sophisticated GE models
- Some recent evidence
 - Cross-country : Arulampalam, Devereux and Maffini (EER, 2012)
 - U.S. : Suárez Serrato and Sidar (AER, 2016)
 - Germany : Fuest, Peichl and Siegloch (AER, 2018)

• Incidence of CIT in bargaining framework

- Two channels for CIT to affect wages
 - *direct* incidence : higher CIT reduces post-tax profit on which workers and firms bargain
 - *indirect* incidence : CIT affects pre-tax profits through investment or output prices
- Focus on direct effect of CIT : aim to estimate impact of CIT on wages, conditional on output

• Incidence of CIT in bargaining framework

- Two channels for CIT to affect wages
 - *direct* incidence : higher CIT reduces post-tax profit on which workers and firms bargain
 - *indirect* incidence : CIT affects pre-tax profits through investment or output prices
- Focus on direct effect of CIT : aim to estimate impact of CIT on wages, conditional on output

Data

- Firm data from 9 countries over 1996-2005
- 55,082 firms with accounting data (balance sheets, profits, loss)

Methodology

• Estimation of dynamic panel model

$$w_{i,t} = \sum_{j=1}^{2} \gamma_j w_{i,t-j} + \sum_{j=0}^{2} \beta_j x_{i,t-j} + \alpha_i + \alpha_t + \varepsilon_{i,t}$$

- $w_{i,t}$ average wage at firm *i* in period *t*
- $x_{i,t}$ tax liability and other controls (e.g., value added)
- firm fixed effect α_i

Methodology

• Estimation of dynamic panel model

$$w_{i,t} = \sum_{j=1}^{2} \gamma_j w_{i,t-j} + \sum_{j=0}^{2} \beta_j x_{i,t-j} + \alpha_i + \alpha_t + \varepsilon_{i,t}$$

- $w_{i,t}$ average wage at firm *i* in period *t*
- $x_{i,t}$ tax liability and other controls (e.g., value added)
- firm fixed effect α_i

Instruments

- Tax liability is endogeneous
- Two sets of instruments used :
 - 1 Country and year specific EMTR and ATR
 - Lagged firm specific variables (e.g., fixed/tangible assets, negative profits in the past)

<ロ> (四) (四) (三) (三) (三) (三)

Estimation

- FE estimator with firm dummies is inconsistent
- First difference removes FE
- Estimate first diff. equation with generalized method of moment (GMM) and system estimator
- Very demanding in terms of data structure

Estimation

- FE estimator with firm dummies is inconsistent
- First difference removes FE
- Estimate first diff. equation with generalized method of moment (GMM) and system estimator
- Very demanding in terms of data structure

Results

- Headline elasticities of the wage bill with respect to CIT are -0.120 in the short run and -0.093 in the long run
- In terms of incidence : 64% and 49% of CIT on wages

Figure 9 – Basic specification with bargaining variables

Dependent variable: log (wage rate)	Basic specification (1)	Basic specification & union density (2)	Basic specification & all bargaining variables (3)
Log (wage rate)			
t-1	0.121***	0.116***	0.135***
	(0.022)	(0.024)	(0.024)
t-2	0.029***	0.024**	0.031***
	(0.010)	(0.011)	(0.011)
Log (tax per employee)	- 0.095***	-0.118***	- 0.120***
	(0.034)	(0.035)	(0.037)
t-1	0.033***	0.036***	0.036***
	(0.010)	(0.010)	(0.010)
t-2	0.006***	0.007***	0.007***
	(0.002)	(0.003)	(0.003)
Dummy: negative or zero tax bill	0.386***	0.376***	0.361***
	(0.078)	(0.091)	(0.088)
t-1	-0.096***	-0.094^{888}	-0.089^{***}
	(0.019)	(0.021)	(0.021)
t-2	-0.012**	-0.012**	-0.011*
	(0.005)	(0.006)	(0.006)
Log (value added per employee)	0.773***	0.849***	0.889***
	(0.069)	(0.069)	(0.067)
t-1	-0.136***	-0.145***	-0.155***
	(0.021)	(0.023)	(0.023)
t-2	-0.022***	-0.023**	-0.025***
	(0.008)	(0.009)	(0.009)

SOURCE : Arulampalam, Devereux and Maffini (2012), Tab. 6, p. 1049.

⇒ The short-run elasticity of the wage rate with respect to the tax per employee is -0.095 in the short run, and -0.066 in the long run
Arulampalam, Devereux and Maffini (EER, 2012)

Figure 10 – Estimated incidence and elasticities

	Table VI column (3) Full sample		Table VIII column (2) Stand — alone companies		Table VIII column (3) Multinational group	
	Elasticity	Incidence	Elasticity	Incidence	Elasticity	Incidence
Short run						
Tax bill per employee t	-0.120(0.037)	-0.637(0.195)	-0.118(0.041)	-0.687(0.239)	-0.117(0.047)	-0.586(0.237)
Value added per employee f	0.498 (0.121)	0.222 (0.054)	0.521 (0.151)	0.269 (0.078)	0.415 (0.155)	0.168 (0.063)
Long run						
Tax bill per employee t	-0.093(0.031)	-0.493(0.164)	-0.076(0.029)	-0.439(0.171)	-0.108(0.046)	-0.543(0.230)
Value added per employee f	0.558 (0.093)	0.249 (0.041)	0.611 (0.114)	0.315 (0.059)	0.531 (0.136)	0.214 (0.055)

SOURCE : Arulampalam, Devereux and Maffini (2012), Tab. 7.

⇒ a \$1 increase in the tax liability leads to a 64 cents reduction in total compensation in the short run, and a 49 cents reduction in the long run

Arulampalam, Devereux and Maffini (EER, 2012)

Take-aways

- About 50% of direct CIT effects (conditional on output) in firms with wage bargaining on workers
- Indirect effects of CIT should be added to direct effects
- Robustness of results not obvious given identification techniques

Overview

- Use German local business tax to estimate incidence of corporate taxes on wages
- Each year, 8% of the 11,441 municipalities change tax rate

Overview

- Use German local business tax to estimate incidence of corporate taxes on wages
- Each year, 8% of the 11,441 municipalities change tax rate
- Data
 - Administrative linked employer-employee panel data (IAB)
 - Administrative data on German municipalities (tax rate, revenue, spending)

• Overview

- Use German local business tax to estimate incidence of corporate taxes on wages
- Each year, 8% of the 11,441 municipalities change tax rate
- Data
 - Administrative linked employer-employee panel data (IAB)
 - Administrative data on German municipalities (tax rate, revenue, spending)

Methodology

- Two methods to establish causal impact
 - event-study method
 - distributed lag model
- Generalized DiD to estimate average effect of tax change on wage

- Local Business Tax (Gewerbesteuer)
 - Most important tax instrument for municipalities
 - Applies to corporate and non-corporate firms
 - Tax base : operating profits (federal level), same as for CIT
 - CIT at municipal level $\tau^{mun} = \tau^{fed} \theta^{mun}$
 - basic federal level rate τ^{fed} (5.0% up to 2007)
 - municipalities decide on a multiplier θ^{mun} to basic tax rate
 - median θ^{mun} was 3.9, for median rate of 19.5%

- Local Business Tax (Gewerbesteuer)
 - Most important tax instrument for municipalities
 - Applies to corporate and non-corporate firms
 - Tax base : operating profits (federal level), same as for CIT
 - CIT at municipal level $\tau^{mun} = \tau^{fed} \theta^{mun}$
 - basic federal level rate au^{fed} (5.0% up to 2007)
 - municipalities decide on a multiplier θ^{mun} to basic tax rate
 - median θ^{mun} was 3.9, for median rate of 19.5%
- Corporate tax (Körperschaftsteuer)
 - Additional tax for corporate firms
 - Today at 15% (so that total CIT at 34.5%, before 2008)

• Personal Income Tax (Einkommensteuer)

Additional tax for un-incorporated firms

Figure 11 – Cross-sectional and time variation in local tax rates

SOURCE : Fuest, Peichl and Siegloch (2015), Fig. 1.

