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Abstract

This paper explores the existence of externalities from network architecture (so-called

network externalities) in link formation games of incomplete information. It extends

the structural estimation method by Leung (2015) to games where links are undirected

and proposals are only partially observable. We provide an econometric characteriza-

tion of the proposed two-step estimator, and we document its performance through a

simulation exercise. When the estimation method is applied to data on risk-sharing

arrangements in a Tanzanian village, results indicate that indirect connections matter.

Assuming that link formation follows a bilateral process, the estimated probability of

proposing a link to a potential partner increases by 9% for any additional indirect

connection provided.
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1 Introduction

From its very first steps network theory has claimed that the formation of links may depend

strategically on the entire graph (Jackson and Wolinsky, 1996; Bala and Goyal, 2000). How-

ever, evidence based on experimental and observational data still lags behind, and empirical

questions about the value of indirect connections remain largely unexplored.1 Building on

Leung (2015), we design an estimation protocol for network formation games where links

are undirected and proposals are only partially observable. This procedure accommodates

undirected links formed by bilateral or unilateral link formation rules. In our setting, agents

play a simultaneous game of incomplete information where they form undirected links on the

basis of their beliefs about the emerging network architecture. Assuming that these beliefs

satisfy a number of regularity conditions (discussed in Section 2), the estimation strategy

boils down to a two-step procedure where the first stage consistently estimates agents’ be-

liefs, and the second stage estimates the role of network externalities.2 We provide existence,

consistency and asymptotic normality results for the two-step estimator, and we conduct a

set of simulation exercises to investigate its performance as sample size grows.

We illustrate the procedure using data on risk-sharing arrangements from the Tanzanian

village of Nyakatoke. Lacking access to formal insurance, most households in developing

countries rely on informal risk-sharing arrangements in face of shocks such as health-related

expenses, injuries, funerals and job losses. These arrangements have long captured the atten-

tion of economists, for several reasons. On the one hand, the prevalence of the phenomenon

makes it of paramount importance for economic development.3 On the other hand, most

arrangements do not take place at the level of the entire community but among pairs of house-

1Most of the available evidence relates to specific settings. For instance, the study of cross-firm collabo-
rative networks suggests that information flows are insignificant for indirect neighbors (Breschi and Lissoni,
2005; Singh, 2005). On the other hand, experimental evidence with dictator games shows that further-away
connections are relevant and decay with the inverse of distance (Goeree et al., 2010). Graham and Pelican
(2019) provide a test for interdependencies in link-formation preferences and conclude for the presence of
externalities in the same data we use here.

2A two-step approach is also taken by König et al. (2019).
3Coate and Ravallion (1993), Townsend (1994), Udry (1994), Fafchamps and Lund (2003).
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holds, which makes risk-sharing a compelling application of network theory for economists.4

We use the self-declared information in Nyakatoke data to draw the undirected village

network and to investigate the role of network architecture. Specifically, we test whether

agents choose between risk-sharing partners on the basis of their individual characteristics

only or whether indirect connections also play a role in these decisions. Much of the economic

literature assumes that informal risk-sharing arrangements require the consent of the two

parties involved, which implies that link formation follows a bilateral process.5 Following

this literature, in the empirical illustration of Section 5 we assume that links are formed

bilaterally. Appendix B shows how our procedure also accommodates undirected networks

issued by unilateral link formation rules. Results from Section 5 indicate that Nyakatoke

villagers evaluate potential partners’ connections in a positive manner. Our estimates suggest

that for a given pair of potential partners ij, the probability that i proposes a link to j

increases on average by 0.016 for any additional indirect connection j provides. This increase

is sizeable, as it corresponds to approximately 9% of the average fitted probability of link

proposal.

From an econometric standpoint, testing whether network architecture predicts link for-

mation has proved to be a complex task. Our paper deals with the case where the researcher

observes one single network at one single period and wants to include network covariates

in the objective function of agents. In this scenario the structural equation can have mul-

tiple solutions (Bjorn and Vuong, 1984; Bresnahan and Reiss, 1991; Tamer, 2003), and the

calculation may become intractable due to the combinatorial complexity of networks. One

solution is provided by the exponential random graph models where a dynamic meeting pro-

tocol acts as an equilibrium selection mechanism (Hsieh and Lee, 2016; König, 2016; Mele,

4Risk-sharing networks have been studied from multiple angles, including the efficiency and sustainability
of the resulting arrangements, the determinants of link formation and the structural properties of the network
architecture (Genicot and Ray, 2003; Bramoullé and Kranton, 2007; Bloch et al., 2008; Jackson et al., 2012;
Banerjee et al., 2013; Ambrus et al., 2014; Ambrus and Elliott, 2020).

5Most models of risk sharing and favor exchange assume that agents can refuse transactions that are
against their self-interest (Kimball, 1988; Coate and Ravallion, 1993; Kocherlakota, 1996; Bloch et al., 2008;
Jackson et al., 2012).
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2017; Badev, 2020). Another solution is to condition on models that replicate some observed

topological patterns or to limit the degree to which other players can affect one’s utility.6

Alternatively, one can simplify the estimation procedure by relying on incomplete informa-

tion to induce symmetry and independence in agents strategies (Leung, 2015; De Paula and

Tang, 2012), which is the approach we take here.

This paper’s main contribution is methodological: it develops a protocol to estimate

network externalities in undirected link formation games of incomplete information. This

builds on Leung (2015) who also relies on incomplete information to estimate a simultane-

ous game of link formation. Our paper differs in one substantive aspect, however: Leung

(2015)’s procedure requires data on directed links, which are interpreted as observed propos-

als in a game of unilateral link formation. Our protocol is designed for undirected link data,

which we interpret as the equilibrium outcome of a link formation process where proposals

are only partially observed. This opens to the possibility of coordination failures, which we

preclude by restricting to admissible Bayesian Nash equilibria banning weakly dominated

strategies (Section 2.2). The resulting log-likelihood function generalizes the partial observ-

ability bivariate model of Comola and Fafchamps (2014) to include network covariates in

the objective function of agents. This method is naturally suited for bilateral as well as

unilateral link formation rules, as long as the econometrician only observes the undirected

link outcome. In Appendix B we revisit the empirical illustration from Leung (2015), show-

ing that directed and undirected models of link formation can yield different results when

applied to the same data. Our work also relates to Ridder and Sheng (2020), who generalize

Leung (2015) by relaxing the separability assumption to include additional non-linear net-

6One can identify structural parameters by aggregating individuals into ‘types’ and assuming that agents
have preferences only over the type of their partners (De Paula et al., 2018), or by the rate at which various
sub-graphs are observed in the overall network (Chandrasekhar and Jackson, 2016). Along similar lines,
Boucher and Mourifie (2017) study a setting where individual preferences display weak homophily.
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work externalities.7,8 As an additional contribution, our paper also advances the knowledge

of risk-sharing arrangements in developing countries by providing first-hand evidence that

indirect connections affect linking choices, while previous literature has focused mostly on

documenting the number and characteristics of risk-sharing partners.9

Network formation models have proved difficult to estimate in presence of externalities.

