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a b s t r a c t

We study an economy where intermediaries compete over contracts in a nonexclusive insur-
ance market affected by moral hazard. In this context, we show that, contrarily to what is
commonly believed, market equilibria may fail to be efficient even if the planner is not
allowed to enforce exclusivity of trades (third best inefficiency). Our setting is the same as
that of Bisin and Guaitoli [Bisin, A., Guaitoli, D., 2004. Moral hazard with nonexclusive con-
tracts. Rand Journal of Economics 2, 306–328]. We hence argue that some of the equilibrium
conditions they imposed are not necessary, and we exhibit a set of equilibrium allocations
which fail to satisfy them.

© 2008 Elsevier B.V. All rights reserved.

This work analyzes nonexclusive financial markets where intermediaries strategically compete in the presence of moral
hazard on the agents’ side. Non-exclusivity refers to a scenario where every agent (consumer–borrower) can simultaneously
accept the proposals of several intermediaries, and her decisions cannot be contracted upon.

Many researches have tried to provide a theoretical assessment of these situations. The study of nonexclusive relationships
under moral hazard has been initiated by Pauly (1974), Hellwig (1983) and Arnott and Stiglitz (1993), and first reformulated
by Bizer and DeMarzo (1992) and Kahn and Mookherjee (1998). These last contributions, though, examined the particular
setting where agents take their contractual decisions sequentially. More recently, Parlour and Rajan (2001), Martimort and
Stole (2003), Attar et al. (2006) and others have focused on the standard model of competition where intermediaries simul-
taneously post their contract offers and, in a next step, agents take their portfolio and effort decisions. A general analysis of
this framework is proposed in Bisin and Guaitoli (2004), which study a standard insurance setting without any restriction
on players’ preferences.1

Overall, these researches emphasize that whenever exclusive trades cannot be enforced, positive profits for the active inter-
mediaries and a distorted distribution of surplus typically arise. A crucial condition to support this sort of non-competitive
outcomes in an otherwise competitive set-up is the presence of latent contracts. These are offers that are not bought at
equilibrium, which role is to guarantee a threat against the incentive of a single intermediary to increase his market share
by reducing his price.

∗ Corresponding author. Tel.: +33 561128578.
E-mail address: anattar@cict.fr (A. Attar).

1 Their analysis can be extended to consider credit relationships without any loss of generality (see Section 4 and 5 of Bisin and Guaitoli, 2004).
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A major issue in this literature is the analysis of the welfare effects of non-exclusivity. In markets where trades are
nonexclusive, a single intermediary cannot write contracts which are contingent on agents’ portfolio decisions, which induces
a form of contractual externalities.

The relevant welfare results can be resumed as follows: if contractual externalities are sufficiently severe, then market
equilibria fail to be constrained (second best) efficient. A social planner who cannot control agents’ effort choices may indeed
perform better than markets as long as he retains the power of controlling trades. In a next step, one can consider the situation
where the planner cannot restrict financial intermediaries from offering further trade opportunities. This seems a natural
scenario to investigate in all those situations where a social planner is in the impossibility of enforcing exclusivity clauses. The
related efficiency notion is referred to as third best optimality. All recent works in this line (see Kahn and Mookherjee, 1998;
Bisin and Guaitoli, 2004; Attar et al., 2006) have shown an efficiency result: equilibria are incentive-constrained inefficient,
but third-best efficient.2

The first contribution of the present work is to provide a simple example of a set of equilibrium allocations in a
nonexclusive insurance market subject to moral hazard which fail to be third best efficient. If the planner is facing the
same informational constraints as the intermediaries, there exist feasible allocations which are preferred to the equilib-
rium ones by both intermediaries and agents. We hence show that even in such a constrained scenario there is room
for regulatory issues: public insurance provision turns out to be welfare improving. As a matter of fact, our analysis also
delivers new insights at a positive level. Indeed, we consider the same general framework of Bisin and Guaitoli (2004)
(BG) who introduce a set of necessary conditions for pure strategy equilibria. In addition, they emphasize the role of
latent contracts to support high effort at equilibrium. We characterize a set of equilibrium allocations which are sup-
ported by only one active intermediary, who earns a positive profit. The amount of latent insurance needed at equilibrium
is higher than what conjectured by BG (and its corresponding price is lower). Interestingly, these situations give rise to
an insufficient provision of insurance from the only active intermediary. In the light of our results, we hence argue that
some of the properties identified by BG are not necessarily verified at equilibrium. This is the second contribution of our
work.

The paper is organized as follows: Section 1 presents the model and provides our example, Section 2 develops the welfare
analysis, and Section 3 provides a discussion of our results. All proofs are collected in Appendix A.

1. Equilibria under non-exclusivity: an example

We consider an insurance economy lasting two periods. It is populated by a single representative consumer and by a
countably infinite set of intermediaries.3 The probability distribution over the set of idiosyncratic states {1, 2} depends on
an unobservable effort e = {a, b}. Uncertainty affects the consumer’s endowment w = (w1, w2) ∈R2+, with w2 > w1: �a(�b)
is taken to be the probability of occurrence of state 2 if a(b) is chosen, with a > b and �a > �b. Trades are represented by
insurance contracts offered by intermediaries to the single consumer. Every intermediary i ∈ J offers a contract di = (di

1, di
2)

consisting in a pair of state-contingent transfers and we take pi = |(di
2/di

1)| to be the price of the di contract. The agent
could buy a fraction �i of this contract. In addition, every ith intermediary fixes �i (the set of admissible �i) to be either
[0, 1] (divisible contracts) or {0, 1} (indivisible contracts).4 Insurance relationships are nonexclusive: the consumer chooses
a subset of intermediaries to trade with and her decisions cannot be contracted upon.

The payoff to intermediary i is given by Vi = −(�edi
2 + (1 − �e)di

1)�i, when the effort e is chosen and the fraction
�i of the offer di is bought. We denote ��e = ((1 − �e), �e), and we then write Vi = −��e · di�i. The agent–consumer is
risk-averse. Her utility from consuming cs, with s = {1, 2}, is given by u : R+ → R+, which is continuous, increasing and
concave. The corresponding expected utility is Ũ(c1, c2, e) = (1 − �e)u(c1) + �eu(c2) − e, where e denotes the cost of effort
and cs = ws +

∑
i ∈ J�id

i is the contingent consumption. In what follows, we will always refer to U(C) = Ũ(C, e(C)), with

e(C) ∈ argmax
e

Ũ(C, e). We also take A = {C ∈R2+/e(C) = a} to be the set of ex-post consumption profiles inducing the choice

e = a and B = {C ∈R2+/e(C) = b} to be that inducing e = b.
We will henceforth take the consumer’s utility to be u(c) = c� , with � ∈ (0, 1). Consider the following players’ behaviors:

(i) d1 = C − W, �1 = {0, 1},
(ii) d2 = d3 = L − C, �2 = �3 = [0, 1],

(iii) d4 = d5 = · · · = dJ = (0, 0),
(iv) �1 = 1, �2 = �2 = · · · = �J = 0, and e = a,

with C = (c1, c2) ∈A, L = (l1, l2) ∈B, c1 > w1, and c2 < w2. That is, intermediary 1 makes a positive insurance, take-it or
leave-it offer (indivisible contract), while intermediaries 2 and 3 propose a divisible contract, and all other intermediaries

2 If contractual externalities are sufficiently mild, then market equilibria can be efficient in the sense of second best even in the presence of rationing.
This is the case, for instance, in Bizer and DeMarzo (1992) and Parlour and Rajan (2001) (see Attar et al., 2006 for a discussion).

