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Abstract

We design a laboratory experiment to investigate matching in a decentralized
market of deferred acceptance. Agents are undifferentiated and may have multiple
partners; their payoff depends on who they match with. The experiment is de-
signed in such a way that a stable configuration exists, but cannot be eyeballed by
the participants due to the computational complexity of the game. In spite of this,
subjects are remarkably good at reaching a stable match, even when the payoffs
of others are not publicly observed. More information does, however, speed up
convergence thanks to self-censoring. We trace irrational matching choices mostly
to two sources: the tendency of over-think in a setting where strategic thinking is
not necessary, and the reluctance to accept matching offers from those who have
been disloyal in the past.

JEL codes: D85; C91; C92
Keywords: Decentralized matching; deferred acceptance; information; loyalty

∗We have benefitted from comments from Michele Belot, Doug Bernheim, Francis Bloch, Yann
Bramoullé, Tim Carson, Nicolas Jacquemet, Vai-Lam Mui, Muriel Niederle, Al Roth, Jean-Marc Tallon
and participants to seminars in Stanford University, Monash University, the Paris School of Economics,
Stockholm School of Economics and Cal Poly, as well as from participants to the conferences of
Belgian Economists (2014) and of French Experimental Economics Association (2015). Funding for
this research was provided by the Paris School of Economics.
§Paris School of Economics : margherita.comola@psemail.eu
¶Freeman Spogli Institute for International Studies, Stanford University: fafchamp@stanford.edu

1



1 Introduction

Stable matching theory has inspired several market design experiments, such as the as-
signment of medical interns to hospitals (Roth and Peranson 1999), students to schools
(Abdulkadiroğlu et al. 2005), and transplantable kidneys to patients (Roth, Sönmez and
Ünver 2005a,b). In all these applications the solution is centralized, i.e., the preferences
of participants over potential partners are first elicited, and then a central clearinghouse
applies an algorithm that yields a stable match. Two types of difficulties arise in this
framework. First, the algorithm may yield multiple stable matches or no stable match –
both of which create problems for the clearinghouse.1 The second difficulty arises when
participants cannot costlessly rank all potential partners. As a result, they typically
provide a truncated ranking, either by design or by choice. This is known to distort
the truthful revelation of preference rankings, e.g., naive participants only list their
top choices while sophisticated participants strategically influence match selection.2 To
avoid these shortcomings, we focus instead on a decentralized market with deferred
acceptance. Decentralized markets do not require ex ante preference revelation. But if
deferred acceptance is not enforced, it is often in the interest of some agents to make
explosive offers, which leads to unraveling (e.g., Kagel and Roth 2000). These features
have been documented in numerous real markets (e.g., Roth 2016) and have been shown
to arise experimentally (Kubler et al. 2016).

In this paper we set up a decentralized market with enforced deferred acceptance and
we study, not in theory but in practice, whether the sequencing of offers and counterof-
fers leads to a stable match. There are two general motivations for this experimental
design. First, there are many behavioral reasons why individuals may adopt strategies
that do not lead to a stable outcome: for instance, they may show inertia and stick

1For instance, in one-to-one two-sided markets, it is well known that multiple equilibria arise due
to the presence of ties. In this case, who gains the most from the match depends on which side (i.e.,
bride or groom) makes offers. This enables the algorithm operator to affect the distribution of welfare
gains across market participants.

2See Calsamiglia, Haeringer and Klijn (2010) who investigate preference manipulation when subjects
have to submit a limited number of options in a school choice mechanism. In a more distant vein,
Roth (1991) and Chen and Sonmez (2006) discuss strategic preference manipulation when subjects
can submit a full list of their preferences.
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to early acceptances; they may stop making offers too early; they may seek to prevent
stable matches for selfish or invidious reasons; or they may form inefficient links for al-
truistic reasons. If decentralized matching with deferred acceptance is unable to reach
a stable match, this may justify favoring centralizing matching despite its limitations.
Our second motivation is that it has now become conceivable to implement decentral-
ized markets with deferred acceptance online. We therefore would like to know how
close such structured markets can get to a stable match in situation where we know
what the stable match is.

The experimental literature on decentralized matching is not large.3 Our experi-
mental design is conceptually closest to the paper by Echenique and Yariv (2013), with
three important differences. First, they study a one-to-one two-sided matching problem
inspired of the Beckerian marriage market; we study a many-to-many one-sided match-
ing problem aimed at representing a networked market for collaboration or exchange.
Despite the pervasiveness of real-life examples of decentralized networked markets, the
topic has received little attention from economists. Such a general matching frame-
work is more complex to solve for a stable match than a marriage-market setting, and
has never been approached experimentally. Second, while Echenique and Yariv (2013)
impose complete information regarding other participants’ preferences, we exogenously
vary the amount of revealed information. This leads us to conclude that preference
revelation is not crucial for the market to reach stability. Third, while Echenique and
Yariv (2013) focus on equilibrium selection, we study the individual motivations that
may lead players to make choices that are irrational from a payoff-maximization per-
spective.

We set up an intuitive protocol for market interactions where participants are free
to make and accept offers in a sequential and fairly unconstrained manner. This ap-
proach has similarities to, say, an auction or a stock market floor, in the sense that
the action space and sequence of actions are regulated. But, within those constraints,
the mechanism is decentralized and interactive and is fashioned along the lines of a

3See Nalbantian and Schotter 1995; Kagel and Roth 2000; McKinney, Niederle and Roth 2005;
Ünver 2005; Eriksson and Strimling, 2009; Niederle and Roth 2009; Pais, Pintér, and Veszteg 2012;
Echenique and Yariv 2013.
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Gale-Shapley matching algorithm. Formally, subjects are asked to match with up to
two other experimental subjects. The game is organized as a sequence of rounds in
which subjects take turns in making offers to other subjects, who can accept or reject
them. In contrast to matching games that iterate on links (e.g., Carillo and Gaduh
2016), we iterate on players who, like in a game of monopoly, can take several actions
when it is their turn. The game stops when an entire round occurs without any change
in held offers.