Most of the existing tools were developed for directed networks and expect two distinct

reports per each dyad (Leung, 2015; Mele, 2017; Badev, 2020). On the other hand, the

available models of undirected network formation rely on complete information and achieve

set identification (Miyauchi, 2016; Sheng, 2020; De Paula et al., 2018). The procedure we

propose is computationally parsimonious, providing a convenient alternative to complete-

information models. As such it can prove useful in a variety of applications where links

are undirected for conceptual and/or practical reasons. From the conceptual viewpoint,

in many instances it is legitimate to assume that link formation requires the consent of

both parties. For example, link formation is ‘naturally’ interpreted as bilateral when data

represent risk-sharing, trade deals, co-authorship amongst researchers, communication flows,

and industrial executive linkages (Banerjee et al., 2013; Buchel et al., 2020; Lalanne and

Seabright, 2022). In these cases the practitioner may want to draw undirected links on

the basis of multiple (possibly discordant) survey reports (Section 5.1). Also, practically

speaking, many data sources contain no information on linking intentions and one single link

outcome per pair. This is mainly the case when data originate from administrative sources

(rather than individual surveys): for example, communication records retrieved from digital

social networks, exchange data from online marketplaces, import-export shipment registries,

7The methodology in Ridder and Sheng (2020), which is designed for directed networks, also extends to a
scenario where (agents form directed links but) the observed links are undirected because of data collection
and reporting issues. This is conceptually different from our setting where undirected links are formed based
on players’ proposals which are not fully observed.

8For the estimation of social interaction models with incomplete information, see also Gilleskie and Zhang
(2009) and Hoshino (2019).

9An exception is Krishnan and Sciubba (2009), who identify the common features of all equilibrium
configurations in a model with negative network externalities and test these predictions against data on
labor exchange arrangements in Ethiopia.
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scientific publication records and patent repositories only report ‘successful’ matches (Gaulier

and Zignago, 2010; Hitsch et al., 2010; Ductor et al., 2014; Bailey et al., 2018). In all these

situations, the toolbox developed for directed networks is inadequate and our estimator

provides a valid alternative.

The paper is organized as follows. Section 2 introduces the theoretical setting. Section

3 presents the estimation method. Section 4 describes a simulation exercise. Section 5

applies the estimation method to risk-sharing data from rural Tanzania. Section 6 concludes.

Appendix A discusses the inclusion of continuous attributes and the smoothing of discrete

variables. Appendix B revisits the data illustration from Leung (2015) to compare different

models of link formation. All proofs are relegated to Appendix C.

2 The Model

2.1 The game

Let N = {1, 2, ..., n} be a set of agents who play to form an undirected network. For

agent i, let Xi = [Xi,1, ..., Xi,q] be a vector of individual attributes of dimension [1× q] and

X = {X1, ..., Xn} denote the set of these vectors. For ease of exposition in this section

we assume that X is composed of discrete attributes only (this assumption is relaxed in

Appendix A).

Assumption 1 (Discrete X). For every i ∈ N , Xi has finite support and for any x in the

support Pr(Xi = x) is bounded away from zero.

Let εi = [εi,1, ..., εi,i−1, 0, εi,i+1, ..., εi,n] be a [1 × n] vector of shocks of agent i with all other

agents (εij does not necessarily equal εji), which are stochastically independent from X. ε

denotes the collection εi over all i ∈ N .

Assumption 2 (i.i.d. Shocks). {εij | i, j ∈ N, i 6= j} are independently drawn from the
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standard normal distribution.10

Thus, shocks are assumed to be uncorrelated across and within individuals.11 The set of

attributes vectors X is common knowledge, while the shocks are private information, i.e.

only i knows εi.

Agents play a simultaneous-move game of link formation, where everyone announces

independently the links they wish to form. The action of agent i is represented by a binary

vector of length n, where the jth entry (j 6= i) equals 1 if i proposes j to form a link and

0 otherwise.12 The actions of all agents stacked on top of each other, denoted S, can be

interpreted as an adjacency matrix of link proposals:

S =



0 S1,2 . . . S1,n

S2,1 0 . . . S2,n

...
...

. . .
...

Sn,1 . . . Sn,n−1 0


(1)

These link proposals give rise to a network G. We consider two alternative rules by which

G is formed. In the “bilateral rule” an undirected link is formed if and only if both sides

propose to one another. Formally, Gij = Gji = Sij · Sji. The interpretation is that pairs

of agents need bilateral consent in order to form an undirected link between them. In the

“unilateral rule” an undirected link is formed if and only if at least one side proposes to

the other. Formally, Gij = Gji = Sij + Sji − Sij · Sji. The interpretation is that agents

may unilaterally form undirected links with others. Note that the issue of transforming

proposals into links only arises when links are undirected, as when links are directed it is

straightforward to set Gij = Sij and Gji = Sji. For concreteness, we assume a bilateral rule

10The standard normal distribution is chosen here for the sake of convenience, but our results hold for
other full-support distributions.

11While independence across individuals is essential to our estimation strategy, independence within in-
dividuals (i.e. between εik and εil) is imposed for simplicity and could be relaxed by adding an agent-level
unobserved effect as in Graham (2017).

12Since an agent cannot form a link with herself, the ith entry always equals 0.
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throughout the theoretical discussion (the unilateral rule is explored in Appendix B).

Given network G, agent i’s utility is given by:

ui(X,G; θ0) =
∑
j 6=i

Gij · (vij(X,G−i; θ0) + εij) (2)

where G−i indicates G with the ith row and column deleted, and θ0 ∈ Θ is a [p × 1] vector

of parameters from a compact set Θ. Estimating the parameters in θ0 is the goal of the

procedure described in Section 3.

Assumption 3 (Linearity, Separability and Anonymity). The vij(·) function: (i) is linear

in θ0 i.e. can be written in the form Zijθ0 with Zij satisfying ‖Zij‖ < Z̄ <∞ for all i, j ∈ N ;

(ii) depends on G only through G−i; (iii) is insensitive to permutations of the agents’ labels.

The separability condition, borrowed from Leung (2015), requires that the i’s marginal

utility from a link with j is independent from other links she may have.13 In Section 2.4

below we discuss which types of externalities from indirect connections this assumption is

compatible with.

2.2 Equilibrium

Let i’s (pure) strategy be a function from commonly observed attributes and privately ob-

served shocks to an action: Si : (X, εi) → {0, 1}n (henceforth we omit the dependency on

X). A Bayes Nash Equilibrium (BNE) is a strategy profile [Si(εi), S−i(ε−i)] such that for all

i ∈ N and for all S ′i(εi):

Eε−i
[ui(X,G[Si(εi), S−i(ε−i)]; θ0)] ≥ Eε−i

[ui(X,G[S ′i(εi), S−i(ε−i)]; θ0)] (3)

Due to the separability assumption, in any BNE agents consider proposal decisions sep-

arately. Hence, we can write Si(X, εi) = [Sij(X, εij)]j∈N , where Sij : (X, εij) → {0, 1}. In

13Separability is relaxed by Ridder and Sheng (2020) in the context of directed network formation.
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addition, in any BNE, Sij must prescribe i to propose to j whenever it strictly increases her

expected utility and not to propose whenever it strictly reduces it. Formally:

Sij(εij) =


1 if Eεji [Sji(εji)] ·

(
Eε−i

[vij(X,G−i[S−i(ε−i)]; θ0)] + εij
)
> 0

0 if Eεji [Sji(εji)] ·
(
Eε−i

[vij(X,G−i[S−i(ε−i)]; θ0)] + εij
)
< 0

(4)

Whenever proposing to j does not change i’s expected utility, proposing and not propos-

ing are both best-replies. This shows that Bayes Nash equilibria do not exclude coordination

failures. For instance, a pair Sij(εij) and Sji(εji) that prescribed i and j (respectively) not

to propose for any εij and εji (respectively) may well be part of a BNE profile, even if both

i and j stand to gain (in expectation) from forming a link. Since we are interested in mod-

eling bilateral network formation, where pairs of agents are free to coordinate their actions,

we wish to rule out such equilibria. We do so by restricting attention to admissible Bayes

