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Abstract

This paper illustrates a procedure to estimate externalities from indirect con-
nections (so-called network externalities) using network data. This structural ap-
proach is suitable for static games of endogenous network formation with partial
information, and relies on the equilibrium conditions of pairwise stability (Jack-
son and Wolinsky, 1996). Operationally, it consists in a two-step estimator which
addresses omitted variable endogeneity. When the estimation protocol is applied
to risk-sharing data within a Tanzanian village, results indicate that indirect con-
nections matter. Network externalities are found to be negative, which can be
interpreted as competition over scarce resources.
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1 Introduction
From its very first steps network theory has claimed that the formation and severance of
links depend strategically on the entire community graph (Jackson and Wolisky, 1996;
Bala and Goyal, 2000; Jackson, 2004). However, in recent years testing whether net-
work architecture predicts link formation has proved to be a formidable task (Miyauchi,
2014; Sheng, 2014; De Paula Richards-Shubik and Tamer, 2015; Mele, 2015). This pa-
per proposes a simple estimation protocol for static models of endogenous network
formation with externalities from indirect connections (so-called network externalities).
It assumes that the observed network is in a pairwise stable equilibrium (Jackson and
Wolinsky, 1996) to derive testable predictions about agent’s expected utility from indi-
rect connections.

The validity of the estimation procedure crucially relies on two features of the un-
derlying network formation game: partial information, and pairwise stability. On the
one hand, agents play a static game with partial information where they form links
simultaneously on the basis of their beliefs. Assuming that these beliefs are built on
observable characteristics, the estimation strategy boils down to a simple two-step es-
timator where the first stage fits a conditional probability representing agents’ beliefs
about the emerging network, and in the second stage the predicted network replaces
the observed network in the computation of the externalities. As long as there is a
covariate which serves as a valid instrument, this two-step approach addresses omitted
variable endogeneity.1 On the other hand, the equilibrium concept of pairwise stability
proves crucial for estimation as it allows to circumvent the issue of dependence be-
tween linking decisions due to strategic interactions. Intuitively, if agents are playing
a myopic best response strategy in the context of pairwise stability, one can estimate
preferences over many small ‘local’ perturbations of the existing network architecture
which represent unilateral deviations from the status quo. This paper’s contribution to
applied network economics is twofold. First, it shows how partial observability (Poirier,
1980) can be used to estimate a large class of bilateral link formation games. Second, it
proposes a empirical tool for applied economists who want to identify preferences over
network externalities. A large theoretical effort has been devoted to modeling external-
ities in different network formation contexts (Jackson, 2008). However, evidence based
on experimental and observational data lags behind, and little information is available
on the value of indirect connections and their decay rate for most real-life situations.2

1A two-step approach is also taken by Konig, Liu and Zenou (2014) and Leung (2015). Kelejian
and Piras (2014) propose a similar solution in the context of spatial regressions.

2The study of cross-firm collaborative networks suggests that information flows are insignificant for
indirect neighbors (Breschi and Lissoni, 2005; Singh, 2005). On the other hand, experimental evidence
with dictator games shows that further-away connections are relevant and decay follows an inverse
distance law (Goree at al., 2010).
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This paper contributes to filling this gap by explaining how local perturbations of the
equilibrium can be exploited to recover network externalities.

The econometrics of network formation is at the frontier of the applied network
literature (see Advani and Malde, 2014; Chandrasekhar, 2015; Graham, 2015 for recent
reviews). This paper deals with the common, yet problematic setting where the re-
searcher observes one single network at one single period, and wants to include network
covariates in the objective function of agents. In this scenario the structural equation
can have multiple solutions (Bresnahan and Reiss, 1991; Tamer, 2003), and the calcu-
lation may become intractable due to the combinatory complexity of networks. One
solution is provided by the exponential random graph models where a dynamic meet-
ing protocol acts as equilibrium selection mechanism (Christakis et al., 2010; Badev,
2013; Chandrasekhar and Jackson, 2014; Hsieh an Lee, 2015; Koenig, 2015; Mele, 2015).
These models provide a solid micro-foundation for link formation, but need to be solved
with Markov Chain Monte Carlo sampling techniques which are computationally diffi-
cult and often inconsistent.3 An alternative solution is to condition on certain classes
of models that replicate some empirical features of the network, or to limit the degree
to which other players can affect one’s utility.4 This paper neither tries to elicit global
preferences (i.e. preferences over the entire network topology) as exponential random
graph models do, nor it attempts to replicate observed topological patterns. The esti-
mation strategy proposed here only extrapolates information from local perturbations
of the existing equilibrium in order to gather information on the utility from indirect
connections. To do so I focus on static network formation with network externalities,
and use the solution concept of pairwise stability. Other recent studies rely on the
same framework but assume full information and achieve set identification (De Paula
Richards-Shubik and Tamer, 2014; Miyauchi, 2014; Sheng, 2014). The closest contribu-
tion to this paper is Leung (2015), who assumes partial information and achieves point
identification. He models a simultaneous game where agents take linking decisions on
the basis of their beliefs on the structure of the emerging network. The two-step esti-
mator he proposes is robust to the presence of multiple equilibria, and circumvents the
dependence between actions due to strategic interaction by conditioning on observables
(De Paula and Tang, 2012). In this paper I follow the same inferential approach but
I differ from Leung (2015) in two important aspects: first, I consider undirected links
and use the equilibrium notion of pairwise stability (while he uses directed links and

3See Bhamidi Bresler and Sly (2008), Shalizi and Rinaldo (2012), Chatterjee and Diaconis (2013),
Chandrasekhar ad Jackson (2014).

