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1 Introduction

A large body of literature has documented how peer effects spread through informal net-

works.1 This issue is particularly relevant in the context of policy interventions, where

networks may help to spread new products and technologies. One implicit assumption in

the literature on peer effects and networks is that pre-existing links matter for economic

outcomes (Banerjee, Chandrasekhar, Duflo, and Jackson 2013; Oster and Thornton 2012;

Cai, de Janvry, and Sadoulet 2015). This assumption is appropriate in settings where the

network is fixed or difficult to change. However, it is also possible that networks rewire

in response to changes in the economic environment, such as a policy intervention. If an

intervention induces network changes, it is important to reassess both the actual role played

by the network and how we measure the impact of this intervention.

In this paper, we study the interplay between network changes and treatment effects by

proposing an econometric model in which peer effects spread through a social-interaction

structure that changes following the treatment. We build on the intuition that, if we ob-

serve network changes in a setting where peers matter, then the standard measure of the

treatment effect may not capture an indirect (but potentially important) channel through

which the intervention affects outcomes. First, we provide identification conditions and

an instrumental-variable (IV) strategy that generalize the case of a time-invariant network

(Bramoullé, Djebbari and Fortin 2009). Then, we propose a novel measure of the treatment

effect that accounts for network changes. Next, we show, through a simulation experiment,

that this measure outperforms the standard measures of treatment effects whenever the

network that mediates the peer effects changes following the intervention.

The identification of treatment response with social interactions is at the frontier of

econometric research (Rosenbaum 2007; Hudgens and Halloran 2008; Angelucci and De

Giorgi 2009; Manski 2013).2 Two recent papers have explored this issue using network data

1See Jackson and Yariv (2010) for a review.
2In the presence of peer effects, the evaluation of a policy intervention is complicated by the fact that the
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(Dieye, Djebbari and Osario-Barrera 2015; Arduini, Patacchini and Rainone 2014). Both

papers rely on the assumption that the treatment does not change the network topology. Our

model relaxes this assumption and identifies network changes as an additional mechanism

through which the treatment can affect economic outcomes.

We illustrate our model using data from a field experiment that randomized access to

savings accounts in 19 villages in Nepal. This panel dataset contains comprehensive informa-

tion on all links of regular financial support in these villages before and after the randomized

intervention. Our analysis exploits the unique combination of two features: the availability

of longitudinal network data and the within-village randomization. Longitudinal network

data allow us to assess the change in the network structure produced by the intervention.

The randomization design creates exogenous variation in the treatment status of peers within

the same village, which allows us to disentangle the direct treatment effect (i.e., the impact

of one’s own treatment status) and the peer effect diffusing through the network (i.e., the

impact of peers’ characteristics and treatment status). We illustrate the model using data on

household meat consumption. The results suggest that a failure to account for the network

change results in underestimates of the overall impact of the intervention and the role played

by informal networks through which the intervention spreads.

Our paper contributes to the growing literature that estimates peer effects using network

data (Bramoullé et al. 2009; Calvó-Armengol, Patacchini, and Zenou 2009; De Giorgi, Pel-

lizzari, and Redaelli 2010) in two ways: it models network changes over time, and it connects

to the treatment effects literature. Other network data sources (such as Add Health) follow

respondents over time but do not contain longitudinal information on the social network.

Our paper uses panel network data to study peer effects and exploits a randomized inter-

vention design to establish the unintended consequences of the treatment on networks and

treatment and control groups interact. This invalidates the standard assumption in the program-evaluation

literature that one’s outcome is invariant to the treatment status of others (the so-called Stable Unit Treat-

ment Value Assumption).
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economic outcomes.3

The remainder of the paper is organized as follows: Section 2 describes the econometric

model, and Section 3 illustrates it using the Nepalese data. Section 4 concludes the paper.

In addition, Appendix A contains the proofs, Appendix B describes the simulation exercise,

and online Appendix C (not for publication) reports detailed background information on the

experimental setting and the Nepalese data.

2 The econometric model

2.1 Notation

In this section, we introduce our econometric framework for analyzing the relationship be-

tween treatment effects and network changes. We frame our problem in the context of peer

effects spreading through the social network structure.4 We begin by describing our longitu-

dinal model of treatment response in which the interaction matrix varies over time, possibly

due to the intervention. Then, we provide identification conditions, describe the associ-

ated IV strategy, and derive a measure of the treatment effect. Insights from an extended

simulation exercise are discussed in Appendix B.

We first set out the notation. Column vectors are denoted by lower-case bold letters and

3Our exercise is conceptually closer to Goldsmith-Pinkham and Imbens (2013), who exploit panel network

data to first examine a dynamic setting of strategic network formation and then estimate a peer effects model

using the results from the network formation model. See also the discussion in Bramoullé (2013) and Graham

(2013).
4Most previous work on peer effects has used data in which individuals are partitioned into mutually

exclusive and comprehensive reference groups (e.g., all children in the same school class). By doing so,

the assumption is that individuals are equally affected by all other subjects in their group and by no one

outside their group. Our model belongs to the class of peer effects models in which interactions are structured

through social networks, such that the reference group has individual-level variation: if i and j are connected

and j and k are connected, this does not necessarily mean that i and k are also connected.
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matrices by capital bold letters. If A is an N ×M matrix, aij indicates its (i, j)th element.

When there is a time index, this is indicated by a superscript to avoid confusion with the

entry notation (e.g., we write atij and At). For a sample of N individuals, define yt as the

N ×1 vector of the individual-level outcomes of interest at time t. itt is the N ×1 intent-to-

treat vector, i.e., itti = 1 if individual i was randomized into the treatment group. We call

εt the N × 1 vector of disturbances, ιN the N × 1 vector of ones, and IN the N ×N identity

matrix. For each period, we observe the social interaction within the sample, represented

by an N × N matrix Gt of fixed and known structure. Gt is semi row-standardized: for

non-isolated individuals, its row sums take value one, while for isolated individuals, they

take value zero.5 Thus, the row sums of Gt are not constant. Choosing to carry out a (semi)

row-standardization on the interaction matrix implies that we estimate a linear-in-means

model, i.e., a model in which the individual outcome is affected by the mean characteristics

and outcomes of peers.6

2.2 Peer effects with network changes

We consider a setting where data for N individuals are collected over two periods (t = 0, 1)

and there is a randomized intervention at the individual level, which takes place between

5No self-links are allowed.
6Linear-in-means models have a structural interpretation as best-response functions for games with a

preference for conformity and strategic complementarities (Kline and Tamer 2012; Dieye and Fortin 2016)

and are commonly used to model peer effects in educational attainment, consumption, and substance abuse.

Our exercise could be extended to a linear-in-sums framework, provided that the invertibility conditions are

satisfied, which is generally the case for uniformly bounded interaction matrices (Kelejian and Prucha 2010).
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these two periods.7 Our peer effects equation for t = 0 is:

y0 = β1G
0y0 + µ+ ε0 (1)

where the so-called ‘first lag’ of the dependent variable G0y0 is the mean outcome of the

peers and its coefficient β1 represents the strength of the peer effect. We denote by µ =

(µ1, ..., µN)′ the N ×1 vector of individual-level heterogeneity, which may be correlated with

the regressors. Similarly, for t = 1, we have:

y1 =
(
β1G

0 + β2G
1−0)y1 + γitt +

(
δ1G

0 + δ2G
1−0) itt + µ+ ε1 (2)

where G1−0 = G1 − G0 represents the observed change in the network between the two

periods. In Equation (2), we allow the peer effects to vary by partner type: β1 is the

strength of peer effects from ‘old’ partnerships that predate the intervention, and β2 is the

analogous effect from ‘new’ partners. The specification for t = 1 also includes the intent-

to-treat vector itt and its lags, G0itt and G1−0itt, which represent the treated share of

‘old’ and ‘new’ partners, respectively, and capture the effect of partners’ treatment status

that does not operate through their outcomes. The corresponding coefficients δ1 and δ2 are

usually referred to as contextual (peer) effects.8 Finally, we assume that the interaction

matrices are conditionally exogenous:

E[εt|G0,G1, itt, µ] = 0 for t = 0, 1 (3)

7The model builds on the example of a simple lottery to be consistent with the data described in Section

3. Nevertheless, it is suitable for all settings where the reference group has individual-level variation and the

treatment status is heterogeneous among peers.
8In the terminology of Manski (1993), G0y1 and G1−0y1 would be called endogenous social effects, and

G0itt and G1−0itt would be exogenous social effects.