3 Alternatively, one can think of a continuum of identical consumers.
4 The case of indivisibility clearly denotes a situation where the ith intermediary is making a take-it or leave-it offer.
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Fig. 1. Set of feasible consumption allocations.

offer the null contract (0, 0). The consumer accepts the offer of intermediary 1 and rejects those of intermediaries 2 and 3,
as well as the remaining ones. In addition, she selects the high effort.

Fig. 1 depicts the consumer’s feasible consumption set given the endowment W and the offers’ array (d1, d2, . . . , dJ).
The array (C, L) is identified by the following conditions:

U(C) = U(L) (1)

�Lc1 + c2 = �Ll1 + l2 (2)

�a(1 − �a)(u′(c1) − u′(c2)) = �a(1 − �b)u′(l1) − �b(1 − �a)u′(l2) (3)

�b > �L > �C >
∣∣∣w2 − c2

w1 − c1

∣∣∣ > �a, (4)

w1 + 2(l1 − c1) = w2 + 2(l2 − c2), (5)

w2 + 3(l2 − c2)
w1 + 3(l1 − c1)

<
l2
l1

, −��a · (L − C) < −��a · (C − W), (6)

u
(

p1 − �a

�C − �a

)
≤ 1

�
u′

(
c2

�Lc1 + c2

�L − �a

�C − �a

1
�a

)
(7)

where �L = ((1 − �b)u′(l1))/(�bu′(l2)) and �C = ((1 − �a)u′(c1))/(�au′(c2)) denote the marginal rate of substitution of the
consumer evaluated at L and at C, respectively. In addition, we denote �a = ((1 − �a)/�a) and �b = ((1 − �b)/�b).

Relationships (1)–(7) have a straightforward interpretation: (1) requires the single agent to be indifferent between C and
L, and (2) states that the price of the contracts offered by intermediaries 2 and 3 is �L . Considered together, (1)–(3) identify
the role of the latent allocation L as a threat to prevent unilateral deviations to positive insurance contracts. The choice of
e = b will indeed make these deviations not profitable, since it raises the price effectively paid to the consumer. Suppose that
intermediary i deviates to di′ = di + d, where d is such that −��a · di′ > −��a · di. The deviation is profitable if e = a is chosen.
Condition (3) implies that following any of such deviations, the consumer will have an incentive to accept it together with the
allocation L (provided it is available) and to select e = b as the optimal effort choice. Since d can be very small, it follows that
(1) will also hold. Furthermore, (2) states that the threat L remains available if any of the intermediaries removes his offer.
There should hence be enough latent insurance issued at equilibrium, which implies that the slope of the line connecting C
and L will be equal to −�L . The inequalities in (4) provide additional elements for equilibrium characterization: the first one
guarantees that L will fall in the overinsurance region, at the right of the 45 degree. The second and the third one state that
accepting the offer d1 = C − W is an optimal choice for the consumer when she selects e = a. The last inequality implies that
the only active intermediary earns a positive profit offering d1, at a price p1 = |(w2 − c2)/(w1 − c1)|.

Conditions (5) and (6) imply that the threat of selecting the low effort will still be effective even when large deviations
are considered. More precisely, (5) states that whenever the active intermediary removes his offer, there will be enough
available insurance to get to the 45 degree line. The inequalities in (6) further characterize the amount of latent insurance
available at equilibrium. In particular, the last inequality puts an upper bound on the supply of inactive intermediaries: its
role is to prevent deviations through negative insurance contracts.

Finally, condition (7) introduces a limit to the price charged by the active intermediary. As will be clarified in the following,
if the inequality is violated there might be gains from price undercutting.
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Fig. 2. The choice between K and ˇL.

Summarizing: given W and the offers’ array (d1, d2, . . . , dJ), the agent can achieve the allocation C as well as every element
on the line connecting C and L with slope −�L (see Fig. 1).

The main contribution of the present work is therefore to establish the following:

Proposition 1. Consider an economy where consumer’s preferences are represented by u(c) = c� , with � ∈ (0, 1). Then, for every
array (C, L) satisfying (1)–(7), the allocation C ∈A can be supported as a pure strategy equilibrium by the players’ behaviors
described in (i)–(iv).

The proposition is proved in three Lemmas. The first one shows that the set of allocations (C, L) satisfying (1)–(7) is non-
empty. The second stresses the restrictions induced by these conditions on the consumer’s optimal behavior. Finally, Lemma
3 argues that the described players’ behaviors form an equilibrium. As a starting point, we therefore establish:

Lemma 1. If u(c) = c� , with � ∈ (0, 1), there exists an array of parameters (W, �, �a, �b, a, b) such that the system (1)–(7) has
a solution (C, L), with C ∈A and L ∈B.

Importantly, one can show the existence of a continuum of points in the neighborhood of (C, L) that can be as well
supported at a pure strategy equilibrium.5 This guarantees the robustness of the result.

We now consider the consumer’s behavior, emphasizing the features of her optimal choices which are relevant to analyze
the deviation stage. To this extent, we refer to the allocation C˛ ∈A. For every ˛ ∈R, C˛ is taken to be at the intersection between
the (iso-profit) line of slope −((1 − �a)/�a) passing through C and the line connecting ˛C and ˛L: every C˛ hence guarantees
the same aggregate profit as that earned by the single intermediary in C. That is: C˛ = (c1 + �af (˛), c2 − (1 − �a)f (˛)), with
f ′(˛) > 0 and f (1) = 0.6

Lemma 2. If u(c) = c� , with � ∈ (0, 1), and the allocations C and L satisfy (1)–(7), then:

1. U(C˛) < U(˛L) ∀˛ /= 1
2. U(K) < U(˛L) ∀K /= Clying between C˛ and ˛L,
3. U(K) < U(ˇL) ∀K, ∀ˇ ≥ 1 such that p1k1 + k2 ≤ p1cˇ1 + cˇ2 and �Lk1 + k2 ≤ �Lcˇ1 + cˇ2.

The lemma stresses the main properties of the consumer’s optimal choices. In particular, the first two inequalities show
that the consumer will always prefer to select the low effort e = b instead of taking e = a and choosing an allocation providing
an aggregate profits to the intermediaries greater than −��a · C. The last one identifies the set of allocations that are dominated
from the consumer point of view by ˇL (see Fig. 2).

To complete the proof of Proposition 1 we have to show that the allocation C ∈A can be supported at equilibrium.

Lemma 3. If u(c) = c� , with � ∈ (0, 1), then the players’ behaviors described in (i)–(iv) constitute a subgame perfect equilibrium
of the game played amongst the N intermediaries in the presence of a single agent. The corresponding equilibrium allocation will
be C ∈A.