Event-study method

- Principle
 - Exploit multiple events (e.g., firm announcements, tax changes)
 - Include lags and leads with respect to reference year
 - Check endogeneity/reverse causality : no pre-trend

Event-study method

- Principle
 - Exploit multiple events (e.g., firm announcements, tax changes)
 - · Include lags and leads with respect to reference year
 - Check endogeneity/reverse causality : no pre-trend
- Econometric specification

$$lnw_{f,m,t} = \gamma_{-b} \sum_{i=b}^{B-t} \Delta \tau_{m,t+i} + \sum_{j=-b+1}^{a-t} \gamma_j \Delta \tau_{m,t+j} + \gamma_a \sum_{k=a}^{t-A} \Delta \tau_{m,t-k} + \mu_m + \psi_{m,t} + \varepsilon_{m,t}$$

- A first data year, B is last data year
- b is start of event window, a is end of event window
- μ municipal FE, ψ time trends FE

Figure 12 – Baseline wage effect

SOURCE : Fuest, Peichl and Siegloch (2018), Fig. 2.A, p. 405.

SOURCE : Fuest, Peichl and Siegloch (2018), Fig. D.2, online appendix.

	(1)	(2)	(3)	(4)	(5)	(6)
Log net-of-LBT rate	0.388 (0.127)	0.229 (0.110)	0.386 (0.127)	0.396 (0.128)	0.343 (0.164)	0.399 (0.118)
Incidence (<i>I</i> ^w)	<mark>0.505</mark> (0.170)	0.288 (0.140)	0.502 (0.170)	0.516 (0.172)	0.442 (0.217)	0.520 (0.159)
State \times year FE	\checkmark			\checkmark	\checkmark	\checkmark
$CZ \times year FE$ Municipal controls t-2		v	\checkmark	\checkmark		
Firm controls t-2 Worker shares					\checkmark	\checkmark
Observations	44,654	44,654	44,654	44,654	25,241	44,654

NOTE : LBT : local business tax, CZ : commuting zone. SOURCE : Fuest, Peichl and Siegloch (2018), Tab. 1, p. 408.

Figure 14 – Heterogeneity : impact on wage

Stratified by	Effect	Effect of log net-of-LBT rate by firm type					
Liability	Liable 0.388 (0.127)	Non-liable -0.178 (0.154)			69,249		
Sector	Manuf. 0.556 (0.155)	Const. 0.452 (0.248)	Trade 0.151 (0.276)	Serv. 0.383 (0.253)	44,654		
CBA	Firm 0.731 (0.351)	Sector 0.418 (0.127)	None 0.292 (0.239)		44,654		
Profitability	High 0.565 (0.214)	Medium 0.330 (0.187)	Low 0.210 (0.200)		43,622		
Firm size (# workers)	Below 10 1.241 (0.520)	10 to 99 0.311 (0.157)	100 to 499 0.064 (0.159)	Above 500 -0.212 (0.210)	44,654		
Size rel. to local labor market (market power)	Small 0.652 (0.310)	Medium 0.481 (0.206)	Large 0.456 (0.169)		44,654		
Firm structure	Single-plant 0.426 (0.160)	Multi-plant 0.223 (0.162)			44,226		
Ownership	German 0.449 (0.141)	Foreign -0.293 (0.298)			44,654		

TABLE 3—DIFFERENCE-IN-I	DIFFERENCES ESTIMATES:	WAGE EFFECTS BY	FIRM TYPE
-------------------------	------------------------	-----------------	-----------

52/135

э

Stratified by Skill	Effect of log	Observations		
	High 0.013 (0.120)	Medium 0.357 (0.115)	Low 0.377 (0.168)	9,295,488
Gender	Female 0.530 (0.129)	Male 0.325 (0.119)		9,295,488
Occupation	Blue-collar 0.363 (0.132)	White-collar 0.250 (0.104)		9,295,442
Age	Young 0.507 (0.127)	Medium 0.317 (0.111)	Old 0.329 (0.106)	9,295,488

Figure 15 – Worker heterogeneity : impact on wage

SOURCE : Fuest, Peichl and Siegloch (2018), Tab. 4.

• Take-aways

- CIT partially incident on wages
- Estimates of 51% shifted to workers
- Lower than in GE estimates of small open economy but larger than traditional Harberger closed economy results
- It implies lower redistributivity of most tax systems (compared to shareholder incidence)

• Take-aways

- CIT partially incident on wages
- Estimates of 51% shifted to workers
- Lower than in GE estimates of small open economy but larger than traditional Harberger closed economy results
- It implies lower redistributivity of most tax systems (compared to shareholder incidence)

• Further results

- Labour market institutions matter for incidence on wages
- Effects on wages bigger for firms with firm-level bargaining (in line with rent bargaining theory)
- Wage effects close to zero for very large firms, foreign-owned firms (firms with profit-shifting capabilities)
- Low-skilled, young and female workers bear a larger share of the CIT burden

III. Efficiency costs

1 Impact of CIT on investment

- Theory of user cost of capital
- Cross-country evidence (Djankov et al., 2010)
- Natural experiments (House and Shapiro, AER 2008; Zwick and Mahon, AER 2017)

2 Impact of dividend taxation on investment

- Theory : traditional view, new view, agency models
- Empirical evidence from dividend tax reforms :
 - U.S. : Chetty and Saez (2005), Yagan (AER, 2015)
 - Sweden : Alstadsæter, Jacob and Michaely (JPuBE, 2017)
 - France : Bach et al. (2024)

Investment matters

Figure 16 - Growth vs. equipment investment

Source: Authors' calculations based on data underlying De Long (1992). See table 4 for corresponding regression results.

SOURCE : De Long and Summers (1992), Fig. 1.

