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Abstract

We propose a novel nonparametric test for cross-unit spillovers that may operate

through peers’ attributes, peers’ outcomes, or both. The test is straightforward to

implement, as it requires only estimation under the null of no spillovers, and it is

shown to have a convenient asymptotic standard normal distribution. It is also ver-

satile, accommodating data generated by a wide range of interaction structures. We

present three empirical illustrations showing that the test is effective at detecting cross-

unit spillovers arising in a nonparametric manner that existing approaches may fail to

uncover.
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1 Introduction

Cross-unit dependence pervades many empirical settings and poses a fundamental chal-

lenge for econometric inference. This paper deals with the two most common sources of

cross-unit spillovers, which arise through the attributes channel and the outcome channel,

respectively. To illustrate, consider the canonical cross-sectional linear model, where the

outcome of the unit (e.g. individual) yi is regressed on own attribute(s) xi. First, the

attributes of other units (‘peers’) may affect i’s outcome. We term this as ‘covariate

(c) spillovers’. The second source of cross-unit dependence refers to the case where the

outcomes of other units affect i’s outcome. We call this ‘outcome (y) spillovers’. In this

paper, we propose a test for unknown nonparametric spillovers operating through one or

both channels, establish its asymptotic properties, and illustrate its applicability in three

diverse settings.

Cross-unit spillovers have received considerable attention from applied economists in a

broad range of contexts. These include, inter alia, disease transmission (Miguel and Kre-

mer, 2004; Ozier, 2018), educational outcomes (Sacerdote, 2001; Lalive and Cattaneo, 2009;

Bobonis and Finan, 2009; Avvisati, Gurgand, Guyon, and Maurin, 2013), employment de-

cisions (Duflo and Saez, 2003; Brown and Laschever, 2012) and technology adoption (Oster

and Thornton, 2012; Banerjee, Chandrasekhar, Duflo, and Jackson, 2013; Cai, De Janvry,

and Sadoulet, 2015). A first strand of the literature on (broadly defined) ‘peer effects’ has

explicitly modeled cross-unit dependence in observational data via the attribute and/or

the outcome channel, depending on the setting. Oftentimes, cross-unit dependence is mod-

eled solely through the attribute channel, even though outcome spillovers could also be

incorporated due to economic considerations.1 A related line of work focuses on treatment-

mediated spillovers, which are a first-order concern in the context of impact evaluation as

they violate the Stable Unit Treatment Value Assumption (SUTVA), which asserts that an

individual’s potential outcomes should be independent of peers’ treatment assignments.2 In

response to this concern, it has become increasingly common to design cluster-randomized

experiments generating exogenous variation in peers’ treatment status.3

1The exclusion restriction that peers’ attributes serve as a reduced-form sufficient statistic for their
outcomes is frequently imposed. However, when the research design permits, spillovers operating through
both peers’ covariates and peers’ realized outcomes can be jointly identified, offering a sharper understanding
of the underlying economic mechanisms (Bramoullé, Djebbari, and Fortin, 2009; Bursztyn and Fiorin, 2017).

2For simplicity, in this paper we abstract from the issue of contamination, whereby subjects in a ran-
domized trial may move from the treatment group to the control group.

3Cluster-randomized trials (also known as ‘two-stage randomization experiments’, ‘randomized-
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We develop a nonparametric test for cross-unit dependence arising via either the at-

tribute or outcome channels, or both. The idea behind our test is reminiscent of classical

Lagrange Multiplier (LM)-type diagnostic tests, such as the RESET test. We construct a

test statistic to assess cross-unit dependence against the alternative that such features may

arise in a nonparametric manner, which is operationalized by approximating the nonpara-

metric functions of the alternative with a series of underlying basis functions. However,

because we apply an LM-type approach, we only need to estimate the model under the

null of no spillovers. Thus, our test has the feature of being nonparametric but requiring

only standard parametric estimates of a familiar multiple linear regression. Asymptotic

theory is provided, showing that our test has an asymptotic standard normal distribution

under the null and is consistent in the sense of having asymptotically unit probability of

rejecting a false null. We derive these properties under a cluster-robust framework, thus

allowing the incorporation of what is now common practice in applied work. Extensions to

alternative error dependence structures—such as serial correlation or more general spatial

dependence—are conceptually straightforward.

Failure to account for nonlinearities may undermine the reliability of empirical find-

ings. This concern is compounded by the fact that spillovers are typically modeled in a

linear fashion, namely by including a linear function of peers’ c and/or y as a regressor.

Yet, in many economically relevant settings, agents’ strategic behavior may depend on the

entire distribution of peers’ attributes and outcomes. In such contexts, cross-unit depen-

dence is likely to generate nonlinear simultaneous determination of outcomes that linear

specifications may fail to capture adequately. For example, when only a small fraction

of peers adopt a given behavior or technology, agents may find it optimal to engage in

complementary actions, whereas a high prevalence of adopters among peers may instead

induce substitutability in best-response behavior.4 If the estimates at different points of

the distribution offset or dilute, a linear specification may not detect cross-unit spillovers

appropriately, as our test does.

Our test is far-reaching in that it is versatile in its data requirements, which is an

important advantage. First, it accommodates data defined through a variety of interac-

tion structures, including those based on blocks or links. Block-type data are partitioned

saturation experiments’, ‘partial-population experiments’) randomly assign different treatment rates across
different clusters.

4Nonlinearity in the social adoption rate was documented both theoretically and empirically (Bandiera
and Rasul, 2006; Young, 2009; Acemoglu, Özdaglar, and Tahbaz-Salehi, 2016).
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into separate self-exclusive groups within which all units are assumed to interact. Blocks

may represent villages or schools or nuclear households for individuals, geographical area

and/or productive sectors for firms. Alternatively, network-type data contain detailed links

between units, which may or may not overlap (e.g. i is linked to j and j is linked to k,

but i is not linked to k). This is the case for self-declared link data in household surveys,

or trade data among firms from administrative records. Our test accommodates both data

structures. Second, it allows for heterogeneous spillovers via multiple interaction matrices,

as we justify in Appendix A.1. Third, it allows the interaction structure to be incomplete

or measured noisily. In applied work, interaction data are often measured poorly yet still

convey useful information. By embedding our test within a latent-space (embedded-graph)

framework, Appendix A.2 derives conditions under which the perturbations induced by

measurement error are asymptotically negligible, ensuring that inference remains valid.

While this paper proposes a nonparametric test for cross-unit spillovers, most of the

methodological literature on cross-unit dependence has focused on the estimation of causal

parameters under interference. By and large, the existing approaches rely on parametric as-

sumptions to achieve this aim (Rosenbaum, 2007; Hudgens and Halloran, 2008; Hirano and

Hahn, 2010; Liu and Hudgens, 2014; Baird, Bohren, McIntosh, and Özler, 2018; Arduini,

Patacchini, and Rainone, 2020; Viviano, Lei, Imbens, Karrer, Schrijvers, and Shi, 2025;

McNealis, Moodie, and Dean, 2024). One exception is Vazquez-Bare (2023), who works in

a nonparametric identification framework to propose estimators for spillover effects in ex-

periments. Thus, we view this paper as complementing this literature by providing applied

practitioners with an easy-to-implement diagnostic tool to guide the design, validation,

and refinement of estimation strategies. If no spillovers are detected, standard estima-

tion strategies—such as linear intent-to-treat regressions—are justified. If instead the test

detects nonlinear cross-unit dependence, the estimation strategy should be adapted to ac-

count for its potentially substantial effects.5 Our test can also be useful prior to rolling out

a large-scale survey, when researchers, based on the pilot, must decide whether and how

to adjust the design to account for cross-unit dependence.6

5While our test does not explicitly suggest the nonparametric functional form which best describes the
data at hand, a variety of suitable econometric methods are available, see e.g. Jenish (2012, 2016); Xu and
Lee (2015, 2018).

6For instance, a researcher may apply our test to interaction data collected in a pilot study to assess
whether detailed link information is required, or whether the treatment intensity should be exogenously
varied across clusters in a subsequent scale-up. Because both design choices can entail substantial additional
survey costs, they are warranted primarily when spillovers are expected to play an important role.
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We illustrate the implementation, scope, and economic relevance of our test through

three empirical applications that revisit studies of spillovers in very different settings. In the

first illustration, we examine peer effects in a high skill environment, namely professional

golf tournaments (Guryan, Kroft, and Notowidigdo, 2009). The second illustration revisits

the study of network frictions in small firms’ performance in China by Cai and Szeidl

(2017). The final example examines a field experiment in the Netherlands to study student

achievement in response to changes in the academic environment (Booij, Leuven, and

Oosterbeek, 2017). Across all three settings, we show that our test is able to detect cross-

unit dependence through peers’ attributes and/or peers’ outcomes in some —but not all—

cases where linear functional forms fail to do so.

This paper is organized as follows. Section 2 introduces the test statistic, while Section

3 characterizes its asymptotic behavior. In Section 4 we illustrate the test by revisiting

three existing studies. Section 5 concludes. In Appendix A we extend our method to

heterogeneous cross-unit dependence, and to embedded graphs with noisy measurement

and parametric modeling of the underlying link formation structure. Appendices B and C

contain theorem proofs and auxiliary lemmas respectively, while Appendix D reproduces

the original results for our three empirical demonstrations.

2 Method and test statistic

We write the general model with both c and y spillovers in scalar notation as

yi = f(w′
iy) + x′iβ +

l∑
j=1

gj(w
′
icj) + ϵi, i = 1, ...., n, (2.1)

where f(·) : Rk → R is an unknown function that captures ‘outcome (y) spillovers’,

and gj(·) : R → R are also unknown functions that capture ‘attribute (c) spillovers’.

W = (w1, . . . , wn)
′ is a social weight matrix representing cross-unit interactions that is

either fixed or exogenous conditional on observables, and has zero diagonal.7 x′i is the

i-th row of an n × k regressor matrix X that can have endogenous elements as long as

7Since our approach is cast within an instrumental-variables framework, it naturally accommodates en-
dogeneity of the term w′

iy whenever valid instruments are available. In the context of network-type data,
it is compatible with instrumental-variable strategies designed to address outcome spillovers that are en-
dogenous due to simultaneity (Bramoullé et al., 2009) or due to assortative link formation on unobservables
(Jochmans, 2023).
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instruments are available, cj , j = 1, . . . , l, are some n × 1 vectors of exogenous regressors

and ϵi is an unobserved disturbance. The data are observed as ng observations in each of

g = 1, . . . , G clusters, so that n =
∑G

g=1 nG. We take ng as fixed with supg=1,...,G ng < ∞
and therefore n ∼ G, i.e. our sample size grows like the number of clusters. Our approach

gives rise to three different testing options:

1. Jointly test for both c and y spillovers: We term this the ‘cy test’.

2. Omit f(w′
iy) from the general model (2.1) and test for only c spillovers: We term

this the ‘c test’.

3. Omit gj(s) = 0, j = 1, . . . , l, from the general model (2.1) and test for only y

spillovers: We term this the ‘y test’.

The corresponding null hypotheses are:

cy test, H0 : f(s) = 0 and gj(s) = 0, j = 1, . . . , l, (2.2)

c test, H0 : gj(s) = 0, j = 1, . . . , l, (2.3)

y test, H0 : f(s) = 0, (2.4)

for all s ∈ support(s), which implies in all cases that the null model is yi = x′iβ + ϵi i.e. a

standard linear regression.

