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Abstract

We propose a novel nonparametric test for cross-unit spillovers that may operate
through peers’ attributes, peers’ outcomes, or both. The test is straightforward to
implement, as it requires only estimation under the null of no spillovers, and it is
shown to have a convenient asymptotic standard normal distribution. It is also ver-
satile, accommodating data generated by a wide range of interaction structures. We
present three empirical illustrations showing that the test is effective at detecting cross-
unit spillovers arising in a nonparametric manner that existing approaches may fail to

uncover.
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1 Introduction

Cross-unit dependence pervades many empirical settings and poses a fundamental chal-
lenge for econometric inference. This paper deals with the two most common sources of
cross-unit spillovers, which arise through the attributes channel and the outcome channel,
respectively. To illustrate, consider the canonical cross-sectional linear model, where the
outcome of the unit (e.g. individual) y; is regressed on own attribute(s) x;. First, the
attributes of other units (‘peers’) may affect i’'s outcome. We term this as ‘covariate
(¢) spillovers’. The second source of cross-unit dependence refers to the case where the
outcomes of other units affect i’s outcome. We call this ‘outcome (y) spillovers’. In this
paper, we propose a test for unknown nonparametric spillovers operating through one or
both channels, establish its asymptotic properties, and illustrate its applicability in three
diverse settings.

Cross-unit spillovers have received considerable attention from applied economists in a
broad range of contexts. These include, inter alia, disease transmission (Miguel and Kre-
mer, 2004; Ozier, 2018), educational outcomes (Sacerdote, 2001; Lalive and Cattaneo, 2009;
Bobonis and Finan, 2009; Avvisati, Gurgand, Guyon, and Maurin, 2013), employment de-
cisions (Duflo and Saez, 2003; Brown and Laschever, 2012) and technology adoption (Oster
and Thornton, 2012; Banerjee, Chandrasekhar, Duflo, and Jackson, 2013; Cai, De Janvry,
and Sadoulet, 2015). A first strand of the literature on (broadly defined) ‘peer effects’ has
explicitly modeled cross-unit dependence in observational data via the attribute and/or
the outcome channel, depending on the setting. Oftentimes, cross-unit dependence is mod-
eled solely through the attribute channel, even though outcome spillovers could also be
incorporated due to economic considerations.! A related line of work focuses on treatment-
mediated spillovers, which are a first-order concern in the context of impact evaluation as
they violate the Stable Unit Treatment Value Assumption (SUTVA), which asserts that an
individual’s potential outcomes should be independent of peers’ treatment assignments.? In
response to this concern, it has become increasingly common to design cluster-randomized

experiments generating exogenous variation in peers’ treatment status.?

The exclusion restriction that peers’ attributes serve as a reduced-form sufficient statistic for their
outcomes is frequently imposed. However, when the research design permits, spillovers operating through
both peers’ covariates and peers’ realized outcomes can be jointly identified, offering a sharper understanding
of the underlying economic mechanisms (Bramoullé, Djebbari, and Fortin, 2009; Bursztyn and Fiorin, 2017).

2For simplicity, in this paper we abstract from the issue of contamination, whereby subjects in a ran-
domized trial may move from the treatment group to the control group.

3Cluster-randomized trials (also known as ‘two-stage randomization experiments’, ‘randomized-



We develop a nonparametric test for cross-unit dependence arising via either the at-
tribute or outcome channels, or both. The idea behind our test is reminiscent of classical
Lagrange Multiplier (LM)-type diagnostic tests, such as the RESET test. We construct a
test statistic to assess cross-unit dependence against the alternative that such features may
arise in a nonparametric manner, which is operationalized by approximating the nonpara-
metric functions of the alternative with a series of underlying basis functions. However,
because we apply an LM-type approach, we only need to estimate the model under the
null of no spillovers. Thus, our test has the feature of being nonparametric but requiring
only standard parametric estimates of a familiar multiple linear regression. Asymptotic
theory is provided, showing that our test has an asymptotic standard normal distribution
under the null and is consistent in the sense of having asymptotically unit probability of
rejecting a false null. We derive these properties under a cluster-robust framework, thus
allowing the incorporation of what is now common practice in applied work. Extensions to
alternative error dependence structures—such as serial correlation or more general spatial
dependence—are conceptually straightforward.

Failure to account for nonlinearities may undermine the reliability of empirical find-
ings. This concern is compounded by the fact that spillovers are typically modeled in a
linear fashion, namely by including a linear function of peers’ ¢ and/or y as a regressor.
Yet, in many economically relevant settings, agents’ strategic behavior may depend on the
entire distribution of peers’ attributes and outcomes. In such contexts, cross-unit depen-
dence is likely to generate nonlinear simultaneous determination of outcomes that linear
specifications may fail to capture adequately. For example, when only a small fraction
of peers adopt a given behavior or technology, agents may find it optimal to engage in
complementary actions, whereas a high prevalence of adopters among peers may instead
induce substitutability in best-response behavior.? If the estimates at different points of
the distribution offset or dilute, a linear specification may not detect cross-unit spillovers
appropriately, as our test does.

Our test is far-reaching in that it is versatile in its data requirements, which is an
important advantage. First, it accommodates data defined through a variety of interac-

tion structures, including those based on blocks or links. Block-type data are partitioned

saturation experiments’, ‘partial-population experiments’) randomly assign different treatment rates across
different clusters.

“Nonlinearity in the social adoption rate was documented both theoretically and empirically (Bandiera
and Rasul, 2006; Young, 2009; Acemoglu, OZdaglaI', and Tahbaz-Salehi, 2016).



into separate self-exclusive groups within which all units are assumed to interact. Blocks
may represent villages or schools or nuclear households for individuals, geographical area
and/or productive sectors for firms. Alternatively, network-type data contain detailed links
between units, which may or may not overlap (e.g. i is linked to j and j is linked to k,
but ¢ is not linked to k). This is the case for self-declared link data in household surveys,
or trade data among firms from administrative records. Our test accommodates both data
structures. Second, it allows for heterogeneous spillovers via multiple interaction matrices,
as we justify in Appendix A.1. Third, it allows the interaction structure to be incomplete
or measured noisily. In applied work, interaction data are often measured poorly yet still
convey useful information. By embedding our test within a latent-space (embedded-graph)
framework, Appendix A.2 derives conditions under which the perturbations induced by
measurement error are asymptotically negligible, ensuring that inference remains valid.
While this paper proposes a nonparametric test for cross-unit spillovers, most of the
methodological literature on cross-unit dependence has focused on the estimation of causal
parameters under interference. By and large, the existing approaches rely on parametric as-
sumptions to achieve this aim (Rosenbaum, 2007; Hudgens and Halloran, 2008; Hirano and
Hahn, 2010; Liu and Hudgens, 2014; Baird, Bohren, McIntosh, and C')zler7 2018; Arduini,
Patacchini, and Rainone, 2020; Viviano, Lei, Imbens, Karrer, Schrijvers, and Shi, 2025;
McNealis, Moodie, and Dean, 2024). One exception is Vazquez-Bare (2023), who works in
a nonparametric identification framework to propose estimators for spillover effects in ex-
periments. Thus, we view this paper as complementing this literature by providing applied
practitioners with an easy-to-implement diagnostic tool to guide the design, validation,
and refinement of estimation strategies. If no spillovers are detected, standard estima-
tion strategies—such as linear intent-to-treat regressions—are justified. If instead the test
detects nonlinear cross-unit dependence, the estimation strategy should be adapted to ac-
count for its potentially substantial effects.> Our test can also be useful prior to rolling out
a large-scale survey, when researchers, based on the pilot, must decide whether and how

to adjust the design to account for cross-unit dependence.’

SWhile our test does not explicitly suggest the nonparametric functional form which best describes the
data at hand, a variety of suitable econometric methods are available, see e.g. Jenish (2012, 2016); Xu and
Lee (2015, 2018).

SFor instance, a researcher may apply our test to interaction data collected in a pilot study to assess
whether detailed link information is required, or whether the treatment intensity should be exogenously
varied across clusters in a subsequent scale-up. Because both design choices can entail substantial additional
survey costs, they are warranted primarily when spillovers are expected to play an important role.



We illustrate the implementation, scope, and economic relevance of our test through
three empirical applications that revisit studies of spillovers in very different settings. In the
first illustration, we examine peer effects in a high skill environment, namely professional
golf tournaments (Guryan, Kroft, and Notowidigdo, 2009). The second illustration revisits
the study of network frictions in small firms’ performance in China by Cai and Szeidl
(2017). The final example examines a field experiment in the Netherlands to study student
achievement in response to changes in the academic environment (Booij, Leuven, and
Oosterbeek, 2017). Across all three settings, we show that our test is able to detect cross-
unit dependence through peers’ attributes and/or peers’ outcomes in some —but not all—
cases where linear functional forms fail to do so.

This paper is organized as follows. Section 2 introduces the test statistic, while Section
3 characterizes its asymptotic behavior. In Section 4 we illustrate the test by revisiting
three existing studies. Section 5 concludes. In Appendix A we extend our method to
heterogeneous cross-unit dependence, and to embedded graphs with noisy measurement
and parametric modeling of the underlying link formation structure. Appendices B and C
contain theorem proofs and auxiliary lemmas respectively, while Appendix D reproduces

the original results for our three empirical demonstrations.