4Some papers identify structural parameters by the rate at which various sub-graphs are observed in
the overall network (Chandrasekhar and Jackson, 2015) or by aggregating individuals into ‘types’ and
assuming that agents have preferences only over the type of their partners (De Paula, Richards-Shubik
and Tamer, 2014). On a similar line, Boucher and Mourifie (2013) study a scenario where individual
preferences display weak homophyly.
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a Bayesian solution concept). Second, I focus on a procedure to consistently estimate
the magnitude and decay of externalities from indirect connections.

An illustration on risk-sharing data is presented. Lacking access to formal insurance,
most households in developing countries are forced to rely on risk-sharing arrangements
in face of idiosyncratic shocks such as health-related expenses, funerals and court tri-
als. These arrangements are based on pre-existing interpersonal links and often take
the form of informal loans or gifts.5 The data I use contain information on self-declared
risk-sharing links in a Tanzanian village named Nyakatoke. During 2000, all adult
individuals of Nyakatoke were asked “Can you give a list of people [...], who you can
personally rely on for help and/or that can rely on you for help in cash, kind or labor?”.
This piece of information is used to draw the village network, and to investigate the role
of local community architecture. Specifically, I test whether agents choose risk-sharing
partners on the basis of their individual characteristics only, or also the characteristics
of indirect connections (e.g. friends of friends) matter. Risk-sharing arrangements are
an intriguing example that may combines positive and negative network externalities:
friends of friends are beneficial if they broaden social interactions, but detrimental if
there is competition for resources. Results suggest that Nyakatoke villagers do evalu-
ate potential partners’ connections, and that the negative component seems to prevail,
which can be interpreted in light of competition for scarce economic and/or social re-
sources.

The paper is organized as follows. Section 2 introduces the theoretical setting. Sec-
tion 3 illustrates the estimation strategy. In Section 4 the consistency of the estimated
parameters is demonstrated with a simulation exercise. Sections 5 and 6 illustrate the
data and the variables for the empirical application respectively. Section 7 presents the
results, while Section 8 concludes. The Appendix describes the computational steps to
replicate the estimation protocol of Section 3.

2 Theoretical setting
The game-theoretical literature on strategic network formation has flourished in the
last two decades (Jackson, 2008). While some economists have approached network
formation from a non-cooperative perspective (Bala and Goyal, 2000; Galeotti, Goyal
and Kamphorst, 2006), the majority of them have focused on stable networks, where
links are formed at the discretion of self-interested agents whose utility depends on
the overall network architecture. This paper builds on the latter literature, and it is
inspired by the two popular models of network formation discussed by Jackson and
Wolinsky (1996): the connection model and the coauthor model. In the connection

5See Townsed (1994), Udry (1994), Fafchamps and Lund (2003), De Weerdt and Dercon (2006).

4



model links represent social relationships and network externalities are positive, while
in the co-author model agents are researchers who collaborate in common projects and
network externalities are negative. However, while for the sake of theoretical tractability
Jackson and Wolinsky (1996) solve these models for homogeneous agents, my empirical
approach allows for full heterogeneity.6

Let N(g) = {1, ..., N} be a set of players connected in a given network g. The
network is denoted by the adjacency matrix g = [gij]: for any unique pair of players
(dyad) {ij} such that i, j ∈ N(g) and i 6= j, gij = 1 indicates that i and j are linked
under the network g, and gij = 0 that they are not. The network matrix is symmetric
(gij = gji). By a standard abuse of notation, let g + ij denote the network g with the
link gij, that is, with gij = 1 and, analogously, let g − ij denote the network g without
the link gij, that is, with gij = 0.

For a dyad {ij}, let the symmetric m-dimensional vector Xij define the relational
attributes of the two agents. Let tijg define the geodesic distance in the network g,
that is, the number of links in the shortest path between i and j. Geodesic distance is
integer and symmetric (tijg = tjig) and is set to infinity if there is no path between i
and j. The matrix τg = [tijg ] denotes the distance matrix induced by g. The utility of
agent i from network g is given by

ui(g) =
∑
j∈N(g)

a(tijg) yj +
∑

j:tijg=1

βXij, (1)

where yj is j’s attribute representing his desirability as a partner (say wealth), β ∈ Rm

are the weights attached to the relational attributes of direct connections only, and a(.)
are the weights attached to the wealth of all agents by their geodesic distance: these
weights can be positive or negative in sign, and for tijg > 1 represent network external-
ities in the dimension of wealth. Extending network externalities to other dimensions
is straightforward.

In this paper I adopt the equilibrium notion of pairwise stability (Jackson and
Wolinsky, 1996), which states that link formation requires the consent of both parties
involved while severance can be done unilaterally.7 We say that network g is pairwise
stable if

6Vandenbossche and Demuynck (2012) provide a theoretical characterization of the unique stable
equilibrium in a model with heterogeneous agents, but they rule out network externalities from indirect
connections.

7Pairwise stability was the first equilibrium concept proposed for networks - see Dutta and Mu-
tuswami (1997) and Jackson and Van Den Nouweland (2005) for early refinements.
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(i) ∀gij = 1, ui(g + ij) ≥ ui(g − ij) & uj(g + ij) ≥ uj(g − ij) (2)
(ii) ∀gij = 0, ui(g + ij) > ui(g − ij)⇒ uj(g − ij) > uj(g + ij) .

