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Abstract

We consider a model of pure competition between insurers a la Rothschild-
Stiglitz, where two types of agents privately choose an effort level, and where
the effort costs and the resulting accident probabilities differ across agents.
We characterize the set of possible separating equilibria, with a special
emphasis on the case where the Spence-Mirrlees condition is not satisfied.
We show, in particular, that several equilibria a la Rothschild-Stiglitz may
coexist; that they are Pareto-ranked, only the best of them being an equi-
librium in the sense of Hahn (1978); and that equilibria may take original
forms (for instance, both revelation constraints may then be binding). Fi-
nally, we discuss the existence of an equilibrium in this context, and show
that, though equilibria may fail to exist, conditions for existence may differ
from those in the initial Rothschild-Stiglitz setting.
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1. Introduction

1.1. Moral hazard and adverse selection in insurance

Following the seminal work by Arrow (1963), the notion of information asymmetry
have by now been recognized as a cornerstone of modern insurance theory. Two
focal cases have so far attracted particular attention from insurance economists.
The concept of adverse selection refers to situations where, before the contract
is signed, one party (in general the insured agent) has an information advantage
upon the other. In most models, it is assumed that clients know better their own
risk than insurance companies; the latter may then use deductible as a way of
separating individuals with different riskiness. Moral hazard, on the other hand,
occurs when the outcome of the relationship (here, the occurrence of an accident or
a claim) depends, in a stochastic way, on a decision that is privately made by one
party and not observable by the other. Typically, the insured party may choose
to make an effort that is costly to her, but reduces her risk. In this context, full
insurance generally leads to suboptimal outcomes, because it provides no incentive
to reduce accident probabilities.

The effects of asymmetric information upon competition between insurers have
been investigated in a number of papers, following the seminal contributions by
Akerlof (1970), Rothschild and Stiglitz (1976) and Wilson (1977). Under adverse
selection, equilibria a la Rothschild-Stiglitz may fail to exist; moreover, when
they do, they may not be Pareto efficient, even among the subset of contracts
that are compatible with the existing information asymmetry (second best effi-
ciency). The properties of competitive equilibria under moral hazard, on the other
hand, strongly depend on whether contracts are exclusive (i.e., the insurer may
prohibit the acquisition of another contract by his clients) or not. With exclusiv-
ity, equilibria do exist in general, and are second best efficient, at least in a one
commodity setting (see for instance Prescott and Townsend (1984)).

Surprisingly enough, however, these two polar cases are almost always taken as
mutually exclusive. Models of insurance under moral hazard systematically sup-
pose (implicitly in general) that all heterogeneity across agents is either public
information, or unobservable by the agents as well. Conversely, in the adverse
selection setting, it is assumed that accident probabilities are fixed, exogenously
given, and cannot be affected by any incentive (such as the form of the insurance
contract)1. Such limitations are in general justified by considerations of simplicity

1Only a few models in contract theory introduce moral hazard and adverse selection within
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or analytical convenience. This, of course, does not imply they can be seen as ’re-
alistic’ in any sense. Natural-born ’bad’ drivers have more accidents; but, at the
same time, accident probabilities do depend on the incentives provided by insur-
ance contracts, as documented by various studies2. A plant may be more likely to
suffer from fire because of insufficient prevention, and also because some specifici-
ties of its technology entail increased risk - a feature on which the entrepreneur’s
information is of much better quality than that of the insurance company. Work-
ers usually have a better knowledge of their unemployment risk than (private or
public) unemployment insurance schemes; but, in addition, the level of benefits
they receive will typically influence job search, hence the expected duration of
unemployment, in a typically non contractible way. In fact, one could argue that
cases of pure moral hazard or pure adverse selection constitute the exception,
rather than the rule. Most ’real life’ situations entail at least some ingredient of
each type of asymmetry3.

The goal of this paper is precisely to analyze a simple model of competition a
la Rothschild-Stiglitz under adverse selection and moral hazard. The framework
we use, as described in the next section, is as elementary (and as basic) as possible.
There are two states of nature (with or without an accident), two types of agents
and two possible levels of effort. But, at the same time, our approach is general
in several senses. First, moral hazard and adverse selection are modelled, in the
most general way, as independent phenomena, each of which would still be present
even if the other was assumed away4. Also, agents are taken to be risk-averse. This
assumption is of course quite natural in the insurance context; but, again, several
models that have considered moral hazard and adverse selection in the past did

the same framework. Works by Laffont and Tirole (1986, 1992) or Guesnerie, Picard, Rey (1988)
rely upon a risk neutrality assumption, hence can hardly be transposed to the case of insurance
contracts. In other models, moral hazard can essentially be eliminated by a punishment scheme
’a la Mirrlees’, because the occurence of some extreme performances reveals with probability
one the effort choice. But, apart from these somewhat specific settings, the general case does
not appear to have attracted much attention (see, however, Chiu and Karni (1994)).

2A typical example is provided by Québec, where the switch to ”no-fault” policies led to a
considerable increase in the number of accidents. See for instance Cummins and Weiss (1992),
Gaudry (1992) or Devlin (1992).

3The only possible example of pure adverse selection may be life insurance; even there,
however, fraud does exist, as illustrated by a considerable number of novels and movies.

4This contrasts with several models in the literature that introduce moral hazard and adverse
selection in particular frameworks where, although both the agent type θ and the effort level
e are unobservable, their sum θ + e is public information - so that the knowledge of θ would
immediatly reveal e, and conversely (see for instance Laffont and Tirole (1994)).
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rely on risk neutrality assumptions, a feature that generate particular results5.
Finally, we do not restrict attention to specific subcases; all possible situations
are studied, including the non-standard ones (a claim that will be made more
precise below). In particular, we consider in details the new types of equilibria
that may appear in this context, and the consequences upon the conditions for
existence of an equilibrium.

Restricting oneself to situations of pure moral hazard or pure adverse selection,
as is usually done in the litterature, may not be an innocuous strategy. The
robustness of the results is not guaranteed - and, as a matter of fact, may be
quite dubious in many cases. The conclusions derived independently from each
type of model be incorrect in a context where the two phenomena coexist; even
the basic intuitions drawn from our knowledge of the standard cases may reveal
quite misleading. In fact, the structure of equilibria in our framework turns out
to be much richer and much more complex than the separate analysis of adverse
selection and moral hazard might suggest. For instance, taking the (first best)
perfect information setting as a benchmark, the introduction of adverse selection
is known to decrease welfare of all agents but the risky ones; the intuition being
that the latter impose a negative ’externality’ upon agents with lower risk. When
the initial situation entails moral hazard, this intuition does not hold. It may be
the case that all agents create an externality - in which case they all loose from the
introduction of adverse selection; or, conversely, no externality may be generated,
so that no agent is made worse off. As another example, take the conclusion that
an equilibrium a la Rothschild and Stiglitz exists if and only if there are ’enough’
high risk agents. Again, when adverse selection and moral hazard coexist, this
result is no longer true in general. Depending on the parameters, an equilibrium
may exist whatever the proportion of agents of different types; or existence may
require enough ’bad risks’ and enough ’good risks’ to be present; equilibria may
even fail to exist whatever the respective proportions.

1.2. Multiple crossing

Besides its possible realism, the introduction of a moral hazard component within
a standard adverse selection framework has another interest : it helps understand-
ing how, and to what extend, some standard assumptions restrict the scope and
the consequences of insurance models. A typical example is the ’Spence-Mirrlees’
single-crossing condition - a feature that characterizes not only Rothschild and

5See for instance Guesnerie, Picard and Rey (1988)
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Stiglitz’s initial contribution, but, as a matter of fact, most papers dealing with
competition under adverse selection. In Rothschild and Stiglitz’s model, differ-
ences in risk are represented in a very simple way : each agent is characterized by
some constant accident probability. As a consequence, whenever both agents face
the same contract, and whatever the latter may be, it is always the same agent
who is more risky. With identical risk aversion (another standard assumption of
the litterature), this implies that indifference curves of different agents can cross
only once. As it is well-known, this single-crossing property plays a key role in
the derivation of many results.

In our case, however, although we keep identical preferences6, the introduction
of moral hazard deeply modifies the picture. Here, accident probabilities are no
longer exogenous, but depend on the effort level selected by the agents; technically,
accident probabilities must thus be expressed as functions. This fact has various
consequences. One is that the mere definition of ’high risk’ agents in this context
is less obvious, since it involves a comparison of functions instead of numbers. A
natural criterion, however, is the following : agent A is said to be more risky than
agent B if, for any given effort level, A’s accident probability is higher than B’s;
that is, whenever A and B adopt the same effort, then A is more likely to have
an accident than B.