When their turn comes, agents who already hold two partners can make a new offer,
but if the new offer is accepted they must drop one of their previously accepted links.
The same principle holds when accepting an offer: subjects can never hold more than
two partners and thus, if they already have two links, they must drop one of these two
links if they want to accept a new offer. Gains are determined by the matches subjects
hold when the game ends.4 Payoffs are pair-specific, that is, fully heterogeneous across
players and across matches.5 Because of tractability issues, a payoff structure of this
kind has been rarely investigated in theory and, to the best of our knowledge, never
experimentally. In our game the existence and number of stable matches is entirely and
uniquely determined by the payoff matrix. We only retain payoff matrices that allow
(at least one) stable configuration and discard those that have no stable match.6

The first objective of the paper is to see whether subjects converge to a stable
match. By structuring the decentralized market along the lines of a Gale-Shapley
matching algorithm, we ensure that in our context if subjects follow myopic rational
play, convergence to a stable match is guaranteed. Whether this is indeed the case

4In this paper only direct partners affect individual payoffs – i.e., there are no externalities across
subjects generated by the matching pattern. In addition, subjects cannot negotiate over price, a feature
common to much of the matching literature. For experiments on bargaining in networks see Charness,
Corominas-Bosch and Frechette (2007), and Agranov and Elliott (2016).

5This payoff structure mimics the interaction of common preferences and homophyly, which are
believed to be the two main forces behind matching processes in real-life contexts. This can easily
be shown with a simple model displaying heterogeneity along two dimensions: each player is endowed
with an individual parameter qi representing his quality as a partner (common preference), each pair
of player is assigned a relational parameter dij representing their socioeconomic distance (homophyly),
and the payoff of i from matching with j is qj − dij .

6The number of stable matches (as well as their characteristics) is verified by enumeration – see
Sections 2.4 and 3.3 for details.
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in practice needs to be demonstrated experimentally. There are indeed many reasons
why subjects may deviate from myopic rational play – e.g., they may seek to outsmart
others, or they may pursue objectives other than the maximization of their own payoff.
Since the experimental design allows us to track all offers and acceptances, the second
objective is to identify behavioral patterns that may lead subjects away from a stable
match. In order to shed light on this second point we introduce four treatments testing
different hypotheses regarding the role of information and frictions in decentralized
markets of deferred acceptance.

In the first and most important treatment we provide full information about other
players’ payoffs. This stands in contrast to the control experiment where subjects
only observe their own payoff vector. Complete information is a rather implausible
assumption for both the coordination and the cognitive capacity it requires, even more
so in a complicated matching game like ours. The theoretical literature on two-sided
decentralized markets has claimed that complete information is necessary to attain
stability (Haeringer and Wooders 2011; Niederle and Yariv 2011), while some empirical
evidence suggests that lack of information per se in not enough to drive two-sided
markets away from stability (Pais, Pintér, and Veszteg 2012). In our context the role
of full information is a priori unclear. On one hand, full information may speed up
convergence if better informed subjects refrain from making offers that are doomed to
be rejected. On the other hand, within the time constraint of the experiment, it is
impossible for subjects to pin down the stable configuration even when information is
fully disclosed. Consequently, full information may just confuse players and even drive
them away from the stable match.

Three other experimental treatments are introduced, representing market frictions
which may play a role in networked markets. In the second treatment we allocate sub-
jects two randomly assigned partners at the beginning of the game. Subjects in the
control experiments begin with no partner. This initial configuration does not affect
what the stable match is, since it is fully determined by the payoff matrix. However, if
subjects display inertia or loyalty to existing partners, we expect a lower rate of con-
vergence to stability when subjects start the game with randomly assigned partners. In
the third treatment we introduce so-called unbalanced games where the stable match
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includes players with less than two links. If play is affected by fairness considerations
(e.g., Fehr and Schmidt 1999, Blanchflower and Oswaldt 2004), players may seek to
‘co-opt’ these unfortunate players, thereby reducing the rate of convergence to a stable
match. In the fourth treatment, we investigate the issue of multiple equilibria which has
been a key preoccupation for matching theorists. In particular, we study whether diffi-
culties arise when the game admits two stable matches – e.g., because of coordination
failure.

We find that experimental subjects reach a stable match in 86% of the games. This
is remarkably high, and virtually identical to the 85% rate reported by Echenique and
Yariv (2013) for a marriage market with full information, even though our setting is
more complex. Furthermore, even when a stable configuration is not reached, most
realized links belong to a stable match even if some of them do not. Match stability
thus predicts the overwhelming majority of realized links in spite of the fact that the
complex nature of the game makes it impossible for subjects to calculate the stable
match. We also find that information on others’ payoffs speeds up convergence via self-
censoring, but it is not essential for reaching a stable match: players overcome their
lack of information by experimenting with offers and counter-offers. We find little or
no evidence that play is affected by inertia or other-regarding preferences (altruistic
or invidious), but some observed behavior is consistent with a satisficing heuristic.
Irrational matching choices seem driven by two main factors. The first one is a tendency
to over-think: players attempt to act strategically in a setting that does not require
either strategy or coordination – myopic rational play is guaranteed to reach a stable
match. Secondly, players seem to condition their offers and acceptances on past play,
i.e., they seem reluctant to match with players who have rejected them before, even
when doing so is in their material interest.