2 Method and test statistic

We write the general model with both ¢ and y spillovers in scalar notation as

l

yi = fwiy) + @i+ Y gj(wiey) + ey i=1,.m, (2.1)
j=1

where f(-) : R¥ — R is an unknown function that captures ‘outcome (y) spillovers’,
and g;(-) : R — R are also unknown functions that capture ‘attribute (c) spillovers’.
W = (wy,... ,wn)/ is a social weight matrix representing cross-unit interactions that is
either fixed or exogenous conditional on observables, and has zero diagonal.” z, is the

i-th row of an n X k regressor matrix X that can have endogenous elements as long as

“Since our approach is cast within an instrumental-variables framework, it naturally accommodates en-
dogeneity of the term w}y whenever valid instruments are available. In the context of network-type data,
it is compatible with instrumental-variable strategies designed to address outcome spillovers that are en-
dogenous due to simultaneity (Bramoullé et al., 2009) or due to assortative link formation on unobservables
(Jochmans, 2023).



instruments are available, ¢;, 7 = 1,...,l, are some n X 1 vectors of exogenous regressors

and ¢; is an unobserved disturbance. The data are observed as ny observations in each of
G .

g=1,...,G clusters, so that n = Zg:l ng. We take ny as fixed with sup,_; sny < o0

and therefore n ~ G, i.e. our sample size grows like the number of clusters. Our approach

gives rise to three different testing options:
1. Jointly test for both ¢ and y spillovers: We term this the ‘cy test’.

2. Omit f(w}y) from the general model (2.1) and test for only ¢ spillovers: We term
this the ‘c test’.

3. Omit gj(s) = 0, j = 1,...,1, from the general model (2.1) and test for only y
spillovers: We term this the ‘y test’.

The corresponding null hypotheses are:

cy test, Ho: f(s) =0and g;(s) =0, j=1,...,1, (2.2)
ctest, Ho:gij(s) =0, j=1,...,1, (2.3)
y test, Ho : f(s) =0, (2.4)

for all s € support(s), which implies in all cases that the null model is y; = z}3 + ¢; i.e. a
standard linear regression.

The cy test jointly includes nonlinear spillovers in both the covariate/attribute and
outcome channels, while the ¢ test and y test examine the covariate and outcome channels
individually, respectively. In our applications, we implement the ¢ and cy tests. Most
applied work focuses on linear spillovers in covariates and extending that to nonlinearity
via the c¢ test seems natural, while augmenting for outcome spillovers through the cy test
demonstrates the full power of our approach. For ease of exposition we present asymptotic
results and notation for the most general case covered by the cy test in (2.2).

Let 1;(s), for i = 1,...,p, be a user-chosen set of basis functions (our applications use

Hermite polynomials) such that
p p
F(s) = ppathi(s) +rs(s), gi(s) = pgpathi(s) +7g;(s), 5=1,...,1, (2.5)
i=1 i=1

with p = p, a divergent deterministic sequencei.e. p — coasn — 00, uf = (Uf1,.. ., Lfp)



trg; = (Hg;15- - -5 Hg;p) vectors of unknown series coefficients and 7¢(s), ry;(s) approxima-

tion errors. We define our approximate null hypothesis as
Hoa iy =0 and pg, =0, j=1,...,1, for some f3, (2.6)

which is a set of ¢ = p(l + 1) restrictions, so that ¢ — oo as n — oo. This indicates that
standard fixed-dimension asymptotic will not work for our test. Our test statistic is based
on determining if the moment conditions for the instrumental variables (IV) estimate of 3
under the null hypothesis are close enough to zero. OLS is obviously a special case of this.

Now, for each i = 1,...,p, define the n x 1 vector Y;;(y) = (¢i(wiy), ..., vi(why))

and the n x 1 vectors Yy, i(c;) = (Yi(wic;), ..., Yi(w)c;))’, and write
Tig= (Tﬁl(y) o Trpy) Tgaler) oo Tgple) ..o Tgala) ... ng,p(cl)) )
which is an n x ¢ matrix. Denote = (pif, fig,, - - -, fig,)’. Given the expansion in (2.5), the

series approximated IV objective function is

Fp(Bs 1, y) = ! y—Tgu—XB) Py (y—Ysgu—Xp), (2.7)

p
where Z is an n x m matrix of valid instruments, with m > ¢+ k, and Pz = Z(Z2'Z)~'Z'.

Next, define the n x (¢ + k) matrix U = (Tf,gj X). OLS is a special case with Z = U.
Define the (¢ + k) x 1 gradient vector d(8,y) of (2.7) under Ho4 as

OF (1, B,y)

2
30 ) = _EU Pz(y — XpB). (2.8)

d(B,y) =

Denoting by /3 some consistent estimate of 3, e.g. IV or OLS, under Hg4, the gradient

evaluated at the corresponding residuals is
o/ 9 .
d=d(B.y) = —~U"Psly— XB). (2.9)

Let J = n~'Z'U, where J is m x (¢ + k). Next, define the m x m matrices M = n~12'Z
and ® = n~12’$Z, with & = diag (f]l, ey ﬁ]g) where flg has typical (i, j)-th element €é;¢;

and é; = y; — :c;B, fori,j=1,...,ny and g =1,...,G. Thus the covariance matrix of the



gradient evaluated at the estimates is
H=47M'oMJ, (2.10)

and we thence define our cluster robust test statistic as

ndH=1d — q
V2¢O

This is a weighted measure of the distance of the gradient from zero, centred and rescaled

S = (2.11)

to account for ¢ — oco. In practice, especially for small g, one can use nd' H=1d as the test

statistic with Xg critical values instead of standard normal ones.

3 Asymptotic theory

We commence this section by introducing some technical assumptions to establish the
limiting behaviour of (2.11) under Hpa. Our approach is based on the series based tests in
Gupta (2018) and Gupta, Lee, and Rossi (2025). Throughout we denote by K a generic

positive constant, arbitrarily large but independent of p and n.

Assumption 1. ¢; are random variables with zero mean and unknown variance 0? € [e, K],
c > 0, and, for some T > 0, E |ei|8+T < K fori=1,...,n. Furthermore €4 and €;y are
independent for g # ¢, g,9' = 1,...,G, while E (eig€jq) = 0ijqg < 00, i # j, and we
accordingly write ¥ = diag (31, ...,Xq).

Assumption 2. E(z}) < K and E(z%) < K, fori = 1,....,n and v = 1,...,k and
s=1,...,1.

We also allow cov(e;, xi;) # 0, for some j = 1,...,k, i.e. X might contain some
endogenous columns. Let X; be the n x k; matrix containing the subset of exogenous
columns of X, while X9 (n x ko, with ko = k — k1) contains the endogenous ones. Now, for
a generic symmetric positive-definite matrix A, let eig(A) and eig(A) denote its largest and
smallest eigenvalues, respectively. For a generic matrix B, denote by || B = /eig(B'B),

i.e. the spectral norm of B, and by || B||, its largest absolute row sum.

Assumption 3. The n X n matriz 3 satisfies

limsup sup eig(X,) < oo, liminf inf eig(3,) >0, (3.1)

n—oo g:l,,G n—r00 !]:177G



the m x m matric M = E(M), with m > q+ k , satisfies

limsup eig(M) < oo, liminf eig(M) > 0, (3.2)

n—00 n—oo ——

and the (q + k) x (¢ + k) matriz L = n~'E(U'U) satisfies

limsup eig(L) < oo, liminf eig(L) > 0, (3.3)

n—00 n—oc ——

for n large enough. For some v > 0 satisfying n/p(”+1/2) =o(1),

suprf(z) + sup suprg,(z) =0, (p7"),
z j=1,..,0 =z
as p — 00. E(ufb) <K fori=1,...,n,li=1,....mandly=1,...,q+k, and ¢ and z;

are uncorrelated for each i,j =1,...,n.

Assumption 3 imposes regularity conditions and controls the approximation errors.
Specifically, (3.2)-(3.3) are asymptotic boundedness and no multicollinearity conditions
for matrices of increasing dimension, while under Assumption 1, (3.1) also ensures that
0 < sup;_; % < oo in the special case of purely heteroskedasticity robust testing i.e.
G = n and X; are scalars. For the instruments Z we use at least ko columns of instruments
for the endogenous covariates Xs, and also the columns of X1, W.X;. We also use a set of
instruments of the form 1, (Zj wij$17jl>, where r = 1,...,p, and 1 j; denotes the (j,1)th
element of X7, with [ = 1,...,k;. For more discussion on approximation error decay
rates see e.g. Chen (2007). Our next assumption sets a suitable bound on cross-sectional
dependence, analogous to that in Lee and Robinson (2016). Conditions such as linear
process representations for the underlying random variables or the near epoch dependence

conditions of Jenish and Prucha (2012) imply that this assumption holds.
Assumption 4. Let

n o n n 2
§ = sup [ DO Elzazinzizie) — (E (Z%l%k))

Osbksm | 2155 i=1
J#i



n n n 2
x = sup ZZE(zuuikzﬂujk) — (E (Zzzlulk>> )
i=1

0<i<m, 0<k<q+k | =15
J#i
and assume

E+x=0(Mn) as n— 0. (3.4)

Our null asymptotic theory first approximates the test statistic S with a quadratic form

in €, and then shows that this approximation is asymptotically standard normal. Write

A

J = E(J) and define

2 —
d=d(Bo,y) = — EJ,M_I/Q (I — M V2N (N'M_IN) 1N’M‘l/Q) M-1V27
— — EJ/M—I/QICNMM—I/Qzle’ (35)

n

~

where Ky = (I— M~Y2N (N’M—IN)_IN’M—1/2> is m x m and N = E(N), with
N =n~1Z'X, the last being an m x k matrix with full rank under (3.3) in Assumption 3.
Set

H = nE(dd) = 47’ M2 Ky M~ 20 M 2Ky M~Y2 ), (3.6)

with ® = n~!E(Z'XZ). Under Assumptions 1 and 3, H~! exists and is non-singular for n
large enough, using the following lemma for the eigenvalues of ®.