Throughout the paper, we shall use an assumption of this kind; i.e., one agent
will be considered as the ’high risk’ agent in the sense just defined. Two things
must however be stressed at this stage. First, this assumption is by no means
needed for our results to hold. It is made only for the sake of convenience; in-
deed, it considerably simplifies the interpretation of the basic theoretical insights.
Secondly, this assumption, restrictive as it may seem, does not alter in fact the
qualitative conclusions we obtain. All the diversity that one can get when con-
sidering arbitrary risk functions is preserved under this particular assumption. In
other words, the increase in pedagogy is not paid by a restriction in the scope of
the results.

To understand why this is the case, one point must be emphasized. The
assumption establishes a link between each agent’s effort level and her accident
probability. But, of course, effort itself is endogenous, and depends on the contract
the agent is facing. Different agents will in general choose different efforts, even
when facing the same contract. Now the key remark is that, as we shall see,

6Allowing for differences in risk and risk aversion would introduce bi-dimensional adverse
selction, hence considerably complexify the analysis. For a careful analysis of a setting of this
kind (but without moral hazard), see Villeneuve (1996).
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there is no direct link between absolute riskyness (in the sense just defined) and
effort choice. It is not the case, for instance, that high risk agents necessarily
choose lower effort levels. The intuition is that the effort level induced by a given
contract does not depend on the absolute value of the accident probability, but
rather on its derivative - i.e., the magnitude of the drop in accident probability
resulting from a given effort increment. It may well be the case that the high-risk
agent is easier to incite, because, in his case, a marginal effort of given cost is much
more efficient in terms of risk reduction. Assume for a moment this is the case.
Then for any given contract - except for those with full coverage - which agent is
actually more risky is not clear, because agents with a higher ’natural’ risk level
are also more eager to reduce risk through prevention. In other words, though
one can still, ex ante, make a clear-cut separation between ’low risks’ and ’high
risks’ agents, it is not necessary the case that the former always exhibit lower ex
post accident probability. Riskiness is now endogenous to the contract at stake
(which, after all, is the main intuition of the moral hazard literature); and agents
of a given type will typically be more risky for some contracts but less risky for
others.

The technical consequence is that the single-crossing property does not hold in
general, because the indifference curve of one agent may be steeper or flatter than
that of the other agent, depending on the particular contract at stake. Analyzing
a model with adverse selection and moral hazard thus leads in a very natural way
to consider an adverse selection setting with multiple crossing - an issue that is
investigated in some details in the paper.

Incidentally, it could be argued that multiple crossing is by no means a pathol-
ogy. There are many other contexts in which single crossing cannot be expected to
hold true. Assume, for instance, that agents differ by their riskiness and risk aver-
sion; then high risk agents do not necessarily exhibit steeper indifference curves,
and multiple crossing may obtain7. In fact, one could argue that single crossing
is a very specific property, while multiple crossing could be viewed as a general
case. Still, surprisingly enough, little attention has been devoted so far to mod-
els of competition under adverse selection and multiple crossing.. Again, which
conclusions of the standard setting are robust to a relief of this hypothesis is an
interesting issue that is considered in this paper. Chassagnon (1996) provides a
general investigation of this problem; in the present paper, we concentrate upon
the example of moral hazard and adverse selection.

7Other reasons include multiple risks, as in Fluet and Pannequin (1996) and Villeneuve
(1996); non expected utility (Chiu and Karni 1994); and others.
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1.3. The structure of the paper

Our main results can be summarized as follows. First, as in Rothschild and Stiglitz,
equilibria can only be separating : different agents receive different equilibrium
contracts. In addition, higher deductible still are associated with lower (ex post)
riskiness. Hence, what probably constitutes the two main insights of Rothschild
and Stiglitz’s initial contribution are preserved.

However, the other standard conclusions of adverse selection models under
single crossing can be seriously altered. For instance :

• several equilibria a la Rothschild and Stiglitz may coexist. When this is the
case, they are always Pareto-ranked. As a consequence, whether firms are
allowed to propose only one contract (as in Rothschild and Stiglitz) or a
menu of contracts (a possibility that is evoked by Rothschild and Stiglitz
and explicitly studied by Hahn (1978)) becomes an important issue. For
instance, one can find robust examples where equilibrium allocations à la
Rothschild and Stiglitz and à la Hahn coexist but do not coincide, because
some equilibria à la Rothschild and Stiglitz fail to be equilibria à la Hahn.

• standard Rothschild and Stiglitz equilibria are characterized by the fact that
only one type of agents - the ’bad risks’ - face a binding revelation constraint.
This needs not be true in our more general context. One may get equilibria
where no agent’s constraint is binding, or where both types face a binding
constraint. In the latter case, in particular, no agent receives the contract
he/she would get in the absence of adverse selection; everyone looses from
the unobservability of accident probabilities. The paper provides a general
characterization of the various types of equilibria that may obtain in this
context.

• in the standard framework, the existence of an equilibrium depends on the
proportion λ of high risk agents; precisely, there exist some limit value λ̄
such that an equilibrium exists if and only if λ is larger than λ̄. Again, this
is no longer the case in our general context. We show that, depending on
the type of the equilibrium, existence may obtain whatever the proportion of
good and bad risks, or only when agents of one type are numerous enough;
it may also require ’enough’ agents of each type, and equilibria may even fail
to exist whatever the respective proportions. Again, we provide a precise
characterization of the various situations, in relation to the type of equilibria.
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The structure of the paper is as follows. The model is described in Section 2.
Section 3 presents our basic toolkit. Section 4 gathers our main results concerning
the form of separating equilibria. A crucial step in our approach is the definition of
two sequences of contracts, that are showed to converge to a separating equilibrium
whenever one does exist. Using this tool, we prove that separating equilibria may
take three different forms, two of which are non standard (in the sense that they do
not appear in a pure adverse selection model with single crossing). Also, we study
how the introduction of adverse selection may influence the equilibrium effort
levels; we show that effort may be either discouraged or stimulated, depending
on the parameters. The existence of an equilibrium is discussed in Section 5.
Finally, we extend our results to the case of continuous effort levels in Section 6,
while section 7 is devoted to a brief summary of our results, in relation with the
conclusions of the standard setting.

2. The model

2.1. The basic framework

We consider an elementary model of insurance, in which agents with identical
risk aversion and initial wealth W may, with a given probability, incur a loss of a
given amount D. The accident probability is related to an effort that each agent
privately chooses in the set {0, 1}. There are two types of agents, L and H, with
respective VNM utilities :

UL(x, e) = u(x)− cL.eL, UH(x, e) = u(x)− cH .eH

(where u is increasing and strictly concave). In particular, we assume that effort
is separable with respect to consumption - a feature that is restrictive, but by now
standard in the literature.

The accident probability of agent i (i = L, H) is pi if ei = 1, and Pi if ei = 0.
Note that agents are allowed to differ in both their respective risks and their re-
spective effort cost. The basic intuition of moral hazard in an insurance framework
relies upon the existence of some ’risk reduction technology’, according to which an
agent can, at some cost, influence her accident probability. The additional, adverse
selection ingredient is that this technology differs across individuals, and that the
differences are not observable by the insurer. This, in turn, has two consequences.
One is similar to standard model of adverse selection a la Rothschild-Stiglitz -
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namely, different individuals present different levels of risk. Note, however, that
risk is now endogenous to the contract (since different contracts will induce dif-
ferent effort levels). A second consequence is that different agents face different
incentive problem, since both the cost of increased effort and the corresponding
benefits are specific. This aspect is original, and will be carefully described in the
next subsection.

Finally, risk-neutral insurers propose contracts of the form xi = (αi, βi), where
i = L, H. Here, β denotes the premium, and α the (net) reimbursement; so that
the wealth of agent i is W −D + αi if an accident occurs, and W − βi otherwise.
Such a contract can be represented by a point in the (α, β) plane. In what follows,
S ⊂ R2 denotes the set of possible contracts.

In general, the respective values of pi, Pi and ci are independent. In particular,
we might have, say, that

pL < pH and PL > PH

meaning that L agents are less risky when both agents choose the maximum effort
level, but more risky when no agent does. In what follows, we choose to somewhat
specialize the model by assuming that one agent, say L, is a ”low risk”, in the
sense that, when both agents choose some identical effort level (either 0 or 1), the
accident probability of L is always lower. Formally, we thus assume the following
:

Assumption 1 :

pL < pH ; PL < PH ; PL 6= pH (2.1)

As discussed in the introduction, the purpose of this restriction is to keep
our model as close as possible to the initial Rothschild-Stiglitz setting, where one
agent is a ’low risk’ (at least as compared to the other). While this assumption
simplifies the interpretation of our results, and especially the comparison between
our findings and those of the standard, pure adverse selection framework, it must
be emphasized that there is no loss of generality entailed by this choice. In partic-
ular, all results below would remain valid in the more general case sketched above.
In fact, restricting oneself to preferences that satisfy (2.1) does not reduce the
forms of the possible equilibria, the existence conditions, or any other substantial
qualitative conclusions of the model. Or, to put it differently : all deviations from
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the standard setting that can be observed in the more general case do obtain here.
The key remark is that, even under (2.1), pH may still be lower than PL; i.e.,
the ”risky” agent may sometimes be actually less risky than the other, provided
that he chooses a high effort level while the other does not. As it will become
clear later, allowing for this case enable to recover the full richness of the model.
However, the case PL = pH would lead to very peculiar situations, and is anyway
non-generic; so we rule it out in what follows.