Theory of investment

- Investment decision
 - Determined by setting marginal benefits and costs of investment equal on a per-period basis

Theory of investment

Investment decision

• Determined by setting marginal benefits and costs of investment equal on a per-period basis

Model of firm behaviour

- Firm decides how much capital K_t to accumulate
- Profit function $F(K_t)$ concave
- Price of capital goods q_t
- Depreciation rate δ
- Required rate of return ρ

References

• Hassett and Hubbard (2002), Auerbach (2002)

- Equating marginal benefit to marginal cost
 - Net present value (NPV) of new capital dK_{t+1}

$$-q_t - \delta q_t + \frac{F'(\kappa_{t+1}) + q_{t+1}}{1 + \rho}$$

Equating marginal benefit to marginal cost

$$egin{aligned} \mathcal{F}'(\mathcal{K}_{t+1}) &= q_t \left[(1+\delta)(1+
ho) - rac{q_{t+1}}{q_t}
ight] \ \mathcal{F}'(\mathcal{K}_{t+1}) &pprox q_t \left[\delta +
ho - rac{q_{t+1} - q_t}{q_t}
ight] \end{aligned}$$

- Equating marginal benefit to marginal cost
 - Net present value (NPV) of new capital dK_{t+1}

$$-q_t - \delta q_t + \frac{F'(\kappa_{t+1}) + q_{t+1}}{1 + \rho}$$

Equating marginal benefit to marginal cost

$$egin{split} F'(\mathcal{K}_{t+1}) &= q_t \left[(1+\delta)(1+
ho) - rac{q_{t+1}}{q_t}
ight] \ F'(\mathcal{K}_{t+1}) &pprox q_t \left[\delta +
ho - rac{q_{t+1}-q_t}{q_t}
ight] \end{split}$$

- User cost of capital (Hall-Jorgenson 1967)
 - User cost of capital is $q_t \left[\delta + \rho rac{q_{t+1} q_t}{q_t} \right]$
 - With constant investment prices $(q_{t+1} = q_t)$, user cost of capital equals required rate of return plus depreciation

Investment decision

• Introducing a corporate income tax τ_{cit}

• NPV of depreciation deductions D_t

$$\Gamma_t = \sum_{z=t}^{\infty} (1+r)^{-(z-t)} \tau_{cit} D_{z-t}$$

- User cost of capital with CIT
 - Euler equation : $F'(K_{t+1})$

$$pprox q_t rac{1-\Gamma_t}{1- au_{cit}} \left[\delta +
ho - rac{q_{t+1}(1-\Gamma_{t+1})-q_t(1-\Gamma_t)}{q_t(1-\Gamma_t)}
ight]$$

<ロ> (四) (四) (三) (三) (三) (三)

Common CIT

- Only partial expensing $D_0 < 1$
- Not full deductibility of financing cost

$$ho'(au_{cit}) > 0$$

 Required rate of return needs to be higher to justify investment ⇒ Investment will be reduced by CIT

Case of cash flow tax

- Immediate and full expensing : $D_0 = 1$
- Then we have $\Gamma_{t+1} = \tau_{cit}$
- Optimal investment does not depend on CIT

$$F'(K_{t+1}) pprox q_t \left[\delta +
ho - rac{q_{t+1} - q_t}{q_t}
ight]$$

- \Rightarrow When all costs are deductible, CIT is a tax on pure profit
- \Rightarrow Case for cash-flow tax reform (Auerbach, 2010)

Impact on investment

Impact on investment

64/135

Impact of CIT on investment

• Djankov, Ganser, McLiesh, Ramalho and Shleifer (AEJ-M, 2010)

- Measure of effective corporate tax rate for an identical mid-sized firm using survey from PricewaterhouseCoopers
- Data from 85 countries for 2004
- OLS regressions of investment and entrepreneurial activity on CIT rates
- Identification : only controls for observables

Impact of CIT on investment

• Djankov, Ganser, McLiesh, Ramalho and Shleifer (AEJ-M, 2010)

- Measure of effective corporate tax rate for an identical mid-sized firm using survey from PricewaterhouseCoopers
- Data from 85 countries for 2004
- OLS regressions of investment and entrepreneurial activity on CIT rates
- Identification : only controls for observables

Results

- Substantial impact of CIT on investment
- 10 p.p. increase in CIT leads to 2 p.p. decrease in investment as a share of GDP

Figure 17 - Effective CIT Rate and Investment

SOURCE : Djankov, et al. (2010), Fig. 1, p. 49.

SOURCE : Djankov, et al. (2010), Fig. 2, p. 49.

Figure 19 – Effective Tax Rate and Business Density

SOURCE : Djankov, et al. (2010), Fig. 3.

Figure 20 – Basic results

	Investment 2003-2005			FDI 2003–2005		
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A. Investment						
Statutory corporate tax rate	-0.072 (0.076)			-0.195*** (0.046)		
First-year effective tax rate		-0.217*** (0.074)			-0.226^{***} (0.045)	
Five-year effective tax rate			-0.247*** (0.080)			-0.223*** (0.050)
Constant	23.547*** (2.274)	25.239*** (1.385)	26.269*** (1.627)	9.044*** (1.378)	7.292*** (0.845)	7.718*** (1.023)
Observations	85	85	85	84	84	84
R^2	0.01	0.09	0.10	0.18	0.23	0.20

SOURCE : Djankov, et al. (2010), Tab. 5.A.

Figure 21 – Basic results

	Business density			Average entry rate 2000-2004			
	(1)	(2)	(3)	(4)	(5)	(6)	
Panel B. Entrepreneurship							
Statutory corporate tax rate	-0.153** (0.063)			-0.127^{**} (0.060)			
First-year effective tax rate		-0.193*** (0.062)			-0.137** (0.057)		
Five-year effective tax rate			-0.200*** (0.068)			-0.136** (0.061)	
Constant	9.473*** (1.864)	8.394*** (1.162)	8.913*** (1.375)	11.812*** (1.790)	10.452*** (1.048)	10.771*** (1.262)	
Observations	80	80	80	62	62	62	
R ²	0.07	0.11	0.10	0.07	0.09	0.08	

SOURCE : Djankov, et al. (2010), Tab. 5.B.
Accelerated depreciation

- Depreciation rules are changed for higher expensing e.g., from 10 years to 5 years depreciation length
- Common policy to stimulate investment
- $\Rightarrow\,$ reduces user cost of capital and increases incentives to invest

Accelerated depreciation

- Depreciation rules are changed for higher expensing e.g., from 10 years to 5 years depreciation length
- Common policy to stimulate investment
- ⇒ reduces user cost of capital and increases incentives to invest

• 2002-03 U.S. policy (bonus I)

- Temporary accelerated depreciation in 2002-03
- 30%-50% bonus depreciation for assets with recovery periods less than 20 years

Accelerated depreciation

- Depreciation rules are changed for higher expensing e.g., from 10 years to 5 years depreciation length
- Common policy to stimulate investment
- ⇒ reduces user cost of capital and increases incentives to invest

• 2002-03 U.S. policy (bonus I)

- Temporary accelerated depreciation in 2002-03
- 30%-50% bonus depreciation for assets with recovery periods less than 20 years

• 2008-10 U.S. policy (bonus II)

- Temporary accelerated depreciation in 2008-10
- 50%-100% bonus depreciation for assets with recovery periods less than 20 years

• Empirical strategy

- Exploit bonus depreciation (i.e., investment can be faster deducted from CIT)
- Bonus is more valuable for long-duration investments
- DID between industries with long vs short duration investments

• Empirical strategy

- Exploit bonus depreciation (i.e., investment can be faster deducted from CIT)
- Bonus is more valuable for long-duration investments
- DID between industries with long vs short duration investments

Data

- U.S. corporate tax data, 1993–2010
- Large sample (128,151 firms)

Empirical strategy

- Exploit bonus depreciation (i.e., investment can be faster deducted from CIT)
- Bonus is more valuable for long-duration investments
- DID between industries with long vs short duration investments

Data

- U.S. corporate tax data, 1993–2010
- Large sample (128,151 firms)

Results

- Large effect of bonus on investment : +10% (Bonus I), +17% (Bonus II)
- Concentrated on small firms
- When liquidity constraints matter

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

SOURCE : Zwick and Mahon (2017), Fig. 1.A, p. 229.