We now state the main result of this section.

Theorem 1. Under Ho, Assumptions 1-4, v >5/2, and p*/n = o(1),
SiN(O,l), as n — oo. (3.7)

Theorem 1 provides asymptotic justification for using one-sided, standard normal critical
values as observed also by Hong and White (1995). We also provide guidance for an
empirical choice of p = [nl/ 3], where [-] denotes the closest integer. However, note that

the rate p3/n — is equivalent asymptotically to p?(I + 1)/n — because [ is fixed, but in



finite samples the extra [ 4 1 factor can play a role. Thus our recommendation is to use®

/3
For the cy test, with both ¢ and y spillovers : p., = l—l—l]’ (3.8)
[7°]
For the ¢ test, with only ¢ spillovers : p.= T (3.9)
For the y test, with only y spillovers : p, = [nl/?’} . (3.10)

Our next theorem relates to the power properties of our test. First consider the global
alternative
Hia: pi#0, forsomei=1,...,q, and any 3, (3.11)

where p; denotes the i-th element of p. We introduce the unrestricted quantities
cvilp, B) = yi — Wvpgi — Brii=1,...,n, and &y =dy(p,B)=n""'2'SyZ, (3.12)

where U}ﬂﬁ = (¢q(uéy)7'-'7¢@(u%y)7¢q(u401%"‘7¢%(U401%-"7dq(u%cﬂ7"'7¢@(uécﬂ)x
Yy = diag (iyl, e SU0>, and f]Ug has (4, j)-th element ey;(u, B)ev;(p, f). Then b =
@U(qul,ﬁ). Let v = (1, B) € I' = R4 x R* and introduce:

Assumption 5. For all sufficiently largen and all j =1,..., ¢+ k,

sup eig(@y) +sup eig | 2L | = 0,(1), (3.13)
ver ~er 0

1 - ~1
{inf @)} + { inf_cig (8‘3;5”) } - 0,1). (3.14)

and

This assumption imposes mild regularity under Hi4, reminiscent of boundedness and

invertibility conditions. Our power result follows below.

Theorem 2. Under Assumptions 1-5, Hia, v > 5/2, and p*/n = o(1), S provides a

consistent test.

8In Appendix A.1 we also show that we can extend our test to a setting with multiple W matrices, say

/3
£, for which we recommend pey,m = [£+l ) in (A.5) therein.

10



4 Three demonstrations

In this section, we illustrate the scope of our nonparametric test by revisiting three existing
studies that investigate peer effects across different contexts (high-skill professionals, firms,
and students’ performance) with mixed findings. We show that our test is able to detect
spillovers in some cases where linear specifications fail to do so. We use Hermite polynomials
as basis functions in all three examples. Additional details on the original studies are

reported in Appendix D.

4.1 Professional golf tournaments (Guryan et al., 2009)
4.1.1 Context and findings

Our first example builds on Guryan et al. (2009), who study whether peer effects influ-
ence individual productivity in high-skill professional environments with an application to
professional golf tournaments. They exploit a natural experiment within golf tournaments
where playing partners are randomly assigned within predefined block—round categories.

Their original results are reproduced in Appendix D, Table D1 and include three spec-
ifications. In the specification (i), players’ performance is modeled as a function of their
own ability, measured by the corrected handicap score, and the average ability of their
peers in the same block-round-tournament.” Specification (ii) incorporates alternative
measures of peer ability—average driving distance, number of putts, and number of greens
hit—designed to distinguish motivation effects (e.g., higher effort induced by stronger part-
ners) from learning effects (e.g. adapting to observed putting strategies). Specification (iii)
introduces heterogeneity by interacting partners’ average ability with a player’s own base-
line ability and years of professional experience.

While previous studies have found significant positive peer effects in low-skill labour
markets (Bandiera, Barankay, and Rasul, 2009; Mas and Moretti, 2009), Guryan et al.
(2009) find limited evidence of peer effects in individual performance. In particular, they
conclude against peer effects in specifications (i) and (ii), while specification (iii) provides

some support for heterogeneous peer effects via the experience channel.

9For details about the way the corrected handicap score is calculated, see Appendix D.

11



4.1.2 Test results

Table 1 summarizes the authors’ main results and the results from our tests. The three
rows correspond to the three original specifications reported in Appendix D, Table D1,
in order of appearance. Columns 1-3 report the specification number, the construction
of attribute peer exposure variables w’c and the number of peer attribute terms (1). The
“Original result” column reports the conclusions reached in the original paper for the cor-
responding null hypothesis of no peer effects. The “c test” examines dependence operating
through peers’ attributes, while the “cy test” augments the instrument set with functions
of peers’ outcomes. This latter test goes beyond the original specifications by allowing
for nonparametric propagation through contemporaneous peer performance as well. The
columns p. and p., report the number of basis functions used in each test and n reports
the sample size.

Our findings support the evidence of peer effects in professional golfing in ways that
the linear specifications in Guryan et al. (2009) do not capture. When we assume spillovers
from attributes only (e test), contrary to the authors’ findings we detect spillovers when
ability is measured with alterative measures, as in specification (ii). Additionally, our cy
test also finds evidence of spillovers in contemporaneous peer scores of specification (i) -

an effect also undetected in the original findings.

4.2 Network expansion and firm performance (Cai and Szeidl, 2017)
4.2.1 Context and findings

Firms in developing economies face not only financial and managerial constraints but also
networking frictions—such as limited trust or information—that may prevent them from
accessing knowledge, clients, and suppliers.!? In our second illustration we revisit the study
of Cai and Szeidl (2017), who investigate whether an exogenous expansion in business
networks can improve firm performance.

The intervention under study randomly assigned firms into small business-association
groups of ten owner-managers. The treatment group managers met monthly for one year,
while other firms’ managers did not participate and served as a control group. The inter-

vention outcomes were measured through detailed baseline, midline, and endline surveys

10Such networking frictions are likely to be more binding in developing economies, where search and trust
costs impede self-organization, whereas at higher levels of development similar business associations can
often emerge without external coordination (Cai and Szeidl, 2017).

12
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Table 1: Peer Exposure Design and Test Results: Guryan et al. (2009)

Dependent variable: Score in a given tournament-round, y; 4

Peer exposure in outcomes: wgvtrytr

. . Peer exposure
Peer exposure in attributes .
in outcomes

Peer exposure w'c I Original result p, c test Dey  cy test n
(i) wi,, Ability 1 Do not reject 26 Do not reject 13 Reject 17,492
(ii) wg’”DrivDist, 3 Do not reject 9 Reject 6 Reject 17,182

/
w; 4.Greens,

w; ,, Putts

(iit)  wj . Ability, 3 Reject 9 Reject 6 Reject 17,492
Ability; x w, , Ability,

2,tr

Exp; x w; ;, Ability

Note: Each row reports results from a separate regression specification corresponding to models esti-
mated in the original paper. Row (i) corresponds to the baseline model from Column 1 of Table 4 from
Guryan et al. (2009), while rows (ii) and (iii) correspond to Column 5 of Table 5 and Column 4 of Table
8, respectively. Columns 1-3 report the specification number, the construction of attribute peer exposure
variables and the number of peer attribute terms (). The “Original result” column reports the conclu-
sions reached in the original paper for the corresponding null hypothesis of no peer effects. The “c test”
examines dependence operating through peers’ attributes, while the “cy test” augments the instrument
set with functions of peers’ outcomes. The columns p. and pcy report the number of basis functions used
in each test and n reports the sample size. The outcome variable is the golf score for the round. Ability;
is measured by the player’s average handicap, DrivDist; is the average driving distance, Greens; is the
average number of greens hit in regulation, Putts; is the average number of putts per round, all averages
over the previous 2-3 years. Fxp; experience is measured as years of experience. Peer exposure is mea-
sured using a weighted-average social vector, w; ¢, where each player is exposed to the weighted average
attribute/outcome of peers within the same group-tournament-round. Sample weights are given by the
inverse of the sample variance of the estimated ability of each player, in line with the original study. All
specification controls are identical to those reported in Table D1 in Appendix D.1. Tests are performed at

the 95% confidence level. Standard errors are clustered at the playing group level.



covering sales, profits, employment, assets, inputs, management practices, and networks.
The authors first examine the direct impact of the intervention and find that treated firms

' To help uncover

experienced significant and sustained improvements in performance.
the mechanisms behind these gains, the authors then focus on peer composition within the
networking groups and run a battery of peer-effect specifications that we focus on, reported
in Table D2 of Appendix D.2. By proxying peer quality by baseline employment size, Cai
and Szeidl (2017) show that firms randomly assigned to groups with larger peers achieved
faster growth across multiple dimensions, including sales, profits, management practices,

and network expansion.