2.2. Incentive constraints

We first consider the moral hazard problem facing agent i. A given contract (αi, βi)
will induce the choice of the high effort level if :

(1−pi) u(W −βi)+pi u(W −D+αi)− ci ≥ (1−Pi) u(W −βi)+Pi u(W −D+αi)

which writes down as :

u(W − βi)− u(W −D + αi) ≥
ci

Pi − pi

def
=̄ ϕi

When this condition is fulfilled, the contract is said to be incentive-compatible.
Let ICi denote the set of incentive-compatible contracts, and εi its frontier. The
equation of εi is :

u(W − βi)− u(W −D + αi) = ϕi

The constant ϕi can be interpreted as describing the ”technology” that under-
lies the moral hazard effect. It characterizes the agents’ respective ”performances”
- how much it costs to them, in utility terms, to reduce the accident probability
by a given amount. It should be emphasized that the values of ϕH and ϕL - hence
the respective locations of εL and εH - cannot be deduced from the sole hypothesis
that H agents are more risky. Lower risk agents L may well turn out to be more
difficult to incite than higher-risk ones. Indeed, while riskiness is related to the
absolute values of accident probabilities, incentives depend on the difference P −p
- i.e., on the shift in probability resulting from a change in the effort level. Risky
agents may still be more ”productive” in that sense; this is when effort results in
a large reduction of the agent’s (large) accident probability8.

In what follows, we assume that without insurance, the agent will always
choose e = 1. Then ICi is non-empty; its properties are summarized in the fol-
lowing Lemma:

8Another reason is that, while agents are allowed to differ in the cost of effort, we make no
assumption about respective costs. But this is by no means needed to get the results.
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Lemma 2.1. In the (α, β) plane :

• εi is decreasing, with a slope always smaller than -1

• εL and εH do not intersect unless ϕH = ϕL (in which case they coincide);
moreover, ICL ⊂ ICH if and only if ϕH < ϕL

Proof : See Appendix
As a consequence, one may note that the line of zero-profit contracts for each

type of risk will exhibit a discontinuity when crossing the corresponding incentive
frontier εi . This is because the accident probability changes in a discontinuous
way when agents change their effort level (note, however, that utilities change
continuously, as it will become clear below). As it is by now standard, we suppose
that whenever an agent is indifferent between the two effort levels, he will always
choose effort 1.

An illustration is given in Figure 1 (for the case ϕH < ϕL.).

Include here Figure 1

2.3. Indifference curves and revelation constraints

For any given pair of contracts xL = (αL, βL) and xH = (αH , βH), the revelation
constraints write down :

ũL(xL) ≥ ũL(xH) and ũH(xH) ≥ ũH(xL)

where
ũi(xk) = (1− πi) u (W − βk) + πi u(W −D + αk)− ciei

is agent i’s expected utility when choosing the contract xk (i, k = L, H), and
where πi denotes the accident probability corresponding to the effort level ei in-
duced by the contract; i.e., πi = pi and ei = 1 if xk ∈ ICi , πi = Pi and ei = 0
otherwise.

As it is well known, an important issue, in adverse selection models, is whether
the Spence-Mirrlees single crossing condition holds true; that is, taking an arbi-
trary indifference curve for each type, can these cross more than once ?
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To answer, let us now consider the indifference curves of agent i in the set
of possible contracts. These are continuous curves, but, because of the moral
hazard component, they are no longer concave. Specifically, they exhibit a kink
when crossing εi, because the MRS is then proportional to pi

1− pi
on one side of the

frontier, and to Pi

1−Pi
on the other side.

An immediate consequence is that the indifference curves of the two types of
agents may cross more than once. Specifically :

Lemma 2.2. The indifference curves of H and L cross only once if and only if
any of the following two conditions is fulfilled :

• pH ≥ PL

• ϕH ≥ ϕL

Proof : Multiple crossing requires that, for some contracts in the (α, β)
plane, the MRS of L is greater than that of H. This can only be the
case if pH ≥ PL. Moreover, the contract must be such that H makes
an effort while L does not, which requires that ICL ⊂ ICH .

Conversely, assume that pH < PL (high-risk agents who make an effort are
less risky than low-risk agents who don’t), and ICL ⊂ ICH (there exist contracts
that induce maximum effort for high-risk agents but not for low-risk agents).
Then some indifference curves will cross twice (and may even cross up to three
times). This will be referred to in what follows as the ”multiple crossing” case, as
illustrated in Figure 2.

Include here Figure 2

2.4. Equilibrium

The most usual definition of an equilibrium was introduced by Rothschild and
Stiglitz. We may briefly recall it as follows :
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Definition 2.3. A pair of contracts xL = (αL, βL) and xH = (αH , βH) is an
equilibrium a la Rothschild and Stiglitz (a RS equilibrium from now on) if the
following two conditions are fulfilled :

• no contract in the equilibrium pair makes negative (expected) profits

• no new contract can be offered and make positive profits

The intuition underlying the definition is clear : given the set of existing
equilibrium contracts, it must not be possible to some new entrant to offer a
contract that makes a positive profit. It should be noted, however, that in this
definition a new entrant can only offer one contract - not a menu. In terms of
game theory, a RS equilibrium can be seen as a Nash equilibrium of a two-stage
game, where insurers first propose contracts, then agents choose among the set of
available contracts their most preferred one. However, each agent’s strategy space
consists of contracts, not of menus of contracts. Also, note that we do not impose
that xL 6= xH ; i.e., we allow for pooling contracts. It is well known, however, that,
in the standard framework, such contracts cannot be equilibria. We shall see below
that this intuition is preserved in the ASMH case; i.e., equilibria a la Rothschild
and Stiglitz, when they exist, must be separating.

Various extensions of this concept have been proposed in the literature. For
instance, Hellwig (1987) introduces a third stage, in which insurers can either
accept the clients or leave the market; he then considers the outcome of the game,
and shows in particular that stable equilibria à la Kohlberg and Mertens may be
pooling. More related to our approach is the concept formalized by Hahn (1978).
Equilibria a la Hahn are defined in exactly the same way as RS equilibria, except
for the strategy spaces: in Hahn’s version, insurers are allowed to offer several
contracts simultaneously. Formally:

Definition 2.4. A pair of contracts xL = (αL, βL) and xH = (αH , βH) is an
equilibrium a la Hahn if the following two conditions are fulfilled :

• the equilibrium pair makes non-negative total (expected) profits

• no menu of new contracts can be offered and make positive profits

In the original Rothschild-Stiglitz framework, there is a close link between the
set of equilibrium allocations a la Hahn and a la RS. The set of Hahn equilibria is
always included within the set of RS equilibria; conversely, any RS equilibrium is
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an equilibrium a la Hahn if and only if it is efficient. This property is essentially
preserved in our context, though in a somewhat different manner. We first have
the following result :

Proposition 2.5. Under the assumptions above :

• At any equilibrium a la RS, each contract makes zero profit.

• At any equilibrium a la Hahn, each contract makes zero profit.

• Any equilibrium a la Hahn is an equilibrium a la RS.

Proof : see Appendix
In particular, though Hahn equilibria do not preclude cross-subsidies across

contracts, these will never occur at equilibrium, just like in the standard frame-
work.

2.5. The Pure Moral Hazard (PMH) case

In what follows, we shall concentrate upon the deviations due to adverse selection.
These deviations must be defined with respect to some benchmark. The bench-
mark we shall be interested in is the equilibrium that would obtain in the absence
of adverse selection, i.e., if agents’ type was publicly observable. Obviously, this
does not correspond to the first best allocation, because public observation of
agents’ type would not eliminate the moral hazard problem. Hence, our reference
will be what we call the ”Pure Moral Hazard” (PMH) case.

We use the following notations : for i = H, L, let x̄i = (ᾱi, β̄i) and ēi denote
the equilibrium PMH policies and effort level, while x∗i = (α∗i , β

∗
i ) and e∗i refer to

the (general) case of adverse selection plus moral hazard (from now on ASMH).
From standard moral hazard theory, we know the following :

Lemma 2.6. Under PMH and competition, there are two different contracts (one
for each type of agent). Each contract may take one of the following two forms :

• either ēi = 0 , then ᾱi + β̄i = D ; the policy is located at the intersection of
the zero-profit line and the full insurance line (point A (resp. A’) in Fig.1).