The cy test jointly includes nonlinear spillovers in both the covariate/attribute and

outcome channels, while the c test and y test examine the covariate and outcome channels

individually, respectively. In our applications, we implement the c and cy tests. Most

applied work focuses on linear spillovers in covariates and extending that to nonlinearity

via the c test seems natural, while augmenting for outcome spillovers through the cy test

demonstrates the full power of our approach. For ease of exposition we present asymptotic

results and notation for the most general case covered by the cy test in (2.2).

Let ψi(s), for i = 1, . . . , p, be a user-chosen set of basis functions (our applications use

Hermite polynomials) such that

f(s) =

p∑
i=1

µf,iψi(s) + rf (s), gj(s) =

p∑
i=1

µgj ,iψi(s) + rgj (s), j = 1, . . . , l, (2.5)

with p = pn a divergent deterministic sequence i.e. p→ ∞ as n→ ∞, µf = (µf,1, . . . , µf,p)
′,
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µgj = (µgj ,1, . . . , µgj ,p)
′ vectors of unknown series coefficients and rf (s), rgj (s) approxima-

tion errors. We define our approximate null hypothesis as

H0A : µf = 0 and µgj = 0, j = 1, . . . , l, for some β, (2.6)

which is a set of q = p(l + 1) restrictions, so that q → ∞ as n → ∞. This indicates that

standard fixed-dimension asymptotic will not work for our test. Our test statistic is based

on determining if the moment conditions for the instrumental variables (IV) estimate of β

under the null hypothesis are close enough to zero. OLS is obviously a special case of this.

Now, for each i = 1, . . . , p, define the n × 1 vector Υf,i(y) = (ψi(w
′
1y), . . . , ψi(w

′
ny))

′

and the n× 1 vectors Υgj ,i(cj) = (ψi(w
′
1cj), . . . , ψi(w

′
ncj))

′, and write

Υf,g =
(
Υf,1(y) . . . Υf,p(y) Υg1,1(c1) . . . Υg1,p(c1) . . . Υgl,1(cl) . . . Υgl,p(cl)

)
,

which is an n× q matrix. Denote µ = (µf , µg1 , . . . , µgl)
′. Given the expansion in (2.5), the

series approximated IV objective function is

Fp(β, µ, y) =
1

n
(y −Υf,gµ−Xβ)′ PZ (y −Υf,gµ−Xβ) , (2.7)

where Z is an n×m matrix of valid instruments, with m ≥ q+ k, and PZ = Z(Z ′Z)−1Z ′.

Next, define the n× (q + k) matrix U =
(
Υf,gj X

)
. OLS is a special case with Z = U .

Define the (q + k)× 1 gradient vector d̃(β, y) of (2.7) under H0A as

d̃(β, y) =
∂F(µ, β, y)

∂(µ, β)′
= − 2

n
U ′PZ(y −Xβ). (2.8)

Denoting by β̂ some consistent estimate of β, e.g. IV or OLS, under H0A, the gradient

evaluated at the corresponding residuals is

d̂ = d̃
(
β̂, y

)
= − 2

n
U ′PZ(y −Xβ̂). (2.9)

Let Ĵ = n−1Z ′U , where Ĵ is m× (q + k). Next, define the m×m matrices M̂ = n−1Z ′Z

and Φ̂ = n−1Z ′Σ̂Z, with Σ̂ = diag
(
Σ̂1, . . . , Σ̂G

)
where Σ̂g has typical (i, j)-th element ϵ̂iϵ̂j

and ϵ̂i = yi − x′iβ̂, for i, j = 1, . . . , ng and g = 1, . . . , G. Thus the covariance matrix of the
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gradient evaluated at the estimates is

Ĥ = 4Ĵ ′M̂−1Φ̂M̂−1Ĵ , (2.10)

and we thence define our cluster robust test statistic as

S =
nd̂′Ĥ−1d̂− q√

2q
. (2.11)

This is a weighted measure of the distance of the gradient from zero, centred and rescaled

to account for q → ∞. In practice, especially for small q, one can use nd̂′Ĥ−1d̂ as the test

statistic with χ2
q critical values instead of standard normal ones.

3 Asymptotic theory

We commence this section by introducing some technical assumptions to establish the

limiting behaviour of (2.11) under H0A. Our approach is based on the series based tests in

Gupta (2018) and Gupta, Lee, and Rossi (2025). Throughout we denote by K a generic

positive constant, arbitrarily large but independent of p and n.

Assumption 1. ϵi are random variables with zero mean and unknown variance σ2i ∈ [c,K],

c > 0, and, for some τ > 0, E |ϵi|8+τ ≤ K for i = 1, . . . , n. Furthermore ϵig and ϵjg′ are

independent for g ̸= g′, g, g′ = 1, . . . , G, while E (ϵigϵjg) = σijg < ∞, i ̸= j, and we

accordingly write Σ = diag (Σ1, . . . ,ΣG).

Assumption 2. E(x4ir) ≤ K and E(z4is) ≤ K, for i = 1, . . . , n and r = 1, . . . , k and

s = 1, . . . , l.

We also allow cov(ϵi, xij) ̸= 0, for some j = 1, . . . , k, i.e. X might contain some

endogenous columns. Let X1 be the n × k1 matrix containing the subset of exogenous

columns of X, while X2 (n× k2, with k2 = k− k1) contains the endogenous ones. Now, for
a generic symmetric positive-definite matrix A, let eig(A) and eig(A) denote its largest and

smallest eigenvalues, respectively. For a generic matrix B, denote by ∥B∥ =
√

eig(B′B),

i.e. the spectral norm of B, and by ∥B∥∞ its largest absolute row sum.

Assumption 3. The n× n matrix Σ satisfies

lim sup
n→∞

sup
g=1,...,G

eig(Σg) <∞, lim inf
n→∞

inf
g=1,...,G

eig (Σg) > 0, (3.1)
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the m×m matrix M = E(M̂), with m ≥ q + k , satisfies

lim sup
n→∞

eig(M) <∞, lim inf
n→∞

eig (M) > 0, (3.2)

and the (q + k)× (q + k) matrix L = n−1E(U ′U) satisfies

lim sup
n→∞

eig(L) <∞, lim inf
n→∞

eig (L) > 0, (3.3)

for n large enough. For some ν > 0 satisfying n/p(ν+1/2) = o(1),

sup
z
rf (z) + sup

j=1,...,l
sup
z
rgj (z) = Op

(
p−ν
)
,

as p→ ∞. E
(
u4il2
)
≤ K for i = 1, . . . , n, l1 = 1, . . . ,m and l2 = 1, . . . , q+ k, and ϵi and zj

are uncorrelated for each i, j = 1, . . . , n.

Assumption 3 imposes regularity conditions and controls the approximation errors.

Specifically, (3.2)-(3.3) are asymptotic boundedness and no multicollinearity conditions

for matrices of increasing dimension, while under Assumption 1, (3.1) also ensures that

0 < supi=1,...,nΣi < ∞ in the special case of purely heteroskedasticity robust testing i.e.

G = n and Σi are scalars. For the instruments Z we use at least k2 columns of instruments

for the endogenous covariates X2, and also the columns of X1, WX1. We also use a set of

instruments of the form ψr

(∑
j wijx1,jl

)
, where r = 1, . . . , p, and x1,jl denotes the (j, l)th

element of X1, with l = 1, . . . , k1. For more discussion on approximation error decay

rates see e.g. Chen (2007). Our next assumption sets a suitable bound on cross-sectional

dependence, analogous to that in Lee and Robinson (2016). Conditions such as linear

process representations for the underlying random variables or the near epoch dependence

conditions of Jenish and Prucha (2012) imply that this assumption holds.

Assumption 4. Let

ξ = sup
0≤l,k≤m

 n∑
i=1

n∑
j=1

j ̸=i

E(zilzikzjlzjk)−

(
E

(
n∑

i=1

zilzik

))2


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κ = sup
0≤l≤m, 0≤k≤q+k

 n∑
i=1

n∑
j=1

j ̸=i

E(ziluikzjlujk)−

(
E

(
n∑

i=1

ziluik

))2

 ,

and assume

ξ + κ = O(n) as n→ ∞. (3.4)

Our null asymptotic theory first approximates the test statistic S with a quadratic form

in ϵ, and then shows that this approximation is asymptotically standard normal. Write

J = E(Ĵ) and define

d = d(β0, y) =− 2

n
J ′M−1/2

(
I −M−1/2N

(
N ′M−1N

)−1
N ′M−1/2

)
M−1/2Z ′ϵ

=− 2

n
J ′M−1/2KNMM

−1/2Z ′ϵ, (3.5)

where KNM =
(
I −M−1/2N

(
N ′M−1N

)−1
N ′M−1/2

)
is m × m and N = E(N̂), with

N̂ = n−1Z ′X, the last being an m× k matrix with full rank under (3.3) in Assumption 3.

Set

H = nE(dd′) = 4J ′M−1/2KNMM
−1/2ΦM−1/2KNMM

−1/2J, (3.6)

with Φ = n−1E(Z ′ΣZ). Under Assumptions 1 and 3, H−1 exists and is non-singular for n

large enough, using the following lemma for the eigenvalues of Φ.

We now state the main result of this section.

Theorem 1. Under H0, Assumptions 1-4, ν > 5/2, and p3/n = o(1),

S d→ N(0, 1), as n→ ∞. (3.7)

Theorem 1 provides asymptotic justification for using one-sided, standard normal critical

values as observed also by Hong and White (1995). We also provide guidance for an

empirical choice of p =
[
n1/3

]
, where [·] denotes the closest integer. However, note that

the rate p3/n → is equivalent asymptotically to p3(l + 1)/n → because l is fixed, but in
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finite samples the extra l + 1 factor can play a role. Thus our recommendation is to use8

For the cy test, with both c and y spillovers : pcy =

[
n1/3

]
l + 1

, (3.8)

For the c test, with only c spillovers : pc =

[
n1/3

]
l

, (3.9)

For the y test, with only y spillovers : py =
[
n1/3

]
. (3.10)

Our next theorem relates to the power properties of our test. First consider the global

alternative

H1A : µi ̸= 0, for some i = 1, . . . , q, and any β, (3.11)

where µi denotes the i-th element of µ. We introduce the unrestricted quantities

ϵUi(µ, β) = yi − µ′υf,g,i − β′xi, i = 1, . . . , n, and Φ̃U = Φ̃U (µ, β) = n−1Z ′Σ̃UZ, (3.12)

where υ′f,g,i = (ψ1(w
′
iy), . . . , ψp(w

′
iy), ψ1(w

′
ic1), . . . , ψp(w

′
ic1), . . . , ψ1(w

′
icl), . . . , ψp(w

′
icl))

′,

Σ̃U = diag
(
Σ̃U1, . . . , Σ̃UG

)
, and Σ̃Ug has (i, j)-th element ϵUi(µ, β)ϵUj(µ, β). Then Φ̂ =

Φ̃U (0q×1, β̂). Let γ = (µ, β) ∈ Γ = ℜq ×ℜk and introduce:

Assumption 5. For all sufficiently large n and all j = 1, . . . , q + k,

sup
γ∈Γ

eig(Φ̃U ) + sup
γ∈Γ

eig

(
∂Φ̃U

∂γj

)
= Op(1), (3.13)

and {
inf
γ∈Γ

eig(Φ̃U )

}−1

+

{
inf
γ∈Γ

eig

(
∂Φ̃U (γ)

∂γj

)}−1

= Op(1). (3.14)

This assumption imposes mild regularity under H1A, reminiscent of boundedness and

invertibility conditions. Our power result follows below.