4.2.2 Test results

Table 2 compares our nonparametric test results to the findings by Cai and Szeidl (2017).
Each row (i)—(xiv) reports results from a separate regression corresponding to the specifi-
cations reported in Table D2. As before, for each of the outcomes we test for dependence
operating through peers’ attributes alone (¢ test) and through both peer attributes and
outcomes (cy test). The columns p. and p., report the number of basis functions used in
each test, and n reports the sample size.

Table 2 reveals several differences between our nonparametric test results and the orig-
inal findings. Our c test agrees with the authors’ rejection of the null of no spillovers for
sales, profits, utility costs, and management practices. However, we also reject the null
for a number of specifications for which the authors find no significant peer effects. In
particular, the ¢ test detects spillovers in the number of employees, material costs, pro-
ductivity, the number of suppliers, and innovation, whereas the original linear regressions
report insignificant effects for these outcomes. Conversely, for total assets, bank loans,
reported (book) sales, and the tax-to-sales ratio, both approaches fail to reject the null of
no spillovers.

When nonparametric propagation through contemporaneous peer performance is per-
mitted in the cy test, the null hypothesis is rejected for most outcomes. The only exceptions
remain total assets, bank loans, reported sales, and tax-to-sales ratio. This pattern suggests

that peer effects in this setting operate not only through peers’ observable characteristics

HQales increased by about 8% at midline and 10% at endline for treated firms relative to control firms,
with similarly positive impacts on profits, employment, fixed assets, and input usage. Firms expanded both
the number of clients and suppliers they interacted with, increased access to formal and informal borrowing,
and improved management scores by roughly a fifth of a standard deviation.
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Table 2: Peer Exposure Design and Test Results: Cai and Szeidl (2017)

Peer exposure in attributes: w, ,EmpSize

Peer exposure in outcomes: w; ,y;

=1
Peer exposure in attributes P.eer expostre
in outcomes

Spec. Y Original result p. c test Dey cy test n
(1) Sales Reject 16 Reject 8 Reject 4,183
(ii) Profits Reject 16 Reject 8 Reject 4,076
(iil) No. of employees Do not reject 16 Reject 8 Reject 4,183
(iv) Total Assets Do not reject 16 Do not reject 8 Do not reject 4,183
(v) Material Cost Do not reject 16 Reject 8 Reject 4,148
(vi) Utility Cost Reject 16 Reject 8 Reject 4,086
(vii) Productivity Do not reject 16 Reject 8 Reject 4,183
(viii) No. of clients Reject 16 Reject 8 Reject 4,173
(ix) No. of Suppliers Do not reject 16 Reject 8 Reject 4,170
(x) Bank loan Do not reject 16 Do not reject 8 Do not reject 4,183
(xi) Management score Reject 14 Reject 7 Reject 2,774
(xii) Innovation score Do not reject 11 Reject 6 Reject 1,409
(xiii) Reported - book sales Do not reject 16 Do not reject 8 Do not reject 4,152
(xiv) Tax/Sales Do not reject 16 Do not reject 8 Do not reject 4,178

Note: Each row (i)—(xiv) reports results from a separate regression corresponding to specifications (1)—(14)
in Table 7 of Cai and Szeidl (2017). The attribute variable EmpSize; is measured as the log baseline
number of employees for each firm. The first column reports the specification number, y reports the
dependent variable. The “Original result” column reports the conclusions reached in the original paper for
the corresponding null hypothesis of no peer effects. The “c test” examines dependence operating through
peers’ attributes, while the “cy test” augments the instrument set with functions of peers’ outcomes. The
columns p. and pcy report the number of basis functions used in each test, n reports the sample size.
Peer exposure is measured using a simple average social vector, w; ¢, where each player is exposed to the
average attribute/outcome of peers within the same meeting group at time ¢. All specification controls are
identical to those reported in Table D2 in Appendix D.2. Tests are performed at the 95% confidence level.
Standard errors are clustered at the meeting group level.



but also through outcome-based spillovers. The combined new evidence points to spillovers
particularly for performance measures and intermediate mechanisms linked to information

sharing and managerial practices.

4.3 Student achievement (Booij et al., 2017)
4.3.1 Context and findings

In our third demonstration we revisit the paper by Booij et al. (2017), who study a large-
scale field experiment conducted at the University of Amsterdam in the Netherlands. The
intervention randomly assigned first-year economics students to tutorial groups. By ex-
ogenously varying group composition, this design created substantial variation to estimate
how students’ performance responds to changes in the academic environment.!?

The authors study how students’ performance (measured by the number of collected
credits) is affected by prior achievement of the peers in the same tutorial group (measured
by their secondary-school GPA). Their main results are reproduced in Appendix D, Table
D3. From columns (1) to (5), academic performance is regressed on various summary
statistics of peers’ GPA (e.g., the mean, dispersion, and their interaction), using a sequence
of increasingly rich specifications that allow for heterogeneous responses across the ability
distribution. As shown in Table D3, these linear regressions find limited evidence that peer
achievement or peer heterogeneity affects student outcomes, except for some specifications

involving higher-order interactions.'3

4.3.2 Test results

In Table 3 we apply our nonparametric test to re-examine the peer effects documented
in Booij et al. (2017). Each row of Table 3 corresponds, in order of appearance, to a
specification in Table D3. Since peer exposure variables are specification-specific, we report
them as w’c and w'y respectively. The remaining columns (e.g. original results, ¢ and cy
tests, p. and pey, the number of peer attribute terms [) follow the conventions of the

previous tables.

12Students attended weekly tutorials with the same group throughout the course, and all teaching assis-
tants followed a common syllabus, minimizing the chance that differences in outcomes could be attributed
to instruction quality.

13As clarified in Appendix D “higher-order” interactions refer to interaction terms involving multiple
variables (e.g. peer mean X peer dispersion X own GPA).
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Table 3: Peer Exposure Design and Test Results: Booij et al. (2017)

Dependent variable: Number of credits achieved

n =1,876
Peer exposure in attributes Peer exposure in outcomes
Peer exposure w'c l Original result  p. c test Peer exposure w'y  Dey cy test
(i) W] 4yeGPA 1 Do not reject 12 Do not reject  w} .,y 6 Reject
(ii) W] g GPA 1 Do not reject 12 Reject W] gl 6 Reject
l7 14 Pey,m cy test
(ili)  wj ., GPA, 2,2 Do not reject 6 Reject W, vals 3 Reject
w,aGPA W nat
(iv)  wj . GPA, 3,3 Reject 4 Reject W, avals 2 Reject
wj 4 GPA, (AR
wz(,angPA X w;,sdGPA w:ﬁ.avgy X w;,sdy
(v) ’lU;YanGPA7 6, 2 Reject 2 Reject wgya\,gy, 2 Reject
w;,sdGPAv w;,sdy
Wi 0  GPA X wj (GPA,

GPA; x w,,. . GPA,

i,avg
GPA; x w; 4GPA,
GPA; x w; ,,,GPA x w; (GPA

i,avg

Note: Each row corresponds to specifications (i)—(v) in Table 4 of Booij et al. (2017). Columns 1-3 report
the specification number, the construction of peer attribute exposure variables, and the number of peer
attribute terms (I). The “Original result” column reports the conclusions reached in the original paper for
the corresponding null hypothesis of no peer effects. The “c test” examines dependence operating through
peers’ attributes, while the “cy test” augments the test with functions of peers’ outcomes. The columns p.
and pcy report the number of basis functions used in each test. The outcome variable, student performance,
is measured by the number of credits obtained in the first year of university. The ability attribute, GPA,
refers to the vector of students’ pre-university GPA. In specifications (i) and (ii), peer attribute exposure
is measured using a weighted-average vector, w;,avg, Where each student is exposed to the average GPA of
peers within the same tutorial group. In specifications (iii) and (iv), peer exposure additionally incorporates
dispersion in peer characteristics through a standard-deviation vector, w; <4, which captures variation in
peers’ GPA within the group with specification (iv) additionally including their interaction. Accordingly
the third column now reports [,£ and the second last column the recommended peym, from (A.5). In
specification (v), the peer exposure terms in (iv) are further reweighted by individual GPA, interacting
peer exposure with the student’s own GPA to allow the strength of spillovers to vary with academic ability.
All specification controls are identical to those reported in Table D3 in Appendix D.3. Tests are performed

at the 95% confidence level. Standard errors are clustered at the tutorial-group level.



The comparison with the results by Booij et al. (2017) reveals a divergence between
our nonparametric test and the authors’ original findings. Our ¢ test rejects the null in
specifications (ii) and (iii), whereas the original regressions detect no significant linear
peer effects. The other results, for specifications (i), (iv) and (v) are consistent with the
authors’ conclusion. Our cy test additionally detects spillovers in specification (i), while the
original results of the authors detected no significant spillovers. Overall, our tests suggest
that dependence arising from peer academic composition may operate in nonlinear ways

that a linear model does not fully capture, but are approximated by polynomial terms.

5 Conclusion

Cross-unit dependence has long been recognized as a central concern in economics, reflect-
ing both fundamental identification problems and first-order implications for econometric
inference (Manski, 1993; Conley, 1999). This paper proposes a novel nonparametric test
for spillovers operating through peers’ attributes and/or outcomes, and provides a full
asymptotic theory for it. The test has several appealing features. First, it only requires
estimation under the null hypothesis of no spillovers, thereby avoiding nonparametric esti-
mation altogether. Second, it is versatile, accommodating a wide range of data structures,
including settings in which the interaction structure is incomplete or measured with error.