• or ēi = 1 , then the incentive constraint is binding; the policy is located at
the intersection of the zero-profit line and the incentive frontier εi (point B
(resp. B’) in Fig.1).
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From the previous Lemma, two cases are possible; in both cases, the insurance
company makes zero profit, so that the corresponding contract is located on the
zero profit line. It may be the case, on the one hand, that inciting the agent to
make an effort is just too costly. Then the equilibrium contract will entail zero
effort; as a consequence, the agent will receive full coverage. If, on the other hand,
equilibrium requires an effort to be made, the incentive constraint will be exactly
binding; the intuition being that increasing the deductible beyond this minimum
level would reduce agents’ welfare without any gain in terms of incentives. These
two contracts, being the two possible candidates for PMH equilibrium, will be
called in the remainder ”PMH locally optimal”. We assume that they are not
equivalent from the agent’s viewpoint, an assumption that is generically fulfilled.
Note that we implicitly assume insurance policies are exclusive. This assumption
is natural in this context; moreover, it avoids the complexities described in Arnott
and Stiglitz (1993) or Bisin and Guaitoli (1993).

3. The tools

Given the simplicity of our setting, a direct resolution, using only the specifici-
ties of the framework at stake, would probably be possible. But, of course, the
robustness of the conclusions would then be doubtful. Our goal, here, is instead
to introduce, within this specific context, some tools that can be used in a very
general way. In particular, while the various properties of these constructs are
established only for the model at stake, their scope is much more general (see
Chassagnon (1996) for a general presentation).

3.1. The basic correspondence

In all what follows, our basic tool will be the correspondence Φ, defined as fol-
lows. Take any couple of contracts (xH , xL). Starting with xH , consider the set of
contracts yL that fulfill three properties :

• they make non-negative profits (on L agents)

• they do not attract H agents out of xH (i.e., they are not preferred to xH

by H agents)

• they are preferred by L agents among all contracts satisfying the two previ-
ous conditions.
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Also, yH can be defined from xL in a similar way. Then Φ is the correspondence
that, to any (xH , xL), associates the contracts (yH , yL) thus defined. Formally :

Definition 3.1. Φ is the correspondence from S × S to itself that associates, to
any (xH , xL) ∈ S × S, the set of couples (yH , yL) such that, for i = H, L :

yi ∈ arg max
x̂i =(α̂i ,β̂i )

ũi (x̂i)

(1− πi) β̂i − πi α̂i ≥ 0 (3.1)

ũj(x̂i) ≤ ũj(xj)

where, as above,

ũi(xk) = (1− πi) u (W − βk) + πi u(W −D + αk)− ciei

is agent i’s expected utility when choosing the contract xk (i, k = L, H), and
where πi denotes the accident probability corresponding to the effort level ei in-
duced by the contract; i.e., πi = pi and ei = 1 if xk ∈ ICi , πi = Pi and ei = 0
otherwise.

Note that Φ(xH , xL) may consist in several contracts. However, if (yH , yL) and
(y′H , y′L) both belong to Φ(xH , xL), then it must be the case that

ũj(yj) = ũj(y
′
j)

for j = H, L. In particular, whenever the single-crossing property is fulfilled, then
Φ is in fact a mapping.

3.2. RS equilibria : a necessary condition

What the above definition is aimed at capturing is the idea that competition will
provide each agent with the best contract available, subject to two restrictions
: non negative profits and the revelation constraint. Its scope will become clear
from the following Proposition :

Proposition 3.2. A pair of contracts (x∗H , x∗L) is a RS equilibrium if and only if
:
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1. it is a fixed point of Φ

2. it is not strictly Pareto-dominated by a pooling contract that makes non-
negative profit (on the whole population)

Proof : see Appendix
In words : a RS equilibrium is a fixed point of Φ such that all contracts

preferred by all agents make negative profits. This property would of course be
true (and in a sense trivial) in the standard setting. In our general framework, it
reveals useful for two reasons

• it proposes a direct characterization of each equilibrium contract that only
depends on the utility level reached by the other agent. In particular, this
characterization relies upon two independent computations, each of them
being only parametrized by one utility level.

• the set of fixed points of Φ can be determined using traditional tools of
equilibrium analysis (as will become clear below). In particular, this set
does not depend on the respective proportions of high and low risk agents
in the population - while, of course, condition 2 may (but need not) depend
on that.

Also, note that conditions 1 and 2 characterizes RS equilibria; since equilibria
a la Hahn form a subset, the conditions are still necessary for Hahn equilibria. But
they may not be sufficient. Indeed, a RS equilibrium might be Pareto dominated
by a menu of separating contracts (with or without cross-subsidies), in which case
it will not be a Hahn equilibrium, as we shall see below.

It is important to note that Φ is not a contraction in general. A consequence
is that the uniqueness of the fixed point can by no means be guaranteed. In fact,
we shall see later on that, in some cases, several fixed points do coexist. However,
in case of multiplicity, we have the following result :

Proposition 3.3. Assume Φ has several fixed points. Then the corresponding
contracts are Pareto-ranked. In other words, if (yH , yL) and (y′H , y′L) are two fixed
points of Φ and if

ũL(yL) > ũL(y′L)

then necessarily
ũH(yH) > ũH(y′H)
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Proof :

Assume
ũL(yL) > ũL(y′L)

From the revelation constraints,

ũL(y′L) ≥ ũL(y′H)

This means that, taking yL as given, y′H makes positive profits and
satisfies

ũL(yL) ≥ ũL(y′H)

From the definition of yH , it follows that

ũH(yH) ≥ ũH(y′H)

Finally, assume that the previous relationship holds with equality.
Then yL and y′L are solutions of the same program. This implies that
ũL(yL) = ũL(y′H) , a contradiction.

This result has an immediate consequence :

Proposition 3.4. Assume there exists at least one RS equilibrium, say (X∗
H , X∗

L).
Assume there exist a fixed point of Φ, say (YH , YL), that Pareto dominates (X∗

H , X∗
L).

Then (YH , YL) is a RS equilibrium.

Proof : Just note that (YH , YL) cannot be Pareto dominated by a pooling
contract (since the latter would also Pareto-dominate (X∗

H , X∗
L), a contradiction),

and apply Proposition 3.2.

3.3. The basic sequences

It is clear, from the results above, that one should pay particular attention to fixed
points of the correspondence Φ, since the latter constitute natural candidates for
an equilibrium. Since Φ is not a contraction, the most natural way to get such
a fixed point is by iterating Φ. This leads us to considering the following two
sequences of contracts :

Definition 3.5. The sequences SH = (xk
H) and SL = (xk

L) (for k ∈ R) are defined
by:
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• x0
H = x̄H and x0

L = x̄L

• for k ≥ 1,
(
xk

H , xk
L

)
∈ Φ

(
xk−1

H , xk−1
L

)
Now, we know that whenever such a sequence does converge, it must be to a

fixed point of Φ. But can we expect the sequences to converge at all? The answer
is positive, as stated by the following lemma :

Lemma 3.6. The sequences (xk
H) and (xk

L) always converge to a fixed point of
Φ. If, in particular, a RS equilibrium exists, then the sequences converge to a RS
equilibrium. Moreover, the latter Pareto-dominates all RS equilibria.

Proof : see Appendix
This result is easy to interpret. Start from the PMH contracts x̄H and x̄L.

In most cases, these cannot constitute an equilibrium, because one revelation
constraint (at least) is violated9. The idea is then to modify the contracts proposed
to both agents, so as to eliminate this violation; specifically, each agent will receive
the best contract available among those that make positive profits and satisfy the
previous revelation constraint. This leaves us with two new contracts, x1

H and
x1

L. But, of course, the revelation constraints may still be violated, because the
contracts were moved independently. If this is the case, then we just define a new
couple of contracts exactly as before, and so on. It remains to check that the
sequences do converge. The key point, here, is that the expected utility of each
type of agent decreases along the sequence. This is because we maximize the same
utility functions under increasingly restrictive constraints, as proved by a simple
induction argument (if the kth iteration of Φ decreases ũi, the revelation constraint
of agent j for the (k+1)th iteration will be more stringent). Since both sequences
are bounded below (say, by the expected utility without insurance), they must
converge by a standard Lyapunov argument; and the limit will naturally be a
fixed point of Φ. The corresponding contracts are good candidates to constitute
an equilibrium - provided, of course, that an equilibrium exists. Finally, since
the sequences are starting from the PMH contracts, they will necessarily Pareto-
dominate any equilibrium. This means, in particular, that when several equilibria
a la Rothschild and Stiglitz coexist, the sequences can only converge to one of
them - namely, the Pareto superior one.