That is, a network is pairwise stable if all links which are ceteris paribus profitable are
formed, and no player would benefit from severing an existing link. Pairwise stable
networks do not allow for multiple or simultaneous deviations, which is crucial for the
estimation strategy illustrated in the next section.

3 Estimation strategy
In what follows I introduce the building blocks of the estimation strategy. Section 3.1
shows how to decompose the agent’s utility in order to disentangle network externalities.
Section 3.2 explains how the equilibrium conditions of pairwise stability prove useful
for identification. Section 3.3 shows how common beliefs about the emerging network
configuration can be modeled via a two-step estimator analogous to two-stage least
squares (2SLS), with an additional element of stochastic variability that needs to be
taken into account for inference purposes. The computational details are left to the
Appendix.

3.1 Network externalities

For a given network configuration g, from Equation (1) we can write

ui(g + ij)− ui(g − ij) =
∑

k∈N(g+ij)

a(tikg+ij
)yk −

∑
k∈N(g−ij)

a(tikg−ij
)yk + βXij (3)

= a(1)yj + a(2)Λ2ij + a(3)Λ3ij + ...+ βXij (4)

=
N−2∑
φ=1

a(φ)Λφij + βXij , (5)

where

Λφij = λ+iji,φ − λ
−ij
i,φ

λ+iji,φ =
∑
k

yk∈N(g+ij)

tikg+ij
=φ

λ−iji,φ =
∑
k

yk∈N(g−ij)

tikg−ij
=φ
.
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Equation (5) shows how the total utility in terms of direct and indirect partners’
discounted wealth can be decomposed by geodesic distance. Λφij represents the net
gain in terms of wealth of φ-step-away agents that i gets if he links with j and the rest
of g remains the same. Note that Λ1ij boils down to the partner’s wealth yj, and that
φ is capped strictly below N − 1 which is the maximum finite distance attainable in
a network of N players.8 In what follows the Λφ terms are referred to as ‘structural’
regressors (as opposite to ‘standard’ regressors) because they are statistics for the ar-
chitecture of the network g. Note that the patterns and sign of the structural regressors
cannot be predicted beforehand, since the formation of one link changes the entire net-
work architecture.9 The associated coefficients a(φ) for φ > 1 capture the network
externalities in the dimension of wealth and can be interpreted as revealed preferences
over partners’ network position. The procedure to compute these structural regressors
is described in the Appendix, Section A.1.

3.2 Equilibrium conditions

The local equilibrium conditions of pairwise stability prove crucial for identification.
For a given network configuration g, we can define two latent binary response variables
wij and wji which represent the willingness to link of i and j respectively. In this
context link formation under pairwise stability reduces to estimating the two-equation
model

P (gij = 1) = P (wij = 1 & wji = 1) (6)
P (gij = 0) = 1− P (wij = 1 & wji = 1) ,

8Since a new link does not change the set of reachable partners, from the individual perspective
each wealth gain at a certain distance is reflected in a loss at another distance. If all players are
indirectly connected with finite geodesic distance, it is sufficient to cap φ strictly below the maximum

geodesic distance Φ because all Λφ terms are perfectly collinear by construction:
Φ∑
φ=1

Λφij
= 0. Even

if the network has multiple components or isolated agents, a finite distance can never exceed N − 1.
The issue has very little practical relevance, because if the network is sufficiently dense the Λφ terms
become highly collinear after a few steps anyway.

9For example, if tijg−ij
= 2 and the link ij is formed, from i’s perspective the direct gain of yj is

reflected in a two-step-away loss, so that Λ2ij
is ceteris paribus negative (−yj), but the formation of

the link is likely to induce other changes in the overall architecture which may counterbalance the loss
(e.g. a third player who used to be further away from i is now two steps away).
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where

wij =

 1
N−2∑
φ=1

a(φ)Λφij + βXij > εij

0 otherwise

wji ≡

 1
N−2∑
φ=1

a(φ)Λφji + βXji > εji

0 otherwise,

and the coefficients a(.) and β are constrained to be the same across the two equations.
This can be estimated as a bivariate probit with partial observability (Poirier, 1980;
Abowd and Farber, 1982; Farber, 1983). Partial observability occurs when a positive
outcome for one response variable is only observed if the other response variable is also
positive. That is, when gij = 1 we know that wij = wji = 1. Viceversa, when gij = 0
we cannot distinguish between the three following cases: wij = 0 & wji = 1; wij =
1 & wji = 0; wij = wji = 0. By observing the equilibrium outcome we can disentangle
the coefficients for wij and wji, and estimates of network externalities will be accurate
as long as pairwise stability conditions generate sufficient variation in the structural
regressors.10 This approach overcomes reduced-form dyadic regressions (De Weerdt,
2004; Fafchamps and Gubert, 2007) by modeling agent-level incentives. However, like
dyadic regressions it still assumes conditional independence between links: as long as
agents are playing a myopic best response strategy in the context of pairwise stability,
one can estimate preferences over many small ‘local’ perturbations away from status
quo, which ultimately allow to recover the coefficients of network externalities. Thus,
results should be interpreted as estimates of preferences over local deviations from
pairwise equilibrium conditions.

3.3 Two-step estimator

Following Leung (2015), I rely on two identification assumptions: first, I assume a
static game of link formation with partial information. In this context agents form
links simultaneously on the basis of their common beliefs, which are built on observ-
able characteristics. Secondly, agents can coordinate on a symmetric equilibrium where
observationally-equivalent agents choose the same ex-ante strategies. In this context
the estimation strategy boils down to a simple two-step procedure which I describe in
what follows.