Nash equilibria, i.e. equilibria where no player uses a (weakly) dominated strategy. In any

admissible BNE, Sij must prescribe i to propose to j whenever, assuming j proposes to i,

her expected utility from proposing is strictly positive, and not to propose if it is strictly

negative. Formally:

Sij(εij) =


1 if Eε−i

[vij(X,G−i[S−i(ε−i)]; θ0)] + εij > 0

0 if Eε−i
[vij(X,G−i[S−i(ε−i)]; θ0)] + εij < 0

(5)

Given this decision rule, one may reformulate the equilibrium condition in terms of beliefs

over proposal probabilities. To that end, let σS−i be a [(n − 1) × n] matrix representing

i’s beliefs about the probabilities that each agent j 6= i proposes to another agent k 6= j

(including i herself). Given the decision rule in Equation (5), and letting Φ denote the CDF

of the standard normal distribution, the ex-ante probability that i proposes to j is:

Pr(Sij = 1|X, σS−i) = Pr
(
E[vij(X,G−i; θ0)|X, σS−i)] + εij > 0

)
(6)
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= Φ
(
E[vij(X,G−i; θ0)|X, σS−i)]

)
(7)

Note that since εij is drawn from a continuous distribution, is makes no difference whether

i’s strategy prescribes to propose or not when Eε−i
[vij(X,G−i[S−i(ε−i)]; θ0)] + εij is exactly

zero. A belief matrix σS corresponds to an admissible BNE if and only if it satisfies the

following equality for all i and j:

σ
S−i

ij = Pr(Sij = 1|X, σS−i) (8)

The fact that vij(·) depends on G−i, rather than S−i allows conditioning its expected value

on beliefs over linking probabilities rather than proposal probabilities. In addition, due

to Assumption 2, the probability that a link exists is simply the product of the proposal

probabilities of the two parties involved. This allows reformulating the equilibrium condition

in terms of beliefs over linking probabilities. To that end, we let σG denote a [n× n] matrix

representing agents’ common beliefs about linking probabilities among all pairs of agents,

and σG−i denote the same matrix but with its ith row and column deleted. A belief matrix

σG corresponds to an admissible BNE if and only if it satisfies the condition below for all i

and j. We call such σG an “equilibrium belief”.

σGij = Φ
(
E[vij(X,G−i; θ0)|X, σG−i ]

)︸ ︷︷ ︸
Pr(i proposes to j)

Φ
(
E[vji(X,G−j; θ0)|X, σG−j ]

)︸ ︷︷ ︸
Pr(j proposes to i)

(9)

Given an equilibrium belief σG, a network G is said to be an “equilibrium” if the following

holds for all i and j:

Gij = 1

{
E[vij(X,G−i; θ0)|X, σG−i ] + εij > 0

}
︸ ︷︷ ︸

i proposes to j

1

{
E[vji(X,G−j; θ0)|X, σG−j ] + εji > 0

}
︸ ︷︷ ︸

j proposes to i

(10)

Note that due to admissibility, an equilibrium network G is one that satisfies the pairwise
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stability conditions in expectation: (i) if i and j are linked in G then the marginal expected

utilities this link provides each player is positive; (ii) if i and j are not linked in G then then

the marginal expected utility this link provides is negative for at least one of them. Hence,

even though the solution concept we deploy is non-cooperative, in equilibrium no pair of

players fail to coordinate on forming a link.

Following Leung (2015), from here on we restrict attention to symmetric equilibria. A

symmetric equilibrium is an equilibrium in which all pairs of agents that are observationally

equivalent have the same linking probabilities. Formally, an equilibrium σG is symmetric if

for all i, j 6= k, l ∈ N :

(Xi = Xk and Xj = Xl) or (Xi = Xl and Xj = Xk) =⇒ σGij = σGkl (11)

Figure 1 illustrates this definition. Agents in this network have a single binary attribute –

being either black or white – depicted by the colors of the nodes. Beliefs are depicted by

weights on edges and their values by their color (i.e. all red beliefs equal each other, and

all blue beliefs equal each other). All pairs consisting of two black agents have the same σG

value (red), and the same holds for pairs of white and black agents (blue) and pairs of two

white agents (green). The described beliefs are therefore symmetric.

5

4

3

2

1σG
12

σG
13

σG
14

σG
15

σG
23

σG
24

σG
25

σG
34

σG
35

σG
45

Figure 1: Example of a symmetric belief matrix

For given X and θ0, we let ω(X, θ0) denote the set of admissible and symmetric BNE.

Proposition 1 establishes that ω(X, θ0) is non-empty. Assumption 4 states that the observed
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data is generated by some equilibrium within ω(X, θ0).14

Proposition 1 (Existence). Under assumptions 1-3, there exists an admissible and sym-

metric BNE, i.e. ω(X, θ0) 6= ∅.

Assumption 4 (Admissible and Symmetric BNE). The observed network is generated ac-

cording to Equation (10) where σG ∈ ω(X, θ0).

2.3 Example

Consider the case where 3 agents have one binary attribute Xi, and their utility function is

as follows:

vij(X,G−i; θ0) = θ1 + θ2Xi + θ3|Xi −Xj|+ θ4
1

n− 1

∑
k 6=i

Gjk (12)

with θ0 = [−1, 1,−0.5, 1]′. The term |Xi − Xj| represents a measure of similarity between

i and j. It thus accounts for homophily. The term 1
n−1

∑
k 6=iGjk represents the average

number of indirect connections (i.e. paths of length 2) that i gains by forming a link with j.

It thus accounts for externalities from the network topology.

Columns 1 and 2 in Table 1 present all possible ordered pairs in the 3-agent network.

Columns 3 and 4 report the binary attributes of agents i and j respectively. Column 5

reports |Xi − Xj|. The third term in the utility function 1
n−1

∑
k 6=iGjk depends on the

network structure G. Its expected value therefore depends on the beliefs about the network

structure σG.

Let us consider a given set of beliefs which are reported in column 6. Column 7 uses

these beliefs to compute 1
n−1

∑
k 6=i σ

G−i

jk . Using columns 3, 5 and 7 and the functional form

14Note that Assumption 4 does not impose any restrictions on the probability that a given equilibrium
is selected. This stands in contrast to the “many markets asymptotics” setting where the econometrician
observes many repetitions of the game and assumes that the probability distribution over (not necessarily
symmetric) equilibria is degenerate. As a result, the equilibrium being played in all repetitions of the
game is guaranteed to be the same one. Following Leung (2015), we are able to avoid this assumption and
achieve point identification with one large network (“large market asymptotics”) by allowing only symmetric
equilibria to be selected.
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we can now compute the expected value of vij for all pairs of agents. This is reported in

column 8. Now, given that the εij values are drawn independently from the standard normal

distribution, the probability that i would propose to j (that is, that E[vij] + εij ≥ 0) is

Φ(E[vij]). This is reported in column 9. Finally, the probability that a link exists in G is the

product of the proposal probabilities of the two agents involved. This is reported in column

10.

1 2 3 4 5 6 7 8 9 10

i j Xi Xj |Xi −Xj| σG 1
n−1

∑
k 6=i σ

G−i

jk E[vij] Φ(E[vij]) Φ(E[vij]) · Φ(E[vji])

1 2 0 1 1 0.027 0.5 · 0.255 -1.3725 0.0850 0.027
1 3 0 1 1 0.027 0.5 · 0.255 -1.3725 0.0850 0.027
2 1 1 0 1 0.027 0.5 · 0.027 -0.4865 0.3133 0.027
2 3 1 1 0 0.255 0.5 · 0.027 0.0135 0.5054 0.255
3 1 1 0 1 0.027 0.5 · 0.027 -0.4865 0.3133 0.027
3 2 1 1 0 0.255 0.5 · 0.027 0.0135 0.5054 0.255

Table 1: Example

Note that in this example σGij = Φ(E[vij])Φ(E[vji]) for all i and j 6= i. This means that

the beliefs σG in column 6 are equilibrium beliefs. Also note that all pairs of agents which are

observationally equivalent have the same linking probabilities, e.g. the pairs {1, 2} and {1, 3}

have the same linking probability under σG. This means that the beliefs σG are symmetric.