9Note, however, that this needs not be the case, as we shall see below - a conclusion in sharp
contrast with pure adverse selection.
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In what follow, let uk
H (resp. uk

L) denote the utility level reached at each step
of the sequences defined below :

uk
i = ũ

(
xk

i

)
, i = H, L

Obviously, the sequences UH =
(
uk

H

)
and UL =

(
uk

L

)
converge.

4. RS equilibria : general results

4.1. The general form(s) of RS equilibria

With the help of the previous results, we may first characterize the form of RS
equilibria. This is done in the following Theorem :

Theorem 4.1. RS equilibria, when they exist, must be separating. Moreover,
they are generically of either of the three following forms :

• Type 1 (”no adverse selection”) : each agent gets his PMH optimal contract
(as characterized in Lemma 2.5); no revelation constraint is binding.

• Type 2 (”weak adverse selection”) :

– one agent (at least) receives a PMH locally optimal contract

– one revelation constraint (at most) is binding

• Type 3 (”strong adverse selection”) :

– no agent receives a PMH locally optimal contract

– both revelation constraints are binding

Though type 2 equilibria are reminiscent of the pure adverse selection case,
some innovations with respect to the standard framework should be emphasized.
For instance, no agent may get his PMH contract (while bad risk always get
their first-best contract in the standard setting). Also, it can be the case that no
revelation constraint is binding. More important is the fact that the agent with
a PMH contract and a binding revelation constraint can be any of the two - not
necessarily the high-risk one. In fact, a further classification of the type 2 case is
the following :

20



Proposition 4.2. Type 2 equilibria generically belong to one of the following
subtypes :

• Type 2a : H receives a PMH locally optimal contract, L does not; the
revelation constraint of H is binding.

• Type 2b : L receives a PMH locally optimal contract, H does not; the
revelation constraint of L is binding.

• Type 2c : both agents receive a PMH locally optimal contract; no revela-
tion constraint is binding.

A complete proof is given in the Appendix. Note that non-generical pathologies
are disregarded. The three possible cases are illustrated in figure 3.

Include here Figure 3

We may briefly comment these equilibrium forms, some of which drastically
differ from the traditional Rothschild-Stiglitz conclusions. In type 1 equilibria,
adverse selection does not change the PMH situation - which means that the
corresponding contracts do in fact fulfill the revelation constraints. The intuition
is straightforward. In a pure adverse selection framework, revelation is obtained
through the introduction of deductible. Since first-best contracts are character-
ized by full insurance, this implies a welfare loss for the lower risks. In our case,
however, the benchmark (i.e., PMH contracts) is a second-best outcome. It may
already entail partial coverage, because of the incentive constraints due to the
moral hazard component. It may be the case that the corresponding deductibles,
in addition to their incentive properties, do screen the agents in an adequate way.
In this case, no agent looses from the fact that his true nature is not observable.

Let us now consider equilibria ot type 2. Type 2a equilibria are closest to
standard Rothschild-Stiglitz equilibria. Note, however, that the contract received
by H is one of the two PMH locally optimal, but may fail to be the PMH one;
it may be the case that even H looses from the introduction of adverse selection,
because of a switch from his PMH contract to the alternative local optimum.
Such a switch must be due to a change in the effort level; that is, the presence
of adverse selection may discourage effort, the agent switching from ēH = 1 at
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the PMH equilibrium to e∗H = 0 - a point that we consider later. The lower-risk
agent, on the other hand, does suffer from adverse selection, essentially because he
is further away from full insurance than in the PMH situation. Type 2b equilibria
are of the same kind, but with a permutation of types. The idea is that, in the
case of multiple crossing, there exist areas in the plane where H agents are in fact
better risks than L agents; the initial intuition a la Rothschild-Stiglitz may then
apply up to a switch of types. Again, the contract received by L is PMH locally
optimal, but not necessarily the PMH equilibrium. Finally, equilibria 2c are even
more specific. Here, both agents receive a PMH local optimum, but for one of
them (at least) it is not the PMH optimum (which is the difference with equlibria
of Type 1); however, no revelation constraint is binding. In other words, there is
a cost associated to the presence of adverse selection, but this cost only comes
from a switch between locally optimum PMH contracts (i.e., between effort levels).
The intuition can be seen on the following example. Take a standard Rothschild-
Stiglitz situation, and assume that the PMH contract of L entails no effort. Such a
contract is out of reach under adverse selection, because the revelation constraint
of H would always be violated. Assume that, under adverse selection, L takes the
maximum effort. But then it may be the case that, just like in Type 1 equilibria,
the deductible needed for incentive purposes is sufficient to achieve full revelation
- in which case no revelation constraint is binding. Interestingly enough, the
converse situation (with H replacing L) is also possible in that case.

In all Type 2 equilibria, however, adverse selection is said to be weak because
one agent gets either his PMH level of expected utility, or at least a PMH locally
optimal contract. The final situation is even more interesting. Here, adverse selec-
tion always makes both agents worse off, even with respect to PMH local optima.
To grasp the intuition, note two points. First, this situation can only occur in the
case of multiple crossing. Second, the equilibrium contracts, x∗H and x∗L , have a
particular property in that case : they are located on the same indifference curve
for both H and L. How is this possible ? The idea is that x∗L is located in an area
where both agents make the same effort (which may be 0 or 1). By assumption,
L is a better risk in that case. The revelation constraint of H is binding like in
the pure adverse selection case; note, in particular, that attracting H agents to
the L contract would make the latter unprofitable. But, at the same time, x∗H
is located in an area where only H is incited. Remember that, in this case, H
must be a better risk (otherwise, multiple crossing would not obtain). This means
that attracting L agents to the H contract would loose money; and the revelation
constraint of L is then binding.
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Also, it should be emphasized that the situation depicted in Figure 3e is by
no means pathological, and cannot be ruled out by a genericity argument. In the
case of multiple crossing, there will always exist a pair of contracts that make zero
profits and are located on the same indifference curves for both agents (though
this pair may not be an equilibrium). To see why, start from point K on figure 3e,
and consider the two indifference curves going through K. Since H is less risky,
his curve is flatter, and intersects H’s zero-profit line above L’s curve. But in the
neighborhood of the no-insurance point O, the converse is true : L is less risky, and
her curve intersects H’s zero-profit line above H’s curve. If one continuously moves
the initial point between O and K, there exist a point such that both intersections
coincide. As a consequence, in the multiple crossing case, the pattern described in
Figure 3e will typically exist, and the corresponding contracts constitute a fixed
point of the mapping Φ - although it may not be an equilibrium.

4.2. Coexistence of several RS equilibria

A consequence of the previous analysis is that under multiple crossing, several RS
equilibria may coexist. An illustration is given in Figure 4. Here, both equilibria
are of type 3. The first, Pareto-inferior equilibrium, (yH , yL), is such that yL is
located in an area where both agents choose effort 1, while at yH only H makes an
effort. For the second equilibrium, (x∗H , x∗L), at x∗H only H makes an effort while at
x∗L no one does. Now, note that, in the neighborhood of (yH , yL), any new contract
preferred by H agents will attract L agents as well, hence make losses. Also,
though x∗L is obviously preferred to yL, unilateral introduction of x∗L in a market
where only (yH , yL) exist will attract all agents, hence make negative profits; and
the same argument applies, mutatis mutandis, to x∗H . This explains why (yH , yL)
may be a RS equilibrium. Of course, (yH , yL) cannot be an equilibrium a la Hahn,
because the introduction of the pair (x∗H , x∗L) would attract all consumers. The
tricky part is to construct an example where (yH , yL) is indeed a RS equilibrium
- i.e., is not dominated by some pooling contract. This is left to the reader.

Include here Figure 4
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4.3. When do the various types obtain ?

4.3.1. A characterization using the sequences

We shall now characterize the situations in which each type of contract may occur.
A first characterization relies upon the sequences constructed above; for the sake
of simplicity, they are expressed in utility terms.

Proposition 4.3. Consider the sequences UH =
(
uk

H

)
and UL =

(
uk

L

)
constructed

in the previous section. Then :

• either the sequences are constant from the beginning. Then equilibrium is
of type 1

• or the sequences converge in a finite number of step. Then equilibrium is of
type 2.

• or both sequences converge in an infinite number of steps; equilibrium is
then of type 3.

Proof : See Appendix

4.3.2. A characterization using the values of the parameters

A natural question, at this point, is whether the existence of some types of equi-
libria is restricted to certain configurations of the initial parameters. This turns
out to be the case. A first, very general result is the following :

Theorem 4.4. Under single crossing, H agents receive their PMH contracts.

The proof is immediate. Under single-crossing, any contract that makes non-
negative profits for H agents will also make nonnegative profits for L agents.
Under adverse selection, H agents will always be proposed their PMH contract,
because it attracts H agents away from any other contract making nonnegative
profits, and that it cannot make negative profits even if it attracts L agents as
well. This intuition is a direct generalization of Rothschild and Stiglitz’s initial
argument. It must however be emphasized that it does not hold with multiple
crossing, essentially because, now, H’s PMH contract might loose money if L
agents were attracted.