Figure 23 – DiD investment at the intensive margin (bonus II)

SOURCE : Zwick and Mahon (2017), Fig. 1.B, p. 229.

Take-away on investment impact of CIT

• Hard to get empirical evidence

- Few studies with exogenous variation in CIT
- But evidences point to negative impact on investment

Take-away on investment impact of CIT

• Hard to get empirical evidence

- Few studies with exogenous variation in CIT
- But evidences point to negative impact on investment

• Policy take-away?

- Expensing investment seems a good policy recommendation (e.g., cash flow tax)
- Alleviating liquidity constraints could play also a role

Impact of payout taxes

• Payout taxes

- 1 Dividend payments \Rightarrow dividend tax τ_{div}
- 2 Share repurchase \Rightarrow capital gains tax τ_{cg}
- 3 Retained earnings ⇒ capital gains tax when gains are realised (lower effective rate because deferral)

Impact of payout taxes

Payout taxes

- 1 Dividend payments \Rightarrow dividend tax au_{div}
- 2 Share repurchase \Rightarrow capital gains tax τ_{cg}
- 3 Retained earnings ⇒ capital gains tax when gains are realised (lower effective rate because deferral)
- Including payout taxes in investment decision

$$(1 - \tau_{cit})[1 - f\tau_{div} - (1 - f)\tau_{cg}]F'(K_{t+1}) = \rho$$

- with f the fraction of after-tax profits paid in dividends
- ignoring depreciation δ and depreciation deductions Γ

Traditional view of dividend taxation

• Firms are cash-constrained

- Firms are cash-constrained (need external finance)
- Marginal investments are funded out of equity or risky debt
- Traditional view : Harberger (1962, 1966); Feldstein (1970); Poterba and Summers (1985)
- Dividend taxation have negative impact on investment

$$(1 - \tau_{cit})(1 - \tau_{div})F'(K_{t+1}) = \rho$$

• Dividend taxation is equivalent to corporate income taxation

Dividend Puzzle

• Dividend's tax disadvantage

- In most countries $\tau_{cg} < \tau_{div}$, and with deferral of capital gains, effective capital gains rate is much lower than statutory τ_{cg}
- In the U.S., capital gains unsold at death escape capital gains taxation
- So no incentives to pay dividends at all $\Rightarrow f = 0$
- But large amount of dividend payouts
 - In the U.S. 35% of publicly listed firms pay dividends, 40% in the U.K., 55% in France
 - Even if declining trend (66% US firms paid dividends in late 1970s)

• Longstanding puzzle in corporate finance

 Black (1976), see survey by Farre-Mensa, Michaely and Schmalz (2014)

Why pay dividends?

Agency problem

- Shareholders are afraid that managers misuse large cash stockpiles
- Equity holders prefer tax inefficiencies to reduce manager's control over the firms' assets

2 Signaling theory

- Investors have imperfect information about the firm
- By paying dividends, managers show that the firm has cash to burn...

New view of dividend taxation

• Cash rich firms

- New view : King (1977), Auerbach (1979) and Bradford (1981)
- Marginal investments are funded out of retained earnings or riskless debt
- Marginal value of issuing equity is negative e.g., Microsoft, with abondant past profits

New view of dividend taxation

• Cash rich firms

- New view : King (1977), Auerbach (1979) and Bradford (1981)
- Marginal investments are funded out of retained earnings or riskless debt
- Marginal value of issuing equity is negative e.g., Microsoft, with abondant past profits

Investment decisions

• Firms should not emit equity and split cash X (past profit) between D and K_{t+1} according to :

$$(1-\tau_{cit})f'(X-D)=r$$

 Invest to point where after-tax marginal product equals bond return r

New view of dividend taxation

Dividend taxation does not affect investment

• Change in τ_{div} affects marginal return on investment (LHS) by the same factor that it changes the opportunity cost of investment (RHS)

$$(1 - \tau_{cit})(1 - \tau_{div})F'(K_{t+1}) = (1 - \tau_{div})r$$

Implications

- Higher τ_{cit} lowers investment
- Change in τ_{div} has no effect on dividend or investment

• Empirical evidence

- Scarce literature for lack of proper identification
- Idea to test between old and new view

• Empirical evidence

- Scarce literature for lack of proper identification
- Idea to test between old and new view

• Poterba and Summers (JoF, 1984)

- U.K. data for 1955-1981
- Exploit differentiated treatment of capital gains and dividend payments
- Policy changes : (1965, capital gains tax; 1973 integrated corporate tax)
- Inspect goodness of structural investment models (e.g., CAPM)
- Evidence that taxes on dividends impact substantially dividend payouts
 - \Rightarrow argument in favour of old view

• Chetty and Saez (QJE, 2005)

- Exploit the U.S. 2003 dividend tax cut
- Jobs and Growth Tax Relief Reconciliation Act implemented by the Bush administration in 2003
- Sunset clause : tax cut planed to end in 2009
- τ_{DIV} reduced from 38.6% (top rate) to 15%

• Chetty and Saez (QJE, 2005)

- Exploit the U.S. 2003 dividend tax cut
- Jobs and Growth Tax Relief Reconciliation Act implemented by the Bush administration in 2003
- Sunset clause : tax cut planed to end in 2009
- τ_{DIV} reduced from 38.6% (top rate) to 15%

Methodology

- Simple diff : before/after in time series (dividend initiations are high frequency events)
- Test for confounding trend using firms owned primarily by nontaxable institutions as a "control group"

e.g., dividend income earned by government agencies, nonprofit organizations, and corporations are not affected by the tax change

Data

• Data on dividend payments up to the second quarter of 2004 from the Center for Research in Security Prices (CRSP)

Data

• Data on dividend payments up to the second quarter of 2004 from the Center for Research in Security Prices (CRSP)

Results

- Large increase in dividend payouts : + 20% (+\$20 bn p.a)
- It implies an elasticity of regular dividend payments with respect to the marginal tax rate on dividend income of -0.5.
- Largest response from firms with strong principals whose tax incentives changed (CEO with large dividends payout, large taxable shareholder, etc.)

Figure 24 – Dividend payments : aggregate time series

SOURCE : Chetty and Saez (2005), Fig. 1, slides from Chetty 2012.

12 <u>___</u> Percent of Top 3807 Firms œ œ. 4 2 0 02-1 04-1 06-1 82-1 84-1 86-1 88-1 90-1 92-1 94-1 96-1 98-1 00-1 Quarter

Figure 25 - Regular dividend initiation time series

SOURCE : Chetty and Saez (2005), Fig. 2, slides from Chetty 2012.