2.4 Separability and Externalities

The utility agents gain from the network might be related to different measures of their

centrality in it. The assumptions we take on the form of agents’ utility function, however,

limits the type of centrality measures whose effect on proposal decision can be estimated.

This subsection discusses what centrality measures are compatible with our assumptions.

Let ci(G) denote a generic centrality measure of player i in network G. The separability

assumption requires that it can be written in the form ci(G) =
∑

j 6=iGij · f(G−i) for some

function f . This condition can alternatively be written as ci(G+ ij)− ci(G− ij) = f(G−i),

where G+ij (respectively, G−ij) denote the network G with the link between i and j added
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(respectively, removed). Hence, our model allows for the marginal contribution of a link ij to

i’s centrality to be a function of all walks in G besides those that pass through i. Centrality

measures compatible with this condition include “information centrality” (Stephenson and

Zelen, 1989) and “targeting centrality” (Bramoullé and Genicot, 2023).15

Information centrality assign weights for every path emanating from i and sum those

weights up. Since paths are sequences of agents and links in which no agent appears twice,

this measure is compatible with the separability assumption. While information centrality

defines a specific weighting scheme, one could generalize it by leaving the weighting scheme

open. The externality we use in the empirical illustration of Section 5 corresponds to the

special case where the weights on every paths of length larger then three are set to zero.

To give the intuition behind targeting centrality, consider a dynamic process of informa-

tion diffusion that takes place in discrete time. At time period l = 0 an agent i passes a

message to each of her friends with some fixed probability p. At every subsequent period

l > 1 any agent that received the message at period l − 1 passes it to each of her friends

with probability p. Now suppose that the message is targeted towards a specific agent j.

j’s targeting centrality measures the expected number of times she receives messages from

others assuming she does not participate in the diffusion process. The idea that the trans-

mission process stops at the target node makes this centrality measure compatible with our

separability assumption.

While the discussion above presents centrality measures that are compatible with the

separability assumption, some are clearly not. The following equation provides a generic way

to construct a separable counterpart for any centrality measure ci(G): c̃i(G) =
∑

j 6=iGij ·

ci(G−i + ij). As an illustration, suppose ci(G) denote i’s diffusion centrality (Banerjee

et al., 2013), which is based on the same information diffusion process described above. The

interpretation of c̃i(G) is that i diffuses the message in period 1 and then never re-transmits

it again.

15Brandes and Fleischer (2005) show that information centrality is equivalent to current-flow closeness
centrality.
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3 Estimation

Imagine we observe a single network G and agents’ attributes X.16 Let us assume that G is

formed according to the model specified above, that is, the network results from all agents

behaving optimally given the symmetric equilibrium belief σG and their realization of the

error terms εi that we do not observe. Our goal is to estimate and conduct inference on the

true parameter vector θ0. In what follows we describe the building blocks of our procedure.

3.1 Log-likelihood function

Let us denote by δij a function that takes Xi, Xj and returns a vector of covariates of

dimension [1 × (p − k)] (e.g. i’s attributes and the distance between i and j’s attributes,

in the example above). Denote by γij a function that takes i’s beliefs about the emerging

network (possibly together with X) and returns a vector of covariates of dimension [1 × k]

(e.g. the number of length-two paths i gains from linking with j, in the example above).

To facilitate an intercept, assume that δij always returns 1 as a first element. We call the

first type of covariates ‘exogenous’ as they do not depend on the network structure, and the

second type ‘endogenous’, as they do. Using this terminology, while γij(X,G−i) represents

the endogenous covariates associated with i’s linking with j, γij(X, σ
G−i) represents their

expected value. By Assumption 3 vij(·) is a linear function of the exogenous and endogenous

covariates:

vij(X,G−i; θ0) = [δij(Xi, Xj), γij(X,G−i)] · θ0 (13)

The expected value of vij conditional on X and the event that σG is the selected equilibrium

16Measurement error in the network topology is an important, yet largely unexplored issue that goes
beyond the scope of this paper (De Paula, 2017; Advani and Malde, 2014; Bramoullé et al., 2020). Our
estimator relies on the assumption that the network in measured in an accurate and complete manner, like
other methods do (Leung, 2015; De Paula et al., 2018). In particular, the beliefs estimates (Subsection 3.2)
may not be consistent in presence of link measurement error of general form.
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is therefore:

E[vij(X,G−i; θ0)|X, σG−i ] = [δij(Xi, Xj), γij(X, σ
G−i)] · θ0 (14)

Suppressing some of the input arguments, we can now rewrite Equation (9) as:

P (Gij = 1|X, σG) = Φ([δij, γij(σ
G−i)]θ0) · Φ([δji, γji(σ

G−j)]θ0) (15)

Since {εij|i, j ∈ N, i 6= j} are drawn independently from one another, conditional on X and

the event that σG is selected, the likelihood of observing a network G is:

L(θ, σG) =
n∏

i,j>i

[(
Φ
(
[δij, γij(σ

G−i)]θ
)
· Φ
(
[δji, γji(σ

G−j)]θ
))Gij

×
(

1− Φ
(
[δij, γij(σ

G−i)]θ
)
· Φ
(
[δji, γji(σ

G−j)]θ
))1−Gij

] (16)

By taking the log of this expression and dividing by the number of observations we obtain

the following log-likelihood function:

l(θ, σG) =
2

n(n− 1)

n∑
i,j>i

[(
Gij · log

(
Φ
(
[δij, γij(σ

G−i)]θ
)
· Φ
(
[δji, γji(σ

G−j)]θ
)))

+

((
1−Gij

)
· log

(
1− Φ

(
[δij, γij(σ

G−i)]θ
)
· Φ
(
[δji, γji(σ

G−j)]θ
)))] (17)

This function depends on the unobserved beliefs σG. We therefore cannot directly proceed

to maximize it with respect to θ. Instead, we follow a two-step procedure, where in the first

stage we consistently estimate the symmetric equilibrium beliefs (Subsection 3.2), and in

the second stage we plug the estimated beliefs into the log-likelihood function to recover the

estimands (Subsection 3.3).

Two comments about the log-likelihood function are in place. First, note that if we rule

out endogenous covariates from the marginal utility the model boils down to a bivariate
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probit with partial observability (Poirier, 1980). Partial observability occurs when a positive

outcome for one response variable is only observed if the other response variable is also

positive.17,18 This model has been used to model undirected network formation in the absence

of externalities by Comola and Fafchamps (2014). Second, note that under uniqueness of

equilibria, resorting to recovering σG from the data is not strictly necessary. Instead, we

could analytically calculate the unique equilibrium beliefs for any candidate θ that is being

considered by the optimization algorithm and evaluate the log-likelihood function at these

beliefs.19

3.2 Estimating Beliefs

Under the assumption that beliefs satisfy the symmetric equilibrium condition, producing

a consistent estimate of the beliefs σ̂G is straightforward. Consider a set of observationally

equivalent pairs of agents. In a symmetric equilibrium, the belief that any of these pairs

are linked is identical (due to symmetry) and correct (since it is an equilibrium). Thus, the

proportion of pairs within this set that are linked in the observed network is a consistent

estimator for the belief that any of the pairs in the set are linked. In the case of discrete

attributes, the estimator for the belief that i and j are linked σ̂Gij is defined as:

σ̂Gij ≡

∑
l,k>l

[
Gkl · 1

{
(Xi = Xk ∧Xj = Xl) ∨ (Xi = Xl ∧Xj = Xk)

}]
∑
l,k>l

[
1
{

(Xi = Xk ∧Xj = Xl) ∨ (Xi = Xl ∧Xj = Xk)
}] (18)

Proposition 2. Under assumptions 1 and 4, σ̂Gij is consistent for σGij for all i, j ∈ N such

17In our context the proposals of the two agents can be interpreted as two partially-observed latent
response variables, where the θs are by construction the same across the two equations. For a discussion of
how identification depends on the functional form of the payoff function, see Poirier (1980).