To avoid confusion in the notation, let us call ge the equilibrium network that we
observe in data. The first stage of the procedure fits a conditional probability repre-
senting agents’ beliefs about the emerging network. To do so, I run a dyadic regression

10Note that the bivariate probit model with partial observability also suits link formation with no
network externalities, as illustrated by Comola and Fafchamps (2014).
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of the links in ge on the relational characteristics of the dyads Xij, plus (at least) one
dyadic covariate Zij which serves as excluded instrument. This generates a probability
distribution p̂, where p̂ij is the fitted probability that geij = 1. Note that p̂ represents
the common beliefs by incorporating all the ex-ante information available to agents,
including the predictable components of network externalities.

In the second stage of the procedure I estimate Equation (6) by computing the
structural regressors Λφ on the basis of p̂. Since p̂ is a distribution rather than a fitted
variable, it needs first to be mapped into a topological object representing the expected
network architecture. For this purpose I adopt the stochastic network formation rule
known as Poisson model, and draw a network realization assuming that all links are
created independently according to the probabilities given by p̂.11 By expressing the
expected link outcomes as a reduced-form function of the dyads’ relational observables,
I circumvent two major problems. First, standard regression techniques may suffer
from omitted variable endogeneity of the following form: if two agents are observa-
tionally equivalent but they have different network positions, this may be imputed to
network externalities as well as to unobserved characteristics. As long as there is a valid
instrument, the fitting procedure rules out unobserved heterogeneity and all network
realizations drawn from p̂ are purged from omitted variable endogeneity in the usual
2SLS way. Second, the estimator is robust to the presence of multiple equilibria as long
as one assumes that agents can coordinate on one symmetric equilibrium through a
public signal (Leung, 2015), which allows the estimation of the parameters of interest
with only one observed network realization.12

As a last issue, note that K different random draws from p̂ will produce K different
network realizations g1, ..., gK . If I run the second-stage regression of Equation (6) using
one arbitrary network realization k, the estimated coefficients a(φ)k are unbiased but
standard inference is inconsistent. In analogy with 2SLS bootstrap (Freedman, 1984),
in the empirical illustration I correct the confidence intervals by using the quadratic
assignment procedure (QAP), a re-sampling technique specifically designed for dyadic
data which has been widely used in social network analysis (Hubert and Schultz, 1976;
Krackhardt, 1987; Nyblom et al., 2003; Eagle, Pentlan and Lazer, 2009). This consists
in a appropriately designed permutation test which accounts for the two sources of
variation, namely the correlation among dyadic observations and the variability in the

11The Poisson model is the workhorse of static random graphs, and has been shown to exhibit some
of the key features of large-scale social networks (Jackson, 2008). Under the standard Poisson model
all links are formed independently with identical probability, while I use the dyad-specific probabilities
given by p̂.

12For simultaneous equation models with discrete outcomes, the existence of multiple equilibria
in the underlying game raises problem of logical inconsistency in the associated likelihood function
(Heckman, 1978; Gourieroux, Lafont and Monfort 1980; Maddala 1983; Tamer, 2003).
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generated networks. A detailed description of the two-step procedure and the QAP
permutation test is reported in the Appendix, Section A.2.

4 Simulations
In this section the consistency of the estimated parameters for network externalities is
demonstrated with a simulation exercise. I proceed in the following way:

1. I posit a data generating process of the form:

ui(g + ij)− ui(g − ij) = xj + 0.5Λ2ij + dij

where ui(g + ij) − ui(g − ij) represents i’s utility from linking with j, xj is an
individual attribute representing wealth, and dij is a dyadic attribute representing
distance (dij = dji). The term Λ2ij represents network externalities from 2-step
away contacts in the dimension of wealth. According to network theory external-
ities deteriorate with distance, therefore the coefficient for Λ2ij is assumed to be
smaller than the one for xj (Jackson and Wolinsky, 1996; Bala and Goyal, 2000).
After normalizing the coefficients of xj and dij to one, I have chosen to set the
coefficient of Λ2ij to 0.5 as this value increases significantly the number of links:
in the stochastic process described in Step 2 below, ceteris paribus one gets about
30% of existing links if he sets the coefficient of Λ2ijto 0 versus about 60% of
existing links if he sets it to 0.5.

2. I generate multiple pairwise stable networks following this data generation process.
To the best of my knowledge no previous study has proposed a procedure to
generate stable network architectures with externalities, and the task has proven
to be computationally challenging. I program an algorithm which operates as
follows:

(a) The algorithm starts from 30 individual observations and generates the corre-
sponding dyadic sample (870 directed vs. 435 undirected dyads) by randomly
drawing the parameters xj ∼ N(0, 0.1) and dij ∼ N(0, 0.1);

(b) It starts by building a pairwise stable network with no externalities, that is,
it sets gij = 1 if ui(g+ij)−ui(g−ij) = xj+dij > 0 and uj(g+ij)−uj(g−ij) =
xi + dij > 0;