Theorem 2. Under Assumptions 1-5, H1A, ν > 5/2, and p3/n = o(1), S provides a

consistent test.

8In Appendix A.1 we also show that we can extend our test to a setting with multiple W matrices, say

ℓ, for which we recommend pcy,m =
[n1/3]
ℓ+l

in (A.5) therein.
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4 Three demonstrations

In this section, we illustrate the scope of our nonparametric test by revisiting three existing

studies that investigate peer effects across different contexts (high-skill professionals, firms,

and students’ performance) with mixed findings. We show that our test is able to detect

spillovers in some cases where linear specifications fail to do so. We use Hermite polynomials

as basis functions in all three examples. Additional details on the original studies are

reported in Appendix D.

4.1 Professional golf tournaments (Guryan et al., 2009)

4.1.1 Context and findings

Our first example builds on Guryan et al. (2009), who study whether peer effects influ-

ence individual productivity in high-skill professional environments with an application to

professional golf tournaments. They exploit a natural experiment within golf tournaments

where playing partners are randomly assigned within predefined block–round categories.

Their original results are reproduced in Appendix D, Table D1 and include three spec-

ifications. In the specification (i), players’ performance is modeled as a function of their

own ability, measured by the corrected handicap score, and the average ability of their

peers in the same block–round–tournament.9 Specification (ii) incorporates alternative

measures of peer ability—average driving distance, number of putts, and number of greens

hit—designed to distinguish motivation effects (e.g., higher effort induced by stronger part-

ners) from learning effects (e.g. adapting to observed putting strategies). Specification (iii)

introduces heterogeneity by interacting partners’ average ability with a player’s own base-

line ability and years of professional experience.

While previous studies have found significant positive peer effects in low-skill labour

markets (Bandiera, Barankay, and Rasul, 2009; Mas and Moretti, 2009), Guryan et al.

(2009) find limited evidence of peer effects in individual performance. In particular, they

conclude against peer effects in specifications (i) and (ii), while specification (iii) provides

some support for heterogeneous peer effects via the experience channel.

9For details about the way the corrected handicap score is calculated, see Appendix D.
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4.1.2 Test results

Table 1 summarizes the authors’ main results and the results from our tests. The three

rows correspond to the three original specifications reported in Appendix D, Table D1,

in order of appearance. Columns 1-3 report the specification number, the construction

of attribute peer exposure variables w′c and the number of peer attribute terms (l). The

“Original result” column reports the conclusions reached in the original paper for the cor-

responding null hypothesis of no peer effects. The “c test” examines dependence operating

through peers’ attributes, while the “cy test” augments the instrument set with functions

of peers’ outcomes. This latter test goes beyond the original specifications by allowing

for nonparametric propagation through contemporaneous peer performance as well. The

columns pc and pcy report the number of basis functions used in each test and n reports

the sample size.

Our findings support the evidence of peer effects in professional golfing in ways that

the linear specifications in Guryan et al. (2009) do not capture. When we assume spillovers

from attributes only (c test), contrary to the authors’ findings we detect spillovers when

ability is measured with alterative measures, as in specification (ii). Additionally, our cy

test also finds evidence of spillovers in contemporaneous peer scores of specification (i) -

an effect also undetected in the original findings.

4.2 Network expansion and firm performance (Cai and Szeidl, 2017)

4.2.1 Context and findings

Firms in developing economies face not only financial and managerial constraints but also

networking frictions—such as limited trust or information—that may prevent them from

accessing knowledge, clients, and suppliers.10 In our second illustration we revisit the study

of Cai and Szeidl (2017), who investigate whether an exogenous expansion in business

networks can improve firm performance.

The intervention under study randomly assigned firms into small business-association

groups of ten owner-managers. The treatment group managers met monthly for one year,

while other firms’ managers did not participate and served as a control group. The inter-

vention outcomes were measured through detailed baseline, midline, and endline surveys

10Such networking frictions are likely to be more binding in developing economies, where search and trust
costs impede self-organization, whereas at higher levels of development similar business associations can
often emerge without external coordination (Cai and Szeidl, 2017).
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Table 1: Peer Exposure Design and Test Results: Guryan et al. (2009)

Dependent variable: Score in a given tournament-round, yi,tr

Peer exposure in outcomes: w′
i,trytr

Peer exposure in attributes
Peer exposure

in outcomes

Peer exposure w′c l Original result pc c test pcy cy test n

(i) w′
i,trAbility 1 Do not reject 26 Do not reject 13 Reject 17,492

(ii) w′
i,trDrivDist,

w′
i,trGreens,

w′
i,trPutts

3 Do not reject 9 Reject 6 Reject 17,182

(iii) w′
i,trAbility,

Abilityi × w′
i,trAbility,

Expi × w′
i,trAbility

3 Reject 9 Reject 6 Reject 17,492

Note: Each row reports results from a separate regression specification corresponding to models esti-

mated in the original paper. Row (i) corresponds to the baseline model from Column 1 of Table 4 from

Guryan et al. (2009), while rows (ii) and (iii) correspond to Column 5 of Table 5 and Column 4 of Table

8, respectively. Columns 1-3 report the specification number, the construction of attribute peer exposure

variables and the number of peer attribute terms (l). The “Original result” column reports the conclu-

sions reached in the original paper for the corresponding null hypothesis of no peer effects. The “c test”

examines dependence operating through peers’ attributes, while the “cy test” augments the instrument

set with functions of peers’ outcomes. The columns pc and pcy report the number of basis functions used

in each test and n reports the sample size. The outcome variable is the golf score for the round. Abilityi

is measured by the player’s average handicap, DrivDisti is the average driving distance, Greensi is the

average number of greens hit in regulation, Puttsi is the average number of putts per round, all averages

over the previous 2-3 years. Expi experience is measured as years of experience. Peer exposure is mea-

sured using a weighted-average social vector, wi,tr, where each player is exposed to the weighted average

attribute/outcome of peers within the same group-tournament-round. Sample weights are given by the

inverse of the sample variance of the estimated ability of each player, in line with the original study. All

specification controls are identical to those reported in Table D1 in Appendix D.1. Tests are performed at

the 95% confidence level. Standard errors are clustered at the playing group level.



covering sales, profits, employment, assets, inputs, management practices, and networks.

The authors first examine the direct impact of the intervention and find that treated firms

experienced significant and sustained improvements in performance.11 To help uncover

the mechanisms behind these gains, the authors then focus on peer composition within the

networking groups and run a battery of peer-effect specifications that we focus on, reported

in Table D2 of Appendix D.2. By proxying peer quality by baseline employment size, Cai

and Szeidl (2017) show that firms randomly assigned to groups with larger peers achieved

faster growth across multiple dimensions, including sales, profits, management practices,

and network expansion.

4.2.2 Test results

Table 2 compares our nonparametric test results to the findings by Cai and Szeidl (2017).

Each row (i)–(xiv) reports results from a separate regression corresponding to the specifi-

cations reported in Table D2. As before, for each of the outcomes we test for dependence

operating through peers’ attributes alone (c test) and through both peer attributes and

outcomes (cy test). The columns pc and pcy report the number of basis functions used in

each test, and n reports the sample size.

Table 2 reveals several differences between our nonparametric test results and the orig-

inal findings. Our c test agrees with the authors’ rejection of the null of no spillovers for

sales, profits, utility costs, and management practices. However, we also reject the null

for a number of specifications for which the authors find no significant peer effects. In

particular, the c test detects spillovers in the number of employees, material costs, pro-

ductivity, the number of suppliers, and innovation, whereas the original linear regressions

report insignificant effects for these outcomes. Conversely, for total assets, bank loans,

reported (book) sales, and the tax-to-sales ratio, both approaches fail to reject the null of

no spillovers.

When nonparametric propagation through contemporaneous peer performance is per-

mitted in the cy test, the null hypothesis is rejected for most outcomes. The only exceptions

remain total assets, bank loans, reported sales, and tax-to-sales ratio. This pattern suggests

that peer effects in this setting operate not only through peers’ observable characteristics

11Sales increased by about 8% at midline and 10% at endline for treated firms relative to control firms,
with similarly positive impacts on profits, employment, fixed assets, and input usage. Firms expanded both
the number of clients and suppliers they interacted with, increased access to formal and informal borrowing,
and improved management scores by roughly a fifth of a standard deviation.

14
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Table 2: Peer Exposure Design and Test Results: Cai and Szeidl (2017)

Peer exposure in attributes: w′
i,tEmpSize

Peer exposure in outcomes: w′
i,tyt

l = 1

Peer exposure in attributes
Peer exposure

in outcomes

Spec. y Original result pc c test pcy cy test n

(i) Sales Reject 16 Reject 8 Reject 4,183

(ii) Profits Reject 16 Reject 8 Reject 4,076

(iii) No. of employees Do not reject 16 Reject 8 Reject 4,183

(iv) Total Assets Do not reject 16 Do not reject 8 Do not reject 4,183

(v) Material Cost Do not reject 16 Reject 8 Reject 4,148

(vi) Utility Cost Reject 16 Reject 8 Reject 4,086

(vii) Productivity Do not reject 16 Reject 8 Reject 4,183

(viii) No. of clients Reject 16 Reject 8 Reject 4,173

(ix) No. of Suppliers Do not reject 16 Reject 8 Reject 4,170

(x) Bank loan Do not reject 16 Do not reject 8 Do not reject 4,183

(xi) Management score Reject 14 Reject 7 Reject 2,774

(xii) Innovation score Do not reject 11 Reject 6 Reject 1,409

(xiii) Reported - book sales Do not reject 16 Do not reject 8 Do not reject 4,152

(xiv) Tax/Sales Do not reject 16 Do not reject 8 Do not reject 4,178

Note: Each row (i)–(xiv) reports results from a separate regression corresponding to specifications (1)–(14)

in Table 7 of Cai and Szeidl (2017). The attribute variable EmpSizei is measured as the log baseline

number of employees for each firm. The first column reports the specification number, y reports the

dependent variable. The “Original result” column reports the conclusions reached in the original paper for

the corresponding null hypothesis of no peer effects. The “c test” examines dependence operating through

peers’ attributes, while the “cy test” augments the instrument set with functions of peers’ outcomes. The

columns pc and pcy report the number of basis functions used in each test, n reports the sample size.

Peer exposure is measured using a simple average social vector, wi,t, where each player is exposed to the

average attribute/outcome of peers within the same meeting group at time t. All specification controls are

identical to those reported in Table D2 in Appendix D.2. Tests are performed at the 95% confidence level.

Standard errors are clustered at the meeting group level.



but also through outcome-based spillovers. The combined new evidence points to spillovers

particularly for performance measures and intermediate mechanisms linked to information

sharing and managerial practices.

