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Abstract

This paper explores the role of gender heterogeneity in the social diffusion of obe-
sity among adolescents and its policy implications. We propose a social interaction
model which allows for gender-dependent heterogeneity in peer effects. Our empirical
approach is consistent with the best response functions of a non-cooperative model
where social interactions stem from the channel of pure spillover or pure conformity.
We estimate the model using data on adolescent Body Mass Index and network-based
interactions. Our approach allows us to account for network endogeneity. Our results
show that peer effects are gender-dependent, and male students are particularly re-
sponsive to the weight of their female friends. According to simulations, reaching out
to women results in an 8% increase in effectiveness in reducing overall BMI, based on
the most conservative scenario. Thus, female-tailored interventions are likely to be
more effective than a gender-neutral approach to fighting obesity in schools.
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1 Introduction

Obesity has reached epidemic proportions in children and adolescents in the United States,
increasing from 5% in 1980 to over 19% in 2018 (Skinner et al. 2019; Fryar, Carroll,
and Afful 2020). This is aligned with the results of the latest cross-country large-scale
study showing that since 1990, obesity among children and adolescents has quadrupled
worldwide (Phelps et al. 2024). Mounting evidence suggests that the extra pounds often
start children on the path to health problems such as cardiovascular diseases, diabetes, and
cancer (Bendor et al. 2020). To explain such an alarming phenomenon, a large number of
studies have focused on socioeconomic factors such as growing unhealthy eating habits and
the decline in time spent doing physical exercise (Papoutsi, Drichoutis, and Nayga 2013).
Complementary to these views, health economists have also attempted to investigate the
obesity epidemic from the perspective of social interactions (Christakis and Fowler 2007;
Halliday and Kwak 2009; Trogdon, Nonnemaker, and Pais 2008; Yakusheva, Kapinos, and
Eisenberg 2014; Cohen-Cole and Fletcher 2008; Fortin and Yazbeck 2015; Lim and Cornwell
2023). Most of these studies document the presence of positive and significant peer effects
which could increase the prevalence of obesity by shaping body image and/or by boosting
the social transmission of unhealthy habits related to diet and physical activity. Our paper
follows the second strand of the literature by exploring the role of gender heterogeneity
in the social diffusion of Body Mass Index (BMI) outcomes among teenagers, and its
consequences in terms of anti-obesity interventions.1

Most studies on peer effects assume that social interactions are homogeneous (Manski
1993; Bramoullé, Djebbari, and Fortin 2009; Boucher et al. 2024). This means that the
effects of all peers are equal regardless of the particular type, such as race or gender.
However, this assumption is restrictive and may not accurately reflect reality, particularly
when considering adolescent students’ weight. This paper proposes an econometric model
allowing for heterogeneous peer effects along gender lines and estimates it using detailed
network data on teenagers’ friendships from the Add Health dataset. Simulations based
on our results show that ignoring gender-based heterogeneity of peer effects may lead
to inefficient health interventions to curb obesity. The present study contributes novel
methodology, results, and policy insights to the existing literature, which we discuss in
detail below.

While the literature on dietary choices and weight outcomes of adolescents is sizable
(Kapinos and Yakusheva 2011; Mora and Gil 2013; Corrado, Distante, and Joxhe 2019;
Fortin and Yazbeck 2015; Angelucci et al. 2019), studies focusing on the heterogeneity of
peer effects in this context are rare (Arduini, Iorio, and Patacchini 2019; Renna, Grafova,
and Thakur 2008; Yakusheva, Kapinos, and Eisenberg 2014). However, to our knowledge,
we are the first to model heterogeneity in between-gender peer effects. In our model, two
types of individuals (i.e., male vs. female students) interact within the same network (i.e.,

1Although various methods exist to measure excess body fat, BMI (kg/m2) is the most widely utilized
measure of excess adiposity and risk for related diseases.
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a school). This defines a ‘heterogeneous’ model with two within-gender and two between-
gender peer effects, with respect to the ‘homogeneous’ setting with one peer effect term.

We characterize our model econometrically and theoretically. Our econometric ap-
proach is closely related to the ones developed by Hsieh and Lin (2017) and Arduini, Pat-
acchini, and Rainone (2020), but with important differences. Hsieh and Lin (2017) model
peer effects via Bayesian methods, and estimate them through Markov Chain Monte Carlo
sampling techniques. Similarly to us, Arduini, Patacchini, and Rainone (2020) derive a set
of identification conditions that generalize the standard linear model of Bramoullé, Djeb-
bari, and Fortin (2009) to allow for heterogeneous peer effects. Differently from them, our
paper puts emphasis on the micro-foundation of the econometric model. In particular, we
show that our empirical approach is consistent with the best response functions of a non-
cooperative model where social interactions stem from the channel of pure spillover or pure
conformity and that all its parameters are identified under some plausible assumptions.

We illustrate our econometric model using the 1996 saturation sample of the National
Longitudinal Study of Adolescent Health (Add Health) which provides census data on 16
selected schools. Respondents from the sample reported their height and weight (which we
use to compute the BMI), and they were also asked to name up to five male friends and up
to five female friends within their school, which allows us to map the friendship networks.

When we assume that peer effects are homogeneous within and across gender lines,
our findings compare well with the previous literature.2 When we relax the homogeneity
assumption, we find that that peers’ outcomes affect BMI in a way that is gender-specific.
In particular, we find that the ‘male-female’ endogenous peer effect (that is, the effect on
male students’ BMI of the BMI of their female friends) is significantly larger than the
other estimated peer effects (for male-male, female-male, female-female interactions, re-
spectively). This result adds to the growing evidence of peer-effect heterogeneity along
gender lines. Previous studies on weight-related outcomes suggest that female adolescents
are more responsive than males to their peers’ behavior.3 By considering both the within-
and between-gender dimensions, we provide evidence that male students are particularly
responsive to the weight of their female friends, which is in line with the findings by Koore-
man (2007) and Hsieh and Lin (2017) for a number of documented adolescent behaviors
other than BMI. This result is compatible with different explanations. For instance, it
could be due to the fact that girls are more mature and presumably more influential than

2Our estimate of the endogenous peer effect in the homogeneous model (0.22 in Table (2)) is in line
with the 0.16 coefficient reported by Renna, Grafova, and Thakur (2008) using Add Health data. Corrado,
Distante, and Joxhe (2019) report a coefficient of 0.4 for a similar model estimated in logs. Using data on
Spanish students, Mora and Gil (2013) report estimates in the 0.17-0.37 range depending on the specifi-
cation. Using data from rural China, Loh and Li (2013) report peer effects in adolescent bodyweight of
around 0.3 with slight variation between two alternative peer definitions. This suggests that peer effects in
obesity are robust across countries.

3This has been documented for purging behavior (Arduini, Iorio, and Patacchini 2019) as well as for
BMI (Renna, Grafova, and Thakur 2008; Trogdon, Nonnemaker, and Pais 2008; Yakusheva, Kapinos, and
Eisenberg 2014).
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boys at the same age during childhood and adolescence. This hypothesis is consistent with
recent studies in neurosciences (e.g., Gong et al. 2009; Lenroot and Giedd 2010; Lim et al.
2015; Goyal et al. 2019) suggesting that girls tend to optimize brain connections earlier
than boys. Also, the stronger influence of girls on boys could be imputed to the dynamics
of between-gender relationships and romances (see Hill 2015).4

One limitation of our benchmark model is that it implicitly assumes that the formation
of links between students is exogenous once we account for observable attributes and school
choice. However, as long as students self-select their peers partly based on unobserved
factors that also appear in the equation of interest (i.e., the BMI equation), this will create
an endogeneity problem. For instance, under homophily, that is, when individuals tend
to bond with peers with similar preferences, a spurious correlation will arise between the
individual’s BMI and his/her peers’ BMI. Thus, it is important to provide a robustness
check of network exogeneity. While many approaches have been developed in recent years to
test for network exogeneity (see the recent survey by Bramoullé, Djebbari, and Fortin 2020),
we focus on the one proposed by Jochmans (2023), which provides a natural extension of
our estimation framework.

Finally, we conduct a simulation exercise to study the impact of an intervention propos-
ing one balanced meal per week in replacement of one fast-food type serving. On the basis
of our most conservative findings, we conclude that the spillovers of offering meal replace-
ments to female students are 33% higher than the spillovers of males. This suggests that
returns from (resources spent on treating) females are 8% larger than the ones from males
in terms of overall BMI decrease in the student population. If we further assume that fe-
males are more responsive to the intervention, we conclude that the spillovers from females
are twice the spillovers from males, which translates into a 54% gain in terms of aggre-
gate BMI decrease from reaching out to female students. Overall, our analysis indicates
that acknowledging gender-based heterogeneity of peer effects may increase dramatically
the efficiency of anti-obesity policies. More generally, while ex-ante evaluations based on
structural models are common in other fields of economics (e.g., Wolpin 2007), they are
novel in the context of social interactions. By providing the infrastructure to evaluate how
interventions interplay with heterogeneous social diffusion, our paper may be of interest in
many contexts where peer effects differ along individual dimensions (e.g., race, education).

The rest of the paper is organized as follows. In Section 2 we characterize our economet-
ric model, and in Section 3 we discuss its microfoundation. Section 4 introduces the data,
Section 5 presents our results, and Section 6 describes the simulation exercise. Section
7 concludes. Appendix A provides the mathematical derivation of the theoretical model.
Appendix B formalizes the identification conditions and presents the estimation techniques
in use.

4There is an extensive literature in psychology on romantic feelings and experiences of male vs. female
adolescents. For instance, Montgomery and Sorell (1998) report that boys fell in love earlier and more often
than girls.
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2 Estimation Strategy

2.1 The empirical model

We study a setting where n agents (i.e., students) are distributed across R social networks

(i.e., schools), with r = 1, . . . , R. In a given network r of size nr there are n
f
r female agents

and nmr male agents (nfr + nmr = nr).
5 These agents interact with both own-gender and

other-gender peers and their outcome (i.e., BMI) can be influenced by their behavior.6

For each network, we define four fixed and known adjacency matrices: AAAz,r(z =
1, · · · , 4). The matrix AAA1,r is such that a1,r,ij = 1 if in network r the male student i is
influenced by the male student j, and 0 otherwise.7 The matrix AAA2,r is such that a2,r,ij = 1
if in network r the male student i is influenced by the female student j, and 0 otherwise.
The matrices AAA3,r and AAA4,r are similarly defined for female students, that is, AAA3,r represents
the impact of female friends on female students, and AAA4,r the impact of male friends on
female students in network r. These matrices are directed: the fact that i influences j does
not necessarily imply that j influences i (e.g., we could have a1,r,ij ̸= a1,r,ji).