Figure 26 – Fraction of dividend payers

SOURCE : Chetty and Saez (2005), Fig. 3, slides from Chetty 2012.

Figure 27 – Effect of tax cut on initiations by executive shareholding

SOURCE : Chetty and Saez (2005), Fig. 7, slides from Chetty 2012.

3

イロン 不同 とくほど 不良 とう

Figure 28 – Effect of tax cut on initiations by executive option holding

SOURCE : Chetty and Saez (2005), Fig. 7, slides from Chetty 2012.

э.

イロン 不同 とくほど 不良 とう

- Chetty and Saez (2005) : take-away
 - Significant impact of dividend tax cut on dividends
 - In line with the "old view"
 - But the dividend response appears too fast to be consistent with the old view mechanism
 - i.e., savings supply side response \Rightarrow more business activity and higher dividend payments
 - Temporary dividend tax cut could also be in line with new view
 - Chetty-Saez results consistent with positive, negative, or zero effect on investment
- Supportive of agency models of dividend payout
 - Suggestive of agency issues matter for dividend behaviours

• Main idea

- Look at the effect of U.S. dividend tax cut in 2003 on investments
- Impact on investment would confirm the "old view"

Main idea

- Look at the effect of U.S. dividend tax cut in 2003 on investments
- Impact on investment would confirm the "old view"

Results

- Zero effect on investment : reject traditional view
- Zero effect on wages
- Challenges leading estimates of user cost-of-capital elasticities w.r.t. to investments

- Methodology : DiD
 - DiD using C-corporations vs. S-corporations
 - C-corps : pay CIT, shareholders pay dividend taxes, capital gains taxes on qualified share buybacks
 - S-corps : same legal structure but taxable income flows through shareholders individual tax returns (independent on whether it is retained or distributed)

Methodology : DiD

- DiD using C-corporations vs. S-corporations
- C-corps : pay CIT, shareholders pay dividend taxes, capital gains taxes on qualified share buybacks
- S-corps : same legal structure but taxable income flows through shareholders individual tax returns (independent on whether it is retained or distributed)

Identification assumption

- C- and S-corps are different : C-corps are much larger
- For identification : only necessary that both firm types would have followed the same trend absent the reform
- Check whether proper control groups

Figure 29 – C-corps vs. S-corps : Retail hardware chains

- Largest hardware chain
- C-corporation

SOURCE : Yagan (2015).

• Third-largest hardware chain

イロン 不同 とくほう 不良 とうほ

93/135

S-corporation

Figure 30 – C-corps vs. S-corps : Retail hardware chains

94 / 135

SOURCE : Yagan (2013).

SOURCE : Yagan (2015), Fig. 1.A

Figure 33 - Control vs. treated : size

Figure 34 - Investment

98/135

Figure 35 - Net investment

SOURCE : Yagan (2015), Fig. 2.B

Figure 36 – Employee compensation

100 / 135

Figure 37 –	Effect	of	dividend	tax	cut	on	investment
-------------	--------	----	----------	-----	-----	----	------------

Dependent variable:	Investment							
Dep. var. winsorized at: Panel:		95th percentil	e	99th percentile				
	Unbalanced		Balanced	Unbalanced		Balanced (\$ per 96–97 cap.)		
	(\$ per lagged capital)		(\$ per 96–97 cap.)	(\$ per lagged capital)				
	(1)	(2)	(3)	(4)	(5)	(6)		
Panel A. Investment C-Corp × Post-2003	0.0008 (0.0044)	-0.0002 (0.0042)	-0.0063 (0.0226)	-0.0104 (0.0068)	-0.0118 (0.0066)	-0.1884 (0.1483)		
Lagged controls Firm FE's		Х	Х		х	Х		
Observations (firm-years) Clusters (firms) R^2	333,029 73,188 0.01	333,029 73,188 0.07	85,624 7,784 0.53	333,029 73,188 0.01	333,029 73,188 0.05	85,624 7,784 0.55		
Pre-2003 C-corp mean Pre-2003 C-corp SD	0.2428 0.2514	0.2428 0.2514	0.2939 0.3070	0.2828 0.4181	0.2828 0.4181	0.3682 0.6478		
Implied ε wrt $(1 - \tau_{div})$	0.01 [-0.08, 0.09]	0.00 [-0.08, 0.08]	-0.05 [-0.4, 0.3]	-0.09 [-0.19, 0.02]	-0.10 [-0.2, 0.01]	-1.18 [-3.01, 0.64]		

SOURCE : Yagan (2015), Tab. 2.A

Dependent variable:		Net investmen	t	Employee compensation				
Dep. var. winsorized at:	95th percentile							
Panel:	Unbalanced		Balanced	Unbalanced		Balanced		
	(\$ per lagged capital)		(\$ per 96–97 cap.)	\$ per 97 cap.) (\$ per lagged re		(\$ per 96–97 rev.)		
	(7)	(8)	(9)	(10)	(11)	(12)		
B. Net investment and emp C-Corp × Post-2003	loyee compens 0.0048 (0.0041)	ation 0.0042 (0.0039)	-0.0110 (0.0116)	-0.0013 (0.0025)	-0.0013 (0.0020)	0.0083 (0.0062)		
Lagged controls Firm FE's		Х	х		Х	х		
Observations (firm-years) Clusters (firms) R^2	333,029 73,188 0.01	333,029 73,188 0.04	85,624 7,784 0.20	333,029 73,188 0.00	333,029 73,188 0.37	85,624 7,784 0.87		
Pre-2003 C-corp mean Pre-2003 C-corp SD	0.0421 0.2541	0.0421 0.2541	0.0885 0.2732	0.1647 0.1415	0.1647 0.1415	0.1727 0.1450		
Implied ε wrt $(1 - \tau_{div})$	0.26 [-0.18, 0.71]	0.23 [-0.19, 0.66]	-0.29 [-0.88, 0.3]	-0.02 [-0.09, 0.05]	-0.02 [-0.07, 0.04]	0.11 [-0.05, 0.27]		

Figure 38 – Effect on net investment and employee compensation

SOURCE : Yagan (2015), Tab. 2.B

Figure 39 - Effect on investment by size decile

SOURCE : Yagan (2015), Fig. 3.A

Yagan (AER, 2015)

- Results
 - Net-of-dividend tax elasticity of investment : 0.00, with 0.08 95% confidence upper bound
 - Traditional view prediction : [0.21; 0.41] depending on cost-of-capital elasticity of investment (based on Hassett-Hubbard consensus range)

Yagan (AER, 2015)

- Results
 - Net-of-dividend tax elasticity of investment : 0.00, with 0.08 95% confidence upper bound
 - Traditional view prediction : [0.21; 0.41] depending on cost-of-capital elasticity of investment (based on Hassett-Hubbard consensus range)

Possible interpretations

- New view is correct and most firms fund marginal investments out of retained earnings (e.g., median U.S. firm is 22 years old)
- 2 Traditional view is technically correct, but tax code features blocked effects
 - Low expected permanence (originally set to expire in 2009)

• Sweden's 2006 dividend tax cut

- Cut of 10 ppt for closely held corporations
- Cut of 5 ppt for widely help corporations

Sweden's 2006 dividend tax cut

- Cut of 10 ppt for closely held corporations
- Cut of 5 ppt for widely help corporations

Empirical strategies

- DiD between cash-constrained firms/cash-rich closely held firms
- 2 DiD between cash-constrained firms/cash-rich widely held firms
- 3 DDD between DD closely/widely held firms

Results

- Cash-constrained firms increase their investment relative to cash-rich firms
 - closely held : +32% increase in investment
 - widely held : +18% increase
- No aggregate impact on investment
 - no difference of investment between closely/widely held firms

Figure 40 – Difference in investment between high-cash and low-cash firms, 2002–2011.