Our approach complements existing methods by offering a simple diagnostic to assess
whether cross-unit dependence is present and whether linear approximations are likely to
be informative. We illustrate its usefulness through three empirical applications, which
suggest that the test can uncover forms of cross-unit dependence that are missed by stan-
dard specifications. More broadly, our results emphasize that modeling choices regarding
spillovers and interference can be guided by empirical evidence, rather than imposed a

priori through restrictive functional or informational assumptions.
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A Extensions

A.1 Heterogeneous cross-unit dependence

It is straightforward to extend our method to allow for multiple channels of cross-unit
dependence, i.e. multiple social weight matrices, but we present our theory for the single

channel case in (2.1) for notational simplicity.'* Indeed, suppose that we have ¢ channels

of social dependence, each encoded in a weight matrix Wy, h = 1,...,£. Then we can write
the model
‘ ¢ 1
h=1 h=1j=1
where fj,(+) and gp;(+) from R to R are £(I+1) unknown functions and Wy, = (wp1, - .., wp)’

are social weight matrices that are either fixed or exogenous and have zero diagonals,
h=1,...,0and j=1,...,[. The null of interest is then

Ho : fn(s) =0and gp(s) =0, h=1,...,¢, j=1,...,1, (A.2)

for all s € support(s).
This can be approximated by series approximations exactly as in (2.5) and (2.6) albeit

with more subscripting, as we now show. Now we have the approximations

Z/’thzwz +Tfh ghj Z/’Lg}”iwl —"_Tghj()h:la-"veajzlv'-'ah
(A.3)

. / /
with pip = (g fps s Bfeds -5 Bfp) s Hg; = (Nglj,17 v+ Mgijps Hgels - - v“gz]m)
vectors of unknown series coefficients and ry, (s), rg,.(s) approximation errors. We define

our approximate null hypothesis as
Hoa iy =0 and pg, =0, j=1,...,1, for some f3. (A4)
/
Now, define the n x 1 vector Yy, i(y) = (Q,Z)Z(w;l 1Y)s - i (wh, ny)) and the n x 1 vectors

/
Ty, (cj) = (W(wg’lcj),...,wi(wg’ncj)) , for each : = 1,...,p, h = 1,...,f and j =

Social interaction models with multiple social weight matrices have been characterized under a range
of alternative assumptions (Hsieh and Lin, 2017; Arduini et al., 2020; Comola, Dieye, and Fortin, 2025).
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1,...,l. Next, concatenate these to write Ty, as before. This is now an n x ¢ matrix,
where g = pl(I + 1). We can now proceed as before in the £ = 1 case with these objects as
the test statistic building blocks, noting that now we recommend

1/3
Dey,m = Z—i—l]’ both ¢ and y spillovers. (A.5)

A.2 Embedded graphs

We now consider a setting in which the observed social matrix is generated by an embedded
graph model rather than treated as exogenous. By embedding the observed graph into a
latent social space, we interpret it as a noisy measurement of an underlying latent structure.
This reframing is particularly valuable in applied work, where social interaction data are
often incomplete or measured with error, yet the latent structure remains informative to
the researcher. When social interactions are mis-measured, our approach interprets these
errors as small perturbations relative to the structurally generated network. We then derive
formal conditions under which such perturbations are asymptotically negligible, ensuring
the validity of inference based on the observed data.

Let us assume the researcher observes a network encoded by the n x n matrix W(k, z),
the elements wj;(k, 2o, 2;) of which are indicator functions that take the value unity if
the unknown parameter vector Kk € £, and the observed covariate vector z, and latent
vector z; satisfy some prescribed condition. This specification encompasses standard net-
work formation models with link functions that permit consistent estimation of k, such
as exponential link functions. The interpretation is that the adjacency matrix W (k, 2)
represents an embedding of the graph in a latent social space, rather than a fixed object
observed without error. Such formulations generalize link formation based solely on ob-
served covariates to settings where proximity in latent space governs tie formation, see for
example Breza, Chandrasekhar, McCormick, and Pan (2020) and Lubold, Chandrasekhar,
and McCormick (2023).

Accordingly we assume that, conditional on the latent variable vector z;, the researcher
has access to estimates w;; = w;; (R, z0), where & is some estimate of the parameterization
of the link function that defines the probability of w;; = 1 as a function of &, z, and z.

Furthermore, we assume that there exists a sequence s,, = s — oo such that

17—kl =0p (s, (A.6)
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and that this rate of convergence carries over to the maximum row-sum of W (%, z) —

W(k, z), i.e.

n

' slup Z (ij — wij) = Op (s71) . (A.7)
j=1,..n

This condition is motivated by the observation that adjacency matrices require some
control over their norms to limit dependence to a manageable degree. Row and column
summability is a typical assumption. Indeed, if w;;(k,z) were a differentiable function
in k we could use the mean value theorem to write w;; — w;; = %f(:’z) / (k= k) for
an intermediate point & and obtain (A.7) if we assume row-summability of the derivative
matrix, i.e. .

sup sup Owig (k. 2)
j=1,.n ke = 0K

= Op(l)a

uniformly in z. Of course in our case w;; and w;; are non-differentiable because they are
indicator functions, hence the condition (A.7). For example, if each unit only has a fixed
number of neighbours, as in a ‘k nearest neighbours’ setup, then (A.7) will be satisfied as
long as

Wi; — wij = Op (8_1) , (A.8)

because the sum on the LHS of (A.7) will have only a fixed number of non-zero summands.
Now, for each i = 1,...,p, define the n x 1 vector Tf,i(y) = (i(Why), ..., Yi(why))

and the n x 1 vectors ngﬁ-(cj) = (Yi(dc)), ..., (), where ; has elements 0,
7 =1,...,n, and write
Tro= (Tr) o T Taile) o Taplen o Taila) . Top),

which is an n x ¢ matrix, where ¢ ~ p asymptotically. Then, we can apply our test as long

as the estimates w;; satisfy
|72 gy = 02| = 0p(), (A.9)
conditional on z;. The squared LHS of (A.9) is bounded by a sum of ng terms of the type
_ . 2
n1 (@D (w’ﬁ) — ) (w'f)) , (A.10)

where we omit subscripting for brevity and let ¢ denote a generic observed n x 1 vector
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with components ¢; such that £; = Op(1). Assuming that the generic basis function 9(-) is
differentiable with derivative ¢/(-) and E(z'(x))? < C, with C' a generic constant, we use
the mean value theorem and (A.7) to observe that (A.10) is

n~ ' (2)? (b — w)/f)2 = 0, (n")- (Z (w; — wi)€i>

=1
n 2
_ 0, (z (o, - wo)
=1
= O, (sn7"), (A.11)

where '/ < 7 < w'f and ; and w; are elements of the n x 1 vectors 1w and w, respectively.

Then we conclude that
. 2
Hn_1/2Tf7g — n_l/sz,gH =0, (ps_Z) , (A.12)

so that (A.9) holds if p'/2s~1 — 0.

B Proofs of Theorems

B.1 Preliminary results

Theorem B1. Under Assumptions 1-4, under Hoa in (2.6), for p3/n — 0 as n — oo,

fi-d] =0, (%) 5.1

Proof. We first establish a preliminary bound. Let 14(¢, j) be and indicator function that
takes the value 1 when ¢ and j are in the same cluster g and zero otherwise. Observe that,

by Assumptions 1, 3 and m ~ p,

n G
E Hn_lZleH2 = n2 ZO‘ZZ]E 2% +n2 Z Z 14(4, j)oij Bz, 2jg
i=1 g=1 i#j

. 5 G o 9\ 1/2 9\ 1/2
< Knlmean Y3 10000 (Ellgl?) (B ll?)

g=1 i#j
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= Olp|nt4+n? an =0 (pn"), (B.2)

where the last equality follows because n =2 25:1 ng =0 (n_QG) =0 (n_l), recalling that

Supy—1,. g Mg < K and so G and n have the same asymptotic order. Thus, by the Markov

-----

inequality,
_ p
2| :op< n) (B.3)
We also note that, under Assumptions 2, 3 and 4,
A 1 1 A
B - BH = H (X’PZX> ~X'Pge|| = O, (‘ 2< ) : (B.4)
n n n
Let R = (r(w}y),...,r(w,y))" be the n x 1 vector of approximation errors in (2.5) with
R; = r(w}y). From the 2SLS expression for B—pin (B.A),
7 2 ! ! -1~y 2 !
d=— EUPZ (I - X(X'"PzX) ' X'Py)e— HU7DZR
2 2
= EU’PZ (I -PzX(X'PzX) ' X'Ps) Pze— EU’PZR
2 . R O SO . 2.
== SJNVR (1= NN (MUY NN ) N 27~ 2N 2R
n n
= 2N 2R N2 7 - gj’M—lz’R, (B.5)
n n

A~ N “ A N—=1 . .
where Kyy = <I ~ M~Y2N (N’M—1N> N'M—l/Z).
From (2.9), we write
|- <

2. . R . 2 2 . .
ZIM VPR Ny M Y22 e — Z 7 M2 M2 7| + HJ’M—lz’R
n n n

.