The proof, developed in Appendix A, mainly analyzes the properties of intermediaries’ deviations trying to induce
e = a as the optimal effort choice. It is shown that following any deviation inducing an increase in the aggregate level of

5 The detailed computation is available from the authors.
6 The reader can check that f (˛) = ((˛ − 1)/�a)((�Lc1 + c2)/(�L − �a)) and that �Lc1 + c2 = �af ′(˛)(�L − �a).
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intermediaries’ profits, the consumer has an incentive to select e = b, by point 2 of Lemma 2. This makes the deviation
non-profitable.

In a next step, we look at deviations by latent intermediaries who try to undercut on intermediary 1’s offer. In particular,
we have to consider the situation where the consumer trades only with the deviating intermediary at the deviation stage. The
deviation is profitable as long as e = a is chosen, and this results in a level of intermediaries profits vis a vis the equilibrium
one. However, it is a main implication of point 3 of Lemma 2 that the consumer will always take the effort e = b following
this kind of deviations.

Finally, one should observe that, being the equilibrium price of the latent contracts (strictly) smaller than the equilibrium
one, the only way to profitably deviate inducing e = b as the consumer’s optimal choice is to propose a negative insurance
contract. We hence prove that none of the intermediaries can unilaterally gain offering one of such contracts, since the agent
will have an incentive to select e = a, which makes the deviation non-profitable.

We now relate in greater detail our example to the BG work. BG’s main result is presented in their Proposition 2, which
is stated as follows:7

If the set of consumption allocations X = {(x1, x2)/(1 − �a)u(x1) + �au(x2) − u((1 − �b)x1 + �b(x2)) − (a − b) ≥ 0} is non-empty,
then any pure strategy equilibrium with e = a induces an allocation C = (c1, c2) such that:

(1 − �a)u(c1) + �au(c2) − u((1 − �b)c1 + �b(c2)) − (a − b) = 0. (8)

Eq. (8) can be interpreted as an indifference condition for the agent between the equilibrium allocation C where e = a is
chosen, and another feasible allocation on the 45 degree line, that can be reached buying additional (latent) insurance at the
fair price ((1 − �b)/�b). In addition, their proposition 3 states that at any high effort equilibrium there will be at least two
active intermediaries,8 and proposition 4 provides a constrained efficiency result: every high effort equilibrium is third best
optimal.9 In particular, the feasible set for the social planner in a “third best program” is given by the set X, and any third
best allocation belongs to its frontier.

The equilibrium we have constructed does not exhibit the properties described by BG. To clarify this, we first remark that
if conditions(1)–(7) are satisfied, then (8) will never hold as an equality. That is, our equilibrium construction also involves
latent contracts, but they are issued at a price strictly smaller than the fair one.10

One should notice that BG explicitly ruled out the possibility of getting equilibria where the price of latent contracts, say
�L , is strictly smaller than ((1 − �b)/�b). In this respect, lemma A1 of their paper argues that every equilibrium of this sort
would not be robust to a deviation by an entrant (or by a latent intermediary) offering a negative insurance contract d′ at a
price p′ ∈ (((1 − �b)/�b), �L).

We indeed provide an example where none of the intermediaries can profitably deviate offering such a d′. Following
the deviation, the agent will find optimal to trade d′ together with the contract originally offered by the non-deviating
intermediary 1. This induces her to take the effort e = a, which lowers the price effectively posted by the deviator, and blocks
the deviation. As a matter of fact, this possibility has not been considered by BG in the proof of lemma A1.11

Finally, our equilibrium is supported by only one active intermediary, which shows that the condition identified in BG
proposition 3 is indeed not necessary. More precisely, we are showing that the existence of two distinct allocations Y ∈A
and Z ∈A such that U(Y) = U(Z) is not a necessary condition for getting a high effort equilibrium, contrarily to what BG have
argued.12

2. Welfare analysis

This section shows that the equilibrium allocations characterized in our Proposition 1 fail to be third best efficient. That
is, a planner offering state-contingent transfers to the single agent can achieve allocations that Pareto-dominate them.

Let us start by remarking that if exclusivity cannot be enforced, then the intermediaries’ strategic interactions must be
considered an additional constraint for the planner. In the usual second best perspective the planner retains control on the
consumption/insurance allocations, but is subject to the same informational problems as intermediaries in terms of the
agent’s effort choices. In a nonexclusive context, the planner looses control on intermediaries’ behaviors, hence (indirectly)
on the total insurance the agent has available for purchases. That is, the planner does not control the effort and the portfolio
choices (i.e. the array of �i s) of the agent either.

7 See Bisin and Guaitoli, 2004, p. 314.
8 See Bisin and Guaitoli (2004), p. 315.
9 See Bisin and Guaitoli (2004), p. 319. For a formal definition of the notion of third best optimality see also Kahn and Mookherjee (1998).

10 To show that we can in principle apply BG Proposition 2, one has to consider the point F = (f, f ) on the 45 degree line, with f = ((�Ll1 + l2)/(�L + 1)).
F belongs to the tangent to the consumer’s indifference curve at L, and U(L) > U(F), since F ∈B. Using (1) and (2), the last inequality can be written
as: (1 − �a)u(c1) + �au(c2) − (a − b) > u((�Lc1 + c2)/(�L + 1)). Also, since �L < ((1 − �b)/�b), we get: ((�Lc1 + c2)/(�L + 1)) > (((1 − �b)/�b)c1 + c2)/(((1 −
�b)/�b) + 1) = (1 − �b)c1 + �bc2. We can hence conclude that (1 − �a)u(c1) + �au(c2) − (a − b) > u((1 − �b)c1 + �bc2), guaranteeing that the set X intro-
duced in BG is non-empty.

11 See Bisin and Guaitoli (2004), p. 326.
12 See Bisin and Guaitoli (2004), p. 326.
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Fig. 3. Equilibrium allocations and the price of latent contracts �L .

To properly represent this sort of interactions we consider an alternative formulation of the game, with the planner being
an additional intermediary, say intermediary 0. We also let d0 = (d0

1, d0
2) be the state-contingent transfer offered by the

planner to the single agent. Such a transfer effectively changes the agent’s endowment point, and may hence equivalently
be thought of as compulsory public insurance.

Importantly, the intermediary 0 behaves in a non-strategic way. For every given d0, we say that a consumption allocation
is third best optimal if the corresponding players’ behaviors constitute a best reply to the decision of intermediary 0.13

As a starting point, we consider the set of all consumption allocations satisfying (1) and (2), where �L ≤ (((1 −
�b)u′(l1))/(�bu′(l2))).

Fig. 3 depicts the locus of C allocations such that the corresponding (C, L) ∈A × B satisfy (1) and (2) for different values of
the parameter �L . We denote T1 and T2 the locus corresponding to �L = �1 and to �L = �2, respectively.

The next lemma argues that T curves can be ordered according to the parameter �L . That is, any point of the T2 curve is
connected by a positive insurance contract to (at least) one point of the T1 curve as long as �2 < �1.

Lemma 4. T curves corresponding to different � will not intersect in the (c1, c2) plane. In addition, any curve T�′
will always lie

to the left of the curve T� whenever � ′ < �.