4.3 Student achievement (Booij et al., 2017)

4.3.1 Context and findings

In our third demonstration we revisit the paper by Booij et al. (2017), who study a large-

scale field experiment conducted at the University of Amsterdam in the Netherlands. The

intervention randomly assigned first-year economics students to tutorial groups. By ex-

ogenously varying group composition, this design created substantial variation to estimate

how students’ performance responds to changes in the academic environment.12

The authors study how students’ performance (measured by the number of collected

credits) is affected by prior achievement of the peers in the same tutorial group (measured

by their secondary-school GPA). Their main results are reproduced in Appendix D, Table

D3. From columns (1) to (5), academic performance is regressed on various summary

statistics of peers’ GPA (e.g., the mean, dispersion, and their interaction), using a sequence

of increasingly rich specifications that allow for heterogeneous responses across the ability

distribution. As shown in Table D3, these linear regressions find limited evidence that peer

achievement or peer heterogeneity affects student outcomes, except for some specifications

involving higher-order interactions.13

4.3.2 Test results

In Table 3 we apply our nonparametric test to re-examine the peer effects documented

in Booij et al. (2017). Each row of Table 3 corresponds, in order of appearance, to a

specification in Table D3. Since peer exposure variables are specification-specific, we report

them as w′c and w′y respectively. The remaining columns (e.g. original results, c and cy

tests, pc and pcy, the number of peer attribute terms l) follow the conventions of the

previous tables.

12Students attended weekly tutorials with the same group throughout the course, and all teaching assis-
tants followed a common syllabus, minimizing the chance that differences in outcomes could be attributed
to instruction quality.

13As clarified in Appendix D “higher-order” interactions refer to interaction terms involving multiple
variables (e.g. peer mean × peer dispersion × own GPA).

16



17

Table 3: Peer Exposure Design and Test Results: Booij et al. (2017)

Dependent variable: Number of credits achieved

n =1,876

Peer exposure in attributes Peer exposure in outcomes

Peer exposure w′c l Original result pc c test Peer exposure w′y pcy cy test

(i) w′
i,avgGPA 1 Do not reject 12 Do not reject w′

i,avgy 6 Reject

(ii) w′
i,avgGPA 1 Do not reject 12 Reject w′

i,avgy 6 Reject

l, ℓ pcy,m cy test

(iii) w′
i,avgGPA,

w′
i,sdGPA

2, 2 Do not reject 6 Reject w′
i,avgy,

w′
i,sdy

3 Reject

(iv) w′
i,avgGPA,

w′
i,sdGPA,

w′
i,avgGPA× w′

i,sdGPA

3, 3 Reject 4 Reject w′
i,avgy,

w′
i,sdy,

w′
i,avgy × w′

i,sdy

2 Reject

(v) w′
i,avgGPA,

w′
i,sdGPA,

w′
i,avgGPA× w′

i,sdGPA,

GPAi × w′
i,avgGPA,

GPAi × w′
i,sdGPA,

GPAi × w′
i,avgGPA× w′

i,sdGPA

6, 2 Reject 2 Reject w′
i,avgy,

w′
i,sdy

2 Reject

Note: Each row corresponds to specifications (i)–(v) in Table 4 of Booij et al. (2017). Columns 1-3 report

the specification number, the construction of peer attribute exposure variables, and the number of peer

attribute terms (l). The “Original result” column reports the conclusions reached in the original paper for

the corresponding null hypothesis of no peer effects. The “c test” examines dependence operating through

peers’ attributes, while the “cy test” augments the test with functions of peers’ outcomes. The columns pc

and pcy report the number of basis functions used in each test. The outcome variable, student performance,

is measured by the number of credits obtained in the first year of university. The ability attribute, GPA,

refers to the vector of students’ pre-university GPA. In specifications (i) and (ii), peer attribute exposure

is measured using a weighted-average vector, wi,avg, where each student is exposed to the average GPA of

peers within the same tutorial group. In specifications (iii) and (iv), peer exposure additionally incorporates

dispersion in peer characteristics through a standard-deviation vector, wi,sd, which captures variation in

peers’ GPA within the group with specification (iv) additionally including their interaction. Accordingly

the third column now reports l, ℓ and the second last column the recommended pcy,m from (A.5). In

specification (v), the peer exposure terms in (iv) are further reweighted by individual GPA, interacting

peer exposure with the student’s own GPA to allow the strength of spillovers to vary with academic ability.

All specification controls are identical to those reported in Table D3 in Appendix D.3. Tests are performed

at the 95% confidence level. Standard errors are clustered at the tutorial-group level.



The comparison with the results by Booij et al. (2017) reveals a divergence between

our nonparametric test and the authors’ original findings. Our c test rejects the null in

specifications (ii) and (iii), whereas the original regressions detect no significant linear

peer effects. The other results, for specifications (i), (iv) and (v) are consistent with the

authors’ conclusion. Our cy test additionally detects spillovers in specification (i), while the

original results of the authors detected no significant spillovers. Overall, our tests suggest

that dependence arising from peer academic composition may operate in nonlinear ways

that a linear model does not fully capture, but are approximated by polynomial terms.

5 Conclusion

Cross-unit dependence has long been recognized as a central concern in economics, reflect-

ing both fundamental identification problems and first-order implications for econometric

inference (Manski, 1993; Conley, 1999). This paper proposes a novel nonparametric test

for spillovers operating through peers’ attributes and/or outcomes, and provides a full

asymptotic theory for it. The test has several appealing features. First, it only requires

estimation under the null hypothesis of no spillovers, thereby avoiding nonparametric esti-

mation altogether. Second, it is versatile, accommodating a wide range of data structures,

including settings in which the interaction structure is incomplete or measured with error.

Our approach complements existing methods by offering a simple diagnostic to assess

whether cross-unit dependence is present and whether linear approximations are likely to

be informative. We illustrate its usefulness through three empirical applications, which

suggest that the test can uncover forms of cross-unit dependence that are missed by stan-

dard specifications. More broadly, our results emphasize that modeling choices regarding

spillovers and interference can be guided by empirical evidence, rather than imposed a

priori through restrictive functional or informational assumptions.
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A Extensions

A.1 Heterogeneous cross-unit dependence

It is straightforward to extend our method to allow for multiple channels of cross-unit

dependence, i.e. multiple social weight matrices, but we present our theory for the single

channel case in (2.1) for notational simplicity.14 Indeed, suppose that we have ℓ channels

of social dependence, each encoded in a weight matrixWh, h = 1, . . . , ℓ. Then we can write

the model

yi =
ℓ∑

h=1

fh
(
w′
h,iy
)
+ x′iβ +

ℓ∑
h=1

l∑
j=1

ghj
(
w′
h,icj

)
+ ϵi, i = 1, ...., n, (A.1)

where fh(·) and ghj(·) from R to R are ℓ(l+1) unknown functions andWh = (wh,1, . . . , wh,n)
′

are social weight matrices that are either fixed or exogenous and have zero diagonals,

h = 1, . . . , ℓ and j = 1, . . . , l. The null of interest is then

H0 : fh(s) = 0 and ghj(s) = 0, h = 1, . . . , ℓ, j = 1, . . . , l, (A.2)

for all s ∈ support(s).

This can be approximated by series approximations exactly as in (2.5) and (2.6) albeit

with more subscripting, as we now show. Now we have the approximations

fh(s) =

p∑
i=1

µfh,iψi(s) + rfh(s), ghj(s) =

p∑
i=1

µghj,iψi(s) + rghj (s), h = 1, . . . , ℓ, j = 1, . . . , l,

(A.3)

with µf = (µf1,1, . . . , µf1,p, . . . , µfℓ,1, . . . , µfℓ,p)
′, µgj =

(
µg1j ,1, . . . , µg1j ,p, µgℓj ,1, . . . , µgℓj ,p

)′
vectors of unknown series coefficients and rfh(s), rghj (s) approximation errors. We define

our approximate null hypothesis as

H0A : µf = 0 and µgj = 0, j = 1, . . . , l, for some β. (A.4)

Now, define the n× 1 vector Υfh,i(y) =
(
ψi(w

′
h,1y), . . . , ψi(w

′
h,ny)

)′
and the n× 1 vectors

Υghj ,i (cj) =
(
ψi(w

′
h,1cj), . . . , ψi(w

′
h,ncj)

)′
, for each i = 1, . . . , p, h = 1, . . . , ℓ and j =

14Social interaction models with multiple social weight matrices have been characterized under a range
of alternative assumptions (Hsieh and Lin, 2017; Arduini et al., 2020; Comola, Dieye, and Fortin, 2025).
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1, . . . , l. Next, concatenate these to write Υf,g as before. This is now an n × q matrix,

where q = pℓ(l+ 1). We can now proceed as before in the ℓ = 1 case with these objects as

the test statistic building blocks, noting that now we recommend

pcy,m =

[
n1/3

]
ℓ+ l

, both c and y spillovers. (A.5)

A.2 Embedded graphs

We now consider a setting in which the observed social matrix is generated by an embedded

graph model rather than treated as exogenous. By embedding the observed graph into a

latent social space, we interpret it as a noisy measurement of an underlying latent structure.

This reframing is particularly valuable in applied work, where social interaction data are

often incomplete or measured with error, yet the latent structure remains informative to

the researcher. When social interactions are mis-measured, our approach interprets these

errors as small perturbations relative to the structurally generated network. We then derive

formal conditions under which such perturbations are asymptotically negligible, ensuring

the validity of inference based on the observed data.

Let us assume the researcher observes a network encoded by the n×n matrix W (κ, z),

the elements wij(κ, zo, zl) of which are indicator functions that take the value unity if

the unknown parameter vector κ ∈ K , and the observed covariate vector zo and latent

vector zl satisfy some prescribed condition. This specification encompasses standard net-

work formation models with link functions that permit consistent estimation of κ, such

as exponential link functions. The interpretation is that the adjacency matrix W (κ, z)

represents an embedding of the graph in a latent social space, rather than a fixed object

observed without error. Such formulations generalize link formation based solely on ob-

served covariates to settings where proximity in latent space governs tie formation, see for

example Breza, Chandrasekhar, McCormick, and Pan (2020) and Lubold, Chandrasekhar,

and McCormick (2023).

Accordingly we assume that, conditional on the latent variable vector zl, the researcher

has access to estimates ŵij = wij (κ̂, zo), where κ̂ is some estimate of the parameterization

of the link function that defines the probability of wij = 1 as a function of κ, zo and zl.

Furthermore, we assume that there exists a sequence sn = s→ ∞ such that

∥κ̂− κ∥ = Op

(
s−1
)
, (A.6)
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and that this rate of convergence carries over to the maximum row-sum of W (κ̂, z) −
W (κ, z), i.e.

sup
j=1,...,n

n∑
i=1

(ŵij − wij) = Op

(
s−1
)
. (A.7)

This condition is motivated by the observation that adjacency matrices require some

control over their norms to limit dependence to a manageable degree. Row and column

summability is a typical assumption. Indeed, if wij(κ, z) were a differentiable function

in κ we could use the mean value theorem to write ŵij − wij =
∂wij(κ,z)

∂κ

∣∣∣′
κ=κ̄

(κ̂− κ) for

an intermediate point κ̄ and obtain (A.7) if we assume row-summability of the derivative

matrix, i.e.

sup
j=1,...,n

sup
κ∈K

n∑
i=1

∂wij(κ, z)

∂κ
= Op(1),

uniformly in z. Of course in our case ŵij and wij are non-differentiable because they are

indicator functions, hence the condition (A.7). For example, if each unit only has a fixed

number of neighbours, as in a ‘k nearest neighbours’ setup, then (A.7) will be satisfied as

long as

ŵij − wij = Op

(
s−1
)
, (A.8)

because the sum on the LHS of (A.7) will have only a fixed number of non-zero summands.