The paper contributes to the existing literature in several ways. First, our exper-
imental results contribute to the matching literature by confirming that decentralized
markets of deferred acceptance have a strong tendency to converge to a stable match,
even with no information about others’ preferences. Information has been regarded as
crucial by matching theorists (Haeringer and Wooders 2011; Niederle and Yariv 2011);
our findings show that subjects can circumvent the lack on information by experi-
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menting with competitive offers. Secondly, we contribute to the growing experimental
literature on network formation.7 Only a few experimental papers have dealt with bi-
lateral link formation, perhaps because of the issue of equilibrium selection (Deck and
Johnson 2004; Di Cagno and Sciubba 2008; Burger and Buskens 2009; Conte, Di Cagno
and Sciubba 2009). Out of those, only two papers explicitly focus on stability (Carrillo
and Gaduh 2012; Kirchsteiger et al. 2016).8 Both take pairwise stability as equilibrium
concept, which only requires links to be robust to individual deviations (Jackson and
Wolinsky, 1996).9 The stability concept we adopt borrows from the matching litera-
ture in that it allows for two-players deviations. In addition to its predictive power
demonstrated by our experiment, this concept has several theoretical advantages: it
dramatically decreases the set of equilibria relative to pairwise stability,10 while only
considering deviations that require minimal coordination without the need for farsight-
edness (Kirchsteiger et al. 2016); and it naturally suits competition for partners in
decentralized markets. In the theoretical literature on network, this equilibrium con-
cept has been called ‘strong pairwise stability’ by Belleflamme and Bloch (2004). In
this paper we use the term ‘stable match’ or ‘stable configuration’ for a network config-
uration that is stable in the sense of the matching literature and strong pairwise stable
is the sense of Belleflamme and Bloch (2004).

The paper is organized as follows: Section 2 introduces the matching process and
the experimental design, Section 3 provides information about the four main treat-
ments, and Section 4 discusses the results. More treatments are discussed in Section
5, and Section 6 concludes. Figures and tables are reported at the end of the paper.
Screen shots from the computer interface are illustrated in Appendix A. The written
instructions for players are reproduced in Appendix B.

7Gathering evidence on network formation from field data is problematic because of the many
confounding factors such as unobserved heterogeneity and homophyly. Lab experiments provide a
valid alternative – see Kosfeld (2004) for a survey.

8Kirchsteiger et al. (2016) incorporate an element of farsightedness into the notion of stability and
provide experimental evidence rejecting myopic behavior. Carrillo e Gaduh (2012) study individual
behavior and convergence to the stable network configuration in games admitting unique, multiple, or
no equilibria respectively.

9To satisfy pairwise stability, an equilibrium shall contain only and all the links that are beneficial
to both parties involved.

10In our game, any configuration with two links per player is a pairwise stable configuration.

7



2 Experimental design

We design an decentralized and sequential matching protocol that has three key fea-
tures: (1) deferred acceptance is externally enforced; (2) at no point of the game players
can ‘hold’ more than their allowed number of links; and (3) the sequencing of offers and
acceptances is orderly and fair-handed, as in a board game. We implement this protocol
with a player interface specifically designed to be visual and intuitive. As will become
apparent later, this interface is simple and can easily be generalized to other settings
– including real life matching applications. The main research question is whether, in
this specific gaming environment, players can reach a stable match.

2.1 The game

Participants play a sequence of four games together. Each game is a decentralized
matching game with deferred acceptance organized along the lines of a Gale-Shapley
matching algorithm. The purpose of the game is for each player to form two links so
as to maximize their payoff. To this effect, players make linking offers to each other.
If an offer is accepted, it is ‘held’ by both players as part of their prospective links.
The process of offers and counteroffers takes place over time in an interactive and
sequential manner. When accepted links no longer change, the game stops and payoffs
are calculated based on the links held at the end of the game. This mechanism enforces
differed acceptance and prevents unraveling.

Formally, each game is divided into a sequence of up to 8 rounds. Within a round,
each player gets his turn to play – as in a board game except that the order of players
within a round changes randomly across rounds.11 When his turn comes, the selected
player is allowed to make offers to each of the other players, one at a time. Each of
these offers is in turn either rejected or accepted, although acceptance is not immediately
binding. At each moment of the game, a player can only hold a maximum of two links.

11Randomization within rounds is reminiscent of a random serial dictator design, the benefit of which
is to break ties and to ensure convergence to a single stable outcome. It offers the same advantage here,
i.e., to potentially break indeterminacy in the presence of multiple stable matches. Re-randomization
across rounds is used to reduce the risk of cycles.
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When the game ends, acceptances become final and the set of matches determines the
players’ gain for that game. More details are presented below.

The main advantage of this game protocol is that it is intuitive to participants.
Making and receiving offers is something people seem to be familiar with in their every-
day life – e.g., making an offer on a flat, procuring a service from a contractor, inviting
someone for dinner. Selecting a matching process that allows a natural form of inter-
action increases the likelihood that our experiment brings to light behavior patterns
that are predictive outside the lab. Much care was also devoted to creating a computer
interface that is both informative and intuitive for players.

In what follows we start by describing the practical conditions under which the
experiment was held and we introduce the details of the protocol.

2.2 The protocol

At the beginning of a session, players are randomly divided into groups of 6 players, and
assigned a letter identifier from A to F . Each group plays four games with each other.
The composition of the group remains unchanged across the games but letter identifiers
are reshuffled at the end of each game. This is done to avoid individual reputation
effects.12 Each game follows the sequence of rounds and turns described above. Within
a round, each player gets his turn to play and the order of players changes randomly
across rounds. The game ends when the network configuration remains unchanged
for one entire round (i.e., 6 turns with no change). Put differently, during this last
round each player had the opportunity to drop links – but did not – and could make
offers – but if he did, they were not accepted. This gives players a last opportunity to
undo previous mistakes. In a Gale-Shapley algorithm, a weakly dominant strategy is
for players to always make all the offers that dominate the links they currently hold.
We did not want to discourage this strategy since it ensures convergence to a stable