We let T0 be the T curve corresponding to �L = ((1 − �b)/�b). In this case, the relevant allocation L belongs to the 45
degree line, which guarantees that the equation of the T0 curve is

(1 − �a)u(c1) + �au(c2) − u((1 − �b)c1 + �bc2) − (a − b) = 0 (9)

BG identify the T0 curve with the third best frontier. We show in the remaining of the section that any allocation identified
in Proposition 1 is dominated by an allocation on the T0 curve. This indeed establishes constrained inefficiency of market
equilibria.

Take any of the (C, L) arrays identified in Proposition 1. Consider the array (C0, L0), with C0 ∈ T0, lying on the same
indifference curve as (C, L). Clearly, (C0, L0) is defined in a unique way.

By construction, l0 = (1 − �b)c0
1 + �bc0

2, and

c1 < c0
1 < l0 < l1

c2 > c0
2 > l0 > l2

�L0
> �L > �C > �C0

.

(10)

We then consider the following behaviors:

• The planner proposes the transfers’ array d̃0 = C0 − W to the single agent; the price of the contract d̃0 is p0 > p1 > ((1 −
�a)/�a).

13 This representation is indeed equivalent to considering the following situation: a planner subject to informational and portfolio constraints proposes
transfers; given the transfers, the game is effectively played. The feasible set of such a planner is therefore constituted of the set of (subgame perfect)
equilibria with transfers of the original game.
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• At least two intermediaries propose the (latent) insurance contract d̃L = L0 − C0 at a price pL = ((1 − �b)/�b), and all the
others offer the null vector (0, 0).

• The agent accepts the offer d̃0 and rejects all the other ones. In addition, she selects the high level of effort.

These behaviors support the allocation C0 ∈ T0 as an equilibrium with transfers of our game. Importantly, the same allo-
cation could be supported by allowing the planner to propose the non-linear menu M0 = (d0 + �d̃0), and all intermediaries
posting (0, 0). The agent selects an element in M0 by choosing a value of � in [0, 1].

The following proposition emphasizes that this allocation can indeed be implemented by the planner:

Proposition 2. If the planner provides [public] insurance to the agent through the state-contingent transfers d̃0, then it is a best
reply for (at least) two intermediaries to offer the insurance contract d̃L and for all the others to offer (0, 0). The agent will then
find optimal not to trade d̃L and to take the high level of effort.

It is immediate to verify that the profit associated to the d̃0 contract is strictly greater than that of d1 whenever the agent
sets e = a. The inefficiency of the C allocation follows once one observes that the agent may get the same utility at C and at
C0 while aggregate profit are strictly higher.

3. Discussion

A salient feature of our construction is that every latent contract implies negative virtual profits for the issuer; that is,
its price is smaller than the fair price under low effort. Importantly, BG conjecture that any pure strategy equilibrium with
negative latent profits would never be robust to deviations from latent intermediaries. As we already said, the problem in
their proof appears when they argue that every deviation to a negative insurance contract by any latent intermediary would
induce the effort choice e = b. We have shown in contrast that, in the context of our example, the consumer will take the
opportunity of the negative insurance contract to reach a better allocation in A, which makes the deviation unprofitable.

We now briefly discuss the notion of negative virtual profits for the latent intermediaries. Let us first remark that any
C = (c1, c2) allocation described in our Proposition 1 can be as well supported as a symmetric equilibrium of a simpler
game where two competitors (principals) can offer any possible subset of alternatives (menus) to the single agent. Instead
of thinking of (latent) intermediaries who are offering their contracts anticipating that they will not be accepted and that
they will (eventually) incur a loss, one can then represent latent offers as a part of a non-linear menu proposed by a single
competitor (principal). In this last case, every principal issues these additional offers to (strategically) protect his own rents
from his rivals’ opportunistic behaviors. This provides a further rationale for the relevance of equilibria with virtual negative
profits. An extensive analysis of the relationship between latent contracts in competitive economies and menus equilibria is
presented in Attar et al. (2008). We discuss in Appendix A the general features of this alternative game form and we provide
the main intuitions for our result. Interestingly, equilibria of this sort have been intensively examined in the recent literature
on games with multiple principals. The possibility to sustain outcomes through offers which are not accepted at equilibrium
but are strategically issued by competitors is indeed at the root of the failure of the Revelation Principle in games with
multiple principals.14 That is, the equilibrium allocation we supported could not have been implemented by letting the two
principals compete over singleton contracts. Although most of the recent literature on Common Agency games with moral
hazard has typically restricted attention to situations where principals compete through take-it or leave-it offers, there is
indeed a very weak foundation for such a choice (see, among others, Attar et al., 2007, 2008).

One should also observe that these sort of equilibrium outcomes cannot be straightforwardly eliminated by the intro-
duction of perfection and/or trembling hand requirements. In the terminology of Simon and Stinchombe (1995) we are
studying a continuum extensive form game, i.e. a game where at least one agent conditions her actions on previous choices
taken in a continuum. To the best of our knowledge, no standard refinement concept has been formulated in such a context.
Understanding under which conditions the general treatment of Simon and Stinchombe (1995) extends to this framework
is a major topic for future research.

Our analysis therefore suggests that equilibria can be Pareto-ranked according to the price of latent contracts. In particular,
those allocations (if there is any) supported by latent insurance offered at a fair price under low effort turn out to be
(constrained) efficient. Thus, even though there is no general argument to get rid of these outcomes, it is remarkable that a
social planner would never have any incentive to select them.
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Appendix A

A.1. Proof of Lemma 1

We first fix � = 1/2, C = (25, 50) and �L = 1. Then, we consider all the solutions such that w1 = 0 and w2 = +(�C −
0.05)c1 + c2. For (2) and (5) to be verified, one has to impose l1 = c1 + (((�C − 0.05)c1 + c2)/(2(1 + �L))) and l2 = c2 − �L(((�C −
0.05)c1 + c2)/(2(1 + �L))). The corresponding values of �a and �b are identified by the relationships MRS(C) = �C and
MRS(L) = �L: �a = (

√
c2/(�C√

c1 + √
c2)), �b = (

√
l2/(�L

√
l1 +

√
L2)). Then, (3) can be rewritten as:

�c
(√

l1 +
√

l2

)(√
c2 − √

c1
)

= c2 − (�C )
2
c1,

where we used the fact that �L = 1. This equation has two solutions in �C , a positive and a negative one. We select the
positive one so to get �c ≈ 0.996199.15 Given �C , from (2) and (5) we derive: L ≈ (43.4137, 31.5863), and one has to notice
that since l1 > l2, we directly have that L ∈B. Finally, the parameter a − b is chosen so to satisfy (1). In particular, we get
a − b ≈ 0.0721456. It is then possible to verify by direct inspection that all inequalities in (4), (6) and (7) are verified and that
C ∈A.16 �

A.2. Proof of Lemma 2

1. We first remark that if C˛ ∈B, then one immediately gets U(C˛) < U(˛L), since ˛L is the optimal consumption choice when
e = b is taken and that C˛ and ˛L are connected by a line of slope - �L . We therefore consider in what follows the case C˛ ∈A.
In this situation, (d/(d˛))U(C˛) = �a(1 − �a)f ′(˛)(u′(c1˛) − u′(c2˛)). One should notice that for ˛ ≥ (≤)1, (d/(d˛))U(C˛) is
bounded above (below) by �a(1 − �a)˛�−1f ′(˛)(u′(c1) − u′(c2)), since u′(c1˛) is smaller (greater) than u′(˛c1). Furthermore,
˛L is always below the 45 degree line and U(˛L) = (1 − �b)u(l1˛) + �bu(l2˛) − b has the following derivative:

d

d˛
U(˛L) = ˛�−1((1 − �b)l1u′(l1) + �bl2u′(l2))