6



Conditioning the exogeneity of the interaction matrices on the individual-level effects

µ is a remedy for the selection bias stemming from the assortativity of individuals into

links (Manski 1993), as long as correlated unobservables (i.e., unobservables simultaneously

affecting link formation and the target regressors) are invariant within the period of study.9

In Section 2.3, we discuss how this assumption can be partially relaxed. Stacking Equations

(1) and (2) over t, we obtain:

y =β1G̃
0y + β2G̃

1−0y +
(
γI2N + δ1G̃

0 + δ2G̃
1−0
)
ĩtt + ιµ+ ε (4)

where y =

 y0

y1

, G̃0 =

 G0 0

0 G0

, G̃1−0 =

 0 0

0 G1−0

, ĩtt =

 0

itt

, ι = ι2 � IN

and ε =

 ε0
ε1

.
The reduced form of Equation (4) is given by:

y =S̃(β)−1
[(
γI2N + δ1G̃

0 + δ2G̃
1−0
)
ĩtt + ιµ

]
+ S̃(β)−1ε (5)

where S̃(β) =
[
I2N − β1G̃0 − β2G̃1−0

]
. This is a model in which peer effects spread through

network links and the contextual variable of interest represents a policy intervention. With

respect to the standard framework à la Bramoullé et al. (2009), we introduce two dimensions

of heterogeneity. First, we add heterogeneity over time in both the individual attributes and

the network structure. Second, we allow for heterogeneous peer effects from partners of

different types (‘old’ vs. ‘new’ partners), as in Arduini et al. (2014) and Dieye and Fortin

(2016). To eliminate the individual effects, we pre-multiply Equation (4) by the standard

9Our strategy accounts for correlated unobservables at the individual level, which is an improvement

over the previous literature that allows for assortativity at the level of the entire network only (Bramoullé

et al., 2009).

7



transformation matrix: J =
[
I2 − 1

2
ι2ι
′
2

]
⊗IN . Noting that Jιµ = 0, Equation (4) becomes:

Jy =β1JG̃
0y + β2JG̃

1−0y + J
(
γI2N + δ1G̃

0 + δ2G̃
1−0
)
ĩtt + Jε (6)

Equation (6) is our main estimation equation, which we call a “treatment-effects model with

dynamic peer effects”. It contains two distinct peer effect terms: an “outcome peer effect” and

a “network peer effect”. The first term, JG̃0y, is the outcome peer effect and represents the

change in partners’ (mean) outcomes holding partners constant. The second term, JG̃1−0y,

is the network peer effect. This reflects the change in partners’ (mean) outcomes due to the

network change and is positive, as long as at t = 1, the outcome of the ‘new’ partners is

higher than that of the ‘old’ partners. As these two peer effects terms are correlated, omitting

the latter may lead to biased estimates of β1.10 Note that, as long as there is meaningful

variation in the network structure within and across periods, the social-interaction matrices

and the transformation matrix do not commute: JG̃0y 6= G̃0Jy and JG̃1−0y 6= G̃1−0Jy.

This is because the row sums of the interaction matrices are not constant, which turns out

to be an additional source of identification in our model, as we explain in Appendix A.

Finally, note that if the network is time-invariant across periods (i.e., G̃1−0 = 0), Equation

(6) becomes:

Jy =β1JG̃
0y + J

(
γI2N + δ1G̃

0
)
ĩtt + Jε (7)

In Equation (7), which we call the “treatment-effects model with static peer effects”, peer

effects appear only through the change in outcome. This specification is an extension of the

standard framework developed by Bramoullé et al. (2009), where individual characteristics

change over time but the network is assumed to be constant. If we rule out both outcome

10Since T = 2, estimating Equation (6) is equivalent to estimating the following equation in first differ-

ences: (
y1 − y0

)
= β1G

0
(
y1 − y0

)
+ β2G

1−0y1 + γitt+ δ1G
0itt+ δ2G

1−0itt+
(
ε1 − ε0

)
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peer effects and network peer effects (by setting G̃0 = G̃1 = 0), the estimation Equation (6)

reduces to a standard treatment-response model with no peer effects:

Jy =γJĩtt + Jε. (8)

2.3 Identification and instrumental variables

We now state the conditions under which the model in Equation (6) is identified and interpret

them in terms of instrumental variables.

Proposition 1. Suppose that Equation (6) holds. If |β1| < 1, |β2| < 1, and |β1−β2| < 1,

then the matrix S̃(β) is invertible.

Proposition 2. Suppose that Equation (6) holds, S̃(β) is invertible, and (γβ1 + δ1) 6= 0

and (γβ2 + δ2) 6= 0. If matrices I, G̃0, G̃1−0, (G̃0)2, (G̃1−0)2, G̃0G̃1−0, G̃1−0G̃0 are linearly

independent, then the social effects are identified.

Proposition 1 sets out the sufficient invertibility conditions for S̃(β), which resemble

the standard stationarity conditions in spatial and time-series econometrics (Kelejian and

Prucha 1998). Proposition 2 enumerates the minimal identification conditions for the model

in Equation (6), which are based on restrictions on the parameters and the structure of the

interaction matrices. These conditions resemble the conditions stated by Bramoullé et al.

(2009) in the context of homogeneous peer effects and by Arduini et al. (2014) and Dieye

and Fortin (2016) in the context of heterogeneous peer effects. Appendix A presents the

proofs of Propositions 1 and 2.

All interaction models exploiting network data are susceptible to endogeneity concerns

related to simultaneity, stemming from the fact that the outcomes of an individual and

his partners are jointly determined. The terms JG̃0y and JG̃1−0y in Equation (6) are

then correlated with the disturbance vector Jε, which may invalidate OLS inference. As

long as individual reference groups are not fully overlapping, the standard solution to this
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problem is to use “lagged” partners’ characteristics (that is, the exogenous attributes of the

partners of one’s partners) as instruments to address the reflection problem (e.g., Kelejian

and Prucha 1998; Bramoullé et al. 2009; Calvó-Armengol et al. 2009; Drukker, Egger,

and Prucha 2013; Patacchini and Zenou 2012). The conditions in Proposition 2 lead to

a novel instrumentation procedure, which adapts the standard lagged-partner strategy to

our context. In Appendix A, we show how the endogenous regressors can be expressed in

terms of a set of internally generated excluded instruments, which represent an “augmented”

version of the lagged-partner characteristics exploiting the change in network topology. The

associated set of instruments is:

Q∞ = J[ĩtt, G̃0ĩtt, G̃1−0ĩtt,

G̃0S̃(β)−1ĩtt, G̃0S̃(β)−1G̃0ĩtt, G̃0S̃(β)−1G̃1−0ĩtt, G̃0S̃(β)−1ι,

G̃1−0S̃(β)−1ĩtt, G̃1−0S̃(β)−1G̃0ĩtt, G̃1−0S̃(β)−1G̃1−0ĩtt, G̃1−0S̃(β)−1ι] (9)

By using a series expansion of S̃(β)−1, we can generate a finite set of instruments at

will and derive the corresponding restrictions on the form of the interaction matrices. For

instance, the minimal identification conditions in Proposition 2 generate four second-order

instruments J
(
G̃0
)2

ĩtt, J
(
G̃1−0

)2
ĩtt, JG̃0G̃1−0ĩtt, and JG̃1−0G̃0ĩtt.11 Instruments of

higher order can be added at the cost of some additional identification requirements (see

Appendix A). This model can be estimated by 2SLS or GMM (Lee 2007; Liu and Lee 2010).

Two notes are in order here. First, among the instruments in Equation (9), we have

variables that account for the different positions of individuals in the network as described by

the centrality measure developed by Bonacich (1987). The details are discussed in Appendix

A. Second, if we wanted to relax the conditional exogeneity of G1 (Equation 3) we could

use the predicted change in the network as an instrument for the observed change in the

11These instruments represent the share of treated individuals among old partners of old partners, new

partners of new partners, old partners of new partners, and new partners of old partners, respectively.
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network.12

2.4 The treatment effect

In what follows, we define a measure of the treatment effect as a function of the structural

parameters of the model. We focus on the situation of interest in which the network change is

a function of the randomized intervention, i.e., G1−0 = f(itt). In this context, a measure of

the treatment effect that accounts for this indirect spillover of the intervention onto individual

outcomes may outperform the standard measures.

In the linear treatment-response model with no peer effects (Equation 8), the total effect

of the treatment is given by the coefficient γ. In models with spatial lags in the dependent

variable, the interpretation of the estimated parameters is richer but more complicated: in

the presence of peer effects, the treatment status of one individual will affect not only his own

outcome (the direct effect), but also the outcomes of others (the indirect effect). To define

the treatment effect of the dynamic model, we begin with the reduced form of Equation (5)

and derive the closed form of the N × N matrix of partial derivatives with respect to the

treatment, which we call
∂E(y1|itt)

∂itt
.13 The kth column of

∂E(y1|itt)
∂itt

is an N × 1 vector that

represents the effect of the treatment of individual k = 1, ..., N on the outcomes of all other

individuals and is written as:

∂E
(
y1|itt

)
∂ittk

=
∂S(β)−1

∂ittk
M+ S(β)−1

∂M

∂ittk
, (10)

∂S(β)−1

∂ittk
= S(β)−1β2

∂G1−0

∂ittk
S(β)−1, (11)

∂M

∂ittk
= γek + δ1G

0ek + δ2
∂G1−0

∂ittk
itt+ δ2G

1−0ek, (12)

12This would require recomputing the instruments by replacing the observed network change G̃1−0 with

an ‘instrumental matrix,’ which is its fitted version. Kelejian and Piras (2014) demonstrate the consistency

and asymptotic normality of the IV estimator in the context of an endogenous interaction matrix (see also

Hsie and Lee, 2016).
13Since the treatment affects equilibrium quantities only at t = 1, we can simplify the notation by focusing

on the right-lower quadrant of
∂E(y|ĩtt)

∂ ĩtt
.
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where S(β) = [IN − β1G0 − β2G1−0], M = [(γIN + δ1G
0 + δ2G

1−0) itt + µ], and ek is an

N × 1 vector with 1 at the kth element and 0 elsewhere. The N ×N matrix ∂G1−0

∂ittk
, which is

obtained by differentiating each element of G1−0 with respect to ittk , represents the effect of

the intervention on the matrix of social interactions. Note that Equation (10) still incorpo-

rates the unobserved heterogeneity terms µ, as commutativity does not hold (see Appendix

A). Once we have the closed form of Equation (10), the treatment effect of the intervention

can be calculated following standard practice in spatial econometrics (Le Sage and Pace 2009;

Elhorst 2014; Hsieh and Lee 2016): the direct treatment effect is the average of the diagonal

elements in
∂E(y1|itt)

∂itt
, and the indirect treatment effect is the average of the column (or row)

sums of the non-diagonal elements of
∂E(y1|itt)

∂itt
.14 The indirect treatment effect, which rep-

resents social spillovers, operates through two channels: the change in the treatment status

of baseline peers (which is standard in this literature) and the intervention-driven changes

in the network (which is the novelty of our dynamic model). The total treatment effect is

then calculated as the sum of the direct and the indirect effects.15

Note that assuming ∂G1−0

∂ittk
= 0 simplifies Equation (10) to:

∂E (y1|itt)
∂ittk

=
[
IN − β1G0

] −1[γek + δ1G
0ek] (13)

We use Equation (13) to compute the treatment effect for the model with static peer effects

(Equation 7), following the same procedure. Here, the indirect treatment effect operates

14The row sum represents the impact of changing the treatment status of all other individuals on the

outcome of one particular individual, while the column sum represents the impact of changing the treatment

status of one particular individual on the outcomes of all other individuals. These two quantities coincide.
15Note that the estimates of both the direct and indirect effects result from complex interactions between

the parameters and the social-interaction structure. For instance, an arbitrary diagonal element
∂E(y1

i |itt)
∂itti

does not necessarily equal the estimated coefficient γ. This is because the former also includes feedback loops

(where observation i affects observation j, and observation j also affects observation i) and longer paths that

might go from observation i to j to k and back to i. This is because the series expansion of S(β)−1 contains

terms
(
G0
)k and

(
G1−0)k that, for k > 2, have non-zero elements on the diagonal.
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only through the standard channel, which is the change in the treatment status of baseline

peers. Observed network changes that are unrelated to the intervention are not considered.

Appendix B describes the results of an extensive simulation exercise designed to assess the

performance of these measures of the treatment effect under different scenarios regarding

the magnitude of the intervention-driven network changes, the sample size, the amount of

measurement error, and the type of network data generation process. The results suggest

that, as soon as there is any intervention-driven network change, more accurate inference is

obtained with the dynamic treatment-effect measure. In addition, the bias of the standard

measures increases with the magnitude of the indirect spillovers.

3 Illustration

3.1 Data description

The remainder of the paper illustrates our model using data purposely collected by the

authors in Nepal. These data come from a randomized field experiment providing access to

formal savings accounts to a random sample of poor households in 19 villages surrounding

Pokhara. A baseline survey was conducted in February 2009, where the female heads of all

households living in these villages were interviewed.16 Between the last two weeks of May and

the first week of June 2010, half of these women were randomly assigned, through a public

lottery held in each village, to the treatment group and offered the option of opening a savings

account at the local bank-branch office. The remaining half was assigned to the control

group and was not given this option. In June 2011, an endline survey of the respondents was

conducted. Prina (2015) shows very high take-up and usage rates of these savings accounts.

The sample considered in our study comprises 915 households that completed both survey

waves. The network variable is based on the responses to a survey question eliciting repeated

16Having census data, we avoid making distributional assumptions to deal with sampled dyadic observa-

tions (Chandrasekhar and Lewis 2016).
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financial exchanges within the village sample prior to each wave.17 On the basis of these

responses, we first construct the matrices Zt representing binary undirected links among

sample households: for each household pair (‘dyad’) ij, ztij = ztji = 1 if a member of household

i or household j mentioned a member of the other household as regular partner at time t.18

Zt is block-diagonal as, by construction, only links within a given village are allowed. The

resulting networks have a density of 2% (that is, on average, 2% of the potential within-

village links are actually formed). In line with the model described in Section 2, in the

illustration that follows, we compute the semi row-standardized version of Zt that we call

Gt. For further information on the setting and additional descriptive statistics on the data

in use, please see online Appendix C.

3.2 Estimating the treatment-response models

We now estimate the treatment-response models from Section 2 using our data. The outcome

of interest is household meat consumption.19 In our data, meat is the most expensive food

component, and its consumption is fairly common but not ubiquitous.20 Peer effects in

17Vis-a-vis hypothetical network data (‘who would you ask for help in case of need? ’), actual network

data (‘who did you ask for help? ’) limit the measurement error due to respondents’ subjective evaluations

(Comola and Fafchamps 2014) but may overlook some potential links of mutual support, which were not

activated during the period of study (Karlan, Mobius, Rosenblat, and Szeidl.2009). In our case, the regular

nature of the links elicited should alleviate this concern.
18We choose to treat self-declared links as undirected because the survey question is designed to capture

repeated episodes of support flowing in one or both directions. Nevertheless, our estimation strategy is

compatible with both directed and undirected data. For a discussion of misreporting for discordant network

data, see Comola and Fafchamps (2014 and 2017).
19This variable measures the estimated value in Nepalese rupees of the total consumption of meat in the

month prior to the survey. Meat includes goat/lamb and chicken/poultry. Buffalo meat/beef is excluded

since this is considered an inferior good in Nepal.
20At endline, 33% of households reported no meat consumption during the last week, and the median

consumption value was 10 USD.
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eating behavior have been widely documented, and in our data, meat consumption may

reflect conspicuous consumption.21

Table 1 reports the results for the three treatment-response models described in Section

2.2. We assume that the error terms are independent across villages, and we report in

parentheses cluster-bootstrapped standard errors. Column (1) reports the estimates from a

model with no peer effects; columns (2) and (3) report the estimates from the models with

static and dynamic peer effects, respectively, based on a 2SLS IV strategy. We use all the

excluded instruments that are internally generated by the model up to the third order.22

21See for example, Angelucci et al. (forthcoming) and Cruwys, Cruwys, Bevelander, and Hermans (2015).
22For the descriptive statistics of all variables reported in Table 1 plus the instruments, see Table C3 of

online Appendix C.
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Table 1: Treatment-response models, main results

No PE Static PE Dynamic PE

(1) (2) (3)

Jĩtt 489.73*** 399.05*** 281.79***

(81.41) (83.92) (86.06)

JG̃0y [outcome PE] 0.39 0.79**

(0.43) (0.36)

JG̃1−0y [network PE] 0.27**

(0.11)

JG̃0itt 4.41 -24.49

(252.31) (247.39)

JG̃1−0itt -4.70

(206.08)

Observations 915 915 915

F-test (weak id.) - 8.38 10.18

Notes: This table reports the estimates of a treatment-response model with no peer
effects, static peer effects, and dynamic peer effects. Bootstrapped standard errors in
parentheses (100 replications) with village-level clustering. Kleibergen-Paap F-test
statistics are shown at the bottom of the table. Statistically significant coefficients
are indicated as follows: * 10%, ** 5% and *** 1%.

In column (3), the intent-to-treat dummy and the peer effects terms are positive and

statistically significant. The estimated coefficient on the outcome peer effect JG̃0y suggests

that a one-rupee increase in the average meat consumption of baseline partners increases

an individual’s own consumption by 0.79 rupees. The network peer-effect term JG̃1−0y

is also significant: this implies that a one-rupee increase in average meat consumption at

endline by new partners, relative to old partners, translates into an increase of 0.27 rupees

in own consumption. These results taken together suggest that greater meat consumption of

partners—whether from old or new partners—generates positive peer effects. The contextual

effects JG̃0itt and JG̃1−0itt are not statistically significant, suggesting that there is no direct
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effect of partners’ treatment status once their consumption has been taken into account.

Finally, note that the coefficient on the intent-to-treat dummy falls from column (1) to

column (3). This may be due to omitted variable bias, if the intent-to-treat dummy and

the peer effects terms are correlated through the intervention-driven network change. If

agents strategically rearrange their links after the intervention, treatment status will not

be independent of the number or characteristics of partners, which in turn could invalidate

inference regarding the direct treatment effect in the presence of peer effects. Thus, in

our data illustration, a failure to account for network changes may overestimate the direct

treatment effect.

One caveat is in order. The identification strategy based on lagged partner characteristics

relies crucially on the assumption that spillovers spread through the observed structure of

social interactions. Our estimates of peer effects could then be biased upwards if network

connections among households were underestimated. This would be the case if peer effects

operated via dimensions of social interactions other than regular financial support links.

Unfortunately, due to data limitations, we are forced to disregard other potential channels

of peer effects beyond the one that we measure.

3.3 Estimating the treatment effect

As we argued in Section 2, if a policy intervention affects network topology and peer effects

are at work, a measure of the treatment effect that incorporates the intervention-driven

network changes may be attractive. In what follows, first, we provide an estimate of ∂G1−0

∂ittk
,

then use it to evaluate Equation (10) in the context of our data illustration. Let us consider

the entire sample of within-village dyads and call a dyad ‘treated’ if at least one of the two

households involved was offered the savings account, i.e., ittij = max(itti, ittj). Preliminary

statistics on the binary links Zt already suggest that our randomized experiment affected

the network in our villages by rewiring links from non-treated to treated dyads: despite the

important reshuffling of links across waves, treated dyads are more likely to form a binary
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link at endline if they did not have one beforehand (1% versus 0.8% for non-treated dyads)

and are less likely to drop a link at endline if they were already connected (76% versus 81%

for non-treated dyads). To evaluate Equation (10) we estimate:

(
g1ij − g0ij

)
= ϑ1 · ittij + ϑ2 ·X ij +

(
ε1ij − ε0ij

)
(14)

where gtij is the (ij)th entry of the row-standardized interaction matrix Gt and X ij

contains dyad-level controls. We retain ∂Ĝ1−0

∂ittk
= 0.002, which corresponds to the esti-

mated coefficient ϑ̂1.23 Equation (14) represents the simplest functional form f(·) to depict

intervention-driven network changes. Nevertheless, various parametric or non-parametric

models of network evolution can be nested in the current framework.24

Table 2 combines the all estimates above to compute the measures of the treatment

effect. In the model with no peer effects (column 1), the treatment effect is given by the

estimated coefficient γ̂ from Table 1, column (1). The numerical solution for the model with

static peer effects in column (2) is obtained by plugging the estimated coefficients γ̂ and β̂1

from Table 1, column (2) into Equation (13) and solving it recursively. In the model with

dynamic peer effects in columns (3) and (4), we solve Equation (10) numerically on the basis

of the estimated coefficients γ̂, β̂1 and β̂2 from Table 1, column (3). We additionally evaluate

∂Ĝ1−0

∂ittk
= 0.002 from Equation (14). The difference between columns (3) and (4) relates to

the treatment of the household-level effects µ in Equation (10): in column (3), we assume

that µ =0,25 and in column (4), we plug in the estimates of the household-level effects µ̂.26

23See Table C5 in online Appendix C for the complete results.
24Equation (14) corresponds to a myopic link-formation rule with no externalities from the local network

architecture (e.g., no returns from triadic closure). In our context, local network externalities would raise

specific econometric challenges (Graham 2015).
25This is analogous to the treatment of fixed effects in the conditional logit model.
26In column (4), the µ̂ are estimated from a dummy-variable specification, which corresponds to Equation

(6). For T fixed and N →∞, these estimates are unbiased but inconsistent.
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Table 2: Measures of treatment effect

(1) (2) (3) (4)

No PE Static PE Dynamic PE Dynamic PE

(µ =0) (µ̂)

Direct 489.7 417.9 342.3 370.9

Indirect - 94.4 260.9 329.4

Total 489.7 512.3 603.2 700.2

Overall, the results from Table 2 suggest that by neglecting the dynamic peer effects, we

underestimate the impact of the intervention. Two remarks are in order. First, the value

of the direct treatment effect falls from column (1) to columns (3) and (4). This could be

related to the fact that in the presence of intervention-driven network changes, own treatment

status is correlated with the peer effects terms: in the context of the dynamic model, this

would be the case if treated households tend to both increase their meat consumption and to

link among themselves. This issue is relevant for interpretation: our estimates suggest that

a sizable share of the overall effect is due to social spillovers rather than direct treatment.

In other words, treating a sample of isolated individuals would yield a much lower effect

(342.3 or 370.9 vs. 417.9). Second, by comparing the results in columns (2)-(4), we can see

that by taking into account intervention-driven network changes, we increase the magnitude

of the estimated indirect treatment effect, which more than compensates for the decline in

the direct effect.

The results from this data illustration suggest that the direct component of the treatment

effect is overestimated and that standard measures of peer effects, which neglect network

changes, should be revised upwards. There is a natural analogy here to standard omitted

variable bias: in a framework in which peer effects are positive and there is complementarity

between formal savings and network-based interactions, the bias is positive. Our method-

ology, however, is general and could have produced the opposite results when considering
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other data if, say, the intervention crowded out network interactions or if the peer effects

were negative.

4 Concluding remarks

Networks may evolve in response to interventions. This paper develops a structural model

of treatment response that allows for time-varying social interactions. We derive a measure

of the treatment effect that incorporates intervention-driven network changes. We illustrate

our methodology using original data from Nepal, which contain detailed information on

the network of regular financial support among households, before and after an exogenous

expansion of formal financial access. Our results show that neglecting the intervention-driven

network change results in an overestimate of the direct component of the treatment effect and

an underestimate of its indirect component that operates through peers. This illustrates the

paper’s main message that unintentional changes in network topology should be accounted

for when evaluating interventions.

Our study provides novel insights into how we should draw inferences based on network

data. Some work has sought to manipulate group membership (e.g., Fafchamps and Quinn

2016; Goette, Huffman, and Meier 2012; Di Falco, Feri, Pin, and Vollenweider 2016), and

here, we show that social interactions may well be shaped even by interventions that were a

priori not expected to do so. One implicit assumption behind previous work on networks and

diffusion is that pre-existing relationships matter for economic outcomes. This assumption

is indeed appropriate in a setting where the network is fixed or difficult to change, as in

kinship networks. However, it is also possible that certain informal networks can easily

be rewired in response to changes in the economic environment and that new links can

be formed irrespective of the pre-existing relationships. Networks of financial support are

prime examples, as shown in this paper. We hence recommend more caution in interpreting

pre-existing links in a causal manner and in drawing policy recommendations based on them.
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Appendix A: proofs

Proof of Proposition 1

The following steps are required for the proof of Proposition 1.

1. Since G1−0 = G1 −G0, we can rewrite S̃(β) as:

S̃(β) =
[
I2N −G

]
where G = (β1 − β2) G̃0 + β2G̃

1 and G̃1 =

 G0 0

0 G1

.
2. The degree vector contains the sum of the rows of matrix G. Since G̃0 and G̃1 are

semi row-standardized, the degree vector of G can take four unique values only:

• if individual k has partners at both baseline and endline, his two entries (i.e., the

kth and (N + k)th elements of the degree vector) are both β1;

• if k has partners at baseline only, his wo entries are β1 and (β1 − β2), respectively;

• if k has partners at endline only, his two entries are 0 and β2, respectively; and

• if k is isolated throughout, his two entries are both 0.

3. Let λ1 ≥ λ2 ≥ ... ≥ λ2N be the spectrum of G. We can write the determinant of S̃(β)

as det
(
S̃(β)

)
=
∏2N

i=1(1− λi).

4. We know that the maximum eigenvalue of a graph is smaller that the maximum degree

of a graph: λ1 ≤ ∆G.

5. A sufficient condition for S̃(β) to be invertible is that its determinant be positive. In

conjunction with the conditions above, this holds if |β1| < 1, |β2| < 1 and |β1−β2| < 1.
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Proof of Proposition 2

The following steps are required for the proof of Proposition 2.

1. We develop the geometric series expansion of S̃(β)−1 for k = 0, 1 using Newton’s

binomial formula:

S̃(β)−1 =
∞∑
k=0

S̃k(β)

= I2N +
∞∑
k=1

S̃k(β)

= I2N + β1G̃
0 + β2G̃

1−0 +
∞∑
k=2

S̃k(β)

where S̃k(β) =
∑k

i=0

(
k

i

)(
β1G̃

0
)(k−i)

×
(
β2G̃

1−0
)i
.

2. We substitute this series expansion into the reduced form of the model in Equation (5)

and obtain:

y = S̃(β)−1M̃+ S̃(β)−1ε (15)

=
(
I2N + β1G̃

0 + β2G̃
1−0
)
M̃+

∞∑
k=2

S̃k(β)M̃+ S̃(β)−1ε

=
[
γI2N + (δ1 + γβ1) G̃

0 + (δ2 + γβ2) G̃
1−0
]
ĩtt

+

[
β1δ1

(
G̃0
)2

+ β2δ2

(
G̃1−0

)2
+ β1δ2G̃

0G̃1−0 + β2δ1G̃
1−0G̃0

]
ĩtt

+
(
I2N + β1G̃

0 + β2G̃
1−0
)
ιµ

+
∞∑
k=2

S̃k(β)M̃+ S̃(β)−1ε

where

M̃ =
[(
γI2N + δ1G̃

0 + δ2G̃
1−0
)
ĩtt+ ιµ

]
.

3. We take the conditional expectation of the expression above and pre-multiply it by G̃0
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and G̃1−0 to yield:

E(G̃0y |ĩtt) =
[
γG̃0 + (δ1 + γβ1)

(
G̃0
)2

+ (δ2 + γβ2) G̃
0G̃1−0

]
ĩtt

+

[
β1δ1

(
G̃0
)3

+ β2δ2G̃
0
(
G̃1−0

)2
+ β1δ2

(
G̃0
)2

G̃1−0 + β2δ1G̃
0G̃1−0G̃0

]
ĩtt

+

[
G̃0 + β1

(
G̃0
)2

+ β2G̃
0G̃1−0

]
ιµ (16)

+G̃0
∞∑
k=2

S̃k(β)M̃

E(G̃1−0y |ĩtt) =
[
γG̃1−0 + (δ1 + γβ1) G̃

1−0G̃0 + (δ2 + γβ2)
(
G̃1−0

)2]
ĩtt

+

[
β1δ1G̃

1−0
(
G̃0
)2

+ β2δ2

(
G̃1−0

)3
+ β1δ2G̃

1−0G̃0G̃1−0 + β2δ1

(
G̃1−0

)2
G̃0

]
ĩtt

+

(
G̃1−0 + β1G̃

1−0G̃0 + β2

(
G̃1−0

)2)
ιµ (17)

+G̃1−0
∞∑
k=2

S̃k(β)M̃

By pre-multiplying Equations (16) and (17) by the transformation matrix J, we can express

the two endogenous regressors in terms of the excluded instruments that are internally gen-

erated by the model. According to Equation (15), the best IV matrix for Equation (6) is

given by:

Q = J
[
ĩtt, G̃0ĩtt, G̃1−0ĩtt, G̃0S̃(β)−1M̃, G̃1−0S̃(β)−1M̃

]
even though Q is unfeasible (as it involves unknown parameters such as γ, β, δ, and µ), it

is a linear combination of the associated set of all instruments, which is:

Q∞ = J[ĩtt, G̃0ĩtt, G̃1−0ĩtt,

G̃0S̃(β)−1ĩtt, G̃0S̃(β)−1G̃0ĩtt, G̃0S̃(β)−1G̃1−0ĩtt, G̃0S̃(β)−1ι,

G̃1−0S̃(β)−1ĩtt, G̃1−0S̃(β)−1G̃0ĩtt, G̃1−0S̃(β)−1G̃1−0ĩtt, G̃1−0S̃(β)−1ι] (18)

In Equations (16) and (17), we show how to use a series expansion of S̃(β)−1 to generate
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a finite set of instruments and how to state the corresponding restrictions on the form of the

interaction matrices. Note that the instruments are of two types: lagged-partner characteris-

tics and centrality instruments. Using as instruments the exogenous attributes of the lagged

partners who are excluded from one’s own reference group is a standard strategy in network-

interaction models. For instance, our series expansion for k = 0 generates four lagged-partner

instruments of second order: J
(
G̃0
)2

ĩtt, J
(
G̃1−0

)2
ĩtt, JG̃0G̃1−0ĩtt, and JG̃1−0G̃0ĩtt.

Therefore, as stated in Proposition 2, the minimal identification conditions of our model

based on second-order lagged-partner instruments are (γβ1 + δ1) 6= 0 and (γβ2 + δ2) 6= 0

if the matrices I, G̃0, G̃1−0,
(
G̃0
)2
,
(
G̃1−0

)2
, G̃0G̃1−0, and G̃1−0G̃0 are linearly inde-

pendent. Note that the linear independence of G0 and G̃1−0 (and their higher-order prod-

ucts) generally holds for non-degenerate network topologies with meaningful variation across

time. Similarly, the series expansion for k = 1 produces eight possible lagged-partner in-

struments of third order: J
(
G̃0
)3

ĩtt, J
(
G̃1−0

)3
ĩtt, J

(
G̃0
)2

G̃1−0ĩtt, J
(
G̃1−0

)2
G̃0ĩtt,

JG̃0
(
G̃1−0

)2
ĩtt, JG̃1−0

(
G̃0
)2

ĩtt, JG̃
0
G̃1−0G̃0ĩtt, and JG̃

1−0
G̃0G̃1−0ĩtt. If we wish to

include them, we need to add all of the corresponding third-order interaction matrices(
G̃0
)3
,
(
G̃1−0

)3
, ... to the list of linearly independent matrices above. Following the same

procedure, we can further develop the series expansion of S̃(β)−1 to derive instruments of

higher order (i.e., fourth order and above) and the corresponding identification requirements.

As mentioned in Section 2, Equations (16) and (17) also include a set of IVs that are

the products of the interaction matrices G̃0 and G̃1−0 (and their higher-order matrix mul-

tiplications) with the vector ι. Their presence reflects that the row sums of the interaction

matrices are not constant (for instance, because some households are isolated).27 As ex-

plained by Liu and Lee (2010) and Dieye and Fortin (2016), these instruments account for

Bonacich (1987) centrality and may provide an additional source of identification. However,

27When dealing with correlated effects, Bramoullé et al. (2009) assume that no individual is isolated,

which guarantees commutativity in the cross-sectional model with homogeneous peer effects. In our context,

were G̃0 and J to be commutable, the term JG̃0ιµ would not appear in the transformed equation.
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the number of centrality instruments rises with the number of groups. Liu and Lee (2010)

perform a group-level transformation and therefore calculate their centrality at the group

level. With our transformation, we obtain household-level centrality measures, which we do

not include in the empirical illustration to avoid many-instrument bias.28

Appendix B: simulations

We now describe the simulation exercise we design to evaluate the performance of the pro-

posed method. The objective is twofold. First, we wish to assess the performance of the

estimators of the treatment effect of Equation (10) (direct, indirect and total treatment ef-

fect: DTE, ITE, and TTE, respectively). To so do, we compute their mean squared errors

(MSE) under different scenarios regarding the data generating process and the magnitude

of the intervention-driven network changes. Second, we investigate the coverage probabil-

ity of different confidence intervals for the parameters of Equation (6) in the presence of

cluster-level correlation.

We begin by exploring the performance of the estimators of the treatment effect. Since

Equations (13) and (10) need to be evaluated at a specific value of the network structure and

the intervention allocation, we compute the ‘integrated’ MSE of the estimates over various

draws of these independent variables. The procedure is divided in two steps:

Step 1: Generate the estimated peer effects coefficients

For a given value of the parameter λ, representing intervention-driven network changes,

we generate multiple estimates of the peer effects coefficients by using the following proce-

dure:

28Note that not all of these instruments are meaningful in our context. For instance, G̃0 has the same

block G0 repeated on the main diagonal; therefore, G̃0ι is constant over time and is cancelled out by the

transformation JG̃0ι = 0 and J
(
G̃0
)2
ι = 0. This is not the case for G̃1−0, so that all variables involving

the product of G̃1−0 and ι may yield meaningful variation. To illustrate, JG̃1−0ι is a 2N ×N matrix whose

ith column accounts for the new links of household i (as deviations from i’s two-period average).
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1.1. Generate the independent variables Xs = {itt,G0,G1}

We generate a dataset of N = 50 nodes and a treatment vector itt such that each

node has an independent 50% probability of receiving the binary treatment. Then,

we generate the interaction matrices as follows. First, we draw a binary baseline

network Z0, which is an Erdős-Renyi random graph of type G(50, 0.1), i.e., where

each link among 50 nodes exists independently with a probability p = 0.1 (Erdős and

Renyi, 1959). Then, we draw an Erdős-Renyi graph Zz ∼ G(50, 0.1 + λ), where λ is a

parameter representing intervention-driven network changes, and we build the binary

endline network Z1 according to the following rule: Z1 = Z0 if ittij = max(itti, ittj) =

0, and Z1 = Zz if ittij = 1. Finally, we reshuffle 1% of the links to account for

measurement error,29 and we row-standardize the resulting matrices to obtain G0, G1.

1.2. Generate the dependent variable ys:

We generate the vector ys on the basis of Equation (6), using the independent variables

Xs, setting the population parameters γ = 10, β1 = 0.5, β2 = 0.2, δ1 = δ2 = 0 and

µ =0, and adding i.i.d. error terms ε0, ε1 such that ε1i − ε0i ∼ N(0, 1);

1.3. Estimate the peer effects coefficients:

We estimate the three peer effects models (Equations 8, 7, 6) and save the coefficients

β̂
s

=(γ̂ols, γ̂stat, β̂1stat, β̂2stat, γ̂dyn,β̂1dyn, β̂2dyn, ϑ̂).

We repeat the procedure for s = 1, ..., 100 to obtain 100 vectors of estimated coefficients β̂
s
.

Step 2: compute the MSE

Next we assess the performance of the estimators of the treatment effects (DTE, ITE,

29The measurement error is constructed as follows for Z0: we reshuffle all binary links across dyads

to generate Z0
r , such that the overall share of non-zero outcomes and the symmetry is preserved (Z0

r,ij =

Z0
r,ji) while the links are by construction uncorrelated with the treatment status. We then draw a random

subsample of 1% of dyads for which we replace the ‘real’ matrix Z0 with the reshuffled version Z0
r . We

repeat the procedure for Z1 (independently, i.e., both the reshuffling scheme and the random 1% subsample

are drawn independently across periods).
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and TTE) by computing an ‘integrated’ MSE (IMSE) as an average of the MSE over various

draws of the network and the intervention allocation. This is to ensure that the estimator

behaves well in different parts of the latent distribution of network structures. We proceed

as follows.

2.1 Compute the MSE for a given network draw: We generate a new draw Xd from the same

data generating process explained in Step 1.1 above and use it to compute the MSE

of the treatment effects. For example, the MSE of the ITE for the static peer effects

model based on draw d is defined as MSEITE,stat
d = 1

100

∑100
s=1

(
ÎTEstat

s,d − ITEd
)2

,

where ÎTEstat
s,d is obtained by evaluating Equation (13) on the basis of the independent

variables Xd plus the estimated parameters in β̂
s
, while the benchmark value ITEd is

obtained by evaluating Equation (10) on the basis of the ‘true’ population parameters

γ, β1, β2 and the generated data Xd. We also compute the standard decomposition of

MSE into variance and bias.30

2.2. Compute the integrated MSE over multiple network draws: We repeat step 2.1 for

d = 1, ..., 100 and average out the MSE over these 100 draws to obtain the final values

of the IMSE (and variance and squared bias) ‘integrated’ over the various network

configurations.

Columns (1)-(4) of Table B1 report the resulting integrated statistics of MSE, variance and

squared bias (IMSE, IVar and IBias in the table) for the three peer-effects models (no PE,

static PE, dynamic PE) and the three measures of treatment effects (TTE, ITE, DTE)

for four different values of the parameter λ ∈ {0, 0.02, 0.05, 0.1}, ranging from no effect

of the intervention to an increase of 100% in expected degree with respect to the baseline

p = 0.1. The results suggest that, as soon as there is any intervention-driven network change

(i.e., λ > 0), more accurate inference is obtained with the dynamic model. The bias of

30For example, V arITE,stat
d = 1

100

∑100
s=1

(
ÎTEstat

s,d − ITEstat
d

)2
and Bias2 ITE,stat

d =
(
ITEstat

d − ITEd
)2

where ITEstat
d = 1

100

∑100
s=1 ÎTE

stat
s,d .
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the models with static peer effects increases with the magnitude of network changes and is

mostly accounted for by the indirect treatment effect. Unsurprisingly, the dynamic model is

unbiased but has a larger variance than the other two models, as it incorporates an additional

error term at the dyadic level.

Next, we extend the simulation exercise along several dimensions to gather further in-

sights into the performance of the estimator. In columns (5) and (6) of Table B1, we maintain

an intermediate value of network changes λ = 0.05, as in column (3), and we increase the

sample size N to 75 and 100, respectively. By construction, while the density of the network

is constant, the expected degree is now higher. As expected, the increase in sample size has

a slight effect on the variance (with respect to column 3), but overall, the performance of

the estimators remains comparable.

In columns (7) and (8), we explore the role of mis-measurement: we reproduce the

benchmark exercise in column (3) with λ = 0.05, with the only difference being that we now

increase the amount of measurement error in the networks. In Column (7), we reshuffle 5%

of observations independently for the generated binary networks Z0, Z1. In column (8), the

percentage of reshuffled links is increased to 10%.31 The results suggest that the dynamic

model still outperforms the other models, but its MSE increases through the channel of

variance.

Then, we explore the performance of our estimator in the context of a different data

generating process. In fact, most real-life networks display a high level of clustering that

Erdős-Renyi graphs cannot capture. To see how our estimator performs in the presence

of clustering, in columns (9)-(11), we instead use a small-world network generation process

(Watts and Strogatz, 1998). To do so, we define Z0
s as a Watts Strogatz lattice with 2 linked

neighbors per side and Zz
s as a Watts Strogatz lattice with 3 linked neighbors per side. Then,

we explore the results under different hypotheses on the rewiring probability q ∈{0.1,0.25,0.5}

in columns (9)-(11), respectively: for low q, the graph displays high clustering, but as q

31Note that a small change in the binary matrices Z0, Z1 may result in a much larger change in G1−0.
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increases, it converges to the Erdős-Renyi graphs. The results are overall consistent with the

patterns displayed previously: the dynamic model outperforms largely the other models.

Finally, in Table B2, we study the coverage probabilities of the confidence intervals in

the presence of cluster-level correlation and few clusters. In fact, several real-life network

datasets feature a small number of clusters (e.g., separate villages or schools). This is also

the case for the data in our empirical illustration, where we have only 20 clusters. In what

follows, we evaluate the performance of different inference methods in such a context. For

this scope, we fix a variance parameter σ2 and repeat the following procedure 300 times:

1. We generate a sample of 1000 data points, divided into 20 clusters of equal size (N=50).

For each cluster, we posit the same data generating process as in column (3) of Table

B1, with the only difference here being that now the individual-level error term in

Equation (6) includes a random effect at the cluster/period level: ε0i = ε0i + α0
c and

ε1i = ε1i + α1
c , where α0

c , α
1
c ∼ N(0, σ2) and α1

c − α0
c ∼ N(0, 2σ2);

2. Then, we use the generated data to estimate the dynamic PE model with four different

inference methods (robust, clustered-robust, bootstrapped, and clustered-bootstrapped

standard errors),32 and we store the confidence intervals for γ̂dyn, β̂1dyn, and β̂2dyn.

Table B2 reports the resulting coverage statistics, where coverage is defined as the percentage

of times that the 95% confidence interval contains the known value of the parameter—a

method thus performs well if it returns a coverage rate close to 95%. The three columns of

Table B2 correspond to σ2 ∈ {0.1, 0.5, 1}, which result in different levels of within-cluster

correlation. The results suggest that clustered bootstrap standard errors perform rather well

across all scenarios, which motivates our inference approach in the empirical illustration in

Section 3.

32‘Robust’ refers to the Huber/White estimator, ‘bootstrap’ performs non-parametric bootstrap with

replacement, and ‘cluster-bootstrap’ extends the bootstrap such that each replication is based on a bootstrap

sample of clusters.
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Table B2: Coverage

coeff C. I. σ2

0.1 0.5 1
γ robust 0.96 0.98 0.96
γ cluster 0.95 0 .94 0.92
γ boot 0.96 0.97 0.97
γ boot clust 0.93 0.93 0.96
β1 robust 0.88 0.45 0.35
β1 cluster 0.94 0.94 0.92
β1 boot 0.88 0.44 0.34
β1 boot clust 0.93 0.93 0.92
β2 robust 0.92 0.81 0.74
β2 cluster 0.92 0 .92 0.91
β2 boot 0.91 0.81 0.74
β2 boot clust 0.91 0.90 0.90

Notes: “robust,” as in robust standard errors; “clus-
ter,” as in clustered-robust standard errors; “boot,” as
in bootstrapped; and “boot cluster,” as in clustered-
bootstrapped standard errors.
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Online Appendix C (not for publication)

The intervention

The accounts offered in the contexts of our randomized experiment have all the characteristics

of any formal savings account. The bank does not charge any opening, maintenance, or

withdrawal fees and pays 6% nominal yearly interest, similar to the average alternatives

available in the Nepalese market (Nepal Rastra Bank, 2011).33 In addition, the savings

account does not have a minimum balance requirement.34 Customers can make transactions

at the local bank-branch offices in the villages, which are open twice a week for approximately

three hours, or at the bank’s main office, located in downtown Pokhara, during regular

business hours. There are no additional benefits to opening an account (e.g., customers with

a savings account were not eligible for credit or a lower interest rate on loans).

As shown by Prina (2015), the take-up and usage rates of the savings accounts offered

to the treatment group were very high. In particular, over 84% of the treatment households

opened an account and used it actively, depositing an average of 8% of their baseline weekly

household income almost once a week for the first year of the intervention. Access to the

savings account did not considerably increase total assets but raised household investments

in health and education and improved their perceived financial situation.

Data description

Of the 1,009 households who completed the baseline survey in 2009, 915 were interviewed

at endline. Appendix Table C1 reports the summary statistics for these 915 households,

separately for the treatment and control groups, and shows that randomization generally led

33The International Monetary Fund Country Report for Nepal (2011) indicates a 10.5% rate of inflation

during the intervention period.
34Money deposited in a savings account is fully liquid for withdrawal. The savings account operates

without any commitment to save a given amount or to save for a specific purpose.
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to balance among the baseline characteristics.

The women in the sample are very poor. They have on average 2.5 years of schooling

and live in households with an average weekly income of 1,500 Nepalese rupees (' $20) and

with assets valued at approximately 44,000 rupees (' $630).35 Households have on average

4.5 members, two of whom are children. Only 15% of the households had a bank account

before the intervention.

During each survey wave, the female household head was asked to provide a list of people

(inside or outside the village) who she and her family rely on most (and/or who could rely

on them most) for help in cash or in kind and with whom they regularly exchanged gifts

and/or loans (even if only in one direction). Respondents could list as many partners as

they wished. Special attention was devoted to accurately matching the declared partners’

identities to sampled households and circumventing homonymy between different individuals

living in the same village.36

The bottom part of Table C1 contains the network descriptive statistics at baseline by

treatment status. On average, households reported having 1.42 partners, of whom 0.64

lived in the village. We also collected information on the number and size of loans and

gifts to partners in the year before the survey. Loans seem to be more frequent than gifts:

the declared numbers of gifts and loans exchanged with their partners were 0.79 and 1.90,

respectively. Overall, at baseline, the treatment and comparison groups were well balanced

along all network characteristics. Table C2 reports the attrition regressions for the sample

of 1,009 households who completed the baseline survey: the probability of completing the

endline survey does not seem to depend on either the treatment or network characteristics.

Figure 1 depicts Z0 and Z1, that is, the network of binary links at baseline and endline

35In 2010-2011, 70 Nepalese rupees equalled approximately one U.S. dollar.
36At the end of each interview, the enumerator used the updated village roster to determine, jointly with

the respondent, the household identity code of the partners mentioned. The partners’ unique identifiers were

thus coded into the questionnaire in the field with the respondent, rather than during the data-cleaning

process.
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in the 19 villages. The links in green are observed at baseline only, those in red at endline

only, and those in black both at baseline and endline. The average number of links is 0.72

for both baseline and endline, and 312 households (34% of the sample) are isolated.37 The

network density is 2% (that is, on average, 2% of the potential within-village links are actually

formed).38 The number of binary links remains the same across waves (656 at baseline vs.

658 at endline), but the network underwent an important reshuffling, as described in Section

3.3. Although there is considerable heterogeneity across villages, these networks tend to be

sparse and divided into small groups (the average village-level clustering coefficient is 0.2).

Dyadic estimates

Table C4 reports the descriptive statistics of the dyadic sample, and Table C5 reports the

results from estimating the dyadic equation (14) described in Section 3.3, that is:

(
g1ij − g0ij

)
= ϑ1 · ittij + ϑ2 ·X ij +

(
ε1ij − ε0ij

)
In line with the model in Section 2, as dependent variable, we use the semi row-standardized

version of Zt that we call Gt. Hence,
(
g1ij − g0ij

)
is continuous, and the estimation sample is

directed (N = 56, 308 dyads). The controls X ij include the following time-varying dyadic

characteristics, all computed in first differences: marital status (equal to one if both female

household heads are married), the absolute difference in the number of children (under 16)

37The average number of links reported here is slightly greater than the number of self-reported links in

Table C1 (0.64) because to build Zt, we use the maximum report out of the two parties involved whenever

discrepancies arise.
38These statistics compare well to other examples of network data described in the literature: Kinnan et

al. (2019) report an average degree of 0.65 for the financial network of the Townsend Thai Monthly Survey.

Dizon et al. (forthcoming) find that while respondents list on average 2.46 potential partners, they only sent

money to 0.8 partners within the 3 months prior to the study. Our density (2%) is the same as that for the

median Add Health school as reported by Bramoullé et al. (2009).
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and household members, two shock dummies (equal to one if the household either suffered

the death of a member or a livestock loss in the six months prior to the survey wave), and a

time trend. Standard errors in first differences
(
ε1ij − ε0ij

)
are corrected to account for dyadic

dependence (Fafchamps and Gubert 2007).

These estimated coefficients in Table C5 may seem small at first glance because, by con-

struction, in dyadic samples, only a small share of all potential links are actually formed.

Nevertheless, the estimated coefficient of ittij represents an increase of 30% over the mean

outcome at baseline. These findings are of interest per se because they suggest some comple-

mentarity between formal savings and regular financial support links. Ex ante, it is unclear

how the network would change as a result of the randomized intervention. On the one hand,

access to a savings account might allow households to accumulate a buffer stock, which

may offer a partial substitute for informal financial arrangements. As a result, informal

transactions may be crowded out (Ligon, Thomas, and Worrall 2000). On the other hand,

households that have accumulated assets may increase transfers to others, either because of

altruism or via fear of social sanctions (Comola and Fafchamps 2017; Kinnan and Townsend

2012). This topic however, goes beyond the scope of this paper.
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Figure 1: The 19 within-village networks

Notes: links in green were declared at baseline only, those in red at endline only, and those in black
at both baseline and endline.
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Table C1: Household descriptive statistics at baseline

Sample Control Treatment T-stat
N=915 N=447 N=468

Age of the female household head 36.80 36.77 36.82 0.05
(12.51) (12.16) (12.85)

Years of education of the female hh. head 2.52 2.44 2.59 0.79
(2.82) (2.67) (2.96)

Percent married/living with partner 0.89 0.88 0.90 0.77
(0.32) (0.33) (0.31)

Household size 4.55 4.58 4.52 -0.51
(1.66) (1.68) (1.64)

Number of children 2.21 2.26 2.18 -0.86
(1.30) (1.30) (1.29)

Total income last week 1 494.73 1 472.84 1 515.64 0.13
(4,833.91) (4,598.50) (5,053.36)

Total assets 44 469.26 42,510.10 46 340.51 1.14
(50,891.76) (45,540.07) (46,340.51)

% of households with money in a bank 0.15 0.14 0.17 0.89
(0.36) (0.35) (0.37)

% of households with outstanding loans 0.90 0.88 0.91 1.42
(0.31) (0.32) (0.29)

No. of declared partners - total 1.42 1.39 1.45 0.61
(1.37) (1.35) (1.39)

No. of declared partners - village 0.64 0.62 0.65 0.53
(0.92) (0.94) (0.89)

No. of declared partners - out of village 0.79 0.77 0.80 0.32
(1.07) (1.02) (1.12)

No. of gifts declared 0.79 0.72 0.86 1.32
(1.57) (1.47) (1.66)

No. of loans declared 1.90 1.84 1.96 0.83
(2.12) (2.11) (2.13)

Notes: the last column shows the t-statistic from the two-way test of the equality of means across the treatment

and control groups. Differences are statistically significant at the *10%, **5% and ***1% levels.
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Table C2: Attrition regressions

Completed endline

(1) (2) (3)

itt 0.009 0.008 0.008

(0.015) (0.015) (0.015)

No. of declared partners – total -0.009

(0.015)

No. of declared partners - village -0.001

(0.016)

No. of declared partners – out of village -0.010

(0.015)

No. of gifts declared 0.002 0.001

(0.004) (0.004)

No. of loans declared 0.014 0.013

(0.011) (0.011)

Constant 0.919*** 0.914*** 0.915***

(0.007) (0.009) (0.009)

Village dummies yes yes yes

Observations 1,009 1,009 1,009

R-squared 0.056 0.061 0.061

Notes: Robust standard errors appear in parentheses, clustered at the village level. Statistically
significant coefficients are indicated as follows: * 10%, ** 5% and *** 1%. All regressors are calculated
at t = 0. itt represents the intent-to-treat dummy, which takes a value of one if the household was
offered the savings account.
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Table C3: Descriptive statistics for the individual sample

Mean Min Max Std. Dev.

Jy 466.38 -7520 10800 1509.0

Jĩtt 0.51 0 1 0.5

JG̃0y 245.54 -5120 9800 976.2

JG̃1−0y 71.16 -8000 10800 1323.7

JG̃ĩtt 0.22 0 1 0.4

JG̃
1−0

ĩtt 0.04 -1 1 0.5

IV1: J
(
G̃0
)2

ĩtt 0.22 0 1 0.4

IV2: J
(
G̃1−0

)2
ĩtt, 0.18 -1.5 2 0.5

IV3: JG̃0G̃1−0ĩtt -0.06 -1 1 0.3

IV4: JG̃1−0G̃0ĩtt -0.08 -1 1 0.4

IV5: J
(
G̃0
)3

ĩtt 0.22 0 1 0.4

IV6: J
(
G̃1−0

)3
ĩtt 0.03 -3.5 3 0.7

IV7: J
(
G̃0
)2

G̃1−0ĩtt -0.08 -1 1 0.3

IV8: J
(
G̃1−0

)2
G̃0ĩtt 0.11 -1.3 2 0.5

IV9: JG̃0
(
G̃1−0

)2
ĩtt 0.12 -1.4 2 0.4

IV10: JG̃1−0
(
G̃0
)2

ĩtt -0.07 -1 1 0.4

IV11: JG̃
0
G̃1−0G̃0ĩtt -0.11 -1 1 0.3

IV12: JG̃
1−0

G̃0G̃1−0ĩtt 0.04 -2 1.5 0.3

Notes: N = 915.
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Table C4: Descriptive statistics for the dyadic sample

t Mean Min Max Std. Dev.

gij 0 0.01 0 1 0.07
gij 1 0.01 0 1 0.08
ittij 1 0.76 0 1 0.43
Marital status 0 0.79 0 1 0.41
Marital status 1 0.73 0 1 0.44
Abs. diff. children 0 1.41 0 7 1.18
Abs. diff. children 1 1.29 0 6 1.06
Abs. diff hh members 0 1.80 0 11 1.53
Abs. diff hh members 1 1.82 0 14 1.61
Shock livestock 0 0.15 0 1 0.36
Shock livestock 1 0.04 0 1 0.20
Shock death 0 0.02 0 1 0.15
Shock death 1 0.01 0 1 0.11

Notes: t = 0 refers to baseline, and t = 1 refers to endline. N = 56, 308.

44



Table C5: Dyadic regressions
ittij 0.0021*

(0.0013)
marital statusij -0.0014

(0.0013)
Abs. diff. childrenij 0.0000

(0.0004)
Abs. diff. hh membersij 0.0001

(0.0003)
shock livestockij 0.0015

(0.0012)
shock deathij -0.0013

(0.0019)
t = 1 -0.0009

(0.0011)
Observations 56,308
Notes: This table reports the OLS estimates of
the dyadic intent-to-treat regressions over the row-
standardized interaction matrix. Robust standard er-
rors account for dyadic dependence (Fafchamps and
Gubert, 2007). Statistically significant coefficients are
indicated as follows: * 10%, ** 5%, *** 1%.
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