Now, for each i = 1, . . . , p, define the n × 1 vector Υ̂f,i(y) = (ψi(ŵ
′
1y), . . . , ψi(ŵ

′
ny))

′

and the n × 1 vectors Υ̂gj ,i(cj) = (ψi(ŵ
′
1cj), . . . , ψi(ŵ

′
ncj))

′, where ŵi has elements ŵij ,

j = 1, . . . , n, and write

Υ̂f,g =
(
Υ̂f,1(y) . . . Υ̂f,p(y) Υ̂g1,1(c1) . . . Υ̂g1,p(c1) . . . Υ̂gl,1(cl) . . . Υ̂gl,p(cl)

)
,

which is an n× q matrix, where q ∼ p asymptotically. Then, we can apply our test as long

as the estimates ŵij satisfy ∥∥∥n−1/2Υ̂f,g − n−1/2Υf,g

∥∥∥ = op(1), (A.9)

conditional on zl. The squared LHS of (A.9) is bounded by a sum of nq terms of the type

n−1
(
ψ
(
ŵ′ℓ
)
− ψ

(
w′ℓ
))2

, (A.10)

where we omit subscripting for brevity and let ℓ denote a generic observed n × 1 vector
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with components ℓi such that ℓi = Op(1). Assuming that the generic basis function ψ(·) is
differentiable with derivative ψ′(·) and E(ψ′(x))2 < C, with C a generic constant, we use

the mean value theorem and (A.7) to observe that (A.10) is

n−1ψ′(x̄)2
(
(ŵ − w)′ ℓ

)2
= Op

(
n−1

)
·

(
n∑

i=1

(ŵi − wi) ℓi

)2

= Op

(
n−1

)
·

(
n∑

i=1

(ŵi − wi)

)2

= Op

(
s−2n−1

)
, (A.11)

where ŵ′ℓ ≤ x̄ ≤ w′ℓ and ŵi and wi are elements of the n×1 vectors ŵ and w, respectively.

Then we conclude that ∥∥∥n−1/2Υ̂f,g − n−1/2Υf,g

∥∥∥2 = Op

(
ps−2

)
, (A.12)

so that (A.9) holds if p1/2s−1 → 0.

B Proofs of Theorems

B.1 Preliminary results

Theorem B1. Under Assumptions 1-4, under H0A in (2.6), for p3/n→ 0 as n→ ∞,

∥∥∥d̂− d
∥∥∥ = Op

(
p3/2

n

)
. (B.1)

Proof. We first establish a preliminary bound. Let 1g(i, j) be and indicator function that

takes the value 1 when i and j are in the same cluster g and zero otherwise. Observe that,

by Assumptions 1, 3 and m ∼ p,

E
∥∥n−1Z ′ϵ

∥∥2 = n−2
n∑

i=1

σ2i E ∥zi∥2 + n−2
G∑

g=1

∑
i ̸=j

1g(i, j)σijEz′igzjg

≤ Kn−1m+ n−2
G∑

g=1

∑
i ̸=j

1g(i, j)σij

(
E ∥zig∥2

)1/2 (
E ∥zjg∥2

)1/2
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= O

p
n−1 + n−2

G∑
g=1

n2g

 = O
(
pn−1

)
, (B.2)

where the last equality follows because n−2
∑G

g=1 n
2
g = O

(
n−2G

)
= O

(
n−1

)
, recalling that

supg=1,...,G ng < K and so G and n have the same asymptotic order. Thus, by the Markov

inequality, ∥∥n−1Z ′ϵ
∥∥ = Op

(√
p

n

)
. (B.3)

We also note that, under Assumptions 2, 3 and 4,

∥∥∥β̂ − β
∥∥∥ =

∥∥∥∥∥
(
1

n
X ′PZX

)−1 1

n
X ′PZϵ

∥∥∥∥∥ = Op

(∥∥∥∥Z ′ϵ

n

∥∥∥∥) . (B.4)

Let R = (r(w′
1y), . . . , r(w

′
ny))

′ be the n×1 vector of approximation errors in (2.5) with

Ri = r(w′
iy). From the 2SLS expression for β̂ − β in (B.4),

d̂ =− 2

n
U ′PZ

(
I −X(X ′PZX)−1X ′PZ

)
ϵ− 2

n
U ′PZR

=− 2

n
U ′PZ

(
I − PZX(X ′PZX)−1X ′PZ

)
PZϵ−

2

n
U ′PZR

=− 2

n
Ĵ ′M̂−1/2

(
I − M̂−1/2N̂

(
N̂ ′M̂−1N̂

)−1
N̂ ′M̂−1/2

)
M̂−1/2Z ′ϵ− 2

n
Ĵ ′M̂−1Z ′R

=− 2

n
Ĵ ′M̂−1/2K̂NMM̂

−1/2Z ′ϵ− 2

n
Ĵ ′M̂−1Z ′R, (B.5)

where K̂NM =

(
I − M̂−1/2N̂

(
N̂ ′M̂−1N̂

)−1
N̂ ′M̂−1/2

)
.

From (2.9), we write∥∥∥d̂− d
∥∥∥ ≤

∥∥∥∥ 2nĴ ′M̂−1/2K̂NMM̂
−1/2Z ′ϵ− 2

n
J ′M−1/2KNMM

−1/2Z ′ϵ

∥∥∥∥+ ∥∥∥∥ 2nĴ ′M̂−1Z ′R

∥∥∥∥ .
(B.6)

Subsequently, denote ∆A
B = A − B for conformable A and B. Then, via some standard

albeit tedious algebra, the first term on the RHS of (B.6) is bounded by∥∥∥∆Ĵ
J

∥∥∥∥∥∥M̂−1
∥∥∥∥∥∥∥ 1nZ ′ϵ

∥∥∥∥+ ∥J∥
∥∥∥∆M̂−1

M−1

∥∥∥∥∥∥∥ 1nZ ′ϵ

∥∥∥∥
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+
∥∥∥∆Ĵ

J

∥∥∥∥∥∥M̂−1
∥∥∥∥∥∥N̂∥∥∥∥∥∥∥(N̂ ′M̂−1N̂

)−1
∥∥∥∥∥∥∥N̂∥∥∥∥∥∥M̂−1

∥∥∥∥∥∥∥ 1nZ ′ϵ

∥∥∥∥
+ ∥J∥

∥∥∥∆M̂−1

M−1

∥∥∥∥∥∥N̂∥∥∥∥∥∥∥(N̂ ′M̂−1N̂
)−1

∥∥∥∥∥∥∥N̂∥∥∥∥∥∥M̂−1
∥∥∥∥∥∥∥ 1nZ ′ϵ

∥∥∥∥
+ ∥J∥

∥∥M−1
∥∥∥∥∥∆N̂

N

∥∥∥∥∥∥∥(N̂ ′M̂−1N̂
)−1

∥∥∥∥∥∥∥N̂∥∥∥∥∥∥M̂−1
∥∥∥∥∥∥∥ 1nZ ′ϵ

∥∥∥∥
+ ∥J∥

∥∥M−1
∥∥ ∥N∥

∥∥∥∥∆(N̂ ′M̂−1N̂)
−1

(N ′M−1N)−1

∥∥∥∥∥∥∥N̂∥∥∥∥∥∥M̂−1
∥∥∥∥∥∥∥ 1nZ ′ϵ

∥∥∥∥
+ ∥J∥

∥∥M−1
∥∥ ∥N∥

∥∥∥(N ′M−1N
)−1
∥∥∥∥∥∥∆N̂

N

∥∥∥∥∥∥M̂−1
∥∥∥∥∥∥∥ 1nZ ′ϵ

∥∥∥∥
+ ∥J∥

∥∥M−1
∥∥ ∥N∥

∥∥∥(N ′M−1N
)−1
∥∥∥ ∥N∥

∥∥∥∆M̂−1

M−1

∥∥∥∥∥∥∥ 1nZ ′ϵ

∥∥∥∥ (B.7)

Under Assumption 4, we have∥∥∥∆N̂
N

∥∥∥ = Op

(
p√
n

)
and

∥∥∥∆Ĵ
J

∥∥∥ = Op

(
p√
n

)
. (B.8)

Also, under Assumptions 3 and 4,∥∥∥∆M̂−1

M−1

∥∥∥ ≤
∥∥M−1

∥∥∥∥∥M̂−1
∥∥∥∥∥∥∆M̂

M

∥∥∥ = Op

(
p√
n

)
(B.9)

and similarly, under Assumptions 3 and 4,∥∥∥∥∆(N̂ ′M̂−1N̂)
−1

(N ′M−1N)−1

∥∥∥∥ ≤
∥∥N ′M−1N ′∥∥∥∥∥N̂ ′M̂−1N̂ ′

∥∥∥∥∥∥∆N̂ ′M̂−1N̂
N ′M−1N

∥∥∥
= Op

(
p√
n

)
. (B.10)

Thus, upon recalling (B.3), the first term at the RHS of (B.6) is observed to be

Op

(
n−1p3/2

)
. The second term at the RHS of (B.6) is instead∥∥∥∥ 2nĴ ′M̂−1Z ′R

∥∥∥∥ = Op

(
1

n
∥R∥ ∥Z∥

)
= Op(p

−ν), (B.11)

where the first equality at the RHS of (B.11) follows under Assumptions 3 and 4. The

second equality follows since ∥Z∥ = Op(
√
n) under Assumptions 3 and 4, and each com-

ponent of the n× 1 vector R is Op(p
−ν) by Assumption 3, and hence ||R|| = Op(

√
np−ν).
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The last equality in (B.11) follows from Assumption 3.

Under Assumption 4, the first term in (B.6) dominates the second one as long as ν

satisfies n/pν+3/2 = o(1) as n→ ∞, which holds under Assumption 3.

Theorem B2. Under Assumptions 1-4, ν > 5/2, under H0A in (2.6) and p3/n = o(1),

S − nd′H−1d− q√
2q

= op(1), as n→ ∞. (B.12)

Proof. We can equivalently prove

d̂′Ĥ−1d̂− d′H−1d = op

(√
p

n

)
. (B.13)

Write the LHS of (B.13) as(
d̂− d

)′
Ĥ−1d̂+ d′H−1(d̂− d) + d′Ĥ−1

(
H − Ĥ

)
H−1d̂, (B.14)

which has norm bounded by

K
∥∥∥∆d̂

d

∥∥∥∥∥∥Ĥ−1
∥∥∥∥∥∥d̂∥∥∥+K

∥∥∥∆d̂
d

∥∥∥∥∥H−1
∥∥ ∥d∥+K ∥d∥

∥∥∥Ĥ−1
∥∥∥∥∥∥∆Ĥ

H

∥∥∥∥∥H−1
∥∥∥∥∥d̂∥∥∥ . (B.15)

From Theorem B1,
∥∥∥∆d̂

d

∥∥∥ = Op

(
n−1p3/2

)
. Under Assumptions 3 and 4, and from (B.2) we

have ∥d∥ = Op

(√
p/n

)
. Also, from Theorem B1,

∥∥∥d̂∥∥∥ ≤
∥∥∥∆d̂

d

∥∥∥+ ∥d∥ = Op

(√
p

n

)
, (B.16)

where the last equality is due to p2/n = o(1). Also, under Assumptions 1, 3 and 4,∥∥∥Ĥ−1
∥∥∥ = Op(1) and

∥∥H−1
∥∥ = Op(1). Thus, the first and second terms in (B.15) are

Op

(
p2/n3/2

)
, and these are op

(
p1/2/n

)
if p3/n = o(1).