= ˛�−1�bu′(l2)(�Ll1 + l2)
= ˛�−1�bu′(l2)(f ′(˛)�a(�L − �a)
= ˛�−1f ′(˛)(�a(1 − �b)u′(l1) − (1 − �a)�bu′(l2))

,

where the last two equalities have been derived using (2), (3) and the definition of f (˛) provided in footnote 6.
Then, for ˛ ≥ 1 (˛ ≤ 1), (d/(d˛))[U(C˛) − U(˛L)] is bounded above (below) by ˛�−1f ′(˛)(�a(1 − �a)(u′(c1) − u′(c2)) −

(�a(1 − �b)u′(l1) − (1 − �a)�bu′(l2))) which is zero by (3). Hence, U(C˛) − U(˛L) has a maximum in ˛ = 1. If ˛ = 1, U(C˛) −
U(˛L) = U(C) − U(L) = 0 from (1).

2. We first remark that if K ∈B, then one immediately gets U(K) < U(˛L), since ˛L is the optimal consumption choice when
e = b is taken and K and ˛L are connected by a line of slope - �L . We henceforth restrict to the case K ∈A. Let us first take
˛0 to be the value of ˛ such that MRS(C˛0 ) = �L . For ˛ ≥ ˛0, one can directly verify that MRS(C˛) ≤ �L . It is then immediate
that U(K) < U(C˛) for every K ∈A belonging to the segment (of slope −�L) that connects C˛ and ˛L. It follows from part
1 of the lemma that U(K) < U(˛L). For ˛ < ˛0, MRS(C˛) > �L , and the agent’s consumption choice on the line passing
through C˛ and ˛L will be (˛/˛0)C˛0 ∈A. Using again point 1 of the lemma we get, after some computations:

U(K) − U(˛L) ≤ U
(

˛

˛0
C˛0

)
− U(˛L) =

(
˛

˛0

)�

(U(C˛0 ) − U(˛0L)) + (a − b)
((

˛

˛0

)�

− 1
)

< 0

3. We first remark that if K ∈B, then one immediately gets U(K) < U(ˇL), since K is below the line of slope - �L passing through
ˇL. Take any ˇ and Cˇ satisfying the conditions stated in the Lemma. We first let N = (n1, n2) be the consumption allocation
lying on the line of slope −�a = −((1 − �a)/�a) passing through C and such that (((1 − �a)u′(n1))/(�au′(n2))) = p1.

In a first step, we consider the situation where N lies at the right of Cˇ, which corresponds to the case where (((1 −
�a)u′(cˇ1))/(�au′(cˇ2))) ≥ p1.

To get the result, one should consider the allocation Kˇ = (kˇ1, kˇ2), at the intersection of the line of slope −p1 passing
through K and the line connecting Cˇ and ˇL, which has slope −�L (see Fig. 4). It is then immediate to show that the
consumer will always prefer ˇL to K:

15 The solution has been calculated using the NSolve function in Mathematica. The code is available from the authors.
16 This has been established running a standard test in Mathematica.
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Fig. 4. The choice between K, Cˇ and ˇL.

• If (((1 − �a)u′(kˇ1))/(�au′(kˇ2))) ≥ p1, then U(K) < U(Kˇ) < U(ˇL). The first inequality follows from the fact that, in such
a case, the agent’s utility is increasing at the left of Kˇ, while the second one is an implication of point 2 of this Lemma.

• If (((1 − �a)u′(kˇ1))/(�au′(kˇ2))) < p1, which is the case considered in Fig. 4, then one directly gets: U(K) < U(˛∗N) <
U(N) < U(ˇL). The first inequality comes from the fact that ˛∗N is the allocation on the line connecting K and Kˇ satisfying
(((1 − �a)u′(˛∗n1))/(�au′(˛∗n2))) = p1, the second one is implied by ˛∗ < 1, and the last one is obtained using point 2
of this Lemma.
In a next step, we consider the situation where N lies between C and Cˇ, that is: such that (((1 − �a)u′(n1))/(�au′(n2))) <

p1. Let us first take the particular ˛ such that ˛N lies on the line of slope −p1 passing through Cˇ. Necessarily, ˛ > 1, since
p1 > �a. By construction, we have that U(K) ≤ Ũ(˛N, a). That is, the utility that the consumer can achieve by taking e = a
at the deviation stage is always dominated by that associated to the choice of the allocation ˛N together with e = a.17 To
establish this point of the lemma, it will therefore suffice to show that Ũ(˛N, a) ≤ U(ˇL). We will prove this inequality in
a direct way.

We first recall that Cˇ = (c1 + (ˇ − 1)((�Lc1 + c2)/(�L − �a)), c2 − �a(ˇ − 1)((�Lc1 + c2)/(�L − �a))).18 Then, since ˛N and
Cˇ are connected by a line of slope −p1, one gets:

˛(p1n1 + n2) = (p1c1 + c2) + (ˇ − 1)
�Lc1 + c2

�L − �a
(p1 − �a) (11)

(˛ − 1)(p1n1 + n2) = −(p1 − �a)(n1 − c1) + (ˇ − 1)
�Lc1 + c2

�L − �a
(p1 − �a) (12)

(˛ − 1) = − (p1 − �a)(n1 − c1)
p1n1 + n2

+ b(ˇ − 1) (13)

˛

bˇ
= 1 + 1 − a − b

bˇ
(14)

with a = (((p1 − �a)(n1 − c1))/(p1n1 + n2)) and b = ((�Lc1 + c2)/(�L − �a))((p1 − �a)/(p1n1 + n2)).
One should observe that since −�a(n1 − c1) = (n2 − c2), then:

a + b = (p1 − �a)
(�L − �a)(p1n1 + n2)

[(�L − �a)(n1 − c1) + �Lc1 + c2]

= (p1 − �a)
(�L − �a)(p1n1 + n2)

[�L(n1 − c1) + (n2 − c2) + �Lc1 + c2] = ((p1 − �a)/(p1n1 + n2))
((�L − �a)/(�Ln1 + n2))

≤ 1,

which implies that

˛

ˇ
≥ b > 0. (15)

17 One should observe that we are not claiming that the allocation ˛N belongs to A. We are only interested in the utility level Ũ(˛N, a).
18 See footnote 6.
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Eqs. (11)–(15) reformulate the relationship between ˛N and Cˇ in terms of the variables ˛ and ˇ. In particular, Eq. (15)
puts a lower bound on the ratio between ˛ and ˇ.

Then, consider the difference:

U(ˇL) − U (˛N, a) = [(1 − �b)u(ˇl1) + �bu(ˇl2) − b] − [(1 − �a)u(˛n1) + �au(˛n2) − a].