18Note that in our setting the two latent response variables are partially observed, but the equilibrium
link is observed accurately. This stands in contrast with situations where links are measured with error
(Chandrasekhar and Lewis, 2012; Candelaria and Ura, 2018; Thirkettle, 2019).

19Under multiplicity, one could in principle calculate all equilibria for a candidate θ and compare their
likelihood value. However, this approach could be difficult to implement (Aguirregabiria and Mira, 2007).
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that i 6= j.

Figure 2 provides an example of how this estimator is calculated. As in Figure 1, the

colors of the agents depict their one-dimensional binary attribute (being either black or

white) and the colors of the edges and weights illustrate which pairs of agents have identical

ex-ante linking probabilities (due to symmetry). The type of the edges illustrate which links

are realized in the observed network – full lines describe realized links and dashed lines

describe unrealized ones. The σ̂G matrix presents the estimated beliefs. Concentrating on

the black pairs, for instance, since two out of the three potential links between this type of

pairs are realized we estimate the belief that these pairs are linked to be 2
3
.

5

4

3

2

1σG
12

σG
13

σG
14

σG
15

σG
23

σG
24

σG
25

σG
34

σG
35

σG
45

σ̂G =


0 1 1

2
1
2

1
2

1 0 1
2

1
2

1
2

1
2

1
2

0 2
3

2
3

1
2

1
2

2
3

0 2
3

1
2

1
2

2
3

2
3

0



Figure 2: Example of beliefs estimation

To get a better understanding of the advantages of this estimation method, it is useful

to contrast this “large-market” framework with an alternative “many-markets” framework

(Graham and De Paola, 2020). Assume we were to observe many repetitions of the game over

a constant set of agents (“many-markets”). The same pairs of agents are expected to have

the same ex-ante linking probabilities across games, regardless of anonymity of preferences

or symmetry of beliefs. As mentioned in Subsection 2.2, this only holds when agents are

guaranteed to play the same equilibrium across games, which can be obtained by assuming a

degenerate equilibrium selection mechanism. Thus, the proportion of games in which a given

pair is linked gives a consistent estimate for the belief that this pair would be linked as the

number of games increases to infinity. In our context of “large-market” framework we can
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relax the assumption that the equilibrium selection mechanism is degenerate and estimate

symmetric beliefs from one single network realization. This broadens the applicability of our

estimator, since many network datasets depict a single network (Goyal et al., 2006; Mele,

2017).20

Two additional points are worth mentioning. First, since the denominator sums up pairs

that are exactly identical, it is only applicable to cases where all attributes in X are discrete.

Second, since the estimator divides the set of observations into bins of identical pairs of

agents, we risk not having enough observations within each bin when the sample size is

small, the number of attributes is high, and their support is large. Both of these concerns

are formally addressed in Appendix A. Subsection A.1 allows for the inclusion of continuous

attributes, thereby resolving the first concern. Subsection A.2 discusses smoothing of discrete

variables, which addresses the second one.

3.3 Estimating Preferences

Once σ̂G is computed, plugging it into Equation (17) and maximizing with respect to θ

yields our estimates θ̂ of θ0. Since σ̂G is consistent θ̂ is also consistent under standard

regularity conditions. Below we state the consistency and asymptotic normality results for

the second-stage estimator.

Proposition 3 (Consistency). Under assumptions 1-4 and standard regularity conditions,

θ̂ is consistent for θ0.

Since the endogenous covariates are computed based on the estimated beliefs rather

than the true ones, standard errors should be adjusted. Proposition 4 shows how to do so

provided that the aggregate values of the true endogenous covariates and the estimated ones

are identical.

20Our estimation procedure also carries over to the case of multiple networks (Appendix B).
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Proposition 4 (Asymptotic Normality). Assume the endogenous covariates satisfy

∑
i,j 6=i

γij(X,G−i) =
∑
i,j 6=i

γij(X, σ̂
G−i). (19)

Let γ0
ij denote the output of γij(X, σ

G) and γ0 denote the set of γ0
ij for all i, j. Then, under

assumptions 1-4:

√
1

2
n(n− 1)(θ̂ − θ0)

d−→ N(0, [V (γ0, θ0)]−1Ψ(γ0, θ0, G)[V (γ0, θ0)]−1) (20)

where V and Ψ are defined as in Equations 73 and 93 in the Appendix.

As mentioned above, proposition 4 relies on the endogenous covariates satisfying condition

(19).21 Lemma 1 proves this property for endogenous covariates of the form 1
n−1

∑
k 6=iGjk ·

µ(Xk), where µ(Xk) represents some weighting function of agent k’s attributes, assuming

the beliefs are estimated according to (18). µ(·) captures any sort of observed attributes

that agents might care about in their indirect contacts. For instance, when deciding to form

a link with someone, they may care not only about the number of this potential partner’s

friends but also about their wealth. The illustration of Section 5 makes use of covariates of

this form.

Lemma 1. Let γij(X,G−i) ≡ 1
n−1

∑
k 6=iGjk ·µ(Xk), where µ(Xk) is some weighting function

of the attributes of agent k and σ̂G−i be defined as in (18), then, for any G−i, condition (19)

holds.

4 Simulations

We now describe the simulation exercise we designed to evaluate the asymptotic performance

of the estimator in networks of increasing size (from n = 100 to n = 500). First we describe

21If condition (19) does not hold, one could still compute standard errors with an appropriately-designed
bootstrap test.
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the data generating process, then the estimation results.

4.1 Data Generating Process

For a given number of agents n with a two-dimensional attribute vector Xi, we posit a data

generating process of the form:

Xi,1 ∼ U{0, 1} (21)

Xi,2 ∼ U{0, 1, 2, 3, 4} (22)

εij ∼ N(0, 1) (23)

vij = θ1 + θ2Xi,1 + θ3Xi,2 + θ41{Xi,1 = Xj,1}+ θ5|Xi,2 −Xj,2|+ θ6
1

n− 1

∑
k 6=i

Gjk (24)

θ0 = [−2.8, 1, 0.5, 1,−0.1, 1]′ (25)

where 1
n−1

∑
k 6=iGjk represents the average number of indirect friends that j grants access

to, as in the example of Section 2.3. θ0 is set so that the utility function is not dominated

by its deterministic component, i.e. so that proposal decisions are sensitive to εij.