SOURCE : Alstadsæter, et al. (2017), Fig. 1.

	Pre-Reform 2002-2005	Post-Reform 2006-2011	Time difference for group	Estimates with controls and FE	
	(1)	(2)	(3)	(4)	
Panel A: closely held corporations-10-perce	ntage-point dividend tax cu	t			
Cash-poor firms	-0.1287	-0.0624	0.0663*** (0.0062)		
Cash-rich firms	0.1150	0.0554	-0.0596*** (0.0075)		
Difference cash-poor-cash-rich in t	-0.2436*** (0.0070)	-0.1178*** (0.0073)			
DD estimate	0.12 (0.0	59 ^{***} 098)		0.1495*** (0.0122)	
Panel B: widely held corporations-5-percen	tage-point dividend tax cut				
Cash-poor firms	-0.1576	-0.1181	0.0395***		
Cash-rich firms	0.1241	0.1024	(0.0091) -0.0217* (0.0125)		
Difference cash-poor-cash-rich in t	-0.2817*** (0.0117)	-0.2205*** (0.0114)	(00125)		
DD estimate	0.06	12*** 155)		0.0833*** (0.0257)	
Panel C: difference between closely held corp DDD estimate	orations and widely held co 0.06	rporations 47 ^{***}		0.0602***	
	(0.0	184)		(0.0220)	

Figure 41 – Dividend taxes and corporate investment, 2002–2011.

SOURCE : Alstadsæter, et al. (2017), Tab. 3.

Figure 42 – Dividend taxes and corporate investment, overall investment effect.

	Baseline result	Quartile split	Tercile split	Top 40% vs. bottom 40%	Median split
Reform * CHC	0.0144	0.0148	0.0141	0.0006	0.0006
	(0.0127)	(0.0115)	(0.105)	(0.0095)	(0.0084)
Controls & FE	Yes	Yes	Yes	Yes	Yes
Observations	353,272	451,129	632,682	738,400	943,346
R-squared	0.1968	0.1949	0.2216	0.1943	0.1953

SOURCE : Alstadsæter, et al. (2017), Tab. 4.

• Explanations for this reallocation

- 1 Cash-constrained firms raise more external equity
- 2 Higher dividend payouts from cash-rich firms

Take-away message

- Heterogenous investment response in line with theory from Chetty and Saez (2010)
- "High dividend taxation appears to lock in funds in cash-rich firms, more so than in cash-constrained firms (...) Dividend taxation effectively creates a wedge between the cost of internal equity and the cost of external equity"
- "however a dividend tax reduction potentially comes at the cost of income shifting across tax bases"

Bach, Bozio, Guillouzouic, Leroy and Malgouyres (2024)

- We exploit two reforms of dividend taxation in France
 - A tax *increase* in 2013 (flat-tax cancellation)
 - A tax decrease in 2018 (flat-tax creation)

• We use new, exhaustive and rich administrative data

- All households' personal income tax returns
- All firms' corporate income tax returns

Contributions

- 1 Measure both household and firm-level responses
- **2** Decompose firm-level responses
- 3 Analyze asymmetry of the effect

イロン 不同 とくほど 不良 とう

Dividend taxation in France

• Dividends are taxed in several steps

- 1 Corporate income tax ("impôts sur les sociétés")
- Withholding flat social contributions ("prélèvements sociaux")
- 3 Personal income tax ("impôt sur le revenu")

• Several reforms of the personal income tax part in recent years

- From 2008 to 2012, taxpayers had the choice between two tax regimes for dividends
 - The global progressive income tax schedule ("Barème")
 - A specific capital income flat tax ("PFL")
- In 2013, the flat tax option was removed ("barèmisation")
- In 2018, a flat tax was reintroduced ("PFU")

Figure 43 – Top marginal tax rate on dividends (CIT included, 2007–2018)

113/135

Figure 44 – Aggregate dividends received by households (2000–2019)

Dividends distributed by nouseholds in income tax returns aggregation
Dividends distributed by unlisted firms to physical owners

SOURCE : Bach, et al. (2021).

 Figure 45 – Dividends distributed by unlisted firms, by number of physical owners

SOURCE : Bach, et al. (2021).

■ ∽へへ 115/135

Empirical Strategy at household level

• The identification challenge

- Pre-reform taxable income does not capture potential treatment
- Dividend payout can be triggered by tax reform for households with firm control
- Low taxable income can be compatible with high exposure to the reform ⇒ one should not compare high income vs low income including dividend income pre-reform

• Defining potentially treated

- Pre-reform income should exclude dividends to measure exposure to the reforms
- Firm ownership is key variable to be potentially exposed to dividend taxation

Empirical Strategy at household level

Treatment based on tax incentives

 We define groups according to pre-reform non-dividend income (earnings + pensions + real-estate income)
Treated : Households with high marginal income tax rate

 \hookrightarrow affected by flat-tax introduction/removal

Control : Households with low marginal income tax rate

• Apply separately the identification to firm owner and not owners

Figure 46 - Effect of 2013 reform on dividends - Raw data

SOURCE : Bach, et al. (2024).

Figure 47 – Effect of 2018 reform on dividends – Raw data

SOURCE : Bach, et al. (2024).

SOURCE : Bach, et al. (2024).

Figure 49 - Effect of 2018 reform on dividends - DiD

SOURCE : Bach, et al. (2024).

Household-level responses to dividend taxation

• Dividend income very elastic but only for shareholders with firm control

- Elasticity in 2018 \simeq 0.2-0.3 \Rightarrow for households without firm control
- Elasticity in 2018 \simeq 2 \Rightarrow for those with firm control
- How did households respond?
 - No sizeable income shifting
 - No portfolio reallocation
 - \Rightarrow Look for responses *within* the firm

Empirical Strategy

• Group definition at the firm level

- Treated = firms entirely owned by private persons
- Control = firms owned at least at 50% by legal entities
- ⇒ Intent-to-treat estimates : compares firms with shareholders likely to be affected and able to respond to ones unlikely to be affected and unable to respond.

• Our estimation sample :

- Keeps companies whose financial year closes on Dec. the 31st
- Excludes listed firms, micro enterprises and SARL with an owner-manager
- Firms present in 2011 and 2012
- Sample of 28,182 firms

• Estimate both dynamic and static diff-in-diff coefficients

Figure 50 – 2013 Reform, DiD estimates (Dividends>0) – SAS firms

Figure 51 – 2018 Reform, DiD estimates (Dividends>0) – SAS firms

Figure 52 - 2013 Reform, DiD estimates (Investment) - SAS firms

SOURCE : Bach, et al. (2024).