Since (14) defines an implicit relationship between ˛ and ˇ, we can write g(ˇ) = U(ˇL) − Ũ(˛N, a) which is a continuous
and differentiable function. Its derivative is

g′(ˇ) =
[
(1 − �b)u′(l1)l1 + �bu′(l2)l2

]
ˇ�−1 −

[
(1 − �a)u′(n1)n1 + �au′(n2)n2

]
˛�−1b

= �bu′(l2)(�Ll1 + l2)ˇ�−1 − �au′(n2)(p1n1 + n2)˛�−1b

= �Lc1 + c2

�L − �a

[
ˇ�−1(�bu′(l2)[�L − �a]) − ˛�−1(�au′(c2)[�C − �a])

p1 − �a

�C − �a

u′(n2)
u′(c2)

]
.

We remark here that Eq. (3) can be rewritten as �bu′(l2)[�L − �a] = �au′(c2)[�C − �a]. Then, after simple manipulations,
one gets:

g′(ˇ)˛1−�

�bu′(l2)(�Lc1 + c2)
=

(
˛

ˇ

)1−�

− p1 − �a

�C − �a

(
n2

c2

)�−1
.

Now, using inequality (15), we obtain after further manipulations that:

g′(ˇ)˛1−�

�bu′(l2)(�Lc1 + c2)

(
�C − �a

p1 − �a

)1−�(
n2

c2

)1−�

≥
(

�Lc1 + c2

c2

n2

p1n1 + n2

�C − �a

�L − �a

)1−�

−
(

p1 − �a

�C − �a

)�

.

Now since ((p1n1 + n2)/n2) = 1 + �a((n1/n2))� ≤ 1 + �a = (1/�a) and using Eq. (7), one can conclude that g′(ˇ) > 0.
We remark that the smallest ˇ compatible with the condition (((1 − �a)u′(cˇ1))/(�au′(cˇ2))) ≤ p1 is such that Cˇ = N.

From Eq. (13) this is obtained when ˛ = 1 and ˇ = 1 + (a/b). It hence follows from point 1 of this lemma that U(ˇL) >
U(Cˇ) = U(N) ≥ Ũ(N, a), which corresponds to g(1 + (a/b)) > 0. Concluding, we have that g(ˇ) > 0, for every ˇ > 1 and
such that (((1 − �a)u′(cˇ1))/(�au′(cˇ2))) ≤ p1. �

A.3. Proof of Lemma 3

Let us first examine the agent’s behavior. Then, C = (c1, c2) is (weakly) preferred to any of the allocations belonging to the
frontier of the feasible (consumption) set. It will hence be a best reply for the agent to accept the contract of intermediary 1
and reject all the others.

Then, we consider intermediaries’ behaviors. It is sufficient to restrict the analysis to deviations in take-it or leave-it offers.
Let us consider intermediary 1. We first examine the deviations d1′ inducing a high level of effort and we take K ∈A to

be the optimal consumption choice of the agent at the deviation stage. If d1′ is a negative insurance contract, to guarantee
positive profits, its price should be below ((1 − �a)/�a), since the agent will select e = a. Then, whenever such a d1′ is bought,
the corresponding K should lie to the left of the line connecting W and D (see Fig. 1), which contradicts the fact that K is
optimally chosen.

If d1′ is a positive insurance contract, to guarantee that the deviation is profitable, it must be that −��a · d1′ > −��a · d1. It
hence follows from (6) that −��a · d1′ > −��a · d2. Moreover, d1′ cannot be offered at a price (strictly) greater than �L ,19 and
this implies d1′ = d2 + d1′′, with d1′′ being a positive insurance contract which price is smaller than �L . The terminal point
on the frontier of feasible consumptions corresponding to the offers (d1′, d2, . . . , dJ), i.e. W + d1′′ + 3d2,20, will hence fall
below the line passing through the origin and L, as it is the case for the point W + 3d2.21 At the deviation stage, the agent
can therefore achieve her optimal choice in the subset B, and it lies on the line passing through the origin and L. Thus, if one
takes the particular ˛ ∈R+ such that C˛, K and ˛L are on the same line, then K ∈A will be over ˛L. Hence, Lemma 2 implies
that U(K) < U(˛L), that constitutes a contradiction, since ˛L is available.22

19 Otherwise, W will be preferred to K and d1′ will not be accepted by the agent.
20 We recall that that d2 + d3 + d2 = 3d2.
21 See (6).
22 If we now consider the optimal choice of the agent in the set A, then it should be that −��a · (K − W) > −��a · (C − W). That is, K will fall below the line

of slope −((1 − �a)/�a) passing through C.
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Fig. 5. A deviation of intermediary 2.

Intermediary 1 cannot profitably deviate inducing low effort either. A deviation to a positive insurance contract inducing
e = b could be profitable only if the price is greater than ((1 − �b)/�b). The agent, though, will never have any incentive to
buy such a contract since the optimal available allocation when d1′ is not accepted is a point like D on the 45 degree line (see
Fig. 1). If d1′ is a negative insurance contract, the relevant price should be greater than �L , for the agent to have an incentive
to buy it, and smaller than (((1 − �b))/�b), to be profitable for the deviator. Since the agent can always achieve the allocation
D by rejecting d1′, the deviating contract will never be bought.

We now consider the behavior of intermediary 2 (and 3) and first show that there is no profitable deviation inducing
e = a. We keep denoting K ∈A the optimal consumption choice of the agent, given the deviation d2′ of intermediary 2. If d2′

is a positive insurance contract,23 and −��a · (K − C) > 0, one can use an argument similar to that suggested in the previous
paragraph. In this case, the relevant ˛ will be greater than 1, which implies that the corresponding ˛L will be available and
that Lemma 2 can be applied.

The case −��a · (K − C) ≤ 0 only takes place when the contract d1 is not bought at the deviation stage.24 The set of feasible
consumption choices corresponding to such a situation is depicted in Fig. 5. For every K ∈A, the agent can achieve both
M = K + d1 and ˇL, which lies on the ray connecting the origin to L.25 We show in the next paragraph that the agent will
always prefer the allocation ˇL to K, which makes the deviation non- profitable.

We remark that the inequalities

Ũ(M, a) ≤ U(M) ≤ U(K)

are always satisfied by construction. As a consequence, (((1 − �a)u′(m1))/(�au′(m2))) ≤ p1.
One should now observe that every allocation K = (k1, k2) ∈A also has to satisfy the following inequalities:

p1k1 + k2 ≤ p1cˇ1 + cˇ2 (16)

�ak1 + k2 ≥ �acˇ1 + cˇ2. (17)

In addition, it is immediate to verify that any allocation K satisfying (16) and (17) will be such that (u′(k1)/u′(k2)) ≥
(u′(cˇ1)/u′(cˇ2)).

We hence have to consider two possibilities. First, let suppose that (((1 − �a)u′(cˇ1))/(�au′(cˇ2))) > p1.
Then, the following inequalities will hold:

U(K) ≤ Ũ(Cˇ, a) ≤ U(Cˇ) < U(ˇL),

where the last relationship follows from point 2 of Lemma 2. The deviation will hence induce low effort, and this makes it
not profitable.