The data generating process consists of three steps: first we draw the attribute Xi,1 and

Xi,2 for all i. Second we find a corresponding symmetric equilibrium σG. We use an algo-

rithm that starts from a randomly drawn belief matrix, computes the corresponding linking

probabilities, and updates beliefs accordingly until convergence is achieved. Algorithm 1

describes the process in more detail.22

22For further details on its convergence behaviour see Rabinovich et al. (2013).
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Algorithm 1: Search Algorithm

1 Generate a random belief matrix σG

2 Calculate the matrix of linking probabilities L, given σG, X and θ0:

3 Lij = Lji = Φ(E[vij(X, σ
G−i , θ0)]) · Φ(E[vji(X, σ

G−j , θ0)])

4 If σG 6≈ L:

5 Re-assign σG = L and go back to line 2

6 Else:

7 Return σG

As a third step we draw the εij values and construct a network realization G according

to the following rule: a link in G exists if and only if the realization of εij and εji are such

that vij(X, σ
G−i , θ0) + εij ≥ 0 and vji(X, σ

G−j , θ0) + εji ≥ 0.

For each n ∈ {100, 250, 500} we generate 500 networks according to the procedure above.

The networks that result from this process exhibit many commonly observed characteris-

tics of real-world networks: the average geodesic distance between connected agents is low

(≈ 2.2); the clustering coefficient is high compared to the linking probability of a compa-

rable Poisson random network (≈ 0.27 vs. ≈ 0.1); and the degree distribution is positively

skewed. The average degrees are approximately 10.9, 27.6 and 55.6 for n ∈ {100, 250, 500}

respectively.

4.2 Simulation Results

In the estimation step, for each simulation draw we use the realized network G and the

agents attributes X (but not the error terms and beliefs) to estimate σG (as explained in

Section 3.2). Then we maximize Equation (17) by replacing σG with σ̂G to obtain θ̂.

Table 2 presents histograms for the exogenous coefficients capturing homophily θ̂4 and θ̂5

and for the endogenous coefficient θ̂6. The values of the true coefficients are depicted by the

vertical lines at the center of each sub-figure. As n increases the distributions of the estimated
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values become increasingly tight around the true values. This illustrates consistency.

n θ̂4 θ̂5 θ̂6

100

250

500

Table 2: Consistency

Note: The table reports histograms of estimated coefficients. The true values of the coefficients are
depicted by the vertical line at the center of each sub-figure.

Table 3 presents the fitted Kernel distributions of
√

1
2
n(n− 1)(θ̂ − θ0) over all 500 iter-

ations (in dashed lines) as well as true normal distributions with mean zero and variance

V −1ΨV −1 (in full lines). As n increases, the dashed lines converge to the full lines. This

illustrates asymptotic normality.
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n
√

1
2
n(n− 1)(θ̂4 − θ4)

√
1
2
n(n− 1)(θ̂5 − θ5)

√
1
2
n(n− 1)(θ̂6 − θ6)

100

250

500

Table 3: Asymptotic normality

Note: The dashed lines depict the fitted Kernel distributions of
√

1
2n(n− 1)(θ̂ − θ0). The full lines

depict true normal distributions with mean 0 and variance V −1ΨV −1.

5 Empirical Illustration

5.1 Data Description

We use data on the risk sharing network of Nyakatoke, a small village in the Buboka rural

district of Tanzania.23 Rural villages are an appropriate setting to study network formation,

because the population can be entirely surveyed and several confounding effects (such as

spatial and informational barriers) can be reasonably ruled out. The village of Nyakatoke

consists of 119 households which have been interviewed in five regular intervals from February

to December 2000. The data contains information on households’ demographics, wealth,

23These data have been the object of numerous articles (De Weerdt and Dercon, 2006; De Weerdt and
Fafchamps, 2011; Vandenbossche and Demuynck, 2013; Comola and Fafchamps, 2014).
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income sources and income shocks, transfers and risk-sharing links. At the time of the

study, the village of Nyakatoke is isolated (the few unpaved roads leading to the village are

hardly passable during rains), densely inhabited (90% of households live within a distance

of 1 kilometer from each other) and relatively poor (consumption for adult equivalent is

less than 2 US$ a week, and average food share in consumption is 77%). Households earn

most of their income from agricultural activities, especially the cultivation of coffee and

banana; other sources of income are rare and off-farming activities are mostly considered

supplementary to farming.

During the first survey round all respondents were asked ‘Can you give a list of people

from inside or outside of Nyakatoke, who you can personally rely on for help and/or that

can rely on you for help in cash, kind or labour?’.24 The phrasing of this survey question

was intended to capture undirected links of mutual assistance, and qualitative interviews

and pilot tests suggested that respondents have understood it that way.25 Our empirical

exercise assumes that these survey responses represent undirected bilateral agreements of

mutual help which could be activated if one of the partners is struck by an income shock.

This is in line both with the survey design and with theoretical work on the voluntary nature

of risk-sharing arrangements (Bloch et al., 2008; Jackson et al., 2012).26 In Appendix B we

revisit the trust network data analysed by Leung (2015), and show that our method could

accommodate different network generation processes and yield different conclusions.

The resulting risk-sharing network of Nyakatoke consists of 490 links among (119 ·

118)/2 = 7021 household dyads. This network displays a mean geodesic distance of 2.5

24Respondents could list as many names as they wanted. They could also mention partners who live outside
the village (this occurs in 34% of all declared partners). Since we have no information on the attributes of
households outside the village we omit them from the analysis.

25This phrasing was first piloted in the Philippines (Fafchamps and Lund, 2003) and subsequently adopted
in the Nyakatoke survey, because respondents understand it and are willing to answer. Other survey questions
on directed flows were tried during the pilots, for instance drawing a distinction between people which
respondents would help and people which respondents would seek help from. But respondents were confused
by this distinction, which they perceived as non-existent, and complained they are asked the same question
twice. See also Comola and Fafchamps (2014).

26In case of discordant reports, we assume that an undirected link exists whenever it is declared by at least
one of the households involved. This is the most common stand in the empirical literature on risk-sharing
links, and it is equivalent to assuming that all observed discordances are due to under-reporting.
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steps and an average degree of 8.2. No household is isolated, and the network exhibits all

the empirical regularities of large social networks.27

5.2 Main Results

We now illustrate the estimation procedure described in Section 3 using the Nyakatoke data.

We take the household as a unit of observation (n = 119) and we include as covariates: a

constant, the geographical distance between households (in meters), the wealth of j,28 three

types of homophily regressors, and two types of endogenous regressors. The homophily

regressors are binary variables that take the value 1 if i and j belong to the same family,29

same clan30 or same religion31 respectively. These exogenous covariates (i.e., distance, wealth

and dummies for same family, clan and religion respectively) were identified by the previous

literature as strong predictors of risk-sharing link formation in developing countries. The

endogenous regressors are the number of j’s friends (
∑

k 6=iGjk) and the total wealth of j’s

friends (
∑

k 6=iGjk ·Wealthk).
32

We run the first stage using the individual attributes that are used in the second stage

(Wealthj), as well as those implied by the relational attributes in the second stage (Familyi,

Clani, Religioni). Since the relational attribute “Distanceij” does not imply a unique indi-

vidual geographic location, we treat the entire vector of distances between i and the rest

27The Nyakatoke network has a unique component covering the entire population, the diameter is in the
order of log(n) and the clustering coefficient is 7 times larger than in a randomly generated Poisson network
with similar characteristics.

28The wealth of a household is defined as the total monetary value of its land and livestock assets (1 unit
= 100, 000 Tanzanian shillings). Data on land were originally in acres and were transformed in monetary
equivalent with a conversion rate of 300,000 tzs for 1 acre which reflects average local prices in 2000. For
international comparisons, the exchange rate in 2000 was 1 US dollar for 800 tzs. Since land and livestock
are publicly observable with a good degree of precision, we argue that the regressor satisfies the common-
knowledge assumption (Section 2.1).

29Two households i and j are said to belong to the same family if there is some blood relation between at
least one of the members of i and at least one of the members of j.