SOURCE : Bach, et al. (2024).

 Bach, Bozio, Guillouzouic, Leroy and Malgouyres (2024)

• Results

- Our results confirm high dividend responses w/ little effects on investment
- Very large tax elasticity of dividends
- Driven by owner-managers

Take-away

- Intertemporal shifting using dividends and retained earnings
- Firms play a role of tax shelter
- No impact on investment because no impact on user cost of capital
- Alstadsæter, A., Jacob, M. and Michaely, R. (2017) "Do dividend taxes affect corporate investment?", Journal of Public Economics, Vol. 151, pp. 74–83.
- Atkinson, A. and Stiglitz, J. (1980), Lectures on Public Economics, McGraw-Hill; reprinted by Princeton University Press (2015).
- Arulampalam, W., M. Devereux and G. Maffini (2012) "The Direct Incidence of Corporate Income Tax on Wages". European Economic Review 56 (6): 1038–54.
- Auerbach, A. (1987) "The Tax Reform Act of 1986 and the Cost of Capital". The Journal of Economic Perspectives 1 (1): 73–86.
- Auerbach, A. (2002) "Taxation and Corporate Financial Policy". Handbook of Public Economics 3: 1251–1292.
- Auerbach, A. (2006) "Who Bears the Corporate Tax? A Review of What We Know". Tax Policy and the Economy 20: 1–40.
- Auerbach, A. and James M. Poterba. 1987. "Why Have Corporate Tax Revenues Declined?" Tax Policy and the Economy 1 : 1–28.
- Auerbach, A., Devereux, M. and Simpson, H. (2010) "Taxing Corporate Income", in Mirrlees et al. (eds), Dimensions of Tax Design : the Mirrlees Review, Oxford University Press, chap. 9.
- Auerbach, A. (2002) "Taxation and Corporate Financial Policy", in Auerbach, A. and Feldstein, M. (eds), Handbook of Public Economics, vol. 3, chap. 19, Elsevier.
- Bernheim, D. (1991) "Tax Policy and the Dividend Puzzle". The RAND Journal of Economics 22 (4): 455-76.
- Bernheim, D. and Adam Wantz (1995) "A Tax-Based Test of the Dividend Signaling Hypothesis". The American Economic Review 85 (3): 532–51.
- Bird, R. (1996) "Why Tax Corporations?" Department of Finance Canada, Technical Committee on Business Taxation Working Papers : No. 1996-02.
- Bloom, N., Griffith, R. and Van Reenen, J. (2002) "Do R&D Tax Credits Work? Evidence from a Panel of Countries 1979–1997', *Journal of Public Economics*, 85(1), pp. 1–31.
- Bradford, D. (1981) "The Incidence and Allocation Effects of a Tax on Corporate Distributions", Journal of Public Economics, 15(1) p. 1–22.
- Clausing, K. (2012) "In Search of Corporate Tax Incidence", Tax Law Review, 65(3), pp. 433-472.

- Chetty, R. and Saez, E. (2005) "Dividend Taxes and Corporate Behavior : Evidence from the 2003 Dividend Tax Cut". The Quarterly Journal of Economics 120 (3) : 791–833.
- Chetty, R. and Saez, E. (2006) "The Effects of the 2003 Dividend Tax cut on Corporate Behavior : Interpreting the Evidence", *American Economic Review*, 96, pp. 124–129.
- Chetty, R. and Saez, E. (2010) "Dividend and Corporate Taxation in an Agency Model of the Firm". American Economic Journal : Economic Policy 2 (3): 1–31.
- Cragg, J., A. Harberger, and P. Mieszkowski (1967) "Empirical Evidence on the Incidence of the Corporation Income Tax". Journal of Political Economy 75 (6): 811–21.
- DeLong, B. and L. Summers (1992) "Equipment Investment and Economic Growth : How Strong Is the Nexus?" Brookings Papers on Economic Activity 1992 (2) : 157–211.
- Devereux, M. and Sørensen, P. B. (2006) "The Corporate Income Tax : International Trends and Options for Fundamental Reform", *European Economy Economic Papers* 264. Brussels : Europ. Comm., Directorate-General for Economic and Financial Affairs.
- Devereux, M., Liu, L. and Loretz, S. (2014) "The Elasticity of Corporate Taxable Income : New Evidence from UK Tax Records", American Economic Journal : Economic Policy, 6(2), pp. 19–53.
- Devereux, M., R. Griffith, and A. Klemm (2004) "Why Has the UK Corporation Tax Raised so Much Revenue?" *Fiscal Studies* 25 (4): 367–388.
- Dharmapala, D., F. Foley, and K. Forbes (2011) "Watch What I Do, Not What I Say : The Unintended Consequences of the Homeland Investment Act". *The Journal of Finance* 66 (3) : 753–87.
- Djankov, S., T. Ganser, C. McLiesh, R. Ramalho, and A. Shleifer (2010) "The Effect of Corporate Taxes on Investment and Entrepreneurship", *American Economic Journal : Macroeconomics* 2 (3) : 31–64.
- Feldstein, M. (1970) "Corporate Taxation and Dividend Behaviour" Review of Economic Studies, Vol. 37, No. 1, p. 57–72.
- Fuest, C., A. Peichl, and S. Siegloch (2018), "Do Higher Corporate Taxes Reduce Wages? Micro Evidence from Germany", *American Economic Review*, Vol. 108, No. 2, pp. 393–418.
- Hall, R. and Jorgenson, D. (1967) "Tax Policy and Investment Behavior", The American Economic Review 57 (3): 391–414.
- Hall, B. and Van Reenen, J. (2000) "How Effective are Fiscal Incentives for R&D? A Review of the Evidence", Research Policy, 29(4–5), pp. 449–469.
- Harberger, A. (1962) "The Incidence of the Corporation Income Tax", Journal of Political Economy, 70, pp. 215–240.
- Harberger, A. (1966) "Efficiency Effects of Taxes on Income from Capital" in Effects of Corporation Income Tax, ed. M. Krzyzaniak, p. 107–17. Detroit : Wayne State University Press.