(B.6)

Subsequently, denote Ag = A — B for conformable A and B. Then, via some standard
albeit tedious algebra, the first term on the RHS of (B.6) is bounded by

1
7

a3l )

r—1
+ 11| agrs

1
HZ’&
n
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Under Assumption 4, we have

A N 1
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n
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Also, under Assumptions 3 and 4,
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and similarly, under Assumptions 3 and 4,
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(B.7)

(B.8)

(B.10)

Thus, upon recalling (B.3), the first term at the RHS of (B.6) is observed to be
O, (n_1p3/2). The second term at the RHS of (B.6) is instead

2. 1 »
22w = o, (LIRI121) = 0,6

(B.11)

where the first equality at the RHS of (B.11) follows under Assumptions 3 and 4. The
second equality follows since ||Z|| = O,(y/n) under Assumptions 3 and 4, and each com-
ponent of the n x 1 vector R is Op(p~") by Assumption 3, and hence ||R|| = Op(v/np™").
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The last equality in (B.11) follows from Assumption 3.
Under Assumption 4, the first term in (B.6) dominates the second one as long as v

satisfies n/p”T3/2 = o(1) as n — oo, which holds under Assumption 3. O

Theorem B2. Under Assumptions 1-4, v > 5/2, under Hoa in (2.6) and p*/n = o(1),

S — md’H;ﬁ;j—q =o0p(1), as n — oc. (B.12)
Proof. We can equivalently prove
dHYd—dH'd=o0, <\{f) : (B.13)
Write the LHS of (B.13) as
(d- d)/ﬁ‘ld+ AH N d—d)+d T (0 - 17) B, (B.14)

which has norm bounded by

a2 ]+ o o=+ 5 e

S [T e

From Theorem B1, AgH =0, (n_1p3/2). Under Assumptions 3 and 4, and from (B.2) we
have ||d|| = O, (x/p/n). Also, from Theorem Bl,

il < o] - 1an=o, (42). e

where the last equality is due to p?/n = o(1). Also, under Assumptions 1, 3 and 4,
Hﬁ*IH = Op(1) and |[H'|| = O,(1). Thus, the first and second terms in (B.15) are

O, (p?/n®/?), and these are o, (p'/?/n) if p*/n = o(1).

Using 2SLS estimates for 5y and proceeding as in (B.5), we can write
N PO o ~ ~ ~ ~ ~ o 4 ., - A ~ N ~
H =4 M 2Ry M Y2OM V2R Ny M2 0 + =T MV 2Ky MYV2 72 e R ZM YT
n

4 ., - ~ A
+—J M YZ'RR'ZM~'J (B.17)
n
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where & = Z'3Z /n, with ¥ being an n x n block-diagonal matrix such that its g-th block

3, has elements X,;; = €;4¢j,. From (3.6), we write

HAEH < j/M_1/2’€NMM_I/Q(i)M_l/QICNMM_l/ZJA

—J’M*l/QicNMMfl/QcI)M*/?/cNMM*l/QJH

By standard algebra, the first term in (B.18) is bounded by

+ J’ AR M V272 e R ZM || +

éj’zfrlZ’RJ-‘{’ZJ\Z*j
n

'. (B.18)

JINeNS - J’M’1<I>M’1JH

+ | N (N’M*lz(f) N'MYON T - M 1N)‘1N’M1c1>M1JH

n o~ N ~ A ~ -1
+ | N (N’M‘1N> NN NN (NN ) NN
— JMTIN (N'MIN) TN M e N (VN T N ML

We provide details for the first term in the last displayed expression, the others following
similarly. Specifically,

r—1
+ 11| ad=

A, A ~ A~ ~ 2 ~ 2
JNYeNLT — J’M—1<I>M—1JH < HMH HM—1H

=2 ) = asd

1]

I el || adi e a7 (B.19)

Under Assumptions 3 and 4, most terms can be handled as in the proof of Theorem B1,

A%:i = Op(p/+/n) and HAﬂ = Op(p/+/n). Focusing instead on HA% , observe

and ’
that
[ 3] < ] + a3

(B.20)

with @ = Z’$Z/n. The first term in (B.20) is HZ’A%Z/n

, where the m x m matrix

Z’AgZ/n has typical element n~! EZj:l 290:1 tijrsg (€ig€jg — Tijg) Where we write t;j,49 =
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14(%, J)Zirg2jsg- This typical element has zero mean and variance

G

- Z Zt”rsyalgajg +n - Z thzrsg ;19) =0 n72 an =0 (nil) )

i,5=1g=1 =1 g=1 g=1
(B.21)

under Assumptions 1 and 3 and, since, m ~ p we therefore HA%H = Op(p/+v/n). The
matrix in the norm in the second term in (B.20) has mean zero and the second moment
of its squared Euclidean norm is bounded by K¢m?/n? = O (p2 / n) under Assumptions 1,
3 and 4, rendering it Op,(p/+/n) and thus HA%H = Op(p/+/n). We then conclude (B.19) is
Op (p/+/n). Similar steps yield that the first term on the RHS of (B.18) is O, (p/v/n).

By similar arguments to those that led to (B.11), under Assumptions 3 and 4, the
second term in (B.18) is bounded by

1
KHZ/G
n

~0,(05) e

which is negligible compared to the first term in (B.18) since n/p*1/2 = o(1), under
Assumptions 3 and 4. Similarly, the third term in (B.18) is O,(np~2"), which is negligible
compared to the first term since n?/2 /p?**1 = 0(1) as n — oo, under Assumptions 3 and
4. We conclude that

|af| =0, o/vin). (B.23)

By Assumption 4, the last term in (B.15) is thus O,(p?/n%/?), given ||d|| = O,(1/p/n) and
HdH = Op(y/p/n). Hence, the second term in (B.15) is op(,/p/n) as long as p®/n = o(1),
concludlng the proof.

O

B.2 Proofs of main theorems

Proof of Theorem 1: Observe that under the clustered error dependence structure in As-
sumption 1, we can write €; = Zle birny, where n, are i.i.d. mean zero and unit vari-
ance random variables and the b;. < K are finite constants that are non-zero only for
the group that observation ¢ belongs to. Then we have Eejge;r = 0 for g # ¢’ and
Eeigejg = Z:il birbjr. Thus, we have 0y, = Z?il birbjy for i # j and afg =S b2

r=1 "ir:
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Because ny are finite and fixed, clearly only a finite number of the b;,. are non-zero for any
given i or 7. Thus we have sup,_; _, > i"; |bir| +sup;—1 > iy |bir] < K. Upon writing
€ = Bn, where 7 is an n x 1 vector with elements 7, and B is an n X n matrix with elements

b;r, we observe that

2
d=—=JMYV2KNyM~Y2Z'By. (B.24)

n
In view of Theorem B2, we know that S — MH;\/T:FQ = 0,(1) and therefore it is sufficient

to show that MH*\/;—;CI_Q L\ N(0,1), which by (B.24) boils down to showing that

'B'G By —
M2 2209 4 No,1), (B.25)
V2q

where A A
G == ZM PRy M PIH T T MYy M2 = 2 7,
n n
say, where o = n M~ Y2 Ny MY 2JH LT M2 gy M—1/2,
Theorem A.1 of Gupta, Qu, Srisuma, and Zhang (2025) applies if

eigd = Op(1) and (eig9) ™" = 0,(1), (B.26)

and

gij = Op(p/n) and Y g7, = Oy(p/n), (B.27)
i=1

uniformly in ¢ and j. The conditions in Assumption 3 ensure that (B.26) holds. To check
(B.27), observe that

4
9ij = -2z = Op (|Izillllzll/n) = Op(p/n)

and
", 16, o, 16 , -
D g = e | Dz | oa = ad Mz = O, (|ailll1z]l/m) = Op(p/n).
j=1 j=1
as desired. Then (B.25) follows by Theorem A.1 of Gupta et al. (2025). O

Proof of Theorem 2: Let v = (i/, 8'). Corresponding to d = dQ/d~ defined in (2.8) under
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Hoa, we now define the unconstrained gradient vector, (p + k) x 1, dy as

du (1, B,y) = —%U’Pz (y — XB), (B.28)

where dir(0gx1, B, y) = d defined in (2.8).

We partition ,J = n U as J = (E,N), where Z and N are m x ¢ and m X k,
respectively, with a similar partition for its expected value J = (£, N). Also, we define the
(¢ + k) x (¢ + k) matrix D =92 Q /00, such that the first ¢ x ¢ block is given by

2

Duy = =05 PyTg=22'M7'2 (B.29)

the block 1-2 (or the transposed of 2-1 block) is the ¢ x k matrix

A A~ 2 A N
Dio = Dy = [Ty P2 X = 2=/ M~IN (B.30)

and the 2-2 block is the k£ x k£ matrix

. ) A N
Dyy = “X'"PzX =2N'M~'N. (B.31)
n

Under Assumption 3, || D|| = O,(1) and lim inf,, eig (ﬁ) > 0 with inverse defined and

partitioned in the usual way. Also, D does not depend on any unknowns. In line we our
previous notation, we also define the corresponding limit quantities as Dy = 25'M 1=,
Dy = D/21 =Z'M~'N and Doy = 2N'M~IN.