8 We assume
that the measurement of AAAz,r is both complete and accurate.9

Let us call nmi,r and nfi,r the number of male and female individuals influencing i in
the network r respectively. The social interaction matrix GGGz,r is the weighted version of

matrix AAAz,r such that one has g1,r,ij = 1/(nmi,r + nfi,r) if i is a male student in network r
and is influenced by the male student j, and 0 otherwise. Since we allow for individuals to
be ‘isolated’, that is, not influenced by anyone in their network (i.e., nmi,r = nfi,r = 0), the
GGGz,r’s matrices are not row-normalized ( i.e., not all matrix rows sum up to one). Thus,
the social interaction matrix for the whole population in network r could be written as
GGGr = GGG1,r +GGG2,r +GGG3,r +GGG4,r. The heterogeneous peer effect model for the network r
writes as

yr = ιnrαr + βmmGGG1,ryr + βmfGGG2,ryr + βffGGG3,ryr + βfmGGG4,ryr +

γ xr + δmmGGG1,r xr + δmfGGG2,r xr + δffGGG3,rxr + δfmGGG4,r xr + ϵr, (1)

where yr is the BMI vector and ιnr is a nr × 1 vector of ones. αr stands for a fixed effect
specific to network r, which takes into account the unobserved factors which commonly

5In what follows, we order all vector and matrices so that the first nf
r rows correspond to female agents

of network r, and the remaining nm
r rows are for male agents in network r.

6The model could easily be extended to other types of peer heterogeneity, such as race and education.
However, for the sake of parsimony, we limit the analysis to gender-based heterogeneity.

7The student i is excluded from his/her own reference group.
8This is because in our illustration we use information on social links as declared by respondents and

the two reports may not coincide within a pair. Nevertheless, our estimation strategy is also compatible
with undirected network data.

9Measurement error in the network topology is an important, yet largely unexplored issue that goes
beyond the scope of this paper (De Paula 2017; Bramoullé, Djebbari, and Fortin 2020; Bramoullé and Maes
2024).
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influence the BMI of all students within a school. The βs coefficients represent the ‘en-
dogenous’ peer effects (i.e., the effect of peers’ outcomes) which are heterogeneous. For
instance, βmm measures the effect of the outcome of male peers on (the BMI of) male
students. In the same way, βmf stands for the effect of the outcomes of female peers on
male students, βff of female peers on female students, and βfm of male peers on female
students.

We also allow for heterogeneous contextual effects δs that account for the effect of the
characteristics of peers on student’s outcomes and reads the same way (e.g., δmm measures
the effect of the characteristics of male peers on the outcome of male students). Finally, if
we observe R > 1 distinct networks, we can stack up the data and write the heterogeneous
model succinctly as

y = ḠGG(β)y + γx+ ḠGG(δ)x+ ια+ ϵ (2)

where y = (y
′
1, ...,y

′
R)

′, x = (x
′
1, ...,x

′
R)

′, ι = D(ιn1 , ..., ιnR), α = (α1, ..., αR)
′, ϵ =

(ϵ
′
1, ..., ϵ

′
R)

′, β = (βmm, βmf , βff , βfm)
′, δ = (δmm, δmf , δff , δfm)

′, ḠGGz = D(GGGz,1, ...,GGGz,R),
ḠGG(β) = βmmḠGG1+βmfḠGG2+βffḠGG3+βfmḠGG4 and ḠGG(δ) = δmmḠGG1+ δmfḠGG2+ δffḠGG3+ δfmḠGG4,
and D indicates a block diagonal matrix.

In order to eliminate the fixed effects ια avoiding the incidental parameters problem,
we perform a global transformation on equation (2).10 For that purpose we define the

global transformation matrix J = D(J1, ...,JR) where Jr = (Ir − ιrι′r
nr

) ∀ r ∈ {1, ..., R},
such that Jια = 0, and obtain a transformed model that writes succinctly as

Jy = JZθ + Jϵ, (3)

where Z =
[
ḠGG1y, ḠGG2y, ḠGG3y, ḠGG4y,X

]
, X =

[
x, ḠGG1x, ḠGG2x, ḠGG3x, ḠGG4x

]
, θ = (β, γ, δ)′.

Note that if we impose βmm = βmf = βff = βfm = βh and δmm = δmf = δff = δfm =
δh in equation (2), we obtain the so-called ‘homogeneous’ model

y = ια+ βhḠGGy + γx+ δhḠGGx++ϵ. (4)

This corresponds to the specification by Bramoullé, Djebbari, and Fortin (2009) with
fixed effects and will be used as a benchmark for our empirical analysis in Section 5.

2.2 Identification

Let us assume for now that the social interaction matrices are ‘conditionally’ exogenous,
that is, they are exogenous once we control for individual attributes and school-level fixed
effects.11 As long as the matrix S(β) = (I − ḠGG(β)), where I is the identity matrix, is

10The incidental parameters problem, which is discussed at length in Lancaster (2000), occurs whenever
the data available for each group or network are finite. This transformation captures the selection bias
stemming from the fact that individuals in the same network face a common environment.

11Formally, the conditional exogeneity assumption writes as E(ϵ|x, ια, ḠGGz=1,··· ,4) = 0.
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invertible,12 we can write the reduced form of equation (2) as

y = S(β)−1
[
γx+ ḠGG(δ)x+ ια

]
+ S(β)−1ϵ, (5)

which allows us to rewrite

ḠGGzy = Wz(β)
[
γx+ ḠGG(δ)x+ ια

]
+Wz(β)ϵ,

where Wz(β) = ḠGGzS(β)
−1 and z = 1, · · · , 4. This shows that the right-hand side terms

in equation (2) are endogenous (E [(Wz(β)ϵ)
′ϵ] ̸= 0), and thus that the model cannot be

consistently estimated by OLS. This type of endogeneity is frequent in social interaction
models, and it stems from the simultaneous determination of outcomes among peers.

Proposition 1 below states the identification condition of equation (2), which extends
the conditions by Bramoullé, Djebbari, and Fortin (2009) to the case of peer effects het-
erogeneity.13 For the proof and a detailed discussion, we remand to Appendix B.

Proposition 1 Suppose model (2) holds. Suppose that S(β) is invertible and that (δmm+
γβmm) ̸= 0, (δff + γβff ) ̸= 0, (δmf + γβmf ) ̸= 0 and (δfm+ γβfm) ̸= 0. If vector columns
of the matrix QK are linearly independent, then social effects are identified.

One immediate consequence of Proposition 1 is that equation (2) can be estimated with
instrumental variable techniques, and that any set QK containing products of interaction
matrices of arbitrary order and individual attributes is a valid set of instruments for ḠGGzy.
For instance, the instrument set of all matricial products up to the second order (which we
use in Section 5) is14

QK = J
[
ḠGG2

1x, ḠGG
2
3x, ḠGG1ḠGG2x, ḠGG2ḠGG3x, ḠGG2ḠGG4x, ḠGG3ḠGG4x, ḠGG4ḠGG1x, ḠGG4ḠGG2x

]
. (6)

This is an extension of the lagged-friend instrumental strategy which has been widely
used in the presence of network data (Calvo-Armengol, Patacchini, and Zenou 2009; Kele-
jian and Prucha 1998; Patacchini and Zenou 2012). More generally, in the homogeneous
social network approach (see Bramoullé, Djebbari, and Fortin 2009), the standard assump-
tions for identification are that the social network is properly measured and that individual
behavior depends on contextual characteristics and behavior of direct peers only. In that
case, the characteristics of friends’ friends, of friends’ friends’ friends, etc. of the students
can be used as excluded instruments for the individual’s endogenous peer effect. Our ap-
proach is analogous, but it also incorporates heterogeneity within and across gender lines,
which allows us to split friends’ friends, friends’ friends’ friends, etc. into gender-based

12 A sufficient condition for this assumption to hold is that |βmm| < 1, |βmf | < 1, |βff | < 1 and |βfm| < 1.
This condition also implies that the matrix S(β) is uniformly bounded in absolute value.

13This resembles the conditions derived by Arduini, Patacchini, and Rainone (2020).
14Recall that the matrix ordering leads by construction to the following identities: ḠGG1ḠGG4 = 0nr , ḠGG3ḠGG2 =

0nr , ḠGG1ḠGG3 = 0nr , ḠGG3ḠGG1 = 0nrḠGG2ḠGG1 = 0nr , ḠGG4ḠGG3 = 0nr ,ḠGG
2
2 = 0nr ,ḠGG

2
4 = 0nr .
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categories. For instance, we split friends’ friends into four categories (i.e., male friends of
male friends of students, female friends of their male friends, female friends of their female
friends, male friends of their female friends) whose characteristics can be used to build
excluded instruments. In summary, characteristics of friends at distance 2,3,4, etc. per
gender category may be used as instruments to properly estimate the model, as they affect
individual behavior only through their effect on peers’ behavior.

2.3 The endogeneity of social interactions

Endogeneity stemming from network assortativity may arise whenever individual-level un-
observables simultaneously determine social interactions and outcomes (i.e., BMI). This
type of endogeneity often relates to homophily, that is, the well-documented tendency to
create links with individuals with similar preferences or characteristics.

In our context, this means that the instrumentation strategy of Section 2.2 is valid
as long as students do not make friends based on some unobservable characteristics also
affecting BMI, once we control for their observable attributes and school choice.15 However,
there could be instances where this assumption is violated. In what follows, we discuss an
alternative estimation method that is robust to network endogeneity of this kind.

Several methodological papers have recently tackled network endogeneity (see the recent
survey by Bramoullé, Djebbari, and Fortin 2020). The majority of them adopt a control
function approach where the network formation equation is specified parametrically (e.g.,
Goldsmith-Pinkham and Imbens 2013; Patacchini and Rainone 2017; Hsieh and Lee 2016)
or non-parametrically (e.g., Johnsson and Moon 2021). We tackle the issue by adopting the
instrumental-variable method proposed by Jochmans (2023). In our context, this approach
has two advantages: it remains relatively agnostic with respect to the peer selection process,
and it suits data on small (and possibly sparse) networks as the school-level networks we
observe in Add Health. Also, it can be easily integrated into our estimation strategy as we
explain below.