12Each player sees on the screen a circle with himself at the bottom (“ME” - followed by his current
letter) and the other 5 players around, labelled with their respective letters. While ME stays always at
the bottom, the other players’ letters are visualized in clockwise order (i.e. C will be always between
B and D). We reshuffle the individual identity at the end of each game, for instance a certain player
can see himself as “ME (D)” in a game, and then in the following game he sees himself as “ME (A)”,
and all other identities have been reshuffled accordingly.
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match. The stopping rule nonetheless implies that nobody can prevent convergence by
indefinitely making offers. The game also stops at the end of the 8th round, whichever
happens first. This feature eliminates the possibility of endless cycling.13

There are two types of situations in which players act: when it is their turn to
move, and when they are responding to an offer from another player. For simplicity, we
call the first role ‘mover’ and the second ‘respondent’. Within his own turn, a player
(‘mover’) can take actions of two types: (1) he can sever a link he holds; and (2) he
can make an offer to another player he’s currently not linked to. Each of these actions
is called a move. A mover can never hold more than two links at any given moment:
if he already holds links to two other players and makes a new offer, he must specify
which existing link he is willing to drop in case the offer is accepted.14

Within his turn the mover can do multiple moves of the types explained above,
in a sequential order of his choice: he can sever one or more links, and he can make
offers to some or all the other players. To avoid cycling within the same turn, we only
impose that a mover can: (1) unconditionally sever only the links he holds when the
turn began; and (2) only propose new links that did not exist at the beginning of the
turn.15 Movers have 15 seconds per move. If they fail to take any action, by the end
of the 15 seconds they are considered having forfeited their turn and the game moves

13In practice, this limit is very rarely binding, and we observe that convergence is very quick in the
large majority of cases: out of the 96 games in the main sample, 36 games converged already by the
2nd round, 79 games converged by the 4th round, and only 5 games reached the 8th round without
having converged.

14For instance, if mover A already has two partners B and C, and makes an offer to D, mover A must
first specify which partnership, B or C, he would like to sever in case D accepts the offer. This decision
must be made before knowing whether D accepts the offer, and it is implemented automatically if the
offer is accepted.

15This means that, within a turn, a mover can only make a maximum of 5 offers (fewer if he already
already has links). But nothing prevents a mover to re-propose the same match when it is his next
turn to play. Also, a match can be formed and severed within the same turn, but only as a consequence
of getting another offer accepted. Here is an example of a particularly long but feasible sequence of
moves: starting with no matches, player A makes an offer to B; the offer is rejected; A makes an offer
to C; the offer is accepted (A now holds one partner); A makes an offer to D; the offer is accepted
(A now holds two partners); A makes an offer to E and commits to drop C if accepted; the offer is
accepted (the match with C is dropped and the match with E is added); A makes an offer to F and
commits to drop E if accepted; the offer is rejected. Since A has made offers to all other players within
this turn, he cannot make any more offers and his turn ends for this round.
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onto the next player. However, they can make multiple moves during their turn, and
for each move the 15-second limit applies.

During another player’s turn, any player (‘respondent’) may be called on to accept
or reject an offer. If the respondent holds less than two partners, he can either accept
or reject the offer directly. If the respondent already has two partners, he has to
specify which of these two links will be severed just before accepting an offer.16 If the
respondent decides not to drop one of his two partners, the offer is considered rejected.
Respondents have 15 seconds to accept or reject an offer. If they do not take any action
within that time interval, they are considered as having rejected the offer, and the game
continues. Since each player can only make 5 offers in total during his turn, and each
offered player has 15 seconds to respond, the duration of a player’s turn has a time
limit.17

All offers made and received remain private information between the two players
involved until an offer is accepted and a new link is formed.18 A description of the
computer interface is given in Appendix A, including detailed examples of the game
environment and players’ actions.

2.3 Payoffs

A key feature of our experiment is that payoffs are pair-specific, that is, fully hetero-
geneous across players and matches. To illustrate, let i’s payoff from matching with j
be denoted πij.We do not require that πij = πji, that is, we do not impose that two
players benefit equally from the match. In other words, j may be the most desirable

16For example, suppose that mover A proposes to D who already holds two partners, say E and F .
Respondent D wishes to accept A’s offer. To do so, D must first specify which partner, E or F , he
drops when accepting A’s offer. This guarantees that D never holds more than two matches.

17The absolute maximum is to make 5 offers and to sever one or more links, which could last up to
3 minutes: 5× 15 seconds for each offer +5× 15 seconds for each respondent +2× 15 seconds for each
link cancellation = 180 seconds. In practice, a player’s turn lasts much less than this because players
make fewer than 5 offers each turn and take less than 15 seconds to make or respond to an offer.

18To illustrate, imagine that player A has two partners (B and C) and player D also has two partners
(E and F ): if during his movement A makes an offer to D by conditionally dropping B but the offer
gets refused, neither B (directly involved) nor C,E and F will ever be informed of the offer made. On
the other hand, if the offer is accepted everyone will see the new network configuration immediately
appearing on the screen.
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partner for i even though i is the least desirable partner for j. We also do not require
that πij = πkj, that is, we do not impose that two different players value matching with
j equally: j may be the most desirable partner for i but the least desirable partner for
k.19 The lack of correlation between πij and πkj means that my payoffs are not infor-
mative about others’ payoffs: if information about other players’ payoff is not provided
in the experiment, players cannot infer anything from their own payoffs. To eliminate
ties, we impose that each player has a strict ranking over all other players (πki 6= πkj

for any k, i and j). Operationally, this is achieved by setting a payoff vector of the form
[10, 30, 20, 50, 40] for all players, and to set the order of the five values independently
for each player.

Because randomization is player-specific, it can happen that one player is more
desirable for all or most other players. For instance, it is possible that, in some game,
the payoff matrix is such that πAB = πCB = πDB = πEB = πFB = 50. In this case,
player B is the most desirable partner for all subjects. Since players can only hold two
partners, this means that not everyone will be able to match with B. In this particular
case, we would expect B to receive offers from everyone, and to accept those that are
the highest, those worth 50 and 40 to him. Alternatively, a player, say C, may only be
desirable for players from whom C would gain little. In this case, C may only secure a
low payoff. The point of these examples is to draw the attention to the fact that payoffs
need not be equalized across players even though they all face the same five values in
their payoff vector.