An immediate application to the type of equilibrium that may obtain is the
following :
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Proposition 4.5. Assume there is single crossing. Then equilibria must be of
type 1, 2a or 2c. Specifically, if ICH ⊂ ICL , the equilibrium must be of type 2a;
if ICL ⊂ ICH and PL ≤ pH , the equilibrium may be either of type 1, 2a or 2c.

In particular, equilibria of type 1 are not linked to the presence of multiple
crossing, but rather to the fact that the reference situation (PMH contracts)
already is second-best (instead of first-best) one. However, equilibria of type 2b or
3 are specific to an adverse selection model where the Spence-Mirrlees condition
does not hold.

4.4. The influence of adverse selection upon the choice of effort

We finally consider the way in which adverse selection may influence the second
best effort level. Assume, for instance, that under PMH one agent chooses ē = 1
at the equilibrium. The introduction of adverse selection might, in this context,
alter the incentive properties of the equilibrium contract, and eventually result
in zero effort. Conversely, we may wonder whether, as a consequence of hidden
information, more incentive could obtain. Answers to these questions are given in
the following result.

Proposition 4.6. Assume that the PMH contracts entail zero effort for high-risk
agents (ēH = 0). Then the same is true under ASMH (i.e., e∗H = 0). Conversely,
it may be the case that ēH = 1 and e∗H = 0.

Also, the PMH effort level for low-risk agents may be changed at the ASMH
equilibrium.

Proof : If ēH = 0, then the high-risk agent’s utility under PMH is
maximum for zero effort. Obviously, under ASMH, H’s utility will not
decrease, because an insurer can always propose the PMH contract
and make zero profit. This implies that e∗H = 0.

Counter examples for the three other cases are given in Figure 5 below.
In Figure 5a, ēH = 1 and e∗H = 0. In 5b, ēL = 1 and e∗L = 0. Finally,
in 5c, ēL = 0 and e∗L = 1.

Include here Figure 5
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So adverse selection may either weaken or strengthen the incentive properties
of equilibrium contract, at least for lower risk agents. Though this conclusion is not
unexpected (it sounds like a classical second best result), it may have surprising
consequences. Assume, for instance, that the agents’ choices of effort have external
effects that are not taken into account by the competitive equilibrium. It may be
the case that, under PMH, competition leads to ēL = 0, while eL = 1 would lead to
socially superior outcomes. Since the introduction of adverse selection may change
incentives in such a way that e∗L = 1, we may end up with a situation where the
introduction of adverse selection turns out to be welfare increasing10.

5. Existence of an equilibrium

Finally, we may consider the question of existence of an equilibrium. The result,
here, is quite different from the standard case. The answer may, as in Rothschild-
Stiglitz, depend on the proportions of agents of each type. But, in addition, it
also depends on the structure of the model, and more precisely of the type of
the candidate equilibrium (as defined by Theorem 3.3). Specifically, consider the
sequences SH = (xk

H) and SL = (xk
L) defined in section 3, and let x∞H and x∞L

denote their (respective) limits. If a separating equilibrium does exist, then the
pair X∞ = (x∞H , x∞L ) is a separating equilibrium. Now, existence is related to the
structure of X∞ as follows :

Theorem 5.1. Let λ ∈ [0, 1] denote the proportion of H agents in the population.
Then :

• Assume that, at X∞, both agents receive their PMH contract. Then X∞ is
always a (type 1) equilibrium.

• Assume that, at X∞, agents H only receive their PMH contract. Then there
exists a value λ > 0 such that X∞ is an equilibrium if and only if λ ≥ λ.

• Assume that, at X∞, agents L only receive their PMH contract. Then there
exists a value λ̄ < 1 such that X∞ is an equilibrium if and only if λ ≤ λ̄.

10It is well known that less information can lead to socially better outcomes, when ignorance
remains symmetric. The innovation, here, is that asymmetric information is needed to achieve
the pareo improvement !
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• Assume that, at X∞, neither agents H nor agents L receive their PMH con-
tract. Then there exists two values λ and λ̄ such that X∞ is an equilibrium
if and only if λ≤ λ ≤ λ̄. If, in particular, λ > λ̄ , there is no RS equilibrium
whatever λ.

Proof : See Appendix.

The interpretation goes as follows. Take, first, a type 1 equilibrium where both
agents get their PMH contracts. Obviously, no pooling contract can be preferred
by L agents, so that an equilibrium always exists. The next two cases are standard,
except possibly for a permutation of types. Finally, consider a situation where no
agent gets his PMH contract; this is the case in Type 3 equilibria, but also in some
Type 2 cases. Assume the proportion of agents of type X is ’very small’. Then a
pooling contract will be close to X’s PMH contract, hence preferred by X agents.
But, in addition, if X agents do not get their PMH contract at equilibrium, it
must be because this would violate the revelation constraint of the agents of the
other type - say, type Y . Hence Y agents prefer X’s PMH contract to their
own equilibrium contract; by continuity, they will also prefer a pooling contract
located close enough to X’s PMH contract. This means that both agents prefer
the pooling contract; it follows that no equilibrium can exist.

It can be noted that this conclusion is in sharp contrast with the standard
setting. For instance, equilibria may exist whatever the proportions of agents of
various types. Conversely, they may fail to exist, whatever these proportions may
be. The intuition that equilibria are jeopardized when good risks are too numerous
is not robust to the introduction of moral hazard - and, as a matter of fact, of
violations of the Spence-Mirrlees property.

6. Extension : the case of a continuous effort

Though most of the results above are general, some are linked with the particular
setting at stake, and especially with the assumption that effort can only take two
values. In this section, we investigate a first generalization by assuming that effort
is continuous. The basic conclusions - in particular the properties of the sequences
and the characterization of the various types of equilibria - are preserved. However,
some new features appear. We show, in particular, that pooling equilibria may
exist; however, they are not robust to small perturbations of the parameters.
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6.1. The framework : moral hazard with continuous effort

The previous model is extended by the assumption that the effort level e is con-
tinuous, and belongs to [0, +∞). Utility of an agent of type i becomes :

Ui(x, e) = u(x)− ci (e)

where ci is twice continuously differentiable, c′i(0) = 0, c′i(e) > 0 for e > 0, and
c′′i (e) > 0. In words : the marginal disutility of effort is positive and increasing..

In the same way, the accident probability is of the form Pi(e), where Pi is twice
continuously differentiable, P ′

i (e) < 0 and P ′′
i (e) > 0 : effort decreases accident

probability, but with decreasing returns. As in the previous model, we assume
that H agents are bad risks, in the sense that PL(e) < PH(e) for all e.

A first remark is that, in this setting, the first-order approach can be used, as
stated in the following lemma :

Lemma 6.1. Assume agent i is faced with some insurance contract xi = (αi, βi)
that does not entail over insurance. The effort level he will choose is of the form :

ei = δ [u(W − βi)− u(W −D + αi)]

where δ is continuously differentiable, δ(0) = 0, and δ′ > 0 over R+. In
particular:

∂ ei

∂ αi

= −δ′ . u′ (W −D + αi) < 0

∂ ei

∂ βi

= −δ′ . u′ (W − βi) < 0

Proof : consider the program :

max
e

H(e) = [1− Pi(e)] u(W − βi) + Pi(e) u(W −D + αi)− ci(e)

Note that H is concave for any contract that does not entail over in-
surance, so first order conditions are necessary and sufficient to char-
acterize a local optimum. These are given by :

g(e) = − c′(e)

P ′(e)
= u(W − βi)− u(W −D + αi) = ∆ u
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Here, g is continuously differentiable and increasing, with g(0) = 0;
and δ is defined as g−1. We only have to check that a corner solution
e = 0 cannot obtain for ∆ u > 0. But then H is strictly increasing at
e = 0, which terminates the proof.

An important consequences is the following. Define Ei
e as the set of contracts

for which agent i chooses the effort level e. :

Ei
e = {x = (α, β) / δ [u(W − β)− u(W −D + α)] = e}

Then we have the following result :

Lemma 6.2. In the (α, β) plane :

• Ei
e is a differentiable, decreasing curve with a slope s(x) = −u′ (W−D+α)

u′ (W−β)
< −1

(where x = (α, β))

• There exist some ē > 0 such that, for any e ≤ ē, the sets of Ei
e curves for

i = L and i = H coincide :

∀e ≤ ē,∃e′ s.t. E H
e = E L

e′

∀e′ ≤ ē,∃e s.t. E H
e = E L

e′

This result is the counterpart, in the continuous setting, of Lemma 2.1 in
section 2. The incentive frontier is now replaced by a foliation of the set of contracts
by iso-effort curves, with similar forms. From Lemma 6.1, the equation of such
a curve is of the form ∆ u = K, where K is a constant; in particular, the set
of iso-effort curves does not depend on the agent’s type (though, of course, the
particular effort level associated with each curve does). Also, it can be seen that,
as before, ’low risk’ agents L may well turn out to be more difficult to incite
than high risk ones. Indeed, while riskiness is related to the absolute values of
accident probabilities, incentives depend on the derivatives P ′

i - i.e., on the shift
in probability resulting from a change in the effort level.