(c) It loops across all dyads in random order for multiple times (rounds) intro-
ducing network externalities. That is, for each dyad ij such that gij = 0
and for each round r, the algorithm first computes the terms Λ2ij and
Λ2ji on the basis of the current matrix of geodesic distances, and then
it evaluates the utilities ui(g + ij) − ui(g − ij) = xj + 0.5Λ2ij + dij and
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uj(g+ ij)− uj(g− ij) = xi + 0.5Λ2ji + dij respectively. If thanks to network
externalities the link results now profitable for both parts involved, the algo-
rithm sets gij = 1 and updates the entire distance matrix (by re-computing
all geodesic distances between all indirectly-connected agents). The loop
continues until there is no change in the entire network architecture for two
consecutive rounds, i.e. until the network stabilizes and the link updating
process stops. The resulting network is a pairwise stable equilibrium with
externalities of the form specified above;

This procedure is repeated 500 times, which produces a dataset of 500 simu-
lated pairwise stable networks. Note that each network is an independent draw
from the underlying distribution which is already purged from omitted variable
endogeneity;

3. For each of these 500 simulated networks I compute the structural regressors
following the procedure P1 in the Appendix;

4. Finally, for each of these 500 networks I estimate Equation (6) as a bivariate probit
with partial observability. This gives me 500 estimated parameters of interest a(2)
for indirect connections Λ2.

Figure 1 plots the non-parametric distribution of the estimated a(2) coefficients using a
Kernel Epanechnikov (bandwidth computed with Silverman’s optimal rule). The light
blue area indicates the 99% confidence interval, while the dark blue dots represent the
frequency of observations.

Figure 1: Simulation results: distribution of a(2)
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The graph clearly shows that the distribution of the estimated coefficients is centered
around the true value of the parameter which is 0.5: indeed, by trimming the 1%
extreme values, the mode of the a(2)’s distribution is 0.48. Overall, this simulation
exercise should reassure the reader that the parameters of network externalities can be
consistently estimated with the computational procedure I propose.

5 Data
My application builds on a large empirical literature on the formation of risk-sharing ar-
rangements in developing countries (Coate and Ravallion, 1993; Grimard, 1997; Ligon,
Thomas and Worrall, 2000; Fafchamps and Lund, 2003; Goldstein, De Janvry and
Sadoulet, 2005).13 Several of these studies estimate dyadic regression models with
relational attributes, and they do not recognize the importance of network architec-
ture.14 I use data from the household survey of Nyakatoke, a small village in the
Buboka rural district of Tanzania. All 307 adult inhabitants of Nyakatoke belonging
to 119 different households have been interviewed in five regular intervals from Febru-
ary to December 2000. This has produced a rich dataset containing information on
households’ demographics, wealth, income sources and income shocks, transfers and
risk-sharing links. These data have been the object of numerous articles (De Weerdt
and Dercon, 2006; De Weerdt and Fafchamps, 2011; Vandenbossche and Demyunck,
2012; Comola and Fafchamps, 2014; Comola and Fafchamps, 2015). In what follows
the (119 · 118)/2 = 7021 undirected household dyads are taken as units of analysis.

Rural villages are an appropriate setting to study network formation, because the
community can be entirely surveyed and because several confounding effects (such as
spatial and informational barriers) can be reasonably ruled out. The village of Nyaka-
toke is isolated (the few unpaved roads leaving the village are hardly passable during
rains) and relatively poor (consumption for adult equivalent is less than 2 US$ a week,
and average food share in consumption is 77%). Households get most of their income
from agricultural activities, especially the cultivation of coffee and banana; other sources
of income are rare and off-farming activities are mostly considered supplementary to
farming. All households are Muslim, Lutheran or Catholic.15

In Nyakatoke risk-sharing is the main strategy to cope with idiosyncratic shocks like
13Among the few theoretical contributions on risk-sharing see Genicot and Ray (2003), Bloch Genicot

and Ray (2008), Jackson Rodriguez-Barraquer and Tan (2012), Ambrus Mobius and Szeidl (2014).
14The exception is Krishnan and Sciubba (2009), who identify the common features of all equilibrium

configurations in a model with negative network externalities and test the model’s predictions against
data on labor exchange arrangements in Ethiopia.

15For additional information on Nyakatoke I remand to Mitti and Rweyemamu (2001) and De Weerdt
(2002).
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sickness, death, crime and court cases, and ceremonies (De Weerdt and Dercon, 2006).
During the first survey round all respondents were asked “Can you give a list of people
from inside or outside of Nyakatoke, who you can personally rely on for help and/or
that can rely on you for help in cash, kind or labour?”.16 I interpret these answers as
proxies for existing risk-sharing links, which are assumed symmetric (i.e. if i is linked
to j then j must be linked to i - even tough ex-post transfers may flow in one direction
only) and bilateral (i.e. mutual consent is needed).17 Therefore I assume that a link
between two respondents exists if either of them declares so, and I draw a link between
the two households they belong to. This provides me with 490 undirected links among
the 7021 households dyads in Nyakatoke.18 The resulting network is dense, with a
mean geodesic distance of 2.5 steps and a maximum geodesic distance of 5 steps. No
household is isolated, and the average number of links is 8.2. The network exhibits all
the empirical regularities of large social networks.19 A graphical representation of the
network is reported in Figure 2.

16The partners who live out of the village (34% of all mentioned partners) are omitted from the
analysis since no information on them is available.

17This interpretation is consistent with the phrasing of the question and the way survey respondents
have understood it. This risk-sharing question was piloted twice, first in the Philippines (Fafchamps
and Lund, 2003) and later in Nyakatoke, and it was adopted in the current form because respondents
understood it and were willing to answer it. Other questions were tried, for instance drawing a
distinction between those you would help and those you would seek help from, but respondents were
confused by the distinction which they perceived as non-existent, and complained they were asked the
same question twice.