The gain of each player at the end of a game is the sum of the payoffs from the
matches he holds when the game stops.20 Remaining unmatched generates a payoff of
zero. At the end of the experiment, we randomly draw one of the four games played
by the group in the session, and players receive the monetary equivalent of their gain
for that game.21 This ensures that participants have a material incentive to form the
most profitable matches in each of the four games they play.

19In the parlance of the marriage market literature, the latter condition is equivalent to assuming
no common preferences.

20For instance, if i is matched to j and k, then i’s payoff for that game is πij + πik.
21The conversion rate was 0.2 euros per point, plus a fixed payment for participation.
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2.4 Stable matches and convergence

As mentioned in the introduction, the existence and number of stable matching pro-
files is uniquely determined by the payoff matrix. To identify and count these stable
matching profiles, for each payoff matrix we solve the matching game numerically, by
enumeration. This involves looping through all possible network configurations to ver-
ify whether they are stable or not. This stable matching profile is then known to the
researcher, but unknown to the players – who, even with full information about the
payoff matrix, would need a superhuman algorithmic brain to identify a stable match.

We investigate the convergence properties of the game along two key dimensions.
First, we conduct a simulation analysis investigating the distribution of stable configu-
rations across randomly selected payoff matrices.22 As is the norm in matching games, a
stable match is defined in terms of two-player deviations – i.e., can two players improve
their payoff by dropping one of their existing links and linking to each other instead.23

We find that only 8% of games do not admit a stable match. Of the remaining games,
the large majority (73%) admit a single stable configuration. Only 18% of games admit
two stable configurations, and almost none (0.4%) admit three. No game had more than
three. For the experiment, we only retain payoff matrices that admit one or two stable
configurations. These simulation results should reassure the reader that our analysis is
not confined to unusual cases.

Secondly, we simulate how each game would unfold if players followed myopic ratio-
nal play, defined a weakly dominant strategy where they make all possible dominating
offers and accept all dominating offers. All the rules are the same as in the lab ex-
periment, except that agents are replaced with a simple payoff-maximizing heuristic:
when it is their turn to play, simulated agents make linking offers to all profitable po-
tential partners, starting with the link that gives them the highest payoff. If an offer
is accepted, they drop the least desirable link that they are currently holding. When
responding to an offer, simulated agents always drop their least profitable link to accept
a payoff-increasing link. We apply this algorithm to all the payoff matrices used in the

22The results are based on 500 randomly drawn payoff matrices.
23In the context of network formation, this has been called ‘strong pairwise stability’ by Belleflamme

and Bloch (2004).
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experiment. Results show that convergence to a stable match is achieved in all cases,
within 5.4 rounds on average. Since the above simulation essentially implements a Gale-
Shapley algorithm adapted to our setting, this result reconfirms that convergence to a
stable match is guaranteed, provided that such a match exists – something we ensure
by selecting the right payoff matrices.

3 The main treatments

Our experimental protocol naturally produces multiple sources of experimental varia-
tion in the base game – such as the variation in payoff vectors across players and the
variation in the order of turns within rounds. We also introduce four main treatments
described below. Two additional modifications to the main protocol are discussed in
Section 5.

3.1 Information

In the control games, players only observe their own payoffs (i.e. i only observes πij
for all j). In other words, they can only tell which partners are most beneficial to
themselves. We introduce a full-information treatment (called T1) in which players can
observe the payoffs of all other players. Operationally, this is achieved by introducing
an additional functionality to the screen: in a full information game, i can observe the
payoff vector of any other player j by hovering the mouse over j’s icon.24 Figure A2
shows a snapshot of the screen that players see during a game with full information
when hovering their mouse over another player’s icon. We see the screen of player F
at a particular moment of the game when it is F ’s turn to play: he holds no matches
and he is currently browsing the payoffs vector of A before deciding whether to make
him an offer. Figure A2 is a good illustration of the considerable development effort
that went into designing a player interface that contains all the relevant information

24Even in the full information treatment, players may decide not to check other players’ payoffs.
A proper understanding of this functionality is carefully tested during the training session. We also
record how much time players spend browsing the payoffs of others, which is used in the regression
analysis.
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but remains intuitive and visual, so as to keep the cognitive burden of the game as low
as possible. In games where players can only observe their own payoffs, this hovering
feature is switched off (Figures A7-A9).

In the context of our game, the role of information is a priori unclear. On the one
hand, by accessing this information, a player may gain an idea of the likelihood that an
offer would be accepted. As a result, players may refrain from making offers they think
will be rejected – perhaps because rejection entails a psychological cost (e.g., Hitsch
Hortacsu and Ariely 2010, Belot and Francesconi 2013). Self-censoring of this kind may
speed up convergence: less time is spent making doomed offers.

On the other hand, even with full information, players cannot compute the stable
configuration by themselves – the game is too complex for that. It is therefore hard
to imagine why information should be crucial for players to attain stability: the game
is complex but, as illustrated by the simulations discussed above, players do not need
information or complex strategies in order to converge to the stable match – myopic ra-
tionality will suffice. Given this, observing others’ payoffs may prove to be a distraction:
players may react to this information overload by adopting complex but incompatible
strategies in a setting where strategic behavior is not necessary, and where computing
the equilibrium is not an amenable mental calculation.

3.2 Initial configuration

In the base game, the initial configuration is empty – i.e., players start the game with
no link. Our second treatment introduces games in which all players start with 2
randomly-assigned partners. We call this T2 in the regression analysis of Section 4.