Using 2SLS estimates for β0 and proceeding as in (B.5), we can write

Ĥ =4Ĵ ′M̂−1/2K̂NMM̂
−1/2Φ̃M̂−1/2K̂NMM̂

−1/2Ĵ +
4

n
Ĵ ′M̂−1/2K̂NMM̂

−1/2Z ′ϵR′ZM̂−1Ĵ

+
4

n
Ĵ ′M̂−1Z ′RR′ZM̂−1Ĵ (B.17)
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where Φ̃ = Z ′Σ̃Z/n, with Σ̃ being an n× n block-diagonal matrix such that its g-th block

Σ̃g has elements Σ̃gij = ϵigϵjg. From (3.6), we write∥∥∥∆Ĥ
H

∥∥∥ ≤
∥∥∥Ĵ ′M̂−1/2K̂NMM̂

−1/2Φ̃M̂−1/2K̂NMM̂
−1/2Ĵ

−J ′M−1/2KNMM
−1/2ΦM−1/2KNMM

−1/2J
∥∥∥

+

∥∥∥∥ 4nĴ ′M̂−1/2K̂NMM̂
−1/2Z ′ϵR′ZM̂−1Ĵ

∥∥∥∥+ ∥∥∥∥ 4nĴ ′M̂−1Z ′RR′ZM̂−1Ĵ

∥∥∥∥ . (B.18)

By standard algebra, the first term in (B.18) is bounded by∥∥∥Ĵ ′M̂−1Φ̃M̂−1Ĵ − J ′M−1ΦM−1J
∥∥∥

+

∥∥∥∥Ĵ ′M̂−1N̂
(
N̂ ′M̂−1N̂

)−1
N̂ ′M̂−1Φ̃M̂−1Ĵ − J ′M−1N

(
N ′M−1N

)−1
N ′M−1ΦM−1J

∥∥∥∥
+

∥∥∥∥Ĵ ′M̂−1N̂
(
N̂ ′M̂−1N̂

)−1
N̂ ′M̂−1Φ̃M̂−1N̂

(
N̂ ′M̂−1N̂

)−1
N̂M̂−1Ĵ

− J ′M−1N
(
N ′M−1N

)−1
N ′M−1ΦM−1N

(
N ′M−1N

)−1
NM−1J

∥∥∥ .
We provide details for the first term in the last displayed expression, the others following

similarly. Specifically,∥∥∥Ĵ ′M̂−1Φ̃M̂−1Ĵ − J ′M−1ΦM−1J
∥∥∥ ≤

∥∥∥∆Ĵ
J

∥∥∥∥∥∥M̂−1
∥∥∥2 ∥∥∥Φ̃∥∥∥∥∥∥Ĵ∥∥∥

+ ∥J∥
∥∥∥∆M̂−1

M−1

∥∥∥∥∥∥Φ̃∥∥∥∥∥∥M̂−1
∥∥∥∥∥∥Ĵ∥∥∥+ ∥J∥

∥∥M−1
∥∥∥∥∥∆Φ̃

Φ

∥∥∥∥∥∥M̂−1
∥∥∥∥∥∥Ĵ∥∥∥

+ ∥J∥
∥∥M−1

∥∥ ∥Φ∥ ∥∥∥∆M̂−1

M−1

∥∥∥∥∥∥Ĵ∥∥∥+ ∥J∥
∥∥M−1

∥∥2 ∥Φ∥ ∥∥∥∆Ĵ
J

∥∥∥ . (B.19)

Under Assumptions 3 and 4, most terms can be handled as in the proof of Theorem B1,

and
∥∥∥∆M̂−1

M−1

∥∥∥ = Op(p/
√
n) and

∥∥∥∆Ĵ
J

∥∥∥ = Op(p/
√
n). Focusing instead on

∥∥∥∆Φ̃
Φ

∥∥∥, observe
that ∥∥∥∆Φ̃

Φ

∥∥∥ ≤
∥∥∥∆Φ̃

Φ̄

∥∥∥+ ∥∥∥∆Φ̄
Φ

∥∥∥ , (B.20)

with Φ̄ = Z ′ΣZ/n. The first term in (B.20) is
∥∥∥Z ′∆Σ̃

ΣZ/n
∥∥∥, where the m × m matrix

Z ′∆Σ̃
ΣZ/n has typical element n−1

∑n
i,j=1

∑G
g=1 tijrsg (ϵigϵjg − σijg) where we write tijrsg =
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1g(i, j)zirgzjsg. This typical element has zero mean and variance

2n−2
n∑

i,j=1

G∑
g=1

t2ijrsgσ
2
igσ

2
jg + n−2

n∑
i=1

G∑
g=1

t2iirsg
(
Eϵ4ig − 3σ4ig

)
= O

n−2
G∑

g=1

n2g

 = O
(
n−1

)
,

(B.21)

under Assumptions 1 and 3 and, since, m ∼ p we therefore
∥∥∥∆Φ̃

Φ̄

∥∥∥ = Op(p/
√
n). The

matrix in the norm in the second term in (B.20) has mean zero and the second moment

of its squared Euclidean norm is bounded by Kξm2/n2 = O
(
p2/n

)
under Assumptions 1,

3 and 4, rendering it Op(p/
√
n) and thus

∥∥∥∆Φ̃
Φ

∥∥∥ = Op(p/
√
n). We then conclude (B.19) is

Op (p/
√
n). Similar steps yield that the first term on the RHS of (B.18) is Op (p/

√
n).

By similar arguments to those that led to (B.11), under Assumptions 3 and 4, the

second term in (B.18) is bounded by

K

∥∥∥∥ 1nZ ′ϵ

∥∥∥∥ ∥Z∥ ∥R∥ = Op

( √
n

pν−1/2

)
, (B.22)

which is negligible compared to the first term in (B.18) since n/p(ν+1/2) = o(1), under

Assumptions 3 and 4. Similarly, the third term in (B.18) is Op(np
−2ν), which is negligible

compared to the first term since n3/2/p2ν+1 = o(1) as n → ∞, under Assumptions 3 and

4. We conclude that ∥∥∥∆Ĥ
H

∥∥∥ = Op

(
p/

√
n
)
. (B.23)

By Assumption 4, the last term in (B.15) is thus Op(p
2/n3/2), given ∥d∥ = Op(

√
p/n) and∥∥∥d̂∥∥∥ = Op(

√
p/n). Hence, the second term in (B.15) is op(

√
p/n) as long as p3/n = o(1),

concluding the proof.

B.2 Proofs of main theorems

Proof of Theorem 1: Observe that under the clustered error dependence structure in As-

sumption 1, we can write ϵi =
∑n

r=1 birηr, where ηr are i.i.d. mean zero and unit vari-

ance random variables and the bir < K are finite constants that are non-zero only for

the group that observation i belongs to. Then we have Eϵigϵjg′ = 0 for g ̸= g′ and

Eϵigϵjg =
∑ng

r=1 birbjr. Thus, we have σijg =
∑ng

r=1 birbjr for i ̸= j and σ2ig =
∑ng

r=1 b
2
ir.
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Because ng are finite and fixed, clearly only a finite number of the bir are non-zero for any

given i or r. Thus we have supr=1,...,n

∑n
i=1 |bir|+supi=1,...,n

∑n
r=1 |bir| < K. Upon writing

ϵ = Bη, where η is an n×1 vector with elements ηr and B is an n×n matrix with elements

bir, we observe that

d = − 2

n
J ′M−1/2KNMM

−1/2Z ′Bη. (B.24)

In view of Theorem B2, we know that S − nd′H−1d−q√
2q

= op(1) and therefore it is sufficient

to show that nd′H−1d−q√
2q

d→ N(0, 1), which by (B.24) boils down to showing that

nη′B′GBη − q√
2q

d→ N(0, 1), (B.25)

where

G =
4

n2
ZM−1/2KNMM

−1/2JH−1J ′M−1/2KNMM
−1/2Z ′ =

4

n
ZA Z ′,

say, where A = n−1M−1/2KNMM
−1/2JH−1J ′M−1/2KNMM

−1/2.

Theorem A.1 of Gupta, Qu, Srisuma, and Zhang (2025) applies if

eigG = Op(1) and
(
eigG

)−1
= Op(1), (B.26)

and

gij = Op(p/n) and
n∑

i=1

g2ij = Op(p/n), (B.27)

uniformly in i and j. The conditions in Assumption 3 ensure that (B.26) holds. To check

(B.27), observe that

gij =
4

n
z′iA zj = Op (∥zi∥∥zj∥/n) = Op(p/n)

and

n∑
j=1

g2ij =
16

n2
z′iA

 n∑
j=1

zjz
′
j

A zi =
16

n
z′iA M̂A zi = Op (∥zi∥∥zj∥/n) = Op(p/n),

as desired. Then (B.25) follows by Theorem A.1 of Gupta et al. (2025).

Proof of Theorem 2: Let γ = (µ′, β′)′. Corresponding to d̃ = ∂Q/∂γ defined in (2.8) under
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H0A, we now define the unconstrained gradient vector, (p+ k)× 1, d̃U as

d̃U (µ, β, y) = − 2

n
U ′PZ (y −Xβ) , (B.28)

where d̃U (0q×1, β, y) = d̃ defined in (2.8).

We partition , Ĵ = n−1U as Ĵ = (Ξ̂, N̂), where Ξ̂ and N̂ are m × q and m × k,

respectively, with a similar partition for its expected value J = (Ξ, N). Also, we define the

(q + k)× (q + k) matrix D̂ = ∂2Q/∂γ∂γ′, such that the first q × q block is given by

D̂11 =
2

n
Υ′

f,gPZΥf,g = 2Ξ̂′M̂−1Ξ̂ (B.29)

the block 1-2 (or the transposed of 2-1 block) is the q × k matrix

D̂12 = D̂′
21 =

2

n
Υ′

f,gPZX = 2Ξ̂′M̂−1N̂ (B.30)

and the 2-2 block is the k × k matrix

D̂22 =
2

n
X ′PZX = 2N̂ ′M̂−1N̂ . (B.31)

Under Assumption 3, ∥D̂∥ = Op(1) and lim infn→∞ eig
(
D̂
)
> 0 with inverse defined and

partitioned in the usual way. Also, D̂ does not depend on any unknowns. In line we our

previous notation, we also define the corresponding limit quantities as D11 = 2Ξ′M−1Ξ,

D12 = D′
21 = Ξ′M−1N and D22 = 2N ′M−1N .