Jochmans (2023) devises instrumental variables with close resemblance to the estimator
of Bramoullé, Djebbari, and Fortin (2009). This method is based on two all-embracing
conditional moment restrictions: (a) that link decisions that involve a given individual
are not all independent of one another, but (b) that they are independent of the link
decisions made between other pairs of individuals that are located sufficiently far away
in the network.16 For each individual i and for z = 1, · · · , 4, Jochmans (2023) defines
the so-called ‘leave-own-out network’ Q̄QQz,i as the sub-network obtained from ḠGGz by setting
to zero all links involving agent i. Under the two restrictions above, this leave-own-out
network is exogenous to i’s link behavior since it contains link decisions that do not involve

15The school-level effects absorb all correlated unobservables common to all students in a given institute,
addressing the issue of school-based assortativity.

16For a discussion how these restrictions accommodate most (cooperative and non-cooperative) peer
selection patterns and nest several control-function methods, see Jochmans (2023).
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i (from restriction (b)). However, it contains predictive information about the latter since
link decisions between any triple of individuals are informative about each other (from
restriction (a)). Therefore, linear combinations of these leave-own-out networks can serve
as instruments for ḠGGzy and ḠGGzx in equation (2) in analogy with the standard lagged-
friend strategy.17 For the purpose of our study, it boils down to replacing the instrumental
variable set in equation (6) with

QK = J
[
Q̄QQ1x, Q̄QQ2x, Q̄QQ3x, Q̄QQ4x, Q̄QQ

2
1x, Q̄QQ

2
3x, Q̄QQ1Q̄QQ2x, Q̄QQ2Q̄QQ3x, Q̄QQ2Q̄QQ4x, Q̄QQ3Q̄QQ4x, Q̄QQ4Q̄QQ1x, Q̄QQ4Q̄QQ2x

]
,

(7)
where Q̄QQz indicate the average over i for the leave-own-out networks z.

3 Microfoundation

This section discusses the theoretical model underpinning our econometric framework. The
mathematical foundation of this model is provided in Appendix A.

Gender-based heterogeneity in peer effects may operate through two channels (Blume et
al. 2015; Boucher and Fortin 2016; Boucher et al. 2024). The first one is the spillover (i.e.,
strategic complementarity) channel, which occurs when an individual’s actions indirectly
influence the outcomes of others through peer effects. For example, in our context, the
transmission of information about the importance of maintaining a healthy lifestyle between
friends may be more effective within the same gender or across gender lines. Another
example involves students who enjoy going to fast-food restaurants or participating in
various sports with friends of the same gender.18 A second channel is conformity, which
refers to the extent to which students derive utility from aligning their behavior with that
of their peers. In the context of fighting obesity, this channel may differ depending on
whether the students have peers of the same or the opposite gender.

In Appendix A we demonstrate that equation (1) is microfounded within a hybrid non-
cooperative model where peer effects may operate through the channels of spillover and
conformity in BMI. In our context, the spillover channel implies that a student’s marginal
utility of having a healthy weight increases as his peers of a given gender achieve a healthy
body weight (that is, ψmf > 0;ψmm > 0;ψfm > 0;ψff > 0, in equations (13) and (15)).
In that case, heterogeneity in social interactions is reflected by the fact that the ψ’s can
be different. The channel of conformity implies that one’s utility is positively affected
by the degree to which he conforms with his peers’ outcomes or characteristics (that is,
λmf > 0;λmm > 0;λfm > 0;λff > 0, in equations (13) and (15)).

In Appendix A we show that a structural model combining both spillover and con-
formity channels is generally unidentified. However, assuming we have some proxy for

17Note that, if we relax conditional exogeneity of the network, the contextual peer effects ḠGGzx become
endogenous.

18Rees and Sabia (2010) documents gender-based heterogeneity in sports participation using the same
Add Health data we use.
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individual effort (e.g.., eating habits) or some slight restrictions on conformity preferences,
both the models of pure spillover (no conformity) and pure conformity (no spillover) are
identified, but observationally equivalent. Moreover, we show that while the pure spillover
channel allows for indirect effects in social interactions, the pure conformity channel im-
plies the absence of such effects (Blume et al. 2015; Boucher and Fortin 2016). The basic
intuition for the latter result is that an exogenous shock induces the same direct effect (i.e.,
without social interactions) on a student’s BMI and on that of his peers. Therefore, the
(euclidean) gap between these variables is not influenced by the shock. As a result, in the
pure conformity model, social interactions between individuals will generate no indirect
effects.

As the models with pure spillover and pure conformity are observationally equivalent,
they both result in the same probability distribution of observable data. Throughout our
paper, we privilege the assumption that social interactions stem from the spillover channel
for two reasons. First, it allows for the presence of indirect effects. Second, it is in line
with the hypothesis suggested in neuroscience literature (e.g., Gong et al. 2009; Lenroot
and Giedd 2010; Lim et al. 2015; Goyal et al. 2019) that, at the same age, girls are more
mature and influential than boys. This hypothesis suggests that girls are expected to
transmit more valuable information to boys on the importance of fighting obesity than the
reverse (thus, one should expect ψmf > ψfm).

4 Data

4.1 Add Health

The National Longitudinal Study of Adolescent Health (Add Health) is a panel study
of a nationally representative sample of adolescents in grades 7-12 in the United States,
conducted by the Carolina Population Center. It combines information on respondents’
social, economic, psychological and physical well-being with data on family, neighborhood,
community, school, friendships, peer groups, and romantic relationships. The richness of
this information puts Add Health among the largest and most comprehensive longitudinal
surveys of adolescents ever undertaken.

Wave I of Add Health consists of an In-school questionnaire that was filled out by 90,118
students in 145 schools and 80 communities during the 1994-1995 school year. A subset of
these students was then chosen for an in-depth survey. Wave II, which was held in 1996,
includes a detailed In-Home questionnaire that was completed overall by 14,738 students
out of the original Wave I pupils. Students who were selected for the In-Home survey were
asked for information on their height and weight, which can be used to compute body mass
indices (BMI). Along with other notable socio-economic covariates, Wave II also provides
information on social interactions, because respondents are asked to name up to five male
friends and up to five of their female friends within their school.

For the purpose of our analysis, we use the saturated sample that focuses on 16 selected
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schools. Every student attending these 16 schools answered the In-Home questionnaire,
thus providing information on BMI and social links. We construct student BMI according
to the formula: BMI = (weight in kilograms)/(height in meters)2.19 Having a census of
the schools’ population (rather than a random sample of students within a given school) is
crucial for our study since our estimation strategy relies on observing the whole network
topology.20

4.2 Descriptive statistics

Our estimation sample consists of 2307 students.21 The sample is balanced across gender
(1146 females and 1161 males). It also includes ‘isolated’ students, that is, students who
do not mention any friends within the school.22 Table (1) provides descriptive statistics of
the variable of interest. The average BMI is 23.13, with a standard deviation of 4.71. This
reveals that, on average, the population considered is normal in terms of weight. In terms
of the relevant individual characteristics, we can see that the mean age is about 16. White
students are more represented (61%) than the other racial communities. The percentage
of Black is 16%, and the omitted category includes Hispanic, Asian and American Indian
students. 63% of students in our sample attend grade 11 or 12, and 26% are in grade 9
or 10 (grade 7 or 8 is omitted). 43% of mothers have college-level education (or above)
compared to 36% for fathers of the students in our sample.

Our interaction matrices represent directed links (e.g., gij > 0 if student i is influenced
by student j, but not necessarily vice versa). Statistics about the directed network point
to more links with same-gender friends: males have, on average, 1.46 links with males and
0.83 with females, while females have 1.44 links with females and 0.88 with males. This
shows that the number of same-gender vs. other-gender friends are remarkably comparable
among male and female students. Also, this difference suggests upfront that the gender
divide could play a role in what concerns peer effects. The fact that students declare 2.3
friends on average suggests that the constraint put in the number of friends by the Add
Health study (up to 5 males and 5 females) may not be binding.23

19We do not use self-declared body mass indices, although declared BMIs are shown to reflect real variables
in the context of Add Health.

20The exclusion restriction for instrumental variables built from lagged-friends characteristics crucially
depends on the network being correctly measured (Bramoullé, Djebbari, and Fortin 2020; Bramoullé and
Maes 2024).

21Since we use information from both Wave I and II, we focus on the saturated-sample students inter-
viewed in both waves (2,612 students). The estimation sample is 2,307 because of missing values in the
variables of interest.

22548 students did not nominate any friend, and 309 of them were also nominated by no one.
23This alleviates the concern that the network may be only partially observed. Also, it is worth noting

that censoring leads to an underestimation of the magnitude of peer effects, as shown by Griffith (2022)
using Add Health data. This is reassuring in our context where peer effect estimates are significantly
positive.
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5 Results

This section presents the estimates of our peer effects model using Add Health data. This
could be consistently estimated with 2SLS or GMM techniques with the instruments de-
scribed in Section 2. We use the GMM estimator by Liu and Lee (2010) whose quadratic
moments exploit the correlations between the error term of the reduced peer-effect form
model. This estimator provides more precise estimates of social interaction models com-
pared to the traditional 2SLS method. For details on the associated weighting matrix we
remand to Appendix B.

5.1 homogeneous peer effects and BMI

Table (2) presents the GMM estimates from the homogeneous peer effects model of equation
(4), which serves as a benchmark.

The set of characteristics x comprises student attributes (age, race, grade), and the
education level of the mother and father, respectively.24 We instrument the term ḠGGy
with lagged-friends characteristics of the second degree, that is, the (average) attributes of
friends of friends ḠGG2x. This boils down to assuming that social interactions are exogenous
conditionally on observables and school-level effects (see Footnote 11).

Results indicate that the coefficient associated with the endogenous peer effect (ḠGGy) is
significant at 1%. Its estimated magnitude suggests that ceteris paribus, a 1-unit increase
in the average BMI of peers induces an increase of 0.22 units in the student’s BMI. This is
aligned with the recent literature reporting evidence of positive but small endogenous peer
effects on weight.

We also remark that several individual and peer attributes appear to influence one’s
BMI. The first two columns report the estimates and standard errors of individual own
characteristics x, and columns 3 and 4 refer to the contextual effects, that is, effects of
friends’ characteristics ḠGGx. We notice that for students in lower grades and whose father
has college education have lower BMI. Regarding contextual effects, having older friends
and/or friends whose father has a college education reduces a student’s BMI, which may
indicate the transmission of information via learning good health habits.