From standard algebra, by the mean value theorem (MVT), given d in (2.9),

- 009 09 Ao
dp: ? . = F +D12(B_/80)
Fol(01xq.87) Fol(01q.8)
0Q 0Q ..
(lequ/)/ (leqvﬁ(/))/
Thus,
. . 99 . N
dp = (Iq; —D12D2_21> g’é = (Iq; _D12D2_21) dU(qulaBO)
98"/ 1(01xq,8))

= (Iq; —Dlgbgzl) d~(,80) (B33)
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according to the definition in (B.28) and (2.8), and with I, denoting the ¢ x ¢ identity

matrix. Hence, given H in (2.10),

n‘%ﬁndp = ndy (0gx1, 80) Vi (0gx1, o), (B.34)
with
- < o ) 1" (1, ~Diaby}). (B.35)
—Djy; Doy
Thus,
nd H™'d = nd, H"d, = ndy (0gx1, Bo)'Vdu (0gx1, Bo) (B.36)

However, under H14, JU(qul, Bo) is no longer evaluated at the true parameter value

as po # 0. By MVT around pg, we can write

du(Ogx1, Bo) = du (o, Bo) — Wﬂo = dy(po, Bo) — T, (B.37)

with i being intermediate point such that || — po|| < ||o] and 7 being the ¢+ k x 1 vector

defined as ~
o 8dU(laa BO)
F= 22U PO
op

Similarly to (B.2) and (B.11),

2 a A1
Lo = HU/PZTJC’QMO = J’MﬁlE,u(). (B.38)

|
"y (max (\/g w)) _ 0o, ( i) (B.39)

for v satisfying /n/p”+'/? = o(1), which holds under Assumption 3, and ||7]| = O,(1) and

non-zero, since g # 0.

ldur (o, Bo)ll K[| 11|22~

1
'Z/e
n

PP 1
+ KL 2R

We furthermore define the unconstrained version of H evaluated at generic parameters’

value as

Hy(p, B) = 4J' M~ Qu (n, B)M 1, (B.40)

partitioned in the usual way, where Qp is defined according to (3.12). We also define
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its limit quantity Hy(po, Bo) = 4J'M1QM~1J, where, as previously defined, Q =
n~'E(Z'SZ) and ¥ is the n x n block-diagonal matrix with n, x n, diagonal block given by
Y4,9=1,...,G. Similar to earlier calculations in the proof of Theorem B2, under Assump-
tions 3-5, ||Hy (u, B)|| = Op(1), uniformly in (u, 8) and liminf, efig(ﬁU(,u,B)) >c >0,
uniformly in (i, 5) and almost surely.

Clearly, H = fNIU(O,B). We can apply the MVT to H~! around the true parameters’

value and obtain

- _ 0H 8 _
A~ =H; (Mo,ﬁo)JrZ El(ﬂ,ﬁ)TM?kumH&l(ﬁ’ )Hoj
=1
k- ~
5 ) ~ . B
_Z o' (i3, B) 853 a2y (8, B) (B — Bor) = Hy ' (po, o) + T, (B.41)

where i and j are intermediate points such that || — uol| < ||l and ||3— 8ol < |18 —Bol-
Under Hoa, ||T|| = Op(\/p/n). Under Hia, poj # 0 for some j = 1,...,p and, since B, for
t =1,...,k are restricted estimates, 8; — Bor = O,(1) for some t = 1,..., k. Thus, under
Assumptions 3-5, ||T|| = O,(p) and liminf, , eig(T)) > ¢ > 0. By partitioning 7" in the
usual way, we obtain ' = I:I}Jl (1o, Bo) + T11. Also, let

- I - o
V(po, o) = ( R ) A (w0, 80) (I ; ~Di2Dy) (B.42)
_D22 Doy
and
W = Iq T11 (I 3 —f)lgf)_1> . (B43)
—D;21D21 q> 22

From (B.37) and (B.41), (B.36) becomes

nd, Hd, =ndy (110, Bo)'V(io, Bo)du(po, Bo) + 2n7'V(po, Bo)du(pos Bo)
+n7V(po, Bo)™ + ndy (po. Bo) Wdu (1o, Bo)
+ 2n7'Wdy (o, Bo) +nt'Wr, (B.44)

and thus

”‘%Hlldp —q  ndy(po, Bo)'V(uo, Bo)du(po, Bo) — ¢

@2 (29)1/2
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+ \/\/557/1}(#0’ Bo)du (1o, Bo)

+ J%T/ﬁ(uo7 Bo)T + \/LTQCZU(MO, Bo) Wi (10, o)

Von s s no,x
—_— — B.4
+ \/a T WdU(:an 60) + \/%T Wr ( 5)

By a similar argument adopted in the proof of Theorem B1, we can show ||cZU(,u0, Bo) —
du| = Op(p*/?/n), with dy = —2/nJ'M~Z'¢ and d, = (I;; —D12D5, )dy. Also, we can
show

HEM&%FHﬂ=%<$>, (B.46)

such that, under Assumptions 3-5, | H}! (10, Bo) — H{|| = Op (p//n). We show the claim

in (B.46) by routine arguments as in (B.19) and (B.20), after observing that Hy (1o, Bo) =
4J' M 1®rM~1J, with &p = & + S ziziR?/n, and

p 2 1
=0p|—F= )+ sup R} ||M
(22) + oo 2 a1

~0, (L) +0,) = 0, (L), (3.47)

where the last equality follows for v satisfying \/n/p?*T! = o(1), which holds under As-

sumption 3.

. . noIR?
] < g

After showing, similarly to what done in the proof of Theorem B2, that

du (o, Bo)V(ko, Bo)du(po, Bo) — dyHit dp = op <\7/f> : (B.48)

we conclude that the first term in (B.45) is Op(1), as shown in Theorem 1. By standard
norm inequalities, the second term in (B.45) is Op(y/n), the third is Oy(n/,/p), the fourth
is Op(p*/?), the fifth is O,(py/n) and the sixth is Op(n,/p). The last term dominates the
former five ones and thus, under Hi 4, for all n > 0, P (|S|™! <n/n/p) — 1 as n — oo

and hence consistency of S follows. O
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C Auxiliary lemmas

Lemma C1. Let p?/n — 0 asn — oo and suppose that Assumptions 2-4 hold withv > 3/2.

Then, as n — oo,

|31 - M| =0, <\5ﬁ> j-iJ|=o, (%) (B.1)

Proof of Lemma C1: This is Lemma 1 in Gupta et al. (2025). O

Lemma C2. Under Assumptions 1 and 3,

lim sup eig(®) < co and liminf eig(P) > 0.
n—oo ——

n—oo

Proof. Let x be a non-stochastic m x 1 vector with ||z|| = 1. Then

¢ ®r =E (2'n ' 2'SZz) <E(2/n 12 Zeig(X)z) = (2' Mz)eig(L) < eig(M)eig(L),

uniformly over z such that ||z|| = 1. Then the claim for eig(®) follows by (3.1) and (3.2).
The proof of the claim for eig(®) is similar. O

D Original results

In this section, we reproduce and detail the original empirical findings from Section 4.
These results serve as a reference for comparison with our nonparametric test results,
allowing readers to assess how our procedure extends the original analyses. Here we retain
Roman numeral column numbering to differentiate these tables from the test tables in the

main text and to facilitate cross-referencing.

D.1 Professional golf tournaments (Guryan et al., 2009)

Table D1 reproduces the estimates in Guryan et al. (2009), who study peer effects in
professional golf tournaments. Column (i) reports the authors’ baseline regression results

from estimating the following equation:

Yiar = o + BAbility; + yw) . Ability + S + €ir, (B.1)
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where y; 4 denotes the score of player 7 in group £, round r, and tournament ¢. Player
performance depends on own ability, Ability;, measured by the corrected handicap score,
and on peer ability, summarized by the covariate social exposure term wg’trAbility. Let
w denote a peer-weight matrix defined over the stacked player—group-round—tournament
observations, with generic element wj; ;- ; indicating the relevance of player j for player i
within the same playing group at round r, and tournament ¢. The vector w;s denotes
the row of w corresponding to observation (i,7,¢) and collects the weights assigned to
player i for all other players in the same group. Ability is a vector compiling the average
handicap measure of each player over the last 2-3 years.'® Accordingly, wff’trAbility =
Zj 4 wy ¢, j Ability, ; denotes the weighted mean ability of peers faced by player ¢ in a
given round and tournament. The coefficients 5 and v capture the effects of individual and
peer ability on playing scores, respectively. The term d;. denotes tournament-by-category
fixed effects, and €; 4, is an idiosyncratic error term.

Column (ii) considers alternative measures of playing partners’ ability that may influ-
ence performance through different channels. Specifically, they replace partners’ handicap
with measures such as driving distance, number of putts, and greens hit in regulation, which
help distinguish potential “learning” effects from pure “motivation” effects.'® In Column
(iii) the authors also include interaction terms allowing peer effects to vary with a player’s
own ability (measured on the basis of the corrected handicap) and experience.

Overall, these results based on linear specifications find limited evidence of peer effects
in individual performance. None of the peer coefficients in specifications (i) and (ii) are
statistically significant, while in (iii) some evidence of heterogeneity emerges. Interacting
average peer ability with own experience yields a small but statistically significant effect:
for a player with one year of experience, a one-stroke increase in average partner ability
decreases the player’s score by about 0.02 strokes!”, indicating sensitivity to competitive
pressure early in the career. As experience increases, players become progressively less
sensitive: the initially negative peer effect fades out around 2-3 years of experience and
eventually reverses, so that more experienced players perform better in stronger competitive

fields and worse in weaker ones.

5To construct the individual Ability variable, the authors use scores from the previous three years for
2002 data and scores from the previous two years for 2005 and 2006 data.

16The intuition is that players may learn about wind or course conditions from observing another player’s
putting, but cannot directly learn to drive longer; the driving-distance coefficient thus captures the moti-
vation component net of learning.