In what follows, we let πi(x) denote the accident probability of a type i agent
facing the contract x = (α, β) - taking into account the effort level induced by the
contract. Formally :

πi(x) = Pi {δ [u(W − β)− u(W −D + α)]}
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Similarly, let γi(x) denote the effort cost of a type i agent facing the contract
x = (α, β) :

γi(x) = ci {δ [u(W − β)− u(W −D + α)]}

Finally, let Zi denote the zero-profit curve of agent i, defined as the set of
contracts providing zero profit for agent i :

Zi = {x = (α, β) / [1− πi(x)] . β − πi(x) α = 0}

In particular, for any x ∈ Zi, we have that

β

α
=

πi (x)

1− πi (x)

- in words, that the straight line Ox (where O is the origin) has a slope equal to
πi (x)

1−πi (x)
. Now, the slope of the tangent to Zi at x can also be characterized :

Lemma 6.3. The zero-profit curves Zi of agent i is differentiable almost every-
where. Moreover, at any point x = (α, β) 6= (0, 0), the slope ζi(x) of Zi is such
that :

• either ζi(x) > πi (x)
1−πi (x)

> 0

• or ζi(x) < −u′ (W−D+α)
u′ (W−β)

< −1

Proof. From

β =
π(α, β)

1− π(α, β)
α

it follows that

ζi(x) =
π(α, β)

1− π(α, β)
− α

(1− π)2
P ′

iδ
′ [u′ (W −D + α) + u′ (W − β) ζi(x)] (6.1)

or

ζi(x)

[
1 +

α

(1− π)2
P ′

iδ
′u′ (W − β)

]
=

π

1− π
− α

(1− π)2
P ′

iδ
′u′ (W −D + α)
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Each term on the rhs is positive, whereas the sign of the lhs is ambiguous. If the
term between brackets is positive, then ζi(x) > 0, and the first property follows
immediatly from (6.1). If not, then :

ζi(x) =
π(1− π)− αP ′

iδ
′u′ (W −D + α)

(1− π)2 + αP ′
iδ
′u′ (W − β)

= −
u′ (W −D + α)− π(1−π)

αP ′
i δ′

u′ (W − β) + (1−π)2

αP ′
i δ′

and the second property follows from the fact that P ′
i < 0.

Note, in particular, that the zero-profit curve can be downward slopping. The
intuition is that, starting from any point x, increasing β may in fact decrease
the profit, because the agent will respond by a reduction of his effort, resulting in
higher accident probability. When this is the case, a decrease in α will be needed to
compensate this effect. However, the slope, when it is negative, is always steeper
than that of iso-effort curves. Conversely, when the slope is positive, it is always
steeper than that of the Ox line. An illustration is provided by Figure 6.

Include here Figure 6

6.2. Indifference curves and revelation constraints

We now turn to indifference curves Si. These are defined by the following equation
:

[1− πi(x)] u(W − β) + πi(x) u(W −D + α)− γi(x) = K

where x = (α, β), and where K is an arbitrary constant. These curves can be
described as follows:

Lemma 6.4. The indifference curves Si are increasing, and their slope σi(x) at
any point x satisfies:

σi(x) =
πi (x)

1− πi (x)

u′ (W −D + α)

u′ (W − β)
≥ πi (x)

1− πi (x)
> 0
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This property is exactly preserved from the discrete case; that the introduc-
tion of a continuous effort does not change the result is in fact an immediate
consequence of the envelope theorem. It should be noted, however, that (as in the
discrete case) these curves are not necessarily concave, as already noted by Arnott
and Stiglitz (1993). To see why, take any contract x, and move slightly along the
indifference curve going through x, in the direction of increased insurance (i.e.,
towards north-east). Two effects are at stake. One is risk aversion; as in the stan-
dard model, this will tend to decrease the slope of the indifference curve. But, at
the same time, getting nearer to full insurance implies a reduction in the effort
level, hence an increased accident probability πi - which tends to increase the
slope. The final result depends on the respective magnitude of these two effects.

As before, the case of multiple crossing deserves special attention. A simple
and strong characterization is given by the following :

Lemma 6.5. The following four statements are equivalent :

• any two indifference curves of H and L cross only once

• an indifference curve of H can never be tangent to an indifference curve of
L

• πH (x) > πL (x) for all x.

• the zero-profit curves ZH and ZL do not intersect.

Proof : Assume that two indifference curves SH and SL cross more
than once. Then there must be contracts x such that πH (x) < πL (x).
Take the iso-effort curve going through x, and let y be its intersection
with ZH . At y, the profit for agent L must be negative, so that ZL lies
above ZH . But on the full insurance line, ZH lies above; since ZH and
ZL are continuous, they must cross in-between.

Conversely, let x be a point where ZH and ZL intersect. Then πH (x) =
πL (x). This implies that, at any point on the iso-effort curve going
through x, the corresponding indifference curves SH and SL are tan-
gent. One can then choose an indifference curve S ′

H ’close enough’ to
SH , such that S ′

H and SL intersect twice.

An interesting outcome of the proof is that whenever the zero-profit curves
intersect, then at any point on the iso-effort curve going through the intersection,
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the indifference curves of the two types of agents are tangent. Conversely, if the
indifference curves of the two types of agents are tangent at some point x, they
are also tangent at any point located on the same iso-effort curve; moreover,
zero-profit curves must also intersect on this iso-effort.

6.3. The case of pure moral hazard (PMH)

Assume, first, that types are public information. What will the optimal contracts
look like ? A consequence of the assumptions made is that the optimal contract
will never entail zero effort.

Lemma 6.6. Under pure moral hazard, the optimal contract cannot provide full
insurance. As a consequence, effort is always positive.

Proof : Let Xi denote the zero-profit, full insurance contract. Then Xi

cannot be optimal unless the respective slopes of the zero-profit curve
and of the indifference curve satisfy :

σi(Xi) > ζi(Xi) > 0

But since σi(Xi) = πi (Xi)
1−πi (Xi)

, this would contradict Lemma 5.3

Hence, the optimal contract will be such that he indifference curve is tangent
to the zero-profit curve. Note, however, that tangency can occur at any point
of the zero-profit curve. This remark is particularly interesting if these curves
intersect. Also, though tangency is a necessary condition for optimality, it is by
no means sufficient. Remember, indeed, that neither zero-profit nor indifference
curves exhibit concavity properties of any kind, so that local optima need not
be global optima. As before, tangency points will be said to be ’PMH locally
optimal’; we know that the (global) equilibrium must belong to the set of PMH
locally optimal contracts.

6.4. A first characterization of separating equilibria

We now address the (general) case of moral hazard and adverse selection. A first,
rather pleasant result is that the simple characterization given in Proposition 3.2
is still valid:
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Proposition 6.7. Assume a separating equilibrium (x∗H , x∗L) exists. Then x∗i must
be a solution of the program :

max
xi

ũi (xi)

[1− πi(xk)] βi − πi(xk) αi ≥ 0

ũj(x
∗
j) ≥ ũj(xi)

where

ũi(xk) = [1− πi(xk)] u (W − βk) + πi(xk) u(W −D + αk)− γi(xk)

is agent i’s expected utility when choosing the contract xk

In particular, the zero-profit condition still applies :

Corollary 6.8. In the case of continuous effort, and under the assumptions above,
profit must be zero at the equilibrium

Proof : Let (x∗H , x∗L) denote the separating equilibrium (when it does
exist). Then x∗i is i’s preferred contract in the area A of the (α, β) plane
lying above i’s zero-profit curve and north-west of j’s indifference curve
(see fig. 6). For a positive profit to obtain, it must be the case that
i’s best choice in A is on j’s indifference curve, away from i’s zero-
profit curve. This is possible only if, at x∗i , i’s and j’s indifference
curves are tangent. Now, take the iso-effort curve at x∗i , and let X
be its intersection with i’s zero-profit curve. From Lemma 6.5, i’s and
j’s zero-profit curves intersect at X; hence, both agents make positive
profits at x∗i . But then, in the neighborhood of x∗i , there must
exist either a contract for i or a contract for j that makes positive
profits, satisfy the revelation constraint and is preferred by the agent
(the shaded area in Fig. 7), a contradiction with Proposition 5.7.