From standard algebra, by the mean value theorem (MVT), given d̂ in (2.9),

d̂p =
∂Q
∂µ′

∣∣∣∣
(01×q ,β̂′)′

=
∂Q
∂µ′

∣∣∣∣
(01×q ,β′

0)
′
+ D̂12(β̂ − β0)

0 =
∂Q
∂β′

∣∣∣∣
(01×q ,β̂′)′

=
∂Q
∂β′

∣∣∣∣
(01×q ,β′

0)
′
+ D̂22(β̂ − β0) (B.32)

Thus,

d̂p =
(
Iq; −D̂12D̂

−1
22

) ( ∂Q
∂µ′

∂Q
∂β′

)∣∣∣∣∣
(01×q ,β′

0)
′

=
(
Iq; −D̂12D̂

−1
22

)
d̃U (0q×1, β0)

=
(
Iq; −D̂12D̂

−1
22

)
d̃(β0) (B.33)
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according to the definition in (B.28) and (2.8), and with Iq denoting the q × q identity

matrix. Hence, given Ĥ in (2.10),

nd̂′pĤ
11d̂p = nd̃U (0q×1, β0)

′V̂ d̃U (0q×1, β0), (B.34)

with

V̂ =

(
Iq

−D̂−1
22 D̂21

)
Ĥ11

(
Iq ; −D̂12D̂

−1
22

)
. (B.35)

Thus,

nd̂′Ĥ−1d̂ = nd̂′pĤ
11d̂p = nd̃U (0q×1, β0)

′V̂ d̃U (0q×1, β0) (B.36)

However, under H1A, d̃U (0q×1, β0) is no longer evaluated at the true parameter value

as µ0 ̸= 0. By MVT around µ0, we can write

d̃U (0q×1, β0) = d̃U (µ0, β0)−
∂d̃U (µ̄, β0)

∂µ
µ0 ≡ d̃U (µ0, β0)− τ, (B.37)

with µ̄ being intermediate point such that ∥µ̄−µ0∥ ≤ ∥µ0∥ and τ being the q+k×1 vector

defined as

τ =
∂d̃U (µ̄, β0)

∂µ
µ0 =

2

n
U ′PZΥf,gµ0 = Ĵ ′M̂−1Ξ̂µ0. (B.38)

Similarly to (B.2) and (B.11),

∥d̃U (µ0, β0)∥ ≤K∥Ĵ∥∥M̂−1∥
∥∥∥∥ 1nZ ′ϵ

∥∥∥∥+K∥Ĵ∥∥M̂−1∥
∥∥∥∥ 1nZ ′R

∥∥∥∥
=Op

(
max

(√
p

n
, p−ν

))
= Op

(√
p

n

)
(B.39)

for ν satisfying
√
n/pν+1/2 = o(1), which holds under Assumption 3, and ∥τ∥ = Op(1) and

non-zero, since µ0 ̸= 0.

We furthermore define the unconstrained version of Ĥ evaluated at generic parameters’

value as

H̃U (µ, β) = 4Ĵ ′M̂−1Ω̃U (µ, β)M̂
−1Ĵ , (B.40)

partitioned in the usual way, where Ω̃U is defined according to (3.12). We also define
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its limit quantity HU (µ0, β0) = 4J ′M−1ΩM−1J , where, as previously defined, Ω =

n−1E(Z ′ΣZ) and Σ is the n×n block-diagonal matrix with ng×ng diagonal block given by

Σg, g = 1, . . . , G. Similar to earlier calculations in the proof of Theorem B2, under Assump-

tions 3-5, ∥H̃U (µ, β)∥ = Op(1), uniformly in (µ, β) and lim infn→∞ eig(H̃U (µ, β)) > c > 0,

uniformly in (µ, β) and almost surely.

Clearly, Ĥ = H̃U (0, β̂). We can apply the MVT to Ĥ−1 around the true parameters’

value and obtain

Ĥ−1 =H̃−1
U (µ0, β0) +

p∑
j=1

H̃−1
U (µ̄, β̄)

∂H̃U

∂µj
|(µ̄,β̄)H̃

−1
U (µ̄, β̄)µ0j

−
k∑

t=1

H̃−1
U (µ̄, β̄)

∂H̃U

∂βt
|(µ̄,β̄)H̃

−1
U (µ̄, β̄)(β̂t − β0t) ≡ H̃−1

U (µ0, β0) + T, (B.41)

where µ̄ and β̄ are intermediate points such that ∥µ̄−µ0∥ ≤ ∥µ0∥ and ∥β̄−β0∥ ≤ ∥β̂−β0∥.
Under H0A, ∥T∥ = Op(

√
p/n). Under H1A, µ0j ̸= 0 for some j = 1, . . . , p and, since β̂t for

t = 1, . . . , k are restricted estimates, β̂t − β0t = Op(1) for some t = 1, . . . , k. Thus, under

Assumptions 3-5, ∥T∥ = Op(p) and lim infn→∞ eig(T ) > c > 0. By partitioning T in the

usual way, we obtain Ĥ11 = H̃11
U (µ0, β0) + T11. Also, let

Ṽ(µ0, β0) =

(
Iq

−D̂−1
22 D̂21

)
H̃11

U (µ0, β0)
(
Iq ; −D̂12D̂

−1
22

)
(B.42)

and

W̃ =

(
Iq

−D̂−1
22 D̂21

)
T11

(
Iq ; −D̂12D̂

−1
22

)
. (B.43)

From (B.37) and (B.41), (B.36) becomes

nd̂′pĤ
11d̂p =nd̃U (µ0, β0)

′Ṽ(µ0, β0)d̃U (µ0, β0) + 2nτ ′Ṽ(µ0, β0)d̃U (µ0, β0)

+nτ ′Ṽ(µ0, β0)τ + nd̃U (µ0, β0)
′W̃ d̃U (µ0, β0)

+ 2nτ ′W̃ d̃U (µ0, β0) + nτ ′W̃τ, (B.44)

and thus

nd̂′pĤ
11d̂p − q

(2q)1/2
=
nd̃U (µ0, β0)

′Ṽ(µ0, β0)d̃U (µ0, β0)− q

(2q)1/2
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+

√
2n

√
q
τ ′Ṽ(µ0, β0)d̃U (µ0, β0)

+
n√
2q
τ ′Ṽ(µ0, β0)τ +

n√
2q
d̃U (µ0, β0)

′W̃ d̃U (µ0, β0)

+

√
2n

√
q
τ ′W̃ d̃U (µ0, β0) +

n√
2q
τ ′W̃τ (B.45)

By a similar argument adopted in the proof of Theorem B1, we can show ∥d̃U (µ0, β0) −
dU∥ = Op(p

3/2/n), with dU = −2/nJ ′M−1Z ′ϵ and dp = (Iq;−D12D
−1
22 )dU . Also, we can

show

∥H̃U (µ0, β0)−HU∥ = Op

(
p√
n

)
, (B.46)

such that, under Assumptions 3-5, ∥H̃11
U (µ0, β0)−H11

U ∥ = Op (p/
√
n). We show the claim

in (B.46) by routine arguments as in (B.19) and (B.20), after observing that H̃U (µ0, β0) =

4Ĵ ′M̂−1Φ̃RM̂
−1Ĵ , with Φ̃R = Φ̃ +

∑n
i=1 ziz

′
iR

2
i /n, and∥∥∥∆Φ̃R

Φ

∥∥∥ ≤
∥∥∥∆Φ̃

Φ

∥∥∥+ ∥∥∥∥∑n
i=1 ziz

′
iR

2
i

n

∥∥∥∥ = Op

(
p√
n

)
+ sup

1≤i≤n
R2

i ∥M̂∥

=Op

(
p√
n

)
+Op(p

−2ν) = Op

(
p√
n

)
, (B.47)

where the last equality follows for ν satisfying
√
n/p2ν+1 = o(1), which holds under As-

sumption 3.

After showing, similarly to what done in the proof of Theorem B2, that

d̃U (µ0, β0)
′Ṽ(µ0, β0)d̃U (µ0, β0)− d′pH

11
U dp = op

(√
p

n

)
, (B.48)

we conclude that the first term in (B.45) is Op(1), as shown in Theorem 1. By standard

norm inequalities, the second term in (B.45) is Op(
√
n), the third is Op(n/

√
p), the fourth

is Op(p
3/2), the fifth is Op(p

√
n) and the sixth is Op(n

√
p). The last term dominates the

former five ones and thus, under H1A, for all η > 0, P
(
|S|−1 ≤ η/n

√
p
)
→ 1 as n → ∞

and hence consistency of S follows.
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C Auxiliary lemmas

Lemma C1. Let p2/n→ 0 as n→ ∞ and suppose that Assumptions 2-4 hold with ν > 3/2.

Then, as n→ ∞, ∥∥∥M̂ −M
∥∥∥ = Op

(
p√
n

)
,
∥∥∥Ĵ − J

∥∥∥ = Op

(
p√
n

)
. (B.1)

Proof of Lemma C1: This is Lemma 1 in Gupta et al. (2025).

Lemma C2. Under Assumptions 1 and 3,

lim sup
n→∞

eig(Φ) <∞ and lim inf
n→∞

eig(Φ) > 0.

Proof. Let x be a non-stochastic m× 1 vector with ∥x∥ = 1. Then

x′Φx = E
(
x′n−1Z ′ΣZx

)
≤ E

(
x′n−1Z ′Zeig(Σ)x

)
= (x′Mx)eig(Σ) ≤ eig(M)eig(Σ),

uniformly over x such that ∥x∥ = 1. Then the claim for eig(Φ) follows by (3.1) and (3.2).

The proof of the claim for eig(Φ) is similar.

D Original results

In this section, we reproduce and detail the original empirical findings from Section 4.

These results serve as a reference for comparison with our nonparametric test results,

allowing readers to assess how our procedure extends the original analyses. Here we retain

Roman numeral column numbering to differentiate these tables from the test tables in the

main text and to facilitate cross-referencing.

D.1 Professional golf tournaments (Guryan et al., 2009)

Table D1 reproduces the estimates in Guryan et al. (2009), who study peer effects in

professional golf tournaments. Column (i) reports the authors’ baseline regression results

from estimating the following equation:

yi,tr = α+ βAbilityi + γ w′
i,trAbility + δtc + εi,tr, (B.1)
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where yi,tr denotes the score of player i in group k, round r, and tournament t. Player

performance depends on own ability, Abilityi, measured by the corrected handicap score,

and on peer ability, summarized by the covariate social exposure term w′
i,trAbility. Let

w denote a peer-weight matrix defined over the stacked player–group–round–tournament

observations, with generic element wi,tr,j indicating the relevance of player j for player i

within the same playing group at round r, and tournament t. The vector wi,tr denotes

the row of w corresponding to observation (i, r, t) and collects the weights assigned to

player i for all other players in the same group. Ability is a vector compiling the average

handicap measure of each player over the last 2-3 years.15 Accordingly, w′
i,trAbility =∑

j ̸=iwi,tr,jAbilityt,j denotes the weighted mean ability of peers faced by player i in a

given round and tournament. The coefficients β and γ capture the effects of individual and

peer ability on playing scores, respectively. The term δtc denotes tournament-by-category

fixed effects, and εi,tr is an idiosyncratic error term.