17 A back of the envelope calculation using the coefficients in column (iii) of Table D1.
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Table D1: Original results by Guryan et al. (2009)

Dependent var. (i) (it) (iii)
Ability; 0.672*** 0.656™"*
(0.039) (0.039)
w} 4, Ability -0.035 -0.036
(0.040) (0.040)
DrivDist; -0.009
(0.004)
w; ¢ DrivDist 0.003
(0.004)
Putts; 0.130***
(0.030)
w4 Putts -0.045
(0.039)
Greens; -0.682***
(0.050)
wé’trGreenst -0.023
(0.060)
Ability; X wj ., Ability 0.081
(0.033)
Ezxp;: 0.019**~
(0.004)
Expit X wi ., Ability 0.015**
(0.005)
Tournament x category fixed effects v v v
n 17,492 17,182 17,492

Notes: Regression results in Columns (i) and (ii) replicate Columns (1)
and (5) from Table 5 in Guryan et al. (2009). Column (iii) replicates
Column (4) from Table 8 in Guryan et al. (2009). The dependent vari-
able is the golf score of player 7 in a given round. Ability; denotes player
i’s ability, measured by the average handicap score of the last 2-3 years.
w4 Ability = Z#i wi,r, 5 Ability; denotes the weighted average ability of
player i’s peers j. Column (ii) includes additional ability measures such
as driving distance (DrivDist;), number of putts (Putts;), and greens
in regulation (Greens;), along with their peer analogues wj ;. DrivDist,
wj ¢ Putts, and wj ;. Greens, constructed analogously using the weights in
w;,¢r. Column (iii) further includes interactions between own ability and
peer ability, Ability; X w; ;. Ability, and between experience and peer ability,
Exp; x wj ., Ability, where Exp; denotes player experience. All specifica-
tions include tournament-by-category fixed effects. Standard errors clus-
tered at the playing-group level are reported in parentheses. Observations
are weighted by the inverse of the sample variance of the ability measure,
following Guryan et al. (2009). *p < 0.10, **p < 0.05, ***p < 0.01.



D.2 Network expansion and firm performance (Cai and Szeidl, 2017)

In what follows, we replicate the peer-quality specifications of Cai and Szeidl (2017), which
relate firm performance to the baseline employment size of other firms in the same meeting
group. Specifically, Table 8 in Cai and Szeidl (2017) estimates the following model on the

sample of treated firms:

Vit = a+ 6Post;; + 'ng’tEmpSize + 2B+ 0; + ey, (B.2)

where y;; denotes a generic measure of firm i’s performance at time ¢. The vector w;
denotes the peer-weight vector associated with observation (i,t) and collects the weights
assigned to other firms in the same meeting group. Let w denote the peer-weight ma-
trix defined over the stacked panel of firm-time observations, so that w;; corresponds to
the row of w associated with firm ¢ at time ¢. The vector EmpSize collects firms’ base-
line log employment sizes, measured prior to the intervention, such that w£7tEmpSize =
Zj 4 w; ¢ jEEmpSize; captures the average baseline employment size of firm 4’s peers at
time t. The term z; collects firm-level control variables (including size category, sector,
subregion, and their interactions); ¢; are firm fixed effects; and ¢;; is an idiosyncratic error
term.

Panel A of Table D2 focuses on standard performance outcomes. Column (i) shows
that larger peers are associated with higher sales: the estimated coefficient implies that
being randomized into a group with peers with a 10% increase in average peer size raises log
sales by about 1%. Column (ii) also finds a statistically significant effect on profits (around
RMB 27,800). In contrast, the estimates for employment, total assets, and productivity
are non-significant. Materials and utility costs (v and vi), however, respond positively and
with magnitudes comparable to the sales effect, consistent with higher scale of operations
rather than changes in measured productivity.

Panel B turns to intermediate outcomes and potential alternative channels. Here,
log peer size is positively and significantly related to the number of clients and to the
management score (viii and xi), while effects on the number of suppliers and bank loans
are small and not statistically significant. The final two columns—differences between
reported and book sales, and the tax-to-sales ratio—show coefficients close to zero, which
is reassuring for concerns about differential misreporting or tax evasion. Overall, the
pattern in Table D2 suggests that being matched with larger peers raises firm scale and

improves some management practices, without clear evidence of changes in tax behavior
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or accounting practices.

Table D2: Original results by Cai and Szeidl (2017)

Panel A: Main performance measures

log Profit log Number log Total log Material log Utility log

Dependent var.
Sales (10,000 RMB)  of employees assets cost cost Productivity

() (if) (iii) (iv) v) (vi) (vii)

wgytEmpSize 0.105%** 27.825%* 0.043 -0.016 0.100* 0.141%** 0.029
(0.040) (13.432) (0.032) (0.034) (0.052) (0.042) (0.020)

Firm demographics v v v v v v v
Firm fixed effects v v v v v v v
n 4,183 4,076 4,183 4,183 4,148 4,086 4,183

Panel B: Intermediate outcomes and alternative explanations

log Number  log Number log Reported -

Dependent var. Bank loan ~ Management Innovation Tax/sales
of clients of suppliers log book sales
(viii) (ix) (x) (xi) (xii) (xiii) (xiv)

w; , EmpSize 0.068** -0.001 0.017 0.162%** 0.027 0.022 -0.001

(0.032) (0.030) (0.016) (0.027) (0.017) (0.014) (0.001)
Firm demographics v v v v v v v
Firm fixed effects v v v v v
n 4,173 4,170 4,183 2,774 1,409 4,152 4,178

Note: Results originally presented in Table 8 from Cai and Szeidl (2017). Regressions only use data for
treated firms. The term wj;EmpSize is the average baseline log employment of other group members.
Firm demographics are size category, sector, subregion, and their interactions. Standard errors clustered
at the meeting group level in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01.

D.3 Student achievement (Booij et al., 2017)

Table 4 of the paper by Booij et al. (2017) reports five regression specifications of growing

complexity, linking peer-group composition to first-year credit completion. These results,

which serve us as basis for the tests in Table 3, are reproduced here below. For exposition,

we discuss the fully saturated specification of column (v) which nests all other models.

Precisely, Equation (B.3) allows peer effects to operate both directly, through z)~, and

heterogeneously with respect to own ability, through the interaction GPA; z}n.
Z; = (w' GPA, w;,SdGPA, (W} .o GPA) x (wgysdGPA))/.

1,avg 1,avg

(B.3)

Yig = a + z;y + GPA;zim + x5 + €ig.

where y;, denotes the academic outcome of student 7 in group g, measured by the
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number of credit points obtained during the academic year. Peer academic exposure is
summarized by the vector z; = (w],, ,GPA, wj GPA, (w],,GPA) X (wéysdGPA))/
where w denotes a peer-weight matrix with generic element w;; indicating the relevance
of student j for student ¢ within group g. The vector w; denotes the ith row of w and

collects the weights assigned by student ¢ to all other students in the group. Accordingly,

/

wi,avg

GPA and wanGPA denote, respectively, the mean and standard deviation of peers’
GPA, computed using the weights in w;. The coefficient vector ~ captures the direct
association between peer academic characteristics and student outcomes, while 1 allows
these associations to vary with the student’s own prior academic performance, GPA;. The
vector z;4 contains additional individual- and group-level control variables, « is a constant
term, and €;, denotes an idiosyncratic error term. The term x; includes randomization
controls (GPA category, math track, cohort, application order) alone or combined with
student demographics (gender, age, professional college attendance) and individual GPA.

Table D3 presents the results from five progressively augmented specifications linking
peer-group composition to first-year credit completion. Columns (i)—(iii) include only main
effects of peer GPA moments and yield statistically insignificant estimates. Omnce the
interaction between peer mean GPA and dispersion is introduced in column (iv), both
mean peer GPA and the mean—SD interaction become statistically significant, while the
dispersion term remains negative. Finally, column (v) includes high-order effects allowing
peer effects to vary with students’ own GPA, and again concludes for statistically significant

effects.
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Table D3: Original results by Booij et al. (2017)

Dependent var.

(i) (iii) (iv) (v)

w), . GPA

1,avg
/
w; qGPA

(] 0y GPA) x (W) ,GPA)

1,avg

0.048  0.070  0.095%*  (.148%**
(0.041)  (0.043) (0.046)  (0.052)

-0.095  -0.121*%  -0.185**
(0.073)  (0.063)  (0.082)

0.423%%  0.343*
(0.176)  (0.190)

GPA; x wgyangPA -0.117F**
(0.042)
GPA; x wgysdGPA 0.104
(0.075)
GPA; x (wgyangPA) X (wé,sdGPA) -0.287**
(0.138)
Controls
Randomization v v v v
Background v v v v
GPA; v v v v

Note: Results originally presented in Table 4 of Booij et al. (2017). The dependent
variable is the number of credit points collected by student 7 in the first academic year.
The term w;"*GPA denotes the mean GPA of student ¢’s peers, and w; .¢GPA denotes
standard deviation of peers’ GPA. The interaction terms capture complementarities
between peer mean GPA and peer GPA dispersion, as well as heterogeneity with
respect to student i’s own prior academic performance, GPA;. All regressions include
randomization controls (a saturated set of own GPA category, advanced math track,
and cohort dummies interacted with application order). Background controls include
gender, age, and an indicator for professional college attendance. Standard errors
clustered at the tutorial-group level are reported in parentheses. n = 1,876. *p < 0.10,

**p < 0.05, ***p < 0.01.
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