18The share of discordant statements is always very high in self-reported data (Fafchamps and Lund,
2003; De Weerdt and Fafchamps, 2011; Banerjee et al., 2013; Liu et al., 2013). This is also the case
in Nyakatoke, where 140 links are reported by both sides and 350 by one side only. If one believes
that risk-sharing links are intrinsically bilateral, the treatment of discordant statements turns into
an assumption on mis-reporting. In my case, whenever i reports a link and j does not, it is equally
legitimate to assume under-reporting by j or over-reporting by i. I choose under-reporting for the
sake of convenience, because few positive outcomes exacerbate the convergence difficulties of partial
observability models. For a structural approach to mis-reporting using the same data I remand to
Comola and Fafchamps (2015).

19The Nyakatoke network has an unique component covering the entire population, the diameter is
in the order of ln(n) and the clustering coefficient (which measures the tendency of linked nodes to
have common neighbors) is 7 times larger than in a randomly generated Poisson network with similar
characteristics. For further details on the so-called small world properties see Jackson and Rogers
(2007).
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Figure 2: Nyakatoke’s network

6 Variables definition
The regressors are illustrative of the type of variables to be included in an analysis of
this kind. In order to proxy for the relational attributes Xij affecting both the probabil-
ity of a link and its utility I use religion and blood bonds: the dummy same religionij
equals one if the two households profess the same religion, and the dummy blood bondij
equals one if a member of household i has a blood bond (child, parents, siblings) with
a member of household j. These variables capture homophyly (i.e. the tendency to
link with similar agents) and have been recognized among the strongest predictors of
risk sharing (Fafchamps and Lund, 2003; Fafchamps and Gubert, 2007; De Weerdt
and Fafchamps, 2011). They also enter the second-step equation, as one can argue
that social proximity decreases the enforcement and monitoring costs of risk-sharing
arrangements (Karlan, 2007).

As exclusion restriction Zij (i.e. a variable which affects the probability of a link
without affecting its utility) I use the geographical distance between the two houses (in
meters). This relies on the assumption that in Nyakatoke there are no informational
and infrastructural barriers, and that the enforceability of risk-sharing arrangements
does not depend on the households’ location within the village area. The assumption
seems plausible since the community is rather small, isolated and densely inhabited
(the average distance between houses of 523 meters and 90% of households live within
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a distance of 1 kilometer from each other); however the usual caveats apply.20

In the second stage the wij equation includes: the relational characteristics Xij,
the partner’s wealth yj and the structural regressors Λφij . The regressors entering
the wji equation are defined analogously. Wealth yj is the total monetary value of
j’s land and livestock assets in Tanzanian Shillings (1 unit=100000 tzs).21 Wealth
is mainly inherited through patrilineal rules and passed down the clan, which rules
out the most pressing inverse causality concerns.22 All structural regressors are also
expressed in Tanzanian Shillings. In Nyakatoke all households are indirectly connected
and the maximum geodesic distance is 5, which implies that externalities from step 1 to
5 are perfectly collinear. However, since the network is rather dense (with an average
geodesic distance of 2.5), readjustments are reabsorbed quickly, so that Λ4ij and Λ5ij are
perfectly collinear for 98.5% of dyads. Therefore, I cap a(φ) < 4. Descriptive statistics
are reported in Table 1.

Table 1: Descriptive statistics
variable mean min max sd
gij 0.070
same religionij 0.354
blood bondij 0.016
distanceij 0.522 0.014 1.738 0.303
wealthj 4.143 0 27.970 3.865
Λ2ij 15.800 -27.970 131.492 13.961
Λ3ij -11.628 -109.922 358.834 18.789
Note: N = 7021 for standard regressors, and N=7021 · 50 for
the structural regressors Λ2ij

and Λ3ij
which are computed on 50

network realizations g1, ..., g50.

7 Analysis
Results are computed on the full sample of 7021 household dyads. In the specifications
where structural regressors are not included standard probit coefficients are reported,

20Since there is no experimental design to be exploited in the Nyakatoke survey, this should be seen
as the best suggestive evidence at hand. On the other hand, collecting direct self-reported information
on desire to link would not have solved the issue, since such data are plagued by self-censoring (Hitsch,
Hortacsu and Ariely, 2010; Belot and Francesconi, 2015).

21Data on land were originally in acres, and were transformed in monetary equivalent with a con-
version rate of 300000 tzs for 1 acre, which reflects average local prices in 2000. For international
comparisons, the exchange rate in 2000 was 1 US dollar for 800 tzs.

22In Nyakatoke customary land tenure laws used to prohibit the selling of land (Mitti and Rweya-
mamu, 2001).
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along with their QAP p-values computed over 250 standard scrambles (see Section A.2
of the Appendix). When the structural regressors enter the specification I drawn 50
network realizations which generates 50 sets of estimated coefficients a(2)1, ... a(2)50
and a(3)1, ... a(3)50 and run 5 scrambles each for a total of 250 observations; if this
is the case, I report both the coefficients’ average and their distribution. As for all
permutation tests, the p-value is computed as the percentage of times that a scrambled
sample’s coefficient lies on the left of the true coefficient of the corresponding network
realization. Coefficients and p-values for marginal effects are computed analogously
(i.e. I locate the observed marginal effect on the distribution of marginal effects under
the null hypothesis).

7.1 First-stage results

Table 2 reports the results from the first-stage probit regression, showing that coeffi-
cients are strongly significant with the expected sign.