30There are 26 clans in Nyakatoke. 10 of them have only one household.
31There are three religions in Nyakatoke: Roman Catholic (49 households), Lutheran (46 households) and

Muslim (24 households).
32For presentation purposes we do not re-scale these variables in the results of Table 4. In fact, the

normalization is only needed to facilitate the asymptotic case where n approaches infinity.
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of the households as i’s individual attribute.33 The categorical variables (family, clan, reli-

gion) and continuous variables (distance, wealth) are combined as described in Appendix A

(in particular, Equation (31)), with λ = 0.1 and h set according to the “normal reference

rule-of-thumb”) and a normal kernel function. Figure 3 presents a histogram of the resulting

estimated beliefs.

Figure 3: Histogram of the estimated beliefs in the Nyakatoke network

Note: the y-axis is on a logarithmic scale.

The results of the second stage are reported in Table 4. Column 1 presents a specification

without endogenous regressors, for reference. Column 2 includes the endogenous regressors

(number of j’s friends only, total wealth of j’s friends only, both). Column 3 presents

the marginal effects that correspond to the specification of column 2. Standard errors are

computed according the expression given in Proposition 4 with the true parameters replaced

by their estimates.

As for the endogenous regressors, the coefficient of the number of j’s friends can be

positive or negative depending on whether households prefer potential partners to have

many or few other partners. In principle, both types of externalities are conceivable in the

context of risk-sharing arrangements: if j has many friends she may have a rather limited

33Consider a three-agent network in which agents 1 and 2 have the same geographic distances from (2,3)
and (1,3), respectively. These distance profiles can be obtained by assuming various individual locations for
agents 1 and 2, e.g. all location configurations in which all agents are located on a line and agents 1 and 2
are located symmetrically around agent 3.

27



amount of resources to devote to i, implying a negative coefficient. If j has many friends she

is likely to be well-positioned to provide i with financial support in case of need, and is also

less likely to rely heavily on i in case she herself is in need, implying a positive coefficient.

The sum of wealth of j’s friends is expected to be positive, as this grants j access to greater

wealth which may indirectly benefit i.

Results in Table 4 provides evidence for the existence of network externalities. The

positive sign of the coefficient of the number of j’s friends suggests that the benefits from

having a partner with many other partners (greater financial resilience) outweigh the costs

(dilution of attention and/or resources). For the average pair i and j, an increment of one

unit in the expected number of j’s friends (≈ 12% of the average expected number of j’s

friends) is associated with an increase of roughly 0.016 in the probability of a proposal (≈

9% of the average predicted proposal probability).

The signs of the other coefficients conform to our expectations. The constant appears

negative, reflecting the idea that maintaining links is costly. The coefficient of the geograph-

ical distance between households is also negative, as distance is likely to render links harder

to maintain. The coefficient of wealth is positive, as the wealthier a potential partner is

the more helpful she could be in case of a negative income shock. The coefficients of the

homophily regressors are all positive, in line with the large evidence that similarity between

agents makes them more desirable to each other.

In Appendix B we present estimates obtained under different hypotheses about mis-

reporting and the data generation process. The scope of the exercise is to illustrate the use

of our estimation protocol in the context of self-reported network data. In particular, we

modify our estimator to accommodate for a unilateral link formation rule, and we show that

it yields different results from the directed unilateral estimator by Leung (2015).
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coefficients mfx
(1) (2) (3)

Same family 0.8436∗∗∗ 0.8493∗∗∗ 0.2934∗∗∗

(0.0627) (0.0644) (0.0256)
Same clan 0.1661∗∗∗ 0.1485∗∗ 0.0415∗∗

(0.0579) (0.0602) (0.0177)
Same religion 0.1649∗∗∗ 0.1751∗∗∗ 0.0495∗∗∗

(0.0401) (0.041) (0.0118)
Distanceij -0.0009∗∗∗ -0.0009∗∗∗ -0.0002∗∗∗

(0.0001) (0.0001) (0.0000)
Wealthj 0.0586∗∗∗ 0.0376∗∗ 0.0098∗∗

(0.0069) (0.0155) (0.004)
Number of j’s friends 0.0607∗∗∗ 0.0159∗∗∗

(0.0113) (0.003)
Wealth of j’s friends -0.0002 0.000

(0.0013) (0.0003)
Constant -0.6482∗∗∗ -1.0967∗∗∗

(0.0563) (0.1063)
# observations 7021 7021

Notes: Column 3 reports the marginal effects for the specification

of column 2. Standard errors in parentheses. Significance level

based on false discovery rate q-values (Benjamini and Hochberg,

1995): *q<10%, **q<5%, and ***q<1%.

Table 4: Estimated coefficients.

6 Concluding remarks

Data on network interactions were previously scarce but are now becoming more available

to economists. The current enthusiasm for network data from digital interaction platforms

(Vosoughi et al., 2018; Blumenstock, 2018) has refueled the research interest about how non-

digital links are formed, and how they respond to strategic incentives. Models of link forma-

tion with network externalities are at the frontier of the econometric research, facing diffi-

culties related to dimensionality and equilibria multiplicity (Graham, 2015; Chandrasekhar,

2016; De Paula, 2017). Our paper fills a void in the literature by proposing a versatile

method to estimate network externalities in a simultaneous-move game of undirected link

formation. This method is naturally suited for bilateral link formation models, but it could

also be applied to unilateral models where only the undirected link outcome (rather than
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the proposals) is observable. We provide existence, consistency and asymptotic normality

results for the proposed estimator, and we test its asymptotic performance through a simu-

lation exercise. In the context of bilateral link formation, this procedure provides a simpler

alternative to methods exploiting pairwise stability under complete information (De Paula

et al., 2018; Sheng, 2020). Importantly, it allows to make inference about various aspects of

agents’ preferences over network topology when data on a single (and possibly large) network

are available. For instance, our method could be paired with data issued from a randomized

experiment, allowing the researcher to disentangle endogenous network externalities from

other exogenous factors (e.g., agents randomly allocated treatment status).34

We illustrate the method using data on risk-sharing in a Tanzanian village named Nyaka-

toke. Risk-sharing links are commonly assumed to be mutually agreed upon and provide

an intriguing case for the role of externalities from indirect connections. Results confirm

that the network architecture has an explanatory value: households seem to take into con-

sideration the number of indirect friends they stand to gain when making linking decisions.

Our estimates suggest that an additional two-steps-away connection is associated with an

average increase of roughly 9% in the predicted proposal probability.
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Bramoullé, Y. and Kranton, R. (2007). Risk-sharing networks. Journal of Economic Behavior

& Organization, 64(3-4):275–294.

Brandes, U. and Fleischer, D. (2005). Centrality measures based on current flow. In Annual

symposium on theoretical aspects of computer science, pages 533–544. Springer.

Breschi, S. and Lissoni, F. (2005). ” cross-firm” inventors and social networks: Localized

knowledge spillovers revisited. Annales d’Economie et de Statistique, pages 189–209.

31



Bresnahan, T. F. and Reiss, P. C. (1991). Empirical models of discrete games. Journal of

Econometrics, 48(1-2):57–81.

Buchel, K., Ehrlich, M., Puga, D., and Viladecans-Marsal, E. (2020). Calling from the

outside: The role of networks in residential mobility. Journal of Urban Economics, C(119).

Candelaria, L. and Ura, T. (2018). Identification and inference of network formation games

with misclassified links. working paper arXiv:1804.10118.

Chandrasekhar, A. (2016). Econometrics of network formation. The Oxford Handbook of

the Economics of Networks, pages 303–357.