Table (3) re-estimates the homogeneous peer effects model, allowing for endogenous
social interactions (Section 2.3). For the homogeneous model, this consists in instrumenting

ḠGGy and ḠGGx with Q̄QQx and Q̄QQ2
x. Results from Table (3) show that estimates remain overall

stable (the endogenous peer effect is now at 0.23).25 This suggests that the fixed-effect
instrumentation strategy is rather efficient in reducing the selection bias associated with
confounding correlates. This finding is in line with several recent papers concluding against

24The omitted category for race includes Hispanic, Asian and American Indian respondents, while the
omitted category for grade is “7 or 8”. The parent education dummy equals one if the mother/father has
some education at the college level or above.

25Using the Durbin-Wu-Hausman test we do not reject the exogeneity of the endogenous peer effect.
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a severe assortativity bias in Add Health data (Goldsmith-Pinkham and Imbens 2013;
Boucher 2016; Badev 2021).26

5.2 Gender heterogeneity and BMI

In this subsection, we present the estimates from the model, allowing for within- and
between-gender heterogeneity in peer effects.

Table (4) provides the results from the GMM estimation of equation (2), under the
assumption that social interactions are conditionally exogenous. This consists of instru-
menting the four endogenous peer-effect terms with the set of instruments spelled out
in equation (6), that is, all exogenous attributes of friends at distance 2, per category:

ḠGG2
1x and ḠGG1ḠGG2x (the attributes of male/female friends of male friends of male students);

ḠGG2ḠGG4x and ḠGG2ḠGG3x (the attributes of male/female friends of female friends of male stu-
dents); ḠGG4ḠGG1x and ḠGG4ḠGG2x (the attributes of male/female friends of male friends of female

students), ḠGG3ḠGG4x and ḠGG2
3x (the attributes of males/female friends of females friends of

female students). The upper panel provides the four endogenous peer effect coefficients
(standard errors of the estimates are reported in the adjacent columns), namely: the ef-
fects of male peers’ BMI on the BMI of male students (m−m, columns 3 and 4), the effects
of female peers’ BMI on the BMI of male students (m− f , columns 5 and 6), the effects of
female peers’ BMI on the BMI of female students (f − f , columns 7 and 8) and the effects
of male peers’ BMI on the BMI of female students (f −m, columns 9 and 10).

As in the case of the homogeneous model, the endogenous peer effect estimates are
positive and highly significant, suggesting that interaction with peers of all types influences
a student’s BMI. The within-gender point estimates (0.226 and 0.229 for the m −m and
f − f coefficients, respectively) are similar in magnitude to the f −m coefficient (0.197),
which represents the effect of the average BMI of male peers on female student’s BMI.
On the other hand, the estimated coefficient for the between-gender effect from females to
males is noticeably larger (0.465).27 This suggests that males respond more to the average
BMI of their female friends than the reverse, a result which is also obtained by Kooreman
(2007) and Hsieh and Lin (2017) for several adolescent behaviors.

We report the estimates and standard errors related to individual characteristics in
columns 1-2, and the ones for contextual effects (within- and between- genders) in columns
3 to 9. Grade 9-10 and 11-12 students are the ones who report a higher BMI (in line with
the results from the homogeneous model). The other coefficients for the individual effects
do not appear significant. Our results also reveal an important number of differences in
the estimates of contextual effects depending on the nature (within- or between-gender)

26Boucher and Fortin (2016) suggest that with a rich set of control variables as those that can be used in
our data set, the impact of homophily may be small. Other studies using different data sets and different
outcomes reach the opposite conclusion (e.g., Carrell, Sacerdote, and West (2013) and Hsieh et al. (2020)).

27All pairwise Wald test statistics reject the equality of the m− f coefficient with the other three peer-
effect estimates (with significance at 10% or below).
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of social interactions. However, some regularities emerge in line with the results of the
homogeneous model. For instance, the age of friends has a negative impact on a student’s
BMI. Furthermore, having male peers whose father holds some college degree negatively
affects male students’ BMI.28

Table (5) re-estimates the heterogeneous peer effects model allowing for endogenous
social interactions (Section 2.3). This consists in instrumenting ḠGGzy and ḠGGzx for z =
1, ...4 with the set of instruments in equation (7). Results from Table (5) show that
estimates remain overall stable, as in the homogeneous peer effect model. In particular, the
estimate for the between-gender effect from females to males remains much larger than the
other three coefficients. One thus concludes that gender heterogeneity is the appropriate
hypothesis in our context. This result has potentially important consequences in terms
of public policy evaluation, which we illustrate in the next section through a simulation
exercise.

Finally, we acknowledge that weak instruments can affect Tables (4) and (5) instru-
mentation strategy. This concern applies to all peer effect models estimated on network
data, but it is particularly difficult to quantify in our setting.29

5.3 Potential Mechanisms

In this section, we discuss some of the mechanisms that could explain our findings and test
for the ones for which our data allow. Our main results of Table (4) and (5) suggest that
peer effects are heterogeneous along gender lines, and that male students are particularly
responsive to the BMI of their female friends. As mentioned in the introduction, in our
context, this result may be partly related to the fact that girls mature earlier than boys in
adolescence.30 We deepen our analysis by studying whether friends with different charac-
teristics trigger peer effects of different kinds (e.g., effects of virtuous or vicious type) on
individual BMI, and how this dimension interacts with gender heterogeneity.

In what follows, we explore three dimensions of peer heterogeneity: nutrition habits,
sports activities, and socio-economic status.31 To do so, we divide peers according to
high/low (H/L) type as follows: as for nutrition habits, peers are considered H-type if they
ate at a fast-food place at most once during the past week (36% of the individual sample),

28We also perform a robustness analysis of our results when using the zBMI instead of absolute BMI,
and the GMM estimation strategies reveal similar patterns.

29The standard critical values for weak-IV testing (Stock and Yogo 2005) are designed for data without
correlation among units and are available for up to 3 endogenous variables. On the other hand, our models
have 4 (Table 4) or 32 endogenous regressors (Table 5).

30According to a neuroscience study by Lim et al. (2015), the optimizing of brain connectivity usually
occurs during ages 10-12 in girls and 15-20 in boys. Girls also mature faster than boys on a physical level:
girls undergo puberty earlier than boys by about 1-2 years and generally finish the stages of puberty quicker
than males. The fact that girls develop faster may, in turn, affect the way same-age boys look at girls and
shape their body image in the context of romantic relationships.

31Information on nutrition and sports habits comes from Wave 2, while the proxies for socio-economic
status are retrieved from the parental questionnaire in Wave 1.
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and L-type otherwise. As for sport, peers are considered H-type if they practiced sport
at least once during the past week (72% of the individual sample), and L-type otherwise.
As for socio-economic status, peers are considered as H-type if are not living in precarious
conditions (73% of the sample), and L-type if they do.32 Based on the definitions above,
for each dimension of interest, we split all four interaction matrices into two, that is,
GGGH
z,r +GGGL

z,r = GGGz,r for z = 1, ..., 4, and we provide the results from the GMM estimation of
equation (2) separately for H/L-type peers, keeping all the rest of the estimation strategy
as before.33

Table (6) reports the estimates described above, for the endogenous peer effects only.
These results are insightful to shed light on the mechanisms driving gender-based hetero-
geneity of peer effects in our setting. As for eating habits, we can see that everyone seems
to be affected significantly (i.e., presumably dragged down) by friends with bad eating
habits. However, when we turn to good eating habits we see that only the m − f and
f − f coefficients are significant, suggesting that peer effects flowing through virtuous eat-
ing habits stem primarily from females. The reverse pattern is observed when we explore
the sports dimension: while friends with virtuous sports habits generate peer effects across
all four categories, we notice that only female peers with low sports activity generate sig-
nificant peer effects (i.e., only the m− f and f − f coefficients appear significant). Taken
together, these patterns suggest that females are more likely to generate virtuous peer
effects through food habits than through sports practice, which is in line with (and moti-
vates) the discussion of Section 6.4. Add Health data does not provide information on the
activities friends do together, and thus, we cannot disentangle whether the observed effects
stem from doing activities together (e.g. sport or fast-food eating) or from other channels
(e.g., shaping body image, spreading information on healthy lifestyle practices). While
the results above cannot be conclusive on the matter, we conjecture that females generate
larger peer effects on male friends not necessarily because they eat out with them, but also
because they are more mature and more influential (as discussed in Section 1) to convey
healthy norms about body image and dietary habits. As for socio-economic status, results
reconfirm that the impact of female peers on male students is larger in magnitude across
both high- and low-status samples. In the low-status sample, we remark that the f −m
coefficients loose significance, suggesting that females are less impacted by the outcome of
some of their male friends, in line with the discussion above.

32Households are coded precarious if they declare not having enough money to pay for bills, or receive
targeted subsidies (e.g., food stamps, social security or housing subsidies, unemployment compensation).

33In principle, our estimation strategy would allow us to split each of the four heterogeneous peer-effect
terms along the H- versus L-type lines: that is, we could include two separate m-m coefficients for H-type
and L-type friends and so on. However, estimating a model with eight peer-effect terms is not viable in our
context due to data and sample size limitations.

15



5.4 Robustness analysis

Finally, we produce a battery of ancillary results to ensure that our findings are robust to
variations in the empirical strategy. Table 7 reports the results of the robustness analysis
based on the GMM estimation of equation (2). In the interest of space, we only report
coefficients and standard errors for the endogenous peer effects.

In the first line of Table 7, we keep the whole student estimation sample (N=2307),
but we exclude links to peers with extreme BMI measures.34 This is to see whether the
gender-heterogeneity of peer effect is sensitive to the exclusion of students with very low
or very high BMI. In the second line, we drop from the estimation sample students with
declared eating disorders, who may be particularly sensitive to the weight of peers (Arduini,
Iorio, and Patacchini 2019).35 In the third line, we exclude from the estimation sample
the students who report extreme values for their body image.36 In the last two lines,
we split the estimation sample based on whether the student declared a recent romantic
relationship or not.37

Overall, results from Table 7 reconfirm the main pattern of results of Table 4, namely
that the peer effects of the m − f type are larger than the other estimated effects. This
enhances the credibility of our identification strategy and provides further evidence in
support of our results.