- Gordon, R. and Hines, J. (2002) "International Taxation", in Auerbach, A. and Feldstein, M. (eds), Handbook of Public Economics, vol. 4, chap. 28, Elsevier.
- Gordon, R., and J. MacKie-Mason (1995) 'Why Is There Corporate Taxation in a Small Open Economy? The Role of Transfer Pricing and Income Shifting''. NBER, January, 67–94.
- Griffith, R., Hines, J. and Sørensen, P. (2010) "International Capital Taxation", in Mirrlees et al. (eds), Dimensions of Tax Design : the Mirrlees Review, Oxford University Press, chap. 10.
- Hassett, K., and G. Hubbard (2002) "Tax Policy and Business Investment". Handbook of Public Economics 3: 1293–1343.
- Hines, James R., and Eric M. Rice (1994) "Fiscal Paradise : Foreign Tax Havens and American Business". The Quarterly Journal of Economics 109 (1) : 149–82.
- House, C. and M. Shapiro (2008) "Temporary Investment Tax Incentives : Theory with Evidence from Bonus Depreciation", *The American Economic Review* 98 (3) : 737–68.
- King, M. (1977) Public Policy and the Corporation, London : Chapman and Hall.
- Kline, P., Petkova, N., Williams, H. and Zidar, O. (2019) "Who Profits from Patents? Rent-sharing at Innovative Firms", *Quarterly Journal of Economics* Vol. 134, No. 3, pp. 1343–1404.
- Kotlikoff, L. and L. Summers (1987) "Tax Incidence" in *Handbook of Public Economics*, edited by Alan J. Auerbach and Martin Feldstein, 2 :1043–92. Elsevier.
- Mintz, J. (1995) "The Corporation Tax : A Survey". Fiscal Studies 16 (4) : 23-68.
- Nielsen, S., and Sørensen, P. B. (1997). "On the Optimality of the Nordic System of Dual Income Taxation". Journal of Public Economics 63 (3): 311–29.
- OECD (2017) "Legal Tax Liability, Legal Remittance Responsibility and Tax Incidence : Three Dimensions of Business Taxation" OECD Taxation Working Paper Series.
- Pirttilä, J., and Selin, H. (2011). "Income Shifting within a Dual Income Tax System : Evidence from the Finnish Tax Reform of 1993". The Scandinavian Journal of Economics 113 (1)
- Poterba, J. and L. Summers (1984) "New Evidence That Taxes Affect the Valuation of Dividends", The Journal of Finance 39 (5): 1397–1415.
- Poterba, J. and L. Summers (1985) "The Economic Effects of Dividend Taxation" in *Recent Advances in Corporate Finance*, ed. E. Altman and M. Subrahmanyam, p.é 227–84. Homewood, IL : Dow Jones-Irwin Publishing.

- Saez, E. and Zucman, G. (2019) "Clarifying Distributional Tax Incidence : Who Pays Current Taxes vs. Tax Reform Analysis", mimeo, U.C. Berkeley.
- Sørensen, P. B. (1994) "From the Global Income Tax to the Dual Income Tax : Recent Tax Reforms in the Nordic Countries". International Tax and Public Finance 1 (1): 57–79.
- Suárez Serrato, J. C., and O. Zidar (2016) "Who Benefits from State Corporate Tax Cuts? A Local Labor Markets Approach with Heterogeneous Firms", *American Economic Review* 106 (9): 2582–2624.
- Summers, L. (1981) "Taxation and Corporate Investment : A Q-Theory Approach". Brookings Papers on Economic Activity 1981 (1): 67–140.
- Yagan, D. (2015) "Capital Tax Reform and the Real Economy : The Effects of the 2003 Dividend Tax Cut". *American Economic Review* 105 (12) : 3531–63.
- Zucman, G. (2014) "Taxing across Borders : Tracking Personal Wealth and Corporate Profits", Journal of Economic Perspectives 28 (4) : 121–48.
- Zwick, E. and Mahon, J. (2017), "Tax Policy and Heterogeneous Investment Behavior", American Economic Review, Vol. 107, No. 1, pp. 217–48.

• Full employment condition

$$c_{LX}X + c_{LY}Y = L_0$$
(1)
$$c_{KX}X + c_{KY}Y = K_0$$
(2)

• Full employment condition

$$c_{LX}X + c_{LY}Y = L_0 \tag{1}$$

$$c_{KX}X + c_{KY}Y = K_0 \tag{2}$$

Perfect competition (prices equals to marginal cost)

$$p_X = c_X(r, w) \tag{3}$$

$$p_Y = c_Y(r, w) \tag{4}$$

Full employment condition

$$c_{LX}X + c_{LY}Y = L_0 \tag{1}$$

$$c_{KX}X + c_{KY}Y = K_0 \tag{2}$$

Perfect competition (prices equals to marginal cost)

$$p_X = c_X(r, w) \tag{3}$$

$$p_Y = c_Y(r, w) \tag{4}$$

Demand functions

$$X = X(p_X, p_Y, M) \tag{5}$$

$$Y = Y(p_X, p_Y, M) \tag{6}$$

Full employment condition

$$c_{LX}X + c_{LY}Y = L_0 \tag{1}$$

$$c_{KX}X + c_{KY}Y = K_0 \tag{2}$$

• Perfect competition (prices equals to marginal cost)

$$p_X = c_X(r, w) \tag{3}$$

$$p_Y = c_Y(r, w) \tag{4}$$

Demand functions

$$X = X(p_X, p_Y, M) \tag{5}$$

$$Y = Y(p_X, p_Y, M) \tag{6}$$

• 6 unknowns, 6 equations

1 Changes in demand relates to changes in price ratio

$$\hat{X} - \hat{Y} = -\sigma_D(\hat{p}_X - \hat{p}_Y) \tag{7}$$

• σ_D is the aggregate elasticity of substitution in demands

1 Changes in demand relates to changes in price ratio

$$\hat{X} - \hat{Y} = -\sigma_D(\hat{p}_X - \hat{p}_Y) \tag{7}$$

σ_D is the aggregate elasticity of substitution in demands
2 Changes in relative product prices to changes in factor prices

$$\hat{\rho}_X - \hat{\rho}_Y = \theta^* (\hat{w} - \hat{r}) \tag{8}$$

- θ_{LX} is the share of labour in sector X
- $\theta^* = \theta_{LX} \theta_{LY}$ is a measure of factor intensity in terms of factor shares

1 Changes in demand relates to changes in price ratio

$$\hat{X} - \hat{Y} = -\sigma_D(\hat{p}_X - \hat{p}_Y) \tag{7}$$

σ_D is the aggregate elasticity of substitution in demands
2 Changes in relative product prices to changes in factor prices

$$\hat{\rho}_X - \hat{\rho}_Y = \theta^* (\hat{w} - \hat{r}) \tag{8}$$

- θ_{LX} is the share of labour in sector X
- $\theta^* = \theta_{LX} \theta_{LY}$ is a measure of factor intensity in terms of factor shares
- If X is labour intensive $(\theta^* > 0)$ then a rise in the relative factor prices $(\frac{w}{r})$ causes a rise in its relative price $(\frac{p_X}{p_Y})$

Obanges in quantities to changes in relative factor prices

$$\lambda^*(\hat{X} - \hat{Y}) = (\hat{w} - \hat{r})(\alpha_X \sigma_X + \alpha_Y \sigma_Y)$$
(9)

- σ_X is the elasticity of substitution in sector X
- λ_{LX} is the share of labour force L_0 in sector X
- $\lambda^* = \lambda_{LX} \lambda_{KX}$ is a measure of factor intensity in terms of physical inputs

Obanges in quantities to changes in relative factor prices

$$\lambda^*(\hat{X} - \hat{Y}) = (\hat{w} - \hat{r})(\alpha_X \sigma_X + \alpha_Y \sigma_Y)$$
(9)

- σ_X is the elasticity of substitution in sector X
- λ_{LX} is the share of labour force L_0 in sector X
- $\lambda^* = \lambda_{LX} \lambda_{KX}$ is a measure of factor intensity in terms of physical inputs
- If X is labour intensive (λ* > 0) then a rise in output of X relative to Y is associated with a rise in the wage relative to the rate of profit

◀ back