Chandrasekhar, A. G. and Jackson, M. O. (2016). A network formation model based on

subgraphs. Available at SSRN 2660381.

Chandrasekhar, A. G. and Lewis, R. (2012). Econometrics of sampled networks.

Charness, G. and Jackson, M. O. (2007). Group play in games and the role of consent in

network formation. Journal of Economic Theory, 136(1):417–445.

Coate, S. and Ravallion, M. (1993). Reciprocity without commitment: Characterization

and performance of informal insurance arrangements. Journal of development Economics,

40(1):1–24.

Comola, M. and Fafchamps, M. (2014). Testing Unilateral and Bilateral Link Formation.

Economic Journal, 124(579):954–976.

De Paula, A. (2017). Econometrics of network models. In Advances in Economics and

Econometrics: Theory and Applications, Eleventh World Congress, pages 268–323. Cam-

bridge University Press Cambridge.

De Paula, A., Richards-Shubik, S., and Tamer, E. T. (2018). Identifying preferences in

networks with bounded degree. Econometrica, 86:263 – 288.

De Paula, A. and Tang, X. (2012). Inference of signs of interactions effects in simultaneous

games with incomplete information. Econometrica, 80(1):143–172.

De Weerdt, J. and Dercon, S. (2006). Risk-sharing networks and insurance against illness.

Journal of development Economics, 81(2):337–356.

De Weerdt, J. and Fafchamps, M. (2011). Social identity and the formation of health insur-

ance networks. Journal of Development Studies, 47(8):1152–1177.

32



Ductor, L., Fafchamps, M., Goyal, S., and Van der Leij, M. (2014). Social networks and

research output. Review of Economics and Statistics, 96(5):936948.

Fafchamps, M. and Lund, S. (2003). Risk-sharing networks in rural philippines. Journal of

development Economics, 71(2):261–287.

Gaulier, G. and Zignago, S. (2010). Baci: International trade database at the product-level.

CEPII Working Paper 2010-23.

Genicot, G. and Ray, D. (2003). Group formation in risk-sharing arrangements. The Review

of Economic Studies, 70(1):87–113.

Gilleskie, D. and Zhang, Y. (2009). Friendship formation and smoking initiation among

teens. unpublished.

Goeree, J. K., McConnell, M. A., Mitchell, T., Tromp, T., and Yariv, L. (2010). The 1/d

law of giving. American Economic Journal: Microeconomics, 2(1):183–203.

Goyal, S., Van der Leij, M., and MoragaGonzlez, J. L. (2006). Economics: An emerging

small world. Journal of Political Economy, 114(2):403–412.

Graham, B. (2017). An econometric model of network formation with degree heterogeneity.

Econometrica, 85(4):1033 – 1063.

Graham, B. and De Paola, A. (2020). The Econometric Analysis of Network Data. Elsevier

Academic Press.

Graham, B. and Pelican, A. (2019). Testing for externalities in network formation using

simulation. In The Econometric Analysis of Network Data (B. Graham and A. de Paula,

Eds.), pages 63 – 82.

Graham, B. S. (2015). Methods of identification in social networks. Annual Review of

Economics, 7(1):465–485.

Hitsch, G., Hortasu, A., and Ariely, D. (2010). Matching and sorting in online dating.

American Economic Review, 100(1):130–163.

Hoshino, T. (2019). Two-step estimation of incomplete information social interaction models

with sample selection. Journal of Business Economic Statistics, 37(4):598–612.

Hsieh, C.-S. and Lee, L. F. (2016). A social interactions model with endogenous friendship

formation and selectivity. Journal of Applied Econometrics, 31(2):301–319.

33



Jackson, M. O., Rodriguez-Barraquer, T., and Tan, X. (2012). Social capital and social

quilts: Network patterns of favor exchange. American Economic Review, 102(5):1857–97.

Jackson, M. O. and Wolinsky, A. (1996). A strategic model of social and economic networks.

Journal of economic theory, 71(1):44–74.

Kimball, M. S. (1988). Farmers’ cooperatives as behavior toward risk. The American

Economic Review, 78(1):224–232.

Kocherlakota, N. R. (1996). Implications of efficient risk sharing without commitment. The

Review of Economic Studies, 63(4):595–609.

König, M., Liu, X., and Zenou, Y. (2019). R&d networks: Theory, empirics and policy

implications. Review of Economics and Statistics, 101(3):476–491.

König, M. D. (2016). The formation of networks with local spillovers and limited observ-

ability. Theoretical Economics, 11(3):813–863.

Krishnan, P. and Sciubba, E. (2009). Links and architecture in village networks. The

Economic Journal, 119(537):917–949.

Lalanne, M. and Seabright, P. (2022). The old boy network: are the professional networks

of female executives less effective than men’s for advancing their careers? Journal of

Institutional Economics, pages 1–20.

Leung, M. P. (2015). Two-step estimation of network-formation models with incomplete

information. Journal of Econometrics, 188(1):182–195.

Li, Q. and Racine, J. S. (2007). Nonparametric econometrics: theory and practice. Princeton

University Press.

Mele, A. (2017). A structural model of dense network formation. Econometrica, 85(3):825–

850.

Miyauchi, Y. (2016). Structural estimation of pairwise stable networks with nonnegative

externality. Journal of Econometrics, 195(2):224–235.

Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing.

Handbook of econometrics, 4:2111–2245.

Poirier, D. J. (1980). Partial observability in bivariate probit models. Journal of

Econometrics, 12(2):209–217.

34



Rabinovich, Z., Naroditskiy, V., Gerding, E. H., and Jennings, N. R. (2013). Computing

pure bayesian-nash equilibria in games with finite actions and continuous types. Artificial

Intelligence, 195:106–139.

Ready, E. and Power, E. A. (2021). Measuring reciprocity: Double sampling, concordance,

and network construction. Network Science, 9(4):387402.

Ridder, G. and Sheng, S. (2020). Estimation of large network formation games. working

paper arXiv:2001.03838.

Sheng, S. (2020). A structural econometric analysis of network formation games through

subnetworks. Econometrica, 88(5):1829–1858.

Singh, J. (2005). Collaborative networks as determinants of knowledge diffusion patterns.

Management science, 51(5):756–770.

Stephenson, K. and Zelen, M. (1989). Rethinking centrality: Methods and examples. Social

networks, 11(1):1–37.

Tamer, E. (2003). Incomplete simultaneous discrete response model with multiple equilibria.

The Review of Economic Studies, 70(1):147–165.

Thirkettle, M. (2019). Identification and estimation of network statistics with missing link

data. working paper.

Townsend, R. M. (1994). Risk and Insurance in Village India. Econometrica, 62(3):539–591.

Udry, C. (1994). Risk and insurance in a rural credit market: An empirical investigation in

northern nigeria. The Review of Economic Studies, 61(3):495–526.

Vandenbossche, J. and Demuynck, T. (2013). Network formation with heterogeneous agents

and absolute friction. Computational Economics, 42(1):23–45.

Vosoughi, S., Roy, D., and Aral, S. (2018). The spread of true and false news online. Science,

359(6380):1146–1151.

35


	Introduction
	The Model 
	The game
	Equilibrium 
	Example
	Separability and Externalities

	Estimation 
	Log-likelihood function
	Estimating Beliefs
	Estimating Preferences

	Simulations 
	Data Generating Process
	Simulation Results

	Empirical Illustration 
	Data Description
	Main Results

	Concluding remarks 
	Extensions 
	Continuous Attributes 
	Smoothing 

	Auxiliary results 
	Proofs 
	Proposition 1
	Proposition 2
	Proposition 3
	Proposition 4
	Lemma 1
	Proposition 5
	Proposition 6