6 Gender-based Policy Evaluation

Interventions to curb obesity among teenagers may take various forms, aiming at improving
health habits through action (i.e., by changing the cafeteria menu, subsidizing gym access,
etc.) or information (i.e., educational campaigns about nutrition and healthy lifestyle).
Below we provide a simulation exercise that demonstrates the importance of incorporating
gender diversity in peer effects when designing effective interventions. We first show how to
calculate the total treatment effect of an intervention when peer effects are heterogeneous
along gender lines. We then describe the simulation procedure and discuss its results under
different hypotheses regarding the intervention’s design and response.

34We drop declared links to students below the 1st centile or above the 99th centile of the BMI distribution
(50 students).

35Information on eating disorders comes from Wave 2. We drop students who declare purging via vomit,
diet pills or laxative methods.

36Information on self-reported body image comes from Wave 1 (‘How do you think of yourself in terms
of weight?’ ) and we drop students who replied ‘very underweight’ or ‘very overweight’.

37The information on romantic relationships comes from Wave 2 (In the last 18 months have you had a
romantic relationship with anyone? ).
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6.1 Treatment effect with Gender Heterogeneity

We aim to assess the effect of an intervention designed to curb obesity among a target
population of teenage students connected in a social network. The intervention’s allocation
is represented by the intent-to-treat vector itt, where itti = 1 if student i is offered the
intervention. We assume that the intervention induces a gender-dependent shift in the
BMI intercept, as in38

y = ια+ γitt+ ḠGG(β)y + ϵ (8)

and that the coefficients γ = (γf , γm) representing the response to the intervention of
(male, female) students could be modelled as

γg = impactg ∗ complianceg for g = m, f (9)

where impact represents the gender-specific impact of the intervention (e.g., the interven-
tion could induce different changes in females’ body size for reasons related to complexion,
nutrition or biology), and compliance represents the propensity of students to comply with
the intervention which may also depend on gender (e.g., females could be more or less likely
to comply with the intervention).39

In a linear intent-to-treat model without peer effects (β = 0), the total treatment
effect would be given by the coefficients γ. In models with social lags in the dependent
variable, the interpretation of the estimated parameters is complicated by the fact that
the treatment status of an individual affects not only his own outcome (the direct effect),
but also the outcome of others (the indirect effect). To define a measure of the treatment
effect for equation (8), we start from its reduced form

y = S(β)−1[ια+ γitt] + S(β)−1ϵ, (10)

where S(β) = [I − ḠGG(β)], and derive the closed-form of the N × N matrix of partial

derivatives with respect to the intervention, which we call ∂E(y|itt)
∂itt . The kth column of

∂E(y|itt)
∂itt is an N × 1 vector that represents the effect of the treatment of individual k on

the outcomes of all other individuals and writes

∂E (y|itt)
∂ittk

= S(β)−1[γek], (11)

where ek is anN×1 vector with 1 at the kth element and 0 elsewhere. Following the practice
in spatial and network econometrics (Hsieh and Lee 2016; LeSage and Page 2009; Comola
and Prina 2021), we compute the treatment effect of the intervention as follows: the direct

38The only individual attribute included is one’s treatment status, and contextual peer effects are ruled
out. This latter condition implies that the treatment status of peers only impacts their own BMI through
the changes in peers’ BMI. Imposing positive contextual peer effects would further increase the estimates
of spillovers in Table (8).

39For the sake of simplicity, we are ruling out complications related to non-random attrition.
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treatment effect is the average of the elements in ∂E(y|itt)
∂itt . The indirect treatment effect,

which operates through the change in the treatment status of peers, is the average of the
column (or row) sums of the non-diagonal elements of ∂E(y|itt)

∂itt .40 The total treatment
effect is then calculated as the sum of the direct and indirect effects.41 Note that the
formula of equation (11) also applies to the homogeneous peer effect model of equation (4),
once we replace βmm = βmf = βff = βfm = βh in S(β).

6.2 Simulation Procedure

For given values of γ,β our simulation routine consists in the following five steps:

1. Generate a dataset with N nodes, equally distributed between males and females,
and multiple intent-to-treat vectors ittk for k = 1, ...,K;

2. generate the interaction matrices as follows: first, we draw the binary matrices AAAz for
z = 1, ..., 4 as random graphs where each link exists independently with a probability
pz (Erdös and Rényi 1959). We then row-standardized AAAz to obtain GGGz;

3. compute the (direct, indirect, total) treatment effect (TE) using equation (11) for:
all students, males, females;42

4. compute the aggregate decrease in BMI associated to each treatment vector ittk;

5. repeat the procedure of steps (1) to (4) for s = 1, ..., 500 times.

To carry out the steps above, we must calibrate the values for γ,β and the population
parameters, which we do as follows. As for γ, we think of an intervention that replaces one
fast-food type serving option with one balanced meal. This follows a large experimented
tradition of school-level and firm-level initiatives, such as weekly vegetarian menus in cafe-
terias.43 We rely on the estimates of the weight production function by Fortin and Yazbeck
(2015), which are computed using longitudinal data from Add Health. Their estimate sug-
gests that if a student eats one fast-food meal less per week, his/her BMI decreases by 0.85

40The row sum represents the impact of changing the treatment status of all other individuals on the
outcome of one particular individual, while the column sum represents the impact of changing the treatment
status of one particular individual on the outcome of all other individuals. These two quantities coincide.

41 Note that the estimates of both the direct and indirect effects result from complex interactions between
the parameters and the social interaction structure. For instance, an arbitrary diagonal element may
not equal the estimated γ, because the former also includes feedback loops (where observation i affects
observation j, and observation j also affects observation i) and longer paths that might go from observation
i to j to k and back to i. This is because the series expansion of S(β)−1 contains terms (GGG)k that, for
k ⩾ 2, have non-zero elements on the diagonal.

42Note that the randomness of the network structure generates variation in these quantities of interest.
43One famous campaign in this spirit is Meatless Monday, launched in the 2000s in collaboration with

the Johns Hopkins Bloomberg School of Public Health.
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in the long term in the absence of social interactions.44,45 Our first set of results assumes
that the impact of the intervention is the same for males and females, and all individuals
comply with the intervention, which gives γf = γm = −0.85. In our second set of results,
we assume that γf > γm, which could be rationalized either with a differential impact
(i.e., one fast-food type serving may have a larger impact on females because of hormonal
differences, metabolism and size of consumed portion) or with differential compliance by
gender (i.e., females may be more likely choose the healthy meal rather than looking for
fast-food options within or outside the cafeteria, a point that will be discussed below).

The remaining parameters are calibrated on the Add Health sample and our estimation
results. We fix N = 120, p1 = p3 = 0.03 and p2 = p4 = 0.015, which gives the same
expected number of within- and between-gender links as the estimation sample of Section
(5) (1.8 and 0.9, respectively). Finally, we calibrate the peer effect parameters for the
heterogeneous model to equal the estimates from Table (5), and we set βh accordingly.46

6.3 Simulation Results

6.3.1 Gender-neutral response

Panel A of Table (8) reports the results from the simulation exercise assuming γf = γm =
γ = −0.85, i.e., full compliance and same impact across gender. The upper part of the
panel reports the treatment effect (direct, indirect, total) for all students together and by
gender, for the homogeneous and heterogeneous model respectively (mean and standard
deviation over 500 draws).

The estimate of the direct effect is −0.85 throughout, meaning that one less fast-food
meal per week has a long-term ‘direct’ effect of decreasing student’s own BMI by 0.85
units. This is the same as the response parameter γ in the absence of the intervention.47

The estimate is stable across models (homogeneous and heterogeneous) and across genders
(males and females) as it is expected to be.

The indirect treatment effect represents the spillovers through network lines. Its esti-
mate for the homogeneous model is −0.31 for all students confounded, males and females.
This means that treating a randomly chosen student has, on average, an indirect effect of
−0.31 units on the BMI of the others, given the existing social spillovers. This indirect
effect is sizable, as it represents approximately a 37% increase with respect to the direct

44Controlling for lagged BMI, Fortin and Yazbeck (2015) find that an extra day of fast food restaurant
visits per week increases zBMI (that is, the BMI standardized for gender and age) by 0.02 points in the
long term. This is also consistent with the results by Niemeier et al. 2006. Since the average zBMI in our
sample is 0.55, we have transposed their result in our metric as (23.1 ∗ 0.02)/0.55 ≈ 0.85.

45Fortin and Yazbeck (2015) do not provide differential estimates based on individual characteristics (e.g.,
lagged BMI). Were such estimates available, they could be incorporated into our simulation exercise via
the γg parameter.

46βh is the weighted average of the four estimates for the heterogeneous model, which ensures internal
consistency (i.e., the two models deliver comparable outcome vectors y for any arbitrary α).

47Although these two quantities do not need to coincide precisely (footnote 41), they often do.
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effect. That is, on the basis of the evidence from Add Health, we conclude that social inter-
actions amplify the impact of the intervention by about 37% with respect to the benchmark
scenario of no social interactions and/or no spillovers among students.

When we turn to the heterogeneous model (columns 4-6), we notice that the overall
indirect coefficient is still −0.31, but this is actually a weighted average of an estimated
effect of −0.26 for males vs. −0.35 for females. This suggests that once gender-based
heterogeneity is accounted for, the spillovers (in term of BMI decrease among peers) of
the intervention on female students are 33% higher than the corresponding spillovers from
males.

The bottom part of panel A reports the aggregate effect on BMI of three intent-to-treat
vectors representing different partial-intervention designs. itt1 depicts a scenario where
50% of students were randomly selected for the obesity-curbing intervention, regardless of
their gender. itt2 represents a scenario where only female students were selected for the
intervention, while in itt3, only male students were selected. In all three scenarios, the
expected number of treated students stays the same (i.e., 60 out of 120). The aggregate
effect reported in Column 4 without peer effect (‘without PE’) does not take into account
the spillovers driven by peer effects.48 Columns 5 and 6 (‘with PE’) report the aggregate
effect on BMI accounting for spillovers. Since the intent-to-treat vectors are drawn inde-
pendently for each simulated network, we report both the average BMI decrease (column
5) and its standard deviation (column 6) over the 500 simulations.

The estimated decrease in BMI without spillovers is the same across all treatment
vectors (-51 BMI points throughout column 4). Once we account for spillovers, results
from itt1 suggest that treating 50% of students at random (i.e., regardless of gender)
decreases aggregate BMI by 69.34 points.49 This corresponds to a decrease of 0.58 BMI
points per student or 12.3% of BMI standard deviation in Add Health. However, the
magnitude of the impact is larger (−72.1 BMI points) when we treat female students only
in itt2. Conversely, the magnitude of the impact is smaller (−66.8 BMI points) when we
treat male students only in itt3. These numbers represent a ‘natural’ metric of efficiency in
the context of our policy evaluation exercise: aggregate returns from treating females are
8% larger than returns from treating males. In other words, investing monetary resources
in females results in an overall reduction in BMI that is 8% greater than the reduction
achieved by treating males.