Table 2: First-stage Results
dependent variable: geij

(1) (1)
coefficient marginal effect

same religionij 0.2104*** 0.0249***
(0.000) (0.000)

blood bondij 1.7149*** 0.203***
(0.004) (0.000)

distanceij -1.0691*** -0.1266***
(0.000) (0.000)

Notes: probit coefficients and marginal effects reported. p-
values from 250 standard QAP permutations in parentheses
(*** p < 0.01; ** p < 0.05). Constant term included.

Two exercises described in what follows are designed to illustrate the predictive
power of this first-stage regression. First, I compare the network realizations g1, ..., g50
drawn from the fitted probabilities p̂ which I obtain from Table 2 with a uniform-
probability Poisson random network. I generate the uniform-probability network gu

such that each link is formed independently with p = 0.07 (corresponding to the average
expected degree 8.2 of both ge and g1, ..., g50). As a result, the networks g1, ..., g50:

- are better at predicting existing links: g1, ..., g50 predict on average 17% of the links
in ge, versus 7% of gu;

- are much better at capturing the homophyly patterns in the data: for instance, for
those dyads where blood bondij = 1 the links exists in 65% of cases under ge, in
50% to 60% of cases under g1, ..., g50 and only in 10% of cases under gu;
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- are better at replicating the degree distribution: for instance, the percentage of nodes
with degree less or equal to 4 is 19% under ge, 11% under g50 and 6% under gu.

As a second exercise, I compute the structural regressors on the observed network
ge (that I call Λe

2 and Λe
3) which I report in Table 3. When results of Table 3 are

compared with the corresponding statistics Λ1
2, ..., Λ50

2 and Λ1
3, ..., Λ50

3 for the 50 network
realizations g1, ..., g50 (reported in Table 1), they suggest that this fitting procedure
provides a good approximation of the quantities of interest.

Table 3: Structural regressors for ge (N=7021)
variable mean min max sd
Λe

2ij
15.290 -21.740 145.621 18.206

Λe
3ij

-10.525 -108.732 155.466 20.399

7.2 Second-stage results

Table 4 reports the partial observability bivariate probit results for wij, that is, the
willingness of i to link with j (the coefficients for wji are not reported because they are
constrained to be the same). Column (1) refers to the benchmark case where only the
wealth of direct partners affects link formation, while column (2) incorporates network
externalities. The corresponding marginal effects are reported in columns (3) and (4).
Since we have 50 stochastic realizations of the expected network, the reported coeffi-
cients for Λ2ij and Λ3ij in Table 4 are the average over 50 values. Figures 3 and 4 show
that the distribution of these coefficients is well behaved and centered around the mean
- which corroborates the evidence in favor of the fitting procedure.
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Table 4: Second-stage results
dependent variable: wij

(1) (2) (3) (4)
coefficient marginal effect

wealthj 0.0108*** 0.0116*** 0.0032*** 0.0029***
(0.000) (0.000) (0.000) (0.000)

Λ2ij -0.0023** - 0.0006**
(0.012) (0.024)

Λ3ij -0.0011 -0.0003
(0.052) (0.080)

Controls yes yes yes yes
Notes: bivariate probit coefficients and marginal effects reported. P-values in paren-
theses (*** p < 0.01, ** p < 0.05), computed over 250 QAP permuted samples: 250
standard QAP permutations in columns (1) and (3), 5 permutation each for 50 net-
work realizations in columns (2) and (4). Reported coefficients in columns (2) and (4)
are averages over 50 values. same religionij and blood bondij included as controls.

Figure 3: Kernel of the estimated coefficients a(2) for Λ2ij (N = 50)
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Figure 4: Kernel of the estimated coefficients a(3) for Λ3ij (N = 50)

Results show that wealthj is positive and significant across all specifications: as
expected, the wealthier a potential partner, the more desirable a link with him. The
coefficients for Λ2ij , which represents the gain in term of two-step-away wealth, is sig-
nificant and negative. This should be interpreted as revealed preferences over partners’
expected position: “ceteris paribus, I prefer friends whose other friends are few and/or
poor”. On the other hand Λ3ij is not significant at standard confidence level, suggesting
that agents do not (or are not able to, due to the cognitive complexity of the exercise)
take into account the network configuration further away. The absolute magnitude of
the effects is decreasing in the geodesic distance, as theory predicts.

The network literature has modeled positive externalities in non-rivalry contexts
such as information flows and public goods, and negative externalities in the context
of strategic competition and rival goods (Jackson and Wolisky, 1996; Goyal and Joshi,
2006a and 2006b; Morril, 2011). Risk-sharing arrangements in developing countries
are an intriguing example which may combine both types of externalities: indirect
connections are useful if benefits spill over link, but detrimental if goods are rival. The
absence of positive network externalities is not surprising, since in Nyakatoke most
economic benefits are tied to agricultural resources which are rival by nature.23 This
can produce a competition mechanism over the number of indirect partners (i.e. many
connections dilute the effort and the advantage for each of them). Alternatively, this
result can be interpreted in terms of strive for social status. From previous work on

23See Mitti and Rweyamamu (2001) for anecdotal evidence on free gift of land for cultivation of
seasonal crops and casual labor among partners.
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patron-client relations we know that asymmetric exchanges, where the wealthy partner
provides economic help in exchange of non monetary incentives like esteem and social
status, are the norm in agrarian societies (Breman, 1974; Fafchamps, 1992; Platteau,
1995; Platteau and Seki, 2007; Platteau and Sekeris, 2010). In this context villagers
may prefer to link with those with high social status, that is, those that are engaged in
many asymmetric relationship of the patron-client type with poorer partners. However,
both interpretations are speculative and beyond the illustrative scope of this exercise.