When players start with no link, their initial payoff is 0. They thus have an incentive
to make offers in order to achieve a positive payoff. In contrast, when a player starts with
two partners, the player can obtain a positive payoff without doing anything. This may
induce them to do nothing, for a variety of causes. One possibility is the presence of an
endowment effect that creates a reluctance to drop assigned partners (e.g., Kahneman
Knetsch and Thaler 1991, Rabin and Thaler 2001, Koszegi and Rabin 2009). Another
possibility is that players follow a satisficing heuristic (e.g., Simon 1956, Nelson and
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Winter 1982), i.e., they stop trying to improve on a satisfactory outcome by making or
accepting new offers. It is also conceivable that players feel some (misplaced) loyalty
towards players to whom they have been matched at the beginning of the game – a bit
like pupils who have been randomly assigned a seat in the class and feel some sense of
loyalty towards the pupil in the seat next to them. If any of the motivations above is
present among our experimental subjects, we expect a lower rate of convergence to a
stable configuration under T2.

3.3 Unbalanced vs. multiple stable matches

Some of the experimental variation across games stems from differences in payoff ma-
trices. One dimension that we have already discussed is whether the payoff matrix
supports one or two stable matches. In the case of a single stable match, a second
dimension of variation is whether in this stable configuration each player has two links
– in which case we call the game ‘balanced’ – or whether some players have fewer than
two links – in which case we call the game ‘unbalanced’.

In a balanced game, all players have 2 partners each, and there are 12 links overall.25

All control games are balanced. In the third treatment (called T3) we introduce ma-
trices for which the stable configuration is ‘unbalanced’ in the sense that it contains 10
links only.26 In unbalanced games, the number of partners and thus payoffs are more
unequally distributed. Hence, if matching is affected by other-regarding preferences
such as fairness (e.g., Fehr and Schmidt 1999, Blanchflower and Oswaldt 2004), ceteris
paribus we expect a lower likelihood of convergence to the stable configuration in an
unbalanced game.

We define control games as having a single stable configuration. We define games
with two stable matches as forming a fourth treatment (called T4).27 When a game has
a single stable match, the order of turns (which is randomly assigned) should not matter

25There are only two feasible configurations in this case: either all six players form a circle; or they
form two circles of three players each.

26There are two possible configurations here: either two players are matched to each other and the
others form a circle of four players; or one player is isolated and the other five players form a circle.

27Only balanced games admit two stable matches.
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for convergence. When a game admits two stable configurations, the order of turns can
plays a role in selecting one of the two configurations. With two stable configurations,
it may be more difficult to converge – for instance because of coordination failure,
as players attempt to steer the game towards different configurations. We therefore
conjecture that in treatment T4, attaining stability may be less frequent and may take
more time.

3.4 Sequencing of treatments

We present in Table 1 the sequence of treatments across the 24 groups of 6 participants
that form the core of our experiment (96 unique games in total). Each letter denotes a
particular combination of the first two treatments: A stands for empty initial configura-
tion and own-payoff information only; B stands for empty initial configuration and full
payoff information; C stands for full initial configuration and own payoff information
only; and D stands for full initial configuration and full payoff information. Table 1
shows how the the first two treatments are crossed in a systematic and symmetric way:
with 24 groups we are able to implement each of the 24 possible order permutations
of the four treatment combinations A, B, C and D.28 This enables us to disentangle
treatment effects from a game order effect, e.g., due to learning. Also, letters that are
underlined indicate games in which the stable match is unbalanced, i.e., has only 10
matches. Table 1 shows that balanced and unbalanced matches are distributed evenly
across groups and letters. Finally, letters in green indicate the balanced games that
admit two stable configurations.

It is important to realize that games with the same letter in Table 1 share com-
mon features but they are not identical. To illustrate, consider two C, that is, two
unbalanced games with a full initial configuration and own payoff information only.
These games share common features – each player starts the game with two randomly
assigned partners, and the stable match contains 10 links. But they differ in many
other respects: a different payoff matrix (and thus a different unbalanced stable con-

28Note that the first block (group 1 to 12) plays almost the same sequence as the second block (group
13 to 24), except that the third and fourth letter are switched.

17



figuration); a different initial configuration; and a different order of turns. This implies
that when groups 1 and 2 play game C, they play two different matching games. We
have done so in order to disentangle the effect of the treatments from specific structural
properties of the stable configurations that we generate.

3.5 Implementation

Experimental sessions took place in the Parisian Experimental Economics Laboratory
between January 2013 and June 2015. The software was coded specifically for this
experiment in HTML, Javascript, and Regate.29 Participants are students enrolled at
the University Paris 1 Panthéon-Sorbonne at the time, without distinction of field or
discipline. In total we have 48 groups of exactly 6 players each.30 Half of these players
(24 groups) played the main experimental protocol that is the focus of our attention
in Sections 2 to 4. The other half of players (24 groups) played two modifications of
the main protocol that we discuss in Section 5. The average payment at the end of the
experiment was 20.8 euros for about 1.5 to 2 hours of presence in the laboratory.

4 Main results

We start the empirical analysis by examining whether players in the lab are able to
converge to a stable match. We then turn to the analysis of the different treatments on
outcomes, at three different levels: game, match, and move. Throughout this section
we focus on the main blocks of experiments (the 96 games described in Sections 2
and 3 and presented in Table 1). The results from additional sessions testing ancillary
hypotheses are discussed in Section 5.

29Regate is an internet-based software for experimental economics (https://www-
perso.gate.cnrs.fr/zeiliger/regate/regate.htm).

30We had 14 experimental sessions with 3 groups, and 3 sessions with 2 groups. We need groups of
exactly 6 players, therefore we always invited more students that strictly necessary (the show-up fee
for overbooked students was 7 euros).
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4.1 Convergence patterns

Theoretical stability appears to be a surprisingly strong predictor of experimental out-
comes: in 83 of 96 games (86%) players converge to a stable match. Overall, more than
96% of links created belong to a stable match. This is because in the 13 games where
a stable match is not reached, 70% of the links nonetheless belong to a stable match.31

Also, when the stable configuration is not achieved, the aggregate payoff is close to
the aggregate payoff of the stable configuration (399 versus 413 experimental points on
average). This is in line with previous findings by Echenique and Yariv (2013) in the
context of two-sided matching games. We also find that convergence is relatively fast,
and comparable to the simulated speed of convergence assuming myopic rationality.