To summarize, even in the ‘neutral’ scenario of Panel A where all students are affected
by the intervention to the same extent, we find that spillovers from females are about 33%
larger than the ones from males, which results in an additional 8% returns from treating
females in terms of aggregate BMI decrease. This result serves as a lower benchmark as it
is entirely driven by the heterogeneity of peer effects along gender lines.

48This boils down to summing up the direct effect over treated individuals.
49This statistic is by construction the same for the homogeneous peer-effect model under any intent-to-

treat vector.
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6.3.2 Gender-heterogeneous response

Panel B of Table (8) explores a scenario where females are more responsive to the interven-
tion at hand, that is, γf > γm. This could be due to the fact that the intervention is more
effective on female compliers, or to the fact that compliance is higher among females – a
point to be discussed below. In particular, we have calibrated a mean-preserving spread
of γf = 1; γm = 0.7 so that the resulting BMI vector across the student population is
comparable to panel A.

Results from Panel B for Column (1) (homogeneous model, all students confounded)
are comparable to Column (1) in Panel A, as expected. Columns (2) and (3) report the
estimates of the homogeneous peer effect model for females and males, respectively: the
estimated direct effects are now unsurprisingly −1 and −0.7, but the indirect effects are now
−0.36 and −0.25 respectively for females and males: even if peer effects are homogeneous
within and across gender, females now have a larger impact on their peers because they
experience a larger BMI decrease following the intervention. As before, the estimated effect
of −0.31 in Column (1) is a weighted average of the gender-specific effects in columns (2)
and (3).

When we turn to the heterogeneous model (columns 4 to 6) we see that all three
estimates of the direct effect are comparable to the ones for the homogeneous model, as
expected. However, we can see that the gap in indirect effect estimates across gender lines
becomes even wider. The indirect effect for females is now almost double the one for males,
−0.41 in Column (5) versus −0.22 in Column (6). This is due to the fact that when γf > γm
and peer effects are allowed to be heterogeneous across genders, females loose more weight
and also influence their peers more. The weighted average of these estimates is still 0.31
(as in Column 1), meaning that if we consider a random sample of students regardless of
their gender, we expect an indirect effect of 0.31 on average. However, this hides a large
disparity across gender lines, as the expected spillovers from females are double the ones
from males.

The bottom part of Panel B reports the effect of the intervention on aggregate BMI.
Results show that treating 50% of students at random induces an aggregate decrease of
−69.74 BMI points under itt1, which hinders a large disparity between the aggregate BMI
decrease from treating females only (−84.82 under itt2) and the corresponding value from
treating males only (−55.03 under itt3). This suggests that, because of social spillovers,
keeping the budget constant, the returns from treating females only are 54% larger than
returns from treating males (from -55.03 to -84.82 BMI points).

To summarize, we had seen in Panel A that the heterogeneity of peer effects along
gender lines has tangible consequences even in a benchmark setting where all students
respond in the same way to the intervention. If we further assume that female students
are more responsive to the intervention under scrutiny (Panel B), the estimated spillovers
generated by females are twice as large as those generated by males. This translates into
a 54% gain in aggregate BMI decrease from reaching out to female students.
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6.4 Discussion

Results from Table (8) show that interventions are most effective when targeted to the
group generating higher spillovers. This suggests that incorporating gender-based peer
effects could improve the efficacy of policy interventions. In fact, failing to consider such
heterogeneity overlooks critical information that could aid in optimizing the allocation
process, especially when resources are scarce.

The last two decades have witnessed the implementation of a large variety of policy
instruments aimed at curbing obesity among teenagers in Western countries. Those include
interventions administered remotely (e.g., online nutrition education program, email nudges
with tailored dieting advice or steps/day goal) and offline (e.g., face-to-face discussion
groups, interactive action planning, supply of fruits and vegetables, supply of wearable
sport activity trackers). Evidence from the literature on nutrition science suggests that
young adults respond differently to interventions depending on their gender (Poobalan et
al. 2010; Sharkey et al. 2020).50 In particular, females appear more motivated to undertake
dietary changes, while males are generally more responsive to incentives related to physical
activity. Since interventions are often constrained in terms of budget, one way to allocate
resources efficiently could be to design policy instruments implicitly tailored to address the
motivation and barrier of one specific gender.

On the basis of our results above, it is ceteris paribus preferable to invest in interventions
aimed at educating teenagers towards better dietary patterns because the higher direct
impact on the female population could, in turn, spill over more effectively to their male
peers. Such policy instruments are easy to implement, and they do not aim at impacting
the structure of social interactions directly.51

Finally, it is worth noting that, throughout the exercise above, we have modelled the
response to the intervention as a shift in the BMI. This assumption allows us to be relatively
agnostic with respect to the precise mechanism at work. However, policy makers may
have alternative assumptions based on their knowledge of the policy under scrutiny: for
instance, they can hypothesize that the intervention affects the way peers influence the
marginal utility of their own BMI. In order to do a policy evaluation exercise on the
basis of alternative assumptions, one could rely on the theoretical framework developed in
Appendix A.

50In an extensive meta-analysis, Sharkey et al. 2020 find that gender-targeted programs are more effective
in tackling youth obesity, but the results are not statistically significant due to the small sample size.

51According to our results, an increase in the frequency of between-gender links could also magnify the
effect of the anti-obesity campaign. However, interventions aimed at manipulating directly social links
(Goette, Huffman, and Meier 2012; Fafchamps and Quinn 2018) are widely seen as difficult to implement
and scale up.
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7 Conclusion

This paper explores gender heterogeneity in the social transmission of BMI among teenagers,
and its policy consequences. We propose a model where social interactions allow for
between- and within-gender heterogeneity and the Body Mass Index (BMI) results from
interactions among peers in a way that is microfounded in a non-cooperative manner. We
characterize the model econometrically, showing how identification conditions generalize
those of the homogeneous model by Bramoullé, Djebbari, and Fortin (2009).

We estimate the model using data on BMI and social interactions of adolescents in
the Add Health dataset, controlling for the endogeneity of declared links. Comparing the
GMM estimates of a standard homogeneous model with our heterogeneous model, we show
that Add Health data display significant gender-dependent heterogeneity in peer effects.
In particular, results suggest that male students are more affected by the average BMI of
their female friends than the reverse.

One interest in our approach is to design interventions on the basis of the heterogeneity
in social interaction patterns. We illustrate this point with a simulation exercise where we
evaluate an intervention replacing one fast-food type serving with one balanced meal per
week. Results from our simulations show that, in the most conservative scenario where
all students are affected by the intervention to the same extent, the spillovers stemming
from female students are 33% higher than the spillovers from males. This result is entirely
driven by the heterogeneity of peer effects along gender lines, and it translates into an 8%
gain in terms of aggregate BMI decrease from reaching out to females rather than males.
If we further assume that female students respond more to the kind of intervention under
scrutiny (as the literature on nutrition science seems to suggest), we conclude that spillovers
from females are twice as large as male-generated spillovers and that resources spent on
females generate a decrease of aggregate BMI which is 54% above the one generated by
resources spent on males.
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Tables and Figures

Table 1: Descriptive statistics

Mean s.d. Min Max

Weight Status

BMI 23.13 4.71 12.98 46.07

Males’ BMI 23.54 4.64 15.12 44.63

Females’ BMI 22.73 4.75 12.98 46.07

Regressors

Age 16.38 1.44 13 20

White 0.61 0.49 0 1

Black 0.16 0.36 0 1

Grades 9-10 0.26 0.44 0 1

Grades 11-12 0.63 0.48 0 1

Mother: some college education 0.43 0.49 0 1

Father: some college education 0.36 0.48 0 1

Network Statistics

Number of friends 2.30 2.10 0 10

Males: Number of male friends 1.46 1.34 0 5

Males: Number of female friends 0.83 1.12 0 5

Females: Number of male friends 0.88 1.18 0 5

Females: Number of female friends 1.44 1.31 0 5

N = 2307
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Table 2: Estimation of homogeneous peer effects (exogenous network)

(1) (2) (3) (4)

Individual Effects Contextual Effects

coef. s.e. coef. s.e.

Endogenous Peer Effects 0.220*** 0.022 - -

Age 0.124 0.086 -0.305*** 0.044

White -0.189 0.233 0.183 0.290

Black -0.253 0.286 0.472 0.378

Grade 9-10 1.114*** 0.423 0.097 0.520

Grade 11-12 1.830*** 0.483 0.053 0.555

Mother: some college education 0.169 0.150 -0.121 0.244

Father: some college education -0.260* 0.153 -0.506** 0.242

N=2307. School-level fixed effects included.

Table 3: Estimation of homogeneous peer effects (endogenous network)

(1) (2) (3) (4)

Individual Effects Contextual Effects

coef. s.e. coef. s.e.

Endogenous Peer Effects 0.234*** 0.035 - -

Age 0.079 0.091 -0.281*** 0.094

White -0.111 0.368 -0.531 1.676

Black 0.267 0.802 -0.642 2.027

Grade 9-10 1.371** 0.663 -0.339 0.976

Grade 11-12 1.791** 0.699 0.263 1.122

Mother: some college education 0.170 0.177 -0.694 1.045

Father: some college education -0.267 0.208 -0.165 0.994

N=2307. School-level fixed effects included.
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Table 8: Simulation results

Panel A: γf = γm = −0.85

model: homogeneous PE heterogeneous PE

(1) (2) (3) (4) (5) (6)

all females males all females males

TE: direct
-0.85 -0.85 -0.85 -0.85 -0.85 -0.85

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

TE: indirect
-0.31 -0.31 -0.31 -0.31 -0.35 -0.26

(0.01) (0.02) (0.02) (0.01) (0.03) (0.02)

TE: total
-1.16 -1.16 -1.16 -1.16 -1.20 -1.11

(0.01) (0.01) (0.01) (0.01) (0.03) (0.02)

Aggregate effect on BMI without PE with PE

itt1: 50% students at random -51 -69.34 (6.35)

itt2: 50% students, females only -51 -72.10 (1.65)

itt3: 50% students, males only -51 -66.82 (1.19)

Panel B: γf = −1, γm = −0.7

model: homogeneous PE heterogeneous PE

(1) (2) (3) (4) (5) (6)

all females males all females males

TE: direct
-0.85 -1 -0.7 -0.85 -1 -0.7

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

TE: indirect
-0.31 -0.36 -0.25 -0.31 -0.41 -0.22

(0.01) (0.03) (0.02) (0.01) (0.03) (0.02)

TE: total
-1.16 -1.37 -0.95 -1.17 -1.41 -0.92

(0.01) (0.03) (0.02) (0.01) (0.03) (0.02)

Aggregate effect on BMI without PE with PE

itt1: 50% students at random -51 -69.74 (6.51)

itt2: 50% students, females only -60 -84.82 (1.94)

itt3: 50% students, males only -42 -55.03 (0.98)

Note: average values computed over 500 draws. Standard errors in parentheses.
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Appendix A

We now develop a non-cooperative model to microfound our estimating equation through
the channels of spillover (i.e., strategic complementarity) and conformity in BMI within the
social network. We develop the theoretical model for one network (r = 1) of non-isolated
students where heterogeneous peer effects only work through the ‘endogenous’ channels
(the δ’s are set to zero). This is done to simplify the notation and is aligned with the
simulation exercise of Section 6. However, the discussion can be trivially extended to the
most general case. Also, we ignore the network formation endogeneity as our results remain
stable when we take it into account.