Second, consider the case (((1 − �a)u′(cˇ1))/(�au′(cˇ2))) ≤ p1. We start by remarking that −��a · M > −��a · C, since M =
K + d1 = C + d2′. In other words, M falls between Cˇ and ˇL.26 As a consequence, one gets that p1m1 + m2 ≤ p1cˇ1 + cˇ2 which

23 The case of d2′ being a negative insurance contract is not of great interest, since the agent will never have an incentive to accept a negative insurance
contract issued at a price smaller than ((1 − �a)/�a) and select the high effort e = a.
24 Whenever d1 is bought, then we have that: −��a · (K − W) ≥ −��a · d1 − ��a · d2′ > −��a · d1 = −��a · (C − W).
25 The availability of ˇL is guaranteed by construction. Indeed, we already know that adding d3 to C is enough to achieve L. Since d2′ is a positive insurance

contract, by adding d2′ and d3 to C we make ˇL available.
26 There is an exception: the extreme case where M falls below ˇL. In this situation, one can check that necessarily K /∈ A (detailed computations are

available upon request).
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follows from p1 ≤ �L . However, p1m1 + m2 = p1k1 + k2 because M = K + d1. Thus, we get p1k1 + k2 ≤ p1cˇ1 + cˇ2. This allows
us to directly apply point 3 of Lemma 2, so to get the result.

In a next step we investigate whether there is any deviation of intermediary 2 that induces the low effort e = b. If d2′ is a
positive insurance contract, then it must involve a price strictly greater than ((1 − �b)/�b) to be profitable. The fact that the
consumer can already achieve her optimal choice at a price �L , guarantees that such a deviation would never be accepted.
If d2′ is a negative insurance contract, then its price should be (strictly) greater than �L . The frontier of the set of feasible
consumptions will then be the line connecting W + d2′, C + d2′ and L + d2′. That is, the agent can choose any consumption
allocation between the two points C + d2′ ∈A and L + d2′ ∈B which are connected by a line of slope −�L . Consider now the
particular ˛ > 1 such that C + d2′, ˛C and ˛L are on the same line. One should notice that ˛C is also available to the consumer,
given that C + d2′ falls over the ray connecting the origin with C (i.e. it is at the north-west of ˛C). Since the MRS(˛C) = �C < �L ,
the best consumption allocation available to the agent in theA subspace will lie at the north-west of ˛C. We take this allocation
to be K; it hence follows that U(K) > U(˛C). In addition, we remark that U(L + d2′) < U(˛L), since MRS(L + d2′) > �L . Now, if
u(c) = c� , then it is straightforward to establish that U(˛C) > U(˛L) for every ˛ > 1.27 Overall, one gets

U(K) > U(˛C) > U(˛L) > U(L + d2′).

The deviation to the negative insurance contract d2′ will hence induce e = a as the optimal effort choice, which makes it
non- profitable.

Finally, one has to consider the deviations of all intermediaries offering the null contract (0, 0). To show that these
deviations will never be profitable, one can use the same argument developed for the latent intermediaries 2 and 3. Indeed,
when an intermediary offering a null contract (i.e. an entrant) deviates, the set of feasible allocations for the agent coincides
with the set of allocations that were available following the deviation d2′ together with some additional amount of insurance
available at a price �L . The agent will hence behave in the same way following a deviation to d2′ and following a deviation
from any of the entrants.28 �

A.4. Proof of Lemma 4

Proof. We prove that T curves corresponding to different � will not intersect in the (c1, c2) plane; this guarantees that any
T�′

curve always lies to the left of the T� curve whenever � ′ < �. Let us first suppose that an intersection point exists, and
denote it by C. That is, there should be two allocation arrays, say (C, L) and (C, L′), belonging to T� and to T�′

, respectively. The
intersection point C hence satisfies (2) for �L = � and �L = � ′. In other words, C is at the intersection of the two lines tangent
in L and in L′, respectively, to the agent’s indifference curve in B. It follows that such an intersection point will lie “between”
L and L′, that is

min(l1, l′1) ≤ c1 ≤ max(l1, l′1)
min(l2, l′2) ≤ c2 ≤ max(l2, l′2)

However, the conditions above together with the fact that C, L and L′ belong to the same indifference curve (by (1)) imply
that C ∈B, a contradiction.

Let us take two points C ∈ T� and C ′ ∈ T�′
belonging to the same indifference curve. Then, (strict) convexity of preferences

on B implies that L will be at the north-west of L′ (l′1 > l1 and l′2 < l2). Consider now the lines tangent to that indifference
curve in L and in L′, respectively: (2) guarantees that L is connected to C ∈A and L′ to C ′ ∈A. Let I denote the intersection of
these two tangents. Clearly, I ∈B, and the slopes of the IC and of the IC ′ lines are � and � ′, respectively. Finally, one has to
observe that C and C ′ are on a same convex curve, and I lies below that curve (this follows from the relationship �C < �L which
holds at equilibrium). A simple graphical argument will then imply that if � ′ < �, then C ′ must be at the left of C (c′

1 < c1 and
c′

2 > c2). That is, T�′
is in the interior (at the left) of T� . That is, for any C belonging to a T� curve, with � < ((1 − �b)/�b), one

can find an allocation C0 on the T0 curve such that U(C0) > U(C) and −��a · (C − C0) > 0. �

A.5. Proof of Proposition 2

Proof. We only have to verify that no latent intermediary has an incentive to deviate. This clearly implies that there is no
profitable deviation for intermediaries offering (0, 0) either.

We first remark that whenever one latent intermediary removes his offer, then only the two contracts d̃0 and d̃L will be
available in the economy.

27 We have that U(˛C) − U(˛L) = (U(˛C) + a) − (U(˛L) + b) − (a − b) = ˛� (U(C) + a) − ˛� (U(L) + b) − (a − b) = (˛� − 1)(a − b) > 0, for ˛ > 1.
28 More precisely, when we considered deviations that induce e = a, it was enough to prove that the consumer always has an incentive to select an allocation

on the ray connecting 0 and L. This will of course remain available in this context. All deviations inducing e = b were instead blocked independently of the
availability of the optimal consumption choice in B. Clearly, such an optimal choice will not be modified by the availability of additional insurance at a price
�L .
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Fig. 6. Third best inefficiency.

Now, suppose that an intermediary deviates proposing a positive insurance contract. The price of the deviating contract
must be strictly smaller than ((1 − �b)/�b) for the agent to accept it. It follows that the deviation will only be profitable as
long as e = a is selected. Moreover, the price should be greater than ((1 − �a)/�a) for the deviator to make profits.

To show that none of these deviations could be profitable, we first argue that the array (C0, L0) satisfies the following

(1 − �a)(u′(c0
1) − u′(c0

2)) <
(�a − �b)

�a
u′((1 − �b)c0

1) + (�bc0
2), (18)

which guarantees that ((dU(C0))/(dU(L0))) < 0 for small deviations along a line of slope ((−(1 − �a))/�a). It follows that the
slope of T0 evaluated in C0 is greater than ((1 − �a)/�a).29

Let us now take K = (k1, k2) ∈A to be the agent’s optimal consumption allocation at the deviation stage. Clearly, K will be
located in the triangle C0- L0- K0 in Fig. 6, where K0 is on the line of slope −((1 − �a)/�a) passing through C0.