Column (ii) considers alternative measures of playing partners’ ability that may influ-

ence performance through different channels. Specifically, they replace partners’ handicap

with measures such as driving distance, number of putts, and greens hit in regulation, which

help distinguish potential “learning” effects from pure “motivation” effects.16 In Column

(iii) the authors also include interaction terms allowing peer effects to vary with a player’s

own ability (measured on the basis of the corrected handicap) and experience.

Overall, these results based on linear specifications find limited evidence of peer effects

in individual performance. None of the peer coefficients in specifications (i) and (ii) are

statistically significant, while in (iii) some evidence of heterogeneity emerges. Interacting

average peer ability with own experience yields a small but statistically significant effect:

for a player with one year of experience, a one-stroke increase in average partner ability

decreases the player’s score by about 0.02 strokes17, indicating sensitivity to competitive

pressure early in the career. As experience increases, players become progressively less

sensitive: the initially negative peer effect fades out around 2–3 years of experience and

eventually reverses, so that more experienced players perform better in stronger competitive

fields and worse in weaker ones.

15To construct the individual Ability variable, the authors use scores from the previous three years for
2002 data and scores from the previous two years for 2005 and 2006 data.

16The intuition is that players may learn about wind or course conditions from observing another player’s
putting, but cannot directly learn to drive longer; the driving-distance coefficient thus captures the moti-
vation component net of learning.

17A back of the envelope calculation using the coefficients in column (iii) of Table D1.
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Table D1: Original results by Guryan et al. (2009)

Dependent var. (i) (ii) (iii)

Abilityi 0.672∗∗∗ 0.656∗∗∗

(0.039) (0.039)

w′
i,trAbility -0.035 -0.036

(0.040) (0.040)

DrivDisti -0.009

(0.004)

w′
i,trDrivDist 0.003

(0.004)

Puttsi 0.130∗∗∗

(0.030)

w′
i,trPutts -0.045

(0.039)

Greensi -0.682∗∗∗

(0.050)

w′
i,trGreenst -0.023

(0.060)

Abilityi × w′
i,trAbility 0.081

(0.033)

Expit 0.019∗∗∗

(0.004)

Expit × w′
i,trAbility 0.015∗∗

(0.005)

Tournament × category fixed effects ✓ ✓ ✓

n 17,492 17,182 17,492

Notes: Regression results in Columns (i) and (ii) replicate Columns (1)
and (5) from Table 5 in Guryan et al. (2009). Column (iii) replicates
Column (4) from Table 8 in Guryan et al. (2009). The dependent vari-
able is the golf score of player i in a given round. Abilityi denotes player
i’s ability, measured by the average handicap score of the last 2-3 years.
w′

i,trAbility =
∑

j ̸=i wi,tr,jAbilityj denotes the weighted average ability of
player i’s peers j. Column (ii) includes additional ability measures such
as driving distance (DrivDisti), number of putts (Puttsi), and greens
in regulation (Greensi), along with their peer analogues w′

i,trDrivDist,
w′

i,trPutts, and w′
i,trGreens, constructed analogously using the weights in

wi,tr. Column (iii) further includes interactions between own ability and
peer ability, Abilityi×w′

i,trAbility, and between experience and peer ability,
Expi × w′

i,trAbility, where Expi denotes player experience. All specifica-
tions include tournament-by-category fixed effects. Standard errors clus-
tered at the playing-group level are reported in parentheses. Observations
are weighted by the inverse of the sample variance of the ability measure,
following Guryan et al. (2009). ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.



D.2 Network expansion and firm performance (Cai and Szeidl, 2017)

In what follows, we replicate the peer-quality specifications of Cai and Szeidl (2017), which

relate firm performance to the baseline employment size of other firms in the same meeting

group. Specifically, Table 8 in Cai and Szeidl (2017) estimates the following model on the

sample of treated firms:

yi,t = α+ δPosti,t + γ w′
i,tEmpSize+ x′iβ + θi + εi,t, (B.2)

where yi,t denotes a generic measure of firm i’s performance at time t. The vector wi,t

denotes the peer-weight vector associated with observation (i, t) and collects the weights

assigned to other firms in the same meeting group. Let w denote the peer-weight ma-

trix defined over the stacked panel of firm–time observations, so that wi,t corresponds to

the row of w associated with firm i at time t. The vector EmpSize collects firms’ base-

line log employment sizes, measured prior to the intervention, such that w′
i,tEmpSize =∑

j ̸=iwi,t,jEmpSizej captures the average baseline employment size of firm i’s peers at

time t. The term xi collects firm-level control variables (including size category, sector,

subregion, and their interactions); θi are firm fixed effects; and εi,t is an idiosyncratic error

term.

Panel A of Table D2 focuses on standard performance outcomes. Column (i) shows

that larger peers are associated with higher sales: the estimated coefficient implies that

being randomized into a group with peers with a 10% increase in average peer size raises log

sales by about 1%. Column (ii) also finds a statistically significant effect on profits (around

RMB 27,800). In contrast, the estimates for employment, total assets, and productivity

are non-significant. Materials and utility costs (v and vi), however, respond positively and

with magnitudes comparable to the sales effect, consistent with higher scale of operations

rather than changes in measured productivity.

Panel B turns to intermediate outcomes and potential alternative channels. Here,

log peer size is positively and significantly related to the number of clients and to the

management score (viii and xi), while effects on the number of suppliers and bank loans

are small and not statistically significant. The final two columns—differences between

reported and book sales, and the tax-to-sales ratio—show coefficients close to zero, which

is reassuring for concerns about differential misreporting or tax evasion. Overall, the

pattern in Table D2 suggests that being matched with larger peers raises firm scale and

improves some management practices, without clear evidence of changes in tax behavior
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or accounting practices.

Table D2: Original results by Cai and Szeidl (2017)

Panel A: Main performance measures

Dependent var.
log

Sales

Profit

(10,000 RMB)

log Number

of employees

log Total

assets

log Material

cost

log Utility

cost

log

Productivity

(i) (ii) (iii) (iv) (v) (vi) (vii)

w′
i,tEmpSize 0.105*** 27.825** 0.043 -0.016 0.100* 0.141*** 0.029

(0.040) (13.432) (0.032) (0.034) (0.052) (0.042) (0.020)

Firm demographics ✓ ✓ ✓ ✓ ✓ ✓ ✓

Firm fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓

n 4,183 4,076 4,183 4,183 4,148 4,086 4,183

Panel B: Intermediate outcomes and alternative explanations

Dependent var.
log Number

of clients

log Number

of suppliers
Bank loan Management Innovation

log Reported -

log book sales
Tax/sales

(viii) (ix) (x) (xi) (xii) (xiii) (xiv)

w′
i,tEmpSize 0.068** -0.001 0.017 0.162*** 0.027 0.022 -0.001

(0.032) (0.030) (0.016) (0.027) (0.017) (0.014) (0.001)

Firm demographics ✓ ✓ ✓ ✓ ✓ ✓ ✓

Firm fixed effects ✓ ✓ ✓ ✓ ✓

n 4,173 4,170 4,183 2,774 1,409 4,152 4,178

Note: Results originally presented in Table 8 from Cai and Szeidl (2017). Regressions only use data for
treated firms. The term w′

i,tEmpSize is the average baseline log employment of other group members.
Firm demographics are size category, sector, subregion, and their interactions. Standard errors clustered
at the meeting group level in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

D.3 Student achievement (Booij et al., 2017)

Table 4 of the paper by Booij et al. (2017) reports five regression specifications of growing

complexity, linking peer-group composition to first-year credit completion. These results,

which serve us as basis for the tests in Table 3, are reproduced here below. For exposition,

we discuss the fully saturated specification of column (v) which nests all other models.

Precisely, Equation (B.3) allows peer effects to operate both directly, through z′iγ, and

heterogeneously with respect to own ability, through the interaction GPAi z
′
iη.

zi ≡
(
w′
i,avgGPA, w

′
i,sdGPA, (w

′
i,avgGPA)× (w′

i,sdGPA)
)′
.

yig = α+ z′iγ +GPAi z
′
iη + x′igβ + εig.

(B.3)

where yig denotes the academic outcome of student i in group g, measured by the
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number of credit points obtained during the academic year. Peer academic exposure is

summarized by the vector zi ≡
(
w′
i,avgGPA, w′

i,sdGPA, (w′
i,avgGPA) × (w′

i,sdGPA)
)′

where w denotes a peer-weight matrix with generic element wij indicating the relevance

of student j for student i within group g. The vector wi denotes the ith row of w and

collects the weights assigned by student i to all other students in the group. Accordingly,

w′
i,avgGPA and w′

i,sdGPA denote, respectively, the mean and standard deviation of peers’

GPA, computed using the weights in wi. The coefficient vector γ captures the direct

association between peer academic characteristics and student outcomes, while η allows

these associations to vary with the student’s own prior academic performance, GPAi. The

vector xig contains additional individual- and group-level control variables, α is a constant

term, and εig denotes an idiosyncratic error term. The term xi includes randomization

controls (GPA category, math track, cohort, application order) alone or combined with

student demographics (gender, age, professional college attendance) and individual GPA.

Table D3 presents the results from five progressively augmented specifications linking

peer-group composition to first-year credit completion. Columns (i)–(iii) include only main

effects of peer GPA moments and yield statistically insignificant estimates. Once the

interaction between peer mean GPA and dispersion is introduced in column (iv), both

mean peer GPA and the mean–SD interaction become statistically significant, while the

dispersion term remains negative. Finally, column (v) includes high-order effects allowing

peer effects to vary with students’ own GPA, and again concludes for statistically significant

effects.
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Table D3: Original results by Booij et al. (2017)

Dependent var. (i) (ii) (iii) (iv) (v)

w′
i,avgGPA 0.051 0.048 0.070 0.095** 0.148***

(0.043) (0.041) (0.043) (0.046) (0.052)

w′
i,sdGPA -0.095 -0.121* -0.185**

(0.073) (0.063) (0.082)

(w′
i,avgGPA)× (w′

i,sdGPA) 0.423** 0.343*

(0.176) (0.190)

GPAi × w′
i,avgGPA -0.117***

(0.042)

GPAi × w′
i,sdGPA 0.104

(0.075)

GPAi × (w′
i,avgGPA)× (w′

i,sdGPA) -0.287**

(0.138)

Controls

Randomization ✓ ✓ ✓ ✓ ✓

Background ✓ ✓ ✓ ✓

GPAi ✓ ✓ ✓ ✓

Note: Results originally presented in Table 4 of Booij et al. (2017). The dependent
variable is the number of credit points collected by student i in the first academic year.
The term wavg

i GPA denotes the mean GPA of student i’s peers, and w′
i,sdGPA denotes

standard deviation of peers’ GPA. The interaction terms capture complementarities
between peer mean GPA and peer GPA dispersion, as well as heterogeneity with
respect to student i’s own prior academic performance, GPAi. All regressions include
randomization controls (a saturated set of own GPA category, advanced math track,
and cohort dummies interacted with application order). Background controls include
gender, age, and an indicator for professional college attendance. Standard errors
clustered at the tutorial-group level are reported in parentheses. n = 1,876. ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.01.
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