Let us consider one population of students (nm + nf = n), interacting among them.
The student i’s reference group is non-empty: ni,m + ni,f > 0 for each i.52 The friendship
network is defined by four fixed and known binary adjacency matrices AAAz(z = 1, · · · , 4),
and their weighted version GGGz(z = 1, · · · , 4), defined as above. Every individual maximizes
a gender-dependent quadratic utility function, Ui,m(·), which is separable in private and
social sub-utilities, subject to a linear production function for the BMI. The maximization
program of a type-m individual i is:

max
yi,m,ei,m

Ui,m(ei,m,y) = −yi,m −
e2i,m
2

+ ψmmyi,mg
′
1iy + ψmfyi,mg

′
2iy (12)

−λmm
2

(yi,m − g′
1iy)

2 −
λmf
2

(yi,m − g′
2iy)

2

s.t. yi,m = α0 − α1ei,m + α2xi,m + ηi,m, (13)

where yi,m is the outcome (i.e., BMI) of individual i in category m, ym is the vector of
outcomes in m category, yf is the vector of outcomes in f category, y is the concatenated
vector of outcomes in f and m categories, ei stands for the effort of i, g′

zi is the ith row
of the social interaction matrix GGGz, and xi and ηi,m denote observable and unobservable
individual characteristics. The first two terms in the utility function describe the private
sub-utility: the first term assumes that an increase in BMI reduces the individual i’s

utility.53 The second term
e2i,m
2 represents the cost of effort to reduce weight and assumes

that the marginal cost of effort is increasing with effort. The social sub-utility corresponds
to the four last terms in the utility function. The first two terms of the social sub-utility
(with the ψ’s > 0) reflect the fact that social interactions influence preferences through the
channel of spillover in BMI between a student and his reference group of each type. For
instance, it means that a male student’s marginal utility of having a healthy weight (lower
BMI) increases as his female peers achieve a healthier body weight (lower average BMI).54

52Note that the empirical illustration relaxes this assumption, allowing for isolated students.
53We are ignoring here a situation where very low weight negatively affects health (e.g., anorexia).

54More formally, one has: e.g.,
∂(−

∂Ui,m
∂yi,m

)

∂(−g′
1iyf )

=
∂2Ui,m

∂yi,m∂g′
1iyf

= ψmf > 0

A1



The last two terms correspond to a channel of conformity in social interactions (with the
λ’s > 0). This means that an individual’s utility is negatively affected by the (euclidean)
distance between his BMI and the mean BMI of each type of peer due, for instance, to the
presence of social norms.

The maximization program of type-f individuals can be written using a similar utility
function, where social interaction parameters can differ from those of type-m ones. Hence,
a type-f individual solves the following program:

max
yi,f ,ei,f

Ui,f (ei,f ,y) = −yi,f −
e2i,f
2

+ ψffyi,fg
′
3iy + ψfmyi,fg

′
4iy (14)

−
λff
2

(yi,f − g′
3iy)

2 −
λfm
2

(yi,f − g′
4iy)

2

s.t. yi,f = α0 − α1ei,f + α2xi,f + ηi,f (15)

Heterogeneity in social interactions is reflected by the fact that the ψ’s (or the λ’s) can
be different. The first-order conditions of the type-m maximization program lead to the
following best response function:

ym = αmιm + βmmGGGm
1 y + βmfGGGm

2 y + α̃2xm + ϵm (16)

where αm = (α0 − µ)/(1 + µ(λmm + λmf )), βmm = µ(ψmm + λmm)/(1 + µ(λmm + λmf )),
βmf = µ(ψmf + λmf )/(1 + µ(λmm + λmf )), α̃2 = α2/(1 + µ(λmm + λmf )), where GGGm

z

corresponds to the social interaction matrix z of male agents, and where µ = α2
1 represents

the squared marginal productivity of effort on weight level.

Similarly, the first-order conditions for type-f individuals lead to the following best
response function:

yf = αf ιf + βffGGGf
3y + βfmGGGf

4y + ᾱ2xf + ϵf (17)

where αf = (α0 − µ)/(1 + µ(λff + λfm)) βff = µ(ψff + λff )/(1 + µ(λff + λfm)), βfm =

µ(ψfm+λfm)/(1+µ(λff +λfm)), ᾱ2 = α2/(1+µ(λff +λfm)), and where GGGf
z corresponds

to the social interaction matrix z of female agents.

Assuming that the absolute value of the β’s is less than one, if we concatenate equations
(16) and (17), and that λmm + λmf = λff + λfm, so that αm = αf = α and α̃2 = ᾱ2 = γ,
we obtain the following best-response functions for the whole population of students, given
the others’ weight level (Nash equilibrium):

y = αι+ βmmGGG1y + βmfGGG2y + βffGGG3y + βfmGGG4y + γx+ ϵ, (18)
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It is clear that the parameters of the structural model are not identified from the
reduced form equation (18). While the latter equation allows us to estimate six parameters
(α, βmm, βmf , βff , βfm, γ), the structural model includes 10 parameters to be estimated
(ψmm, ψmf , ψff , ψfm, λmf , λff , λfm, α0, α1, α2) with λmm = λff + λfm − λmf .

Even when we impose homogeneity, the structural model is still unidentified. In that
case, all ψ’s are equal (= ψ) and all λ’s (= λ) are equal as well. Therefore, βmm = βmf =
βff = βfm = βh. This corresponds to equation (4), with one network and no contextual
peer effects:

y = αι+ βhGGGy + γx+ ϵ, (19)

where βh = µ(ψ+λ)
1+µλ . While equation (19) allows us to estimate three parameters (α, βh, γ),

the structural model includes five coefficients (ψ, λ, α0, α1, α2). In particular, neither ψ nor
λ are identified. Therefore, the social multiplier (which is equal to 1

1−µψ ) is not identified.
However, in the presence of pure conformity (ψ = 0), the social multiplier is equal to one
(no indirect effects). Besides, the social multiplier is identified in the presence of pure
spillover (λ = 0) as it is equal to 1

1−βh . In that case, as long as 0 < βh < 1, the pure
spillover channel generates positive indirect effects. Also, assuming that we have a proxy
for µ, ψ can be recovered as it is equal to βh/µ.

Under gender heterogeneity in peer effects, the models under pure spillover and un-
der pure conformity are exactly identified and are observationally equivalent. In par-
ticular, under pure spillover, both structural and reduced form models include six co-
efficients to be estimated when assuming that we have a proxy for µ, one exogenous
effect and no contextual effects.55 Indeed, excluding µ, six structural coefficients, that
is, (ψmm, ψmf , ψff , ψfm, α0, α2), can be recovered from the six reduced form coefficients
(α, βmm, βmf , βff , βfm, γ). Note that tests on the reduced form coefficients β′s are equiv-
alent to tests on the structural coefficients ψ’s, as βqr = µ ψqr, for all q, r = m, f . In
particular, the model allows us to test whether girls have a stronger positive effect on boys’
incentive to invest in their health than the reverse, that is, βmf > βfm or, equivalently,
ψmf > ψfm. The pure spillover assumption allows us to recover the indirect effects when
there is an exogenous shock that affects students’ weight levels.

The model with heterogeneity is also identified under pure conformity, when one as-
sumes that λmm = λff + λfm − λmf (see above). In that case, six structural coefficients
(λmf , λff , λfm, α0, α1, α2) can be recovered from the six estimated reduced form coeffi-
cients (α, βmm, βmf , βff , βfm, γ). As in the homogeneity case, pure conformity imposes
the absence of indirect effects.

55The two latter assumptions do not influence the identifiability of the structural model.
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Appendix B

Proof of proposition 1

To prove our proposition, we assume that S(β) is invertible (see footnote 12 for sufficient
conditions), and we use the formula of the inverse of the matrix established using the
Newton Binomial formula. The following steps are necessary to prove our proposition:

1. Let k = 1, 2, 3, 4, ... and derive the expression of Sk(β)
−1 using:56

Sk(β) =

k≥1∑
i=0

(
k

i

)[
(βmmḠGG1)

k−i + (k − i)βmf (βmmḠGG1)
k−i−1ḠGG2

]
.
[
(βffḠGG3)

i + iβfm(βffḠGG3)
i−1ḠGG4

]

2. Sum over all k’s and re-write S(β)−1 such that S(β)−1 = I+
∞∑
k=1

Sk(β).

3. Using the latter expression, derive an expression ofWi(β) = ḠGGiS(β)
−1 andWi(β)ḠGG(δ)

∀i ∈ {1, 2, 3, 4}.

4. Write {Wi(β)
[
γx+ ḠGG(δ)x+ ια

]
}{i=1,2,3,4} as a function of instruments and extract

instruments and the associated restrictions on the parameters of the model, pre-
multiplied by matrix J.