One should observe that if the inequality (18) is verified by any K ∈A in the triangle, then the T0 curve will always lie above
the C0 − L0 − K0 area. Clearly, this guarantees that there cannot be any incentive for side contracting involving deviations to
positive insurance contracts. To show that this indeed the case, we first consider any point K ∈A between C0 and L0. Then,
the utility corresponding to right-hand side of (18) is not affected, while the that associated to the left-hand side is always
dominated by (1 − �a)(u′(c0

1) − u′(c0
2)) making (18) still valid. To extend this result to the other points of the triangle one can

use the properties of homothetic preferences. That is, one should observe that the inequality (18) will also be satisfied by
any ˛K , with ˛ ∈R+.

As a consequence, the curve T0 cannot cross the triangle C0- L0- ˛L0, implying that at K the agent will prefer the feasible
allocation (1 − �b)k1 + �bk2 to K, a contradiction.

In a final step, we remark that if any intermediary deviates through a negative insurance contract, then the only way to
make the agent accepting the deviation will be to induce a high effort choice. This indeed makes the deviation not profitable,
which constitutes a contradiction. �

A.6. Menus and latent contracts

We show in the following paragraphs how the equilibrium allocation characterized in Proposition 1 can as well be sup-
ported as a symmetric equilibrium outcome of a simpler game where two competitors (principals) offer menus of alternatives

29 Notice first that because of (10), ((�L − �a)/(�L0 − �a)) < (�L/�L0
) and ((�C0 − �a)/(�C − �a)) < (�C0

/�C ); this implies the following

�bu′(l2)(�L − �a)

�bu′(l0)(�L0 − �a)

�au′(c0
2)(�C0 − �a)

�au′(c2)(�C − �a)
<

u′(l2)�L

u′(l0)�L0

u′(c0
2)�C0

u′(c2)�C
= u′(l1)

u′(l0)

u′(c0
1)

u′(c1)
< 1 ∗ 1 = 1.

Observe that the equality has been derived using the definition of the MRS (in particular �L = ((1 − �b)/�b)), while the last inequality coming from the first
line of (10). Then, because of (3), one can conclude that �au′(c0

2)(�C0 − �a) < �bu′(l0)(�L0 − �a), which is equivalent to (18).
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Fig. 7. Consumption allocations available in the menu game.

to the agent. We will therefore consider the following game �M . Two principals compete through the menu offers they simul-
taneously make to a single agent. Given the set Di of decisions available to the ith principal, we let P(Di) be the corresponding
set of available menus.30 A strategy for the ith principal will hence be a map from P(Di) to itself. The extensive form of the
game is such that for every array of offered menus, the agent will choose one item from the menu of each competitor and
take her (binary) effort decision.

Now, take any equilibrium allocation array (C, L) as described in Proposition 1. Let us consider a situation where each
competitor i = 1, 2 offers the same menu of insurance contracts:

Mi =
{

�i d1

2
+ �id̃/�i ∈ [0, 1], �i ∈ [0, 1]

}
, for i ∈ {1, 2}

where �i and �i define the consumer’s selected item. Clearly, the consumer can achieve the allocation C by selecting �1 =
�2 = 1 and �1 = �2 = 0. In the menu game, the set of consumption allocations available to the agent when any of the
principals removes his offer is represented by the dark area in Fig. 7 (left).

In addition, the contract d̃ = (d̃1, d̃2) is selected to satisfy our original condition (7) together with the following:

w1 + d1
1

2
+ d̃1 = w2 + d1

2
2

+ d̃2 (19)

and

(1 − �b)u′(q + 	((�b + 1)/(�b − �L)))
�bu′(q − 	((�L(�b + 1))/(�b − �L)))

< �L, (20)

with q = w1 + (d1
1/2) + d̃1 and 	 = −��a · (d1/2) = −(1 − �a)(d1

1/2) − �a(d1
2/2).31 In this construction, Eqs. (19) and (20) play

the same role of (5) and (6) in the original framework.32 The first equation implies that if principal 2 removes his offer, the
agent can at most get full insurance, and then achieve the allocation Q = (q, q). The equilibrium menus is hence constructed
letting each principal offer the additional amount of (latent) insurance d̃, which corresponds to that available in the original
game when the active intermediary was withdrawing his offer.

The inequality in (20) implies that the allocation R connected to Q by a line of slope −�L such that −��a · (R − Q ) =
−��a · (d1/2) falls below the line connecting the origin to L (Fig. 7(right)).33

To prove that it is an equilibrium for each of the principals to offer the menu Mi and for the agent to select �1 = �2 = 1
and �1 = �2 = 0 and to take e = a, it is enough to prove that none of the principals can profitably deviate proposing a
take-it-or-leave-it offer.

We first argue that there cannot be any profitable deviation inducing e = a. Consider principal 1. When he withdraws his
menu offer, the agent can always get to a point like Q, on the 45 degree line (Eq. (19)). Clearly, there is no negative insurance
contract which is at a time profitable and such to guarantee the agent a utility greater than U(Q ). Consider then a deviation
to a positive insurance contract: the price of the deviating contract must be greater than ((1 − �b)/�b), for the deviation to be

30 That is, we take P(Di) to be the Power Set of Di .
31 With the parameters of Lemma 1, condition (20) is verified: q ≈ 37.1637, 	 ≈ (3.85201/2) ≈ 1.92601 and the computed MRS ≈ 0.859659 is smaller

than 1.
32 A further analysis of the system (1)–(7) together with (19) and (20) shows that −��a · d̃ > −��a · (L − C) = −��a · d2.
33 One can easily check that R = (q + 	(�b + 1/(�b − �L)), q − 	((�L(�b + 1))/(�b − �L))).
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profitable. The agent will hence never have an incentive to trade such a contract and select e = b, because the corresponding
utility will be always dominated by U(Q ). We now prove that profitable deviations inducing e = a are not possible either.

We first remark that there cannot be profitable deviations through negative insurance contracts. The price of the corre-
sponding contract has to be smaller than �a, which implies that none of these deviations will be accepted by the agent.

Finally, we have to consider deviations to a positive insurance contract guaranteeing a profit strictly greater than −��a ·
(d1/2). We take K to be the corresponding optimal consumption choice for the agent. For the deviation to be profitable, it
should be K ∈A, and U(K) ≥ U(Q ). We denote p ≤ �L the price of such a deviating contract. One should first notice that p ≤ p1.
If this was not the case, then the (d1/2) remaining contract would be entirely bought at the deviation stage, and then K would
lie below the iso-profit line of slope −((1 − �a)/�a) passing through C. Then, conditions (19) and (20) guarantee that there
will be enough available insurance for the consumer to achieve her preferred allocation in the B set.34 One could then argue,
along the lines of Lemma 2, that there will always be an incentive for the agent to choose e = b at the deviation stage, and
this makes the deviation not profitable.

If we consider a deviation such that p ≤ p1, and any K ∈A verifying U(K) ≥ U(Q ), then point 3 of Lemma 2 can be directly
applied to show that the agent will prefer to take low effort, and punish the deviator.

If any of the principals deviates offering a (positive insurance) contract which price is greater than p1 = −(d1/d2), then
conditions (19) and (20) guarantee, that there will be enough available insurance for the consumer to achieve her preferred
allocation in the B set. One can therefore conclude, following again Lemma 2, that there will always be an incentive for the
agent to choose e = b at the deviation stage, which makes the deviation non profitable.
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