Could these results have been generated by chance? To investigate this possibility
we generate, for each game, 100 random configurations with two links per player. In
this way we approximate the profile distribution under the null hypothesis of random
matching. We find that, on average, only 37% of randomly generated links happen to
belong to a stable match – compared to 96% of links formed during our lab experiment.
Since 99.3% of the random matching configurations have 80% or fewer stable links, we
firmly reject the null hypothesis that our results are due to chance.

Table 2 reports mean outcomes at game level according to treatment. To recall:
T1 = 1 when the game is played under full information about the payoff matrix; T2 = 1 if
the initial configuration is non-empty (i.e., the game starts with two randomly assigned
partners per player); T3 = 1 if the stable configuration is unbalanced (i.e., has 10 links
instead of 12); and T4 = 1 if the game admits two stable matches. The outcomes of
interest are as follows. Column (1) shows the proportion of games that converged to a
stable match. Column (2) shows the share of final links that belong to a stable match,
as a proportion of the links that are realized when the game stops. Column (3) shows
the total number of links formed. Column (4) report the total gain obtained at the
end of the game by all six players combined, while column (5) reports the total gain in

31Out of the 13 games where a stable match is not reached: 4 are under-connected (i.e. they have 5
links in the laboratory vs. 6 in the stable configuration); 5 are over-connected (i.e., they have 6 links
vs. 5 in the stable configuration); and 4 have the correct number of links, but some of them do not
belong to the stable configuration.
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the stable match for comparison purposes.32 Column (6) reports the total number of
rounds played, column (7) the number of accepted offers, and column (8) the number
of rejected offers.

As Table 2 show, several outcomes of interest are consistent across treatments -
this seems to be the case for columns (1) to (5).33 On the other hand, the number of
rounds (which is a proxy of the speed of convergence) and the number of offers accepted
and rejected display more variability across treatments. This variability is the object
of regression analysis in the next Section. A comparison between columns (4) and (5)
further suggests that total realized gains are close to the total gains in the stable match.
Some total realized gains are even higher than in the stable match – to recall, in our
game, a stable match is not necessarily efficient.

4.2 The role of information

Next we turn to variation in game outcomes due to treatments. We start by reporting
an analysis of results from the 96 games presented in Table 1. Table 3 reports the
results of linear regressions of the form:

yi = β0 + βTg + λg + λgr + εi (1)

where yi represents one of the experimental outcomes presented in Table 2, column
(1)-(4) and (6)-(8). The vector Tg represents the four game-level treatment dummies
(T1 to T4). We include game order effects λg (i.e. a set of dummies for the order in
which the game was played from 1 to 4) to control for possible learning, and group fixed
effects λgr to allow for possible common shocks.34 Standard errors are clustered at the
group level, which is the highest level at which participants interact in the experiment.

In line with the descriptive statistics shown in Table 2, the regression results pre-
sented in columns (1) and (2) indicate that players consistently converge to the stable

32Where there are two stable matches, we report the average.
33Except for treatment T3 which mechanically reduces the number of links formed and, consequently,

gains in the lab.
34Since players and groups are nested into sessions, we cannot include session fixed effects as they

are collinear with group fixed effects.
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match in all four treatments. The full information treatment T1 does not affect con-
vergence to a stable match. But it increases the total number of formed links as well
as the total realized gains (the effects are significant at 10% level). It also reduces the
time needed to converge and the number of rejected offers.

The increase in total gains under full information arise due to three combined effects.
First, as shown in column (3) of Table 3, players form more links under full information,
and this tends to mechanically increase payoffs. Secondly, when players do not reach the
stable configuration, they still achieve a higher aggregate payoff under full information:
in the no information treatment, the aggregate payoff is lower than in the stable match
for 5 out of the 6 games where this stable match is not reached; in the full information
treatment, this is observed in only 2 cases out of the 7 games where the stable match
is not reached. Thirdly, when the game has two Pareto-ranked stable configurations,
under full information the high configuration is selected more often: in all such games
with incomplete information, play converges to the low match, while in all such games
with full information it converges to the high match. The reader should nonetheless
keep in mind that the number of games with Pareto-ranked matches is probably too
small to regard these results as definitive.35

The reduction in the number of rounds played with full information is largely a con-
sequence of the reduction in the number of rejected offers. In contrast, full information
has no effect on the number of accepted offers. What this suggests is that, in the full
information treatment, players are less likely to make offers that they can predict will
be rejected. This constitutes evidence of self-censoring of the kind discussed in Hitsch,
Hortacsu, and Ariely (2010) and Belot and Francesconi (2013), but in the context of a
laboratory experiment. In Section 2 we argued that excessive self-censoring may pre-
vent players from reaching the stable configuration. The laboratory evidence suggests
that, under our experimental conditions, these fears are unfounded.

The remaining results offer no surprises. The unbalanced treatment reduce the
number of realized links and the total gains, but these are a mechanical consequences

35We also note that, when two Pareto-ranked matches are available (9 games out of 96), the aggregate
difference in gains is on average small (14.4 points). Yet, due to randomization, it happens to be
slightly higher for the 5 games with full information (18 points) than in the 4 games with incomplete
information (10 points).
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of the fact that the unbalanced configurations have fewer links. Other treatments have
no effect on any of the aggregate outcomes. In summary, contrary to some expectations,
attaining a stable match is equally likely under all treatments, albeit a bit slower without
full information.