Include here Figure 7
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This zero-profit property may seem rather natural, within a framework where
exclusivity is assumed (in contrast with, for instance, Arnott and Stiglitz (1993),
who find that profits may be positive at equilibrium because of non exclusivity).
In fact, it is somewhat specific, for the following reason. From Proposition 3.2,
we know that L agents will receive the best contract available, among those that
provide non-negative profit to the insurance company and fulfill the revelation
constraint. The essence of the zero-profit result with discrete effort is that this
maximization problem will have a corner solution; i.e., both the non negative
profit and revelation constraints are exactly binding. Why is this the case ? Why
can’t the solution be located on the revelation frontier, but away from the inter-
section with the zero profit line ? Well, remember the revelation frontier is in
fact an indifference curve for H agents. So an interior location of the maximum
would require a tangency between some indifference curve of L agents and some
indifference curve of H - a feature that is impossible in both the initial RS setting
and in the discrete effort framework. Now, with a continuous effort, we know that
such a tangency is no longer impossible; so an interior solution is more difficult
to rule out. It turns out to be excluded, for reasons linked in particular with the
linearity of expected utility with respect to probabilities and with the assumption
of identical preferences. Not surprisingly, if one of these assumptions is modified,
positive profits become possible in a RS equilibrium (see for instance Villeneuve
(1996)).

Finally, the impossibility of pooling equilibria still obtains, but only generically
:

Proposition 6.9. Pooling equilibria cannot exist, but may be for a zero-measure
set of particular values λP of λ.

Proof. In four steps :

• Assume that x̄ is a pooling equilibria, then the indifference curves of H and
L must be tangent at x̄ (otherwise, the standard RS argument would apply).
Note that this is possible in this setting

• Assume that x̄ is a pooling equilibria, then it must make zero-profit (other-
wise, other pooling contracts would make non negative profits and attract
all agents). Hence it must be located on the ’pooling zero-profit curve’ (i.e;,
the set of contracts that make zero profit when attracting all agents).
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• Assume that x̄ is a pooling equilibria, then the indifference curves of H and
L must be tangent to the pooling zero-profit curve at x̄ (otherwise, other
pooling contracts would make non negative profits and attract all agents).

• In this setting, we may have a tangency point of indifference curves of H and
L located on the pooling zero-profit curve (in general, the locus of tangency
points may intersect the pooling zero-profit curve). But, generically, the
indifference curves will not be tangent to this curve (a fact that can be
established using transversality arguments).

In particular, it is possible to construct pooling RS equilibria, but such exam-
ples cannot be robust. An illustration is provided by Figure 8.

Include here Figure 8

6.5. Separating equilibria : general form

First, consider the sequences SH = (xk
H) and SL = (xk

L) defined in subsection 3.1.
Note, first, that the definition given does not require specific assumptions upon
the nature of effort; it is still fully relevant in our context. In addition, the main
property still holds true :

Proposition 6.10. Assume a separating equilibrium exists. Consider the sequences
SH = (xk

H) and SL = (xk
L) defined in subsection 3.1. These sequences converge to

the separating equilibrium.

Then the form of separating equilibria can be characterized in exactly the same
way as before, as stated in the following results :

Theorem 6.11. Separating equilibria, if they exist, can be of either of the three
following forms :

• Type 1 (”no adverse selection”) : each agent gets his PMH contract , no
revelation constraint is binding.
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• Type 2 (”weak adverse selection”) :

– one agent (at least) receives a PMH locally optimal contract

– one revelation constraint (at most) is binding

• Type 3 (”strong adverse selection”) :

– no agent receives a PMH locally optimal contract

– both revelation constraints are binding

Proposition 6.12. Type 2 equilibria generically belong to one of the following
subtypes :

• Type 2a : H receives a PMH locally optimal contract, L does not; the
revelation constraint of H is binding.

• Type 2b : L receives a PMH locally optimal contract, H does not; the
revelation constraint of L is binding.

• Type 2c : both agents receive a PMH locally optimal contract; no revela-
tion constraint is binding.

A complete proof is given in the Appendix. Note that non-generical pathologies
are disregarded.

7. Conclusion

In this paper, we introduce of moral hazard within the standard adverse selection
model of pure competition, and check which results of the initial framework are
preserved. A summary is given in Table 1

Insert here Table 1

As it turns out, some of the initial insights of the Rothschild-Stiglitz model
are preserved. For instance, agents will be offered a menu of contracts, i.e., of
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premium-deductible schemes, a higher premium being always associated to better
coverage. Profits are zero; also, it is still true that, whatever the equilibrium,
agents with lower deductible are more likely to have an accident - a fact that is
important in view of empirical application, since it provides a testable prediction
of the model (see Chiappori and Salanié (1997) for an empirical test along these
lines).

However, many of the initial results no longer hold in our context. In the
Rothschild-Stiglitz model, only risky agents do not suffer from adverse selection.
Here, it may be the case that both agents loose - or, conversely, that all agents are
exactly as well off as if characteristics were fully observable. Another conclusion
of the standard approach is that an equilibrium exists if and only if there are
’enough’ bad risks. Again, this is not robust. Equilibria may exist whatever the
proportions of various types. They may also fail to exist if there are two many
bad risks, good risks, or both.

These results are by no means specific to the case of moral hazard plus ad-
verse selection. In fact, two main ingredients drive our results. One is that, in
our framework, the Spence-Mirrlees condition may not hold (indifference curves
of different agents may cross more than once); the other, that the benchmark
situation (the ’PMH’ case in the paper) does not necessarily entail full coverage
for the bad risks. One may think of various insurance models where this may be
the case. Our conjecture is that, in most of these frameworks, equilibria of the
types described in the paper will also be present.

Also, it should be stressed that some of the initial conclusions that appear
to be robust here may not hold in different contexts. Take the fact that profit
are zero at the equilibrium. Whenever indifference curves may be tangent, this
property may be jeopardized, because interior solutions may appear. Though it is
not the case in our setting, it is fairly clear that positive profits might appear in
other context. The case where agent differ not only by their risk but also by their
risk aversion provides a typical example.

Finally, a natural extension of our model is to consider more than two different
types of agents. This is a very difficult task, if only because without single crossing,
no monotonicity condition can be expected to hold, so that revelation constraints
may have to be tested for all possible pairs of agents. This is the topic of ongoing
research.
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• equilibria must be separating : True (generically)

• higher deductibles associated with lower premia : True

• higher deductibles associated with lower (ex post) risk : True

• one type of equilibrium : Not in general

– ’high risks’ do not loose from adverse selection; Not in general

– ’low risks’ do loose from averse selection : Not in general

– only ’high risks’ RC binding : Not in general

• equilibrium (if any) always unique : Not in general

• no equilibrium if ’too many’ good risks : Not in general

• equilibrium always exist if ’enough’ bad risks : Not in general

• profits are zero if competitive equilibrium : True here, not robust

Table 1 : are the main original conclusions still true in our setting ?

42



For any contract (α, β) on the frontier εi, if the following inequality is true

(1− pi) β − pi α > c

for some real number c, then there exists a neighborhood of the contract on which
the same inequality remains true. Since Pi > pi, it follows that :

(1− Pi) β − Pi α > c

which is sufficient to insure that the profit function is upper-hemicontinuous, even
at the discontinuity contracts.

$$$
It follows that, although the insurer profit function is discontinuous on the

frontier εi, it remains upper-hemicontinuous - a fact that will play a role in the
properties below.

Whenever several RS equilibria coexist, they must be Pareto-ranked. This
result clearly draws attention toward one specific RS equilibrium, namely the
highest one (in the Pareto ranking)11. Actually, this equilibrium has an interesting
property :

Corollary 7.1. Let Y = (Y ∗
H , Y ∗

L ) be a RS equilibrium. Assume Y is (second-
best) Pareto efficient.Then Y is an equilibrium a la Hahn. Conversely, assume that
Y is strictly dominated by some RS equilibrium. Then Y is not an equilibrium a
la Hahn.

Proof : See Appendix

This result suggests a natural interpretation of equilibria a la Hahn. The con-
cept is especially relevant when several RS equilibria coexist; a situation that is
ruled out in the standard model, but may well appear in our context, and more
generally in any adverse selection setting in which the Spence-Mirrlees single-
crossing condition is not fulfilled (see Chassagnon (1996) for a detailed investiga-
tion). Then these equilibria must be Pareto-ranked, and Hahn’s concept essentially
selects the Pareto efficient equilibrium (if any).

11In principle, there could be several such ’superior’ equilibria; but then one must have that,
for any two of them - say, (X∗

H , X∗
L) and (Y ∗

H , Y ∗
L ) - ũH(X∗

H) = ũH(Y ∗
H) and ũL(X∗

L) = ũL(Y ∗
L ).

This case can be showed to be non generic.
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