8 Conclusions
This paper proposes a structural econometric model to estimate network externalities
from indirect connections. The approach is computationally simple, and builds on local
pairwise stable conditions in order to estimate individual incentives to deviate from the
status quo. The proposed two-step estimator addresses omitted variable endogeneity in
the context of a simultaneous link announcement game with partial information. When
the estimation protocol is applied to risk-sharing data from the Tanzanian village of
Nyakatoke, results suggest that the network architecture has indeed an explanatory
value. Network externalities in the dimension of wealth are found to be negative, which
can be interpreted as a competition mechanism for partners’ wealth and/or social status.

While network theory has extensively modeled how local topology provides incen-
tives to link formation, empirical evidence lags behind. This paper is an attempt in
this direction, showing that one might still make valid inference about some aspects
of preferences over networks, including network externalities, when data on a single
network are available.
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Appendix: Computational details
This section describes the computational steps to run the estimation protocol of Section
3. In particular, Section A.1 explains how to compute the structural regressors of
Section 3.1, while Section A.2 shows how to implement the two-step estimator of Section
3.3 along with an appropriate permutation test to compute confidence intervals.

A.1 Structural regressors

The following procedure explains how to compute Λφij and Λφji of Equation (6) for a
given network architecture g.

Procedure P1

For each dyad {ij}:

1. generate the two adjacency matrices g+ ij and g− ij (where you set gij = 1 and
gij = 0 respectively and keep the rest of g as given). By construction one will be
the network and the other the dyad-specific counter-factual;

2. use an iterative graph search algorithm (for instance the one by Dijkstra, 1959)
to generate the two matrices of geodesic distance τg+ij and τg−ij;24

3. combine τg+ij with the vector y to obtain λ+iji,φ and λ+ijj,φ (i.e. the sum of wealth of
all nodes φ-step-away from i and j respectively under g+ij) for all φ = 2, ..., N−2;

4. repeat step 3 for τg−ij;

5. combine the outputs from steps 3 and 4 and obtain the 2(N − 3) structural
regressors of interest (Λφij and Λφji for φ = 2, ..., N − 2).

A.2 Confidence intervals

As sampled agents are the same across dyads, decisions to link are typically not in-
dependent of each other. This invalidates inference unless confidence intervals are
computed in an appropriate manner. When data belong to a single population, there
are two available solutions: the dyad-specific robust covariance matrix (Fafchamps and
Gubert, 2007), and dyad-specific permutation tests. I choose the latter approach and
use the quadratic assignment procedure (QAP), a re-sampling technique specifically
designed for dyadic data. In standard permutation tests data are repeatedly scrambled
in a way which is consistent with the null hypothesis (i.e. the hypothesis that the

24This can be time-consuming, as it involves computing two distance matrices of dimension N ×N
through a graph search routine which must be repeated N(N − 1)/2 times.
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true coefficient of a variable of interest is zero). By constructing the distribution of
the coefficient under the null hypothesis and locating the observed coefficient β on this
distribution, the researcher is computing the p-value: if at least 95% of the coefficients
computed on the permutation samples lie on the left of the observed β one can reject the
null hypothesis with 5% significance level. Standard permutation tests yield consistent
inference in a large range of situations (Good, 2000). The QAP method is a specific
permutation design for dyadic data which has been widely used in social network anal-
ysis (Hubert and Schultz, 1976; Krackhardt, 1987; Nyblom et al., 2003; Eagle, Pentlan
and Lazer, 2009). In each QAP-permuted sample rows and columns are scrambled the
same way: if the k and m rows of the relational variable X are permuted, then the
k and m columns are permuted as well. This scramble design preserves the dyadic
correlation but eliminates any relationship between variables, allowing the estimation
of confidence intervals under the null hypothesis. The QAP test explained in Steps 5-7
below runs on multiple network realizations, in order to take into account the stochastic
variability of the data generating process.

Procedure P2

1. Run the first-stage dyadic probit regression Pr(geij = 1) = Pr(γ + δXij + ϑZij ≥
υij), where the relational attribute Zij meets the exclusion restriction, and gen-
erate the probability distribution p̂ such that p̂ij is the fitted probability that
geij = 1;

2. Generate K network realizations g1, ..., gK by taking K Poisson draws from p̂;

3. apply Procedure P1 to each of these K network realizations and obtain K sets of
structural regressors Λ1

φ, ...,Λ
K
φ ;

4. for each k = 1, ..., K estimate Equation (6) using Λk
φ and obtain the second-stage

coefficients ak = [a(1)k, ..., a(N −2)k]
′. This gives K sets of unbiased coefficients

a1, ..., aK ;

5. for each k = 1, ..., K generate M QAP samples which permute Λk
φ under the null

hypothesis by preserving the order of rows and columns;

6. for each k = 1, ..., K and m = 1, ..., M estimate the permuted coefficients amk =
[a(1)mk , ..., a(N − 2)mk ]′. This gives K ·M sets of permuted coefficients a11, ..., aMK
for hypothesis testing;

7. compute the p-values for the second-stage coefficients of Step 4 on the basis of
the K ·M permuted coefficients of Step 6. That is, the p-value of yj is computed
as the percentage of times that a(1)mk < a(1)k. Similarly, the p-value of Λ2ij is
computed as the percentage of times that a(2)mk < a(2)k.
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