4.3 Inertia and fairness

We now investigate the determinants of matching from the players’ perspective. The
unit of observation is the dyad, that is, a pair of subjects that played in the same group.
There are (6x5)96

2
= 1440 such dyads across the 96 games of Table 1. We estimate linear

regressions of the form:

yijg = β0 + β1Aijg + β2Xijg + β3EQijg + βTg + λg + λij + εijg (2)

where the dummy yijg equals one if dyad ij is linked when game g ends. Variables Aijg,
Xijg and EQijg denote three experimentally assigned, dyad- and game-specific dummy
variables of interest: Aijg takes value 1 if link ij appears in the initial configuration of
treatment T2. Xijg takes value one when the absolute difference between πij and πji is
large, e.g., exceeds 20 points, in the full-information treatment T1.36 EQijg takes value
one if match ij belongs to the stable configuration.37 If players are reluctant to sever
initial links, e.g., because of an endowment or inertia effect, we expect β1 > 0: the link
is more likely to remain until the end of the game, irrespective of whether it belongs to
the stable configuration or not. If subjects display other-regarding preferences, such as a
taste for fair outcomes, they may refrain from links that yield very unequal payoffs to the
two players involved. In this case, we expect β2 < 0: the more unequal the distribution
of payoffs is, the lower is the likelihood that the link was formed. Treatment dummies
Tg includes the four game-level treatments as before. We also include game order effects
λg and dyad fixed effects λij as controls. The former are identified by variation across

36|πij − πji| can only take values 0, 10, 20, 30, and 40. Hence Xijg = 1 when the difference is 30 or
40.

37When there game admits two stable matches, we focus on the configuration which was attained
or closer to be attained in the game.
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dyads in the same game; the latter are identified by systematic variation across games
for the same dyad. We cluster errors are the group level, which takes care of any
arbitrary patterns of intra-group correlation in errors.38

Regression results are reported in Table 4. We find that β1 is not statistically
different from 0: being matched with a partner at the beginning of the game has no
effect on the realized match configuration. This suggest that inertia does not play a role
in our game, and partnerships are easy to sever. Coefficient β2 is also not significant
– this suggests that fairness does not seem to affect matching in our experiment.39 As
expected, the coefficient of EQijg seem to explain most of observed links. The other
results are in line with previous findings, and the coefficient of T4, which was already
negative in the column (3) of Table 3, now becomes marginally significant.

4.4 Players’ actions

4.4.1 Irrational matching choices

Significant deviations from rational play have been found in many experimental games
(Gintis et al. 2006, Kahneman 2011). These deviations seem more prevalent in games
that are cognitively challenging (Camerer Ho and Chong 2004, Costa-Gomez and Craw-
ford 2006). But they arise even in games that are seemingly straightforward, at least
to economists (e.g., Crawford and Iriberri 2007, Caria and Fafchamps 2015).

We wish to ascertain the extent to which similar difficulties arise in our game.
Assessing the overall extent to which players’ actions are ‘rational’ is non-trivial because
we do not know what dynamic strategies participants may be playing, and hence we
have no way of telling whether these strategies are rationalizable, e.g., whether the

38Dyadic regressions typically suffer from correlation in errors across observations. This case is no
exception: since players are restricted to two links, the likelihood that i is connected with j is not
independent from the likelihood that i is connected with k.

39The results from an experiment by Belot and Fafchamps (2016) provide one possible interpretation
for this finding. In that experiment, the authors let subjects choose between two allocations of payoffs
among four players. These choices are framed either as the division of a pie between four individuals,
or as the selection of a partner. The authors find that altruism is much less likely to affect choices in
the partner selection frame than in the pie allocation frame. This feature may account for the absence
of evidence of other-regarding preferences in our results.
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assumptions that players make about other players’ strategies are reasonable. What we
can do, however, is to document under which conditions players’ actions deviate from
what we call myopic best response – not undertaking an action that decreases one’s
own total payoff at that moment of the game.

We identify four types of actions that strictly violate myopic best response, two
for movers and two for respondents. For movers these violations are: (1) dropping a
link without forming another; (2) making a dominated offer.40 For respondents these
violations are: (3) refusing a dominating offer; and (4) accepting a dominated offer. We
name these actions ‘irrational matching choices’. The incidence of irrational matching
choices by treatment is reported in Table 5. One could argue that failing to making
dominating offers is also irrational. But it is only weakly so: if the player thinks the
offer will be rejected, making it would not increase his payoff – and thus is not strictly
better. To avoid these complications, we use only the four types of actions listed above
in the empirical analysis.

Note that, in our experiment, irrational matching choices do not per se prevent
convergence to a stable match: dominated offers may be refused, and players can undo
irrational actions later in the game. It is however possible that players make no irra-
tional matching choices as defined above, but still do not reach a stable match. This
would arise if players consistently refrain from making offers that belong in the stable
match. Indeed, in our game convergence needs two ingredients: that players don’t stick
to the same irrational choices over and over again, and that they are willing to make
enough offers to potential partners. Proving this formally is beyond the scope of this
paper, but we feel reassured by the fact that the large majority of our lab games has
converged to a stable configuration. Therefore, in what follows we document under
which conditions players deviate from the minimal rationality criteria defined above.

40Formally, let ij denote the link currently being proposed and let si denote the payoff that mover
i is offering to drop in order to form a new link. If i currently has less than two partners, then si = 0.
If i currently has two partners worth πik and πim and offers to sever ik if the new link is formed, then
si = πik. Link ij is said to be dominating (for i) if and only if πij > si; it is said to be dominated if
and only if πij < si.
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4.4.2 Movers

We first direct our attention to the actions taken by movers. To recall, a mover can
decide to do nothing, that is, to accept the status quo and pass the turn to the next
player; or take one or more active actions, such as making offers or deleting links. Over
the 96 games, we observe 3205 mover actions from 1980 unique turns. 865 actions
(27%) consist in keeping the status quo and passing the turn, while 2340 actions (73%)
are active actions. We find that the large majority of active actions (97%