For sake of simplicity, let subscripts mm, mf , ff and fm in β be replaced by 1, 2, 3, 4
respectively. Using the steps enumerated above and developing for k ∈ 1, 2, 3, 4, one can
write Sk(β) using the expression below:

S1(β) =
[
β1ḠGG1 + β2ḠGG2

]
×
[
β3ḠGG3 + β4ḠGG4

]

S2(β) =
[
β2
1ḠGG

2
1 + 2β1β2ḠGG1ḠGG2

]
+ 2

[
β1ḠGG1 + β2ḠGG2

]
×

[
β3ḠGG3 + β4ḠGG4

]
+
[
β2
3ḠGG

2
3 + 2β3β4ḠGG3ḠGG4

]

S3(β) =
[
β3
1ḠGG

3
1 + 3β2

1β2ḠGG
2
1ḠGG2

]
+ 3

[
β2
1ḠGG

2
1 + 2β1β2ḠGG1ḠGG2

]
×
[
β3ḠGG3 + β4ḠGG4

]
+ 3

[
β1ḠGG1 + β2ḠGG2

]
×

[
β2
3ḠGG

2
3 + 2β3β4ḠGG3ḠGG4

]
+

[
β3
3ḠGG

3
3 + 3β2

3β4ḠGG
2
3ḠGG4

]
S4(β) =

[
β4
1ḠGG

4
1 + 4β3

1β2ḠGG
3
1ḠGG2

]
+ 4

[
β3
1ḠGG

3
1 + 3β2

1β2ḠGG
2
1ḠGG2

]
×
[
β3ḠGG3 + β4ḠGG4

]
+ 6

[
β2
1ḠGG

2
1 + 2β1β2ḠGG1ḠGG2

]
×

[
β2
3ḠGG

2
3 + 2β3β4ḠGG3ḠGG4

]
+ 4

[
β1ḠGG1 + β2ḠGG2

]
×

[
β3
3ḠGG

3
3 + 3β2

3β4ḠGG
2
3ḠGG4

]
+
[
β4
3ḠGG

4
3 + 4β3

3β4ḠGG
3
3ḠGG4

]
56Recall that we order all matrices so that the first nf

r rows correspond to type-f individuals of network
r, and the remaining nm

r rows are for type-m individuals in network r. This leads by construction to the
following identities: GGG1,r.GGG4,r = 0nr , GGG3,r.GGG2,r = 0nr , GGG1,r.GGG3,r = 0nr , GGG3,r.GGG1,r = 0nr , GGG

k≥2
2,r = 0nr ,

GGGk≥2
4,r = 0nr , GGG4,r.GGG3,r = 0nr and GGG2,r.GGG1,r = 0nr .
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We then write S−1(β) = I+S1(β)+S2(β)+S3(β)+S4(β)+
∞∑
k=5

Sk(β) using the expres-

sions of Sk(β) given above. We are then able to write, ∀i ∈ {1, 2, 3, 4},Wi(β)
[
γx+ ḠGG(δ)x+ ια

]
as:

W1(β)
[
γx+ ḠGG(δ)x+ ια

]
= γḠGG1x + (γβ1 + δ1)

[
ḠGG2

1 + β1ḠGG
3
1 + β2

1ḠGG
4
1 + β5

1ḠGG
2
1

]
x

+ (γβ2 + δ2)
[
ḠGG1ḠGG2

]
x+ β1(2γβ2 + δ2)

[
ḠGG2

1ḠGG2

]
x

+ β2(2γβ3 + δ3)
[
ḠGG1ḠGG2ḠGG3

]
x+ β2(2γβ4 + δ4)

[
ḠGG1ḠGG2ḠGG4

]
x

+
[
ḠGG1 + β1ḠGG

2
1 + β2ḠGG1ḠGG2 + β2

1ḠGG
3
1 + 2β1β2ḠGG

2
1ḠGG2 + ...

]
ια

+ ḠGG1

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x+ ια

]

W2(β)
[
γx+ ḠGG(δ)x+ ια

]
= γḠGG2x + (γβ3 + δ3)

[
ḠGG2ḠGG3 + β3ḠGG2ḠGG

2
3 + β2

3ḠGG2ḠGG
3
3 + β3

3ḠGG2ḠGG
3
3

]
x

+ (γβ4 + δ4)
[
ḠGG2ḠGG4

]
x+ β3(2γβ4 + δ4)

[
ḠGG2ḠGG3ḠGG4

]
x

+ β2
3(3γβ4 + δ4)

[
ḠGG2ḠGG

2
3ḠGG4

]
x+ β3

3(4γβ4 + δ4)
[
ḠGG2ḠGG

3
3ḠGG4

]
x

+
[
ḠGG2 + β3ḠGG2ḠGG3 + β2

3ḠGG2ḠGG
2
3 + 2β3β4ḠGG2ḠGG3ḠGG4 + ...

]
ια

+ ḠGG2

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x+ ια

]

W3(β)
[
γx+ ḠGG(δ)x+ ια

]
= γḠGG3x + (γβ3 + δ3)

[
ḠGG2

3 + β3ḠGG
3
3 + β2

3ḠGG
4
3 + β3

3ḠGG
5
3

]
x

+ (γβ4 + δ4)
[
ḠGG3ḠGG4

]
x+ β3(2γβ4 + δ4)

[
ḠGG2

3ḠGG4

]
x

+ β2
3(3γβ4 + δ4)

[
ḠGG3

3ḠGG4

]
x+ β3

3(4γβ4 + δ4)
[
ḠGG4

3ḠGG4

]
x

+
[
ḠGG3 + β3ḠGG

2
3 + β4ḠGG3ḠGG4 + 2β3β4ḠGG

2
3ḠGG4 + ...

]
ια

+ ḠGG3

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x+ ια

]

W4(β)
[
γx+ ḠGG(δ)x+ ια

]
= γḠGG4x + (γβ1 + δ1)

[
ḠGG4ḠGG1 + β1ḠGG4ḠGG

2
1 + β2

1ḠGG4ḠGG
3
1 + β3

1ḠGG4ḠGG
4
1

]
x

+ (γβ2 + δ2)
[
ḠGG4ḠGG2

]
x+ β1(2γβ2 + δ2)

[
ḠGG4ḠGG1ḠGG2

]
x

+ β2(2γβ3 + δ3)
[
ḠGG4ḠGG2ḠGG3

]
x+ β2(2γβ4 + δ4)

[
ḠGG4ḠGG2ḠGG4

]
x

+
[
ḠGG4 + β1ḠGG4ḠGG1 + β2ḠGG4ḠGG2 + β2

1ḠGG4ḠGG
2
1 + ...

]
ια

+ ḠGG4

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x+ ια

]
The above expressions provide sufficient conditions for the identification of our pa-

rameters using the IV method. These conditions extend the ones obtained in Bramoullé,
Djebbari, and Fortin (2009) regarding the independence of the interaction matrices of our
model and restrictions on our parameters.
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Specifically, considering the expressions given above, we can see that naturally oc-
curring instruments of our endogenous variables include different order of our interaction
matrices and interactions of different orders of these matrices. For example, instruments
of our first endogenous variable include JG1x, JG1

2x, JG1
3x and higher degrees of the

matrix JG1 multiplied by vector x of characteristics if both (γβ1 + δ1) ̸= 0 and matrices
G1,G1

2,G1
3,G1

4, etc. are linearly independent. Following the same method and using
the other expressions above, we can see that minimal conditions for IV variables to work for
each of the four endogenous variables are (γβ2+δ2) ̸= 0 , (γβ3+δ3) ̸= 0 and (γβ4+δ4) ̸= 0.

In addition, γ needs to be different from zero and matrices ḠGG1, ḠGG2, ḠGG3, ḠGG4, ḠGG
2
1, ḠGG1ḠGG2,

ḠGG2ḠGG3, ḠGG
2
3, ḠGG

3
1, ..., I need to be independent, which corresponds to the condition that

vector columns of matrix QK of instruments should be linearly independent. Additional
conditions appear whenever one is concerned about adding instruments of higher order of
interaction matrices multiplication. In this case, the additional conditions on the param-
eters of the model take the form of βi ̸= 0 ∀i ∈ {2, 3, 4} and ((j − 1)γβl + δl) ̸= 0 and
linear independence of jth order interaction of social interaction matrices such that CGiḠGGl

adds up to the independence conditions stated above, where C is either a single interaction
matrix or a non-zero product of interaction matrices. For example, JG1ḠGG2ḠGG4x may be
used as an instrument if β2 ̸= 0, (2γβ4 + δ4) ̸= 0 and matrices ḠGG1, ḠGG2, ḠGG3, ḠGG4, ḠGG

2
1, ḠGG1ḠGG2,

ḠGG2ḠGG3, ḠGG
2
3, ḠGG

3
1, ..., I and ḠGG1ḠGG2ḠGG4 are linearly independent. Also, JG4ḠGG2ḠGG

2
3x may be used

as an additional instrument if β2 ̸= 0, β3 ̸= 0, (3γβ3 + δ3) ̸= 0 and matrices ḠGG1, ḠGG2, ḠGG3,

ḠGG4, ḠGG
2
1, ḠGG1ḠGG2, ḠGG2ḠGG3, ḠGG

2
3, ḠGG

3
1, ..., I and ḠGG4ḠGG2ḠGG

2
3 are linearly independent.

GMM with quadratic conditions

Let the IV moments be given by the expression g1(θ) = Q′
Kϵ(θ) where ϵ(θ) =

J (y − Zθ − ια). The additional quadratic moments are given by the expression g2(θ) =[
U′

1ϵ(θ),U
′
2ϵ(θ), ...,U

′
qϵ(θ)

]′
ϵ(θ), where Uj is such that tr(JUj) = 0.57 In addition,

let the combined vector of linear and quadratic empirical moments be given in g(θ) =
[g′1(θ), g

′
2(θ)]. Finally, let Ω̃ = Ω̃(σ̃2, µ̃3, µ̃4) where σ̃2, µ̃3 and µ̃4 are initial estimators of

the second, third and fourth moments of the error term of our model. In our heterogeneous
model, the optimal weighting matrix associated with our GMM is given by

Ω = V ar [g(θ)] =

σ̃2Q′
KQK µ3Q

′
Kω

µ3ω
′QK (µ4 − 3σ4)ω′ω + σ4Υ

 ,
where ω = [vecD(U1), vecD(U2), ..., vecD(Uq)], E

s = E+E′, ∀ square matrix E of size n,
vecD(A) = (a11, a22, ..., ann) and Υ = 1

2

[
vec(Us

1), vecD(U
s
2), ..., vecD(U

s
q)
]
. The feasible

57Following Liu and Lee (2010), we use Uk = ḠGGk − tr(JGk)I/tr(J) for k = 1, ..., 4.
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optimal GMM estimator is given by

θ̂gmm = argmin θ∈Θg
′(θ)Ω̃−1g(θ)

which is implemented in our estimates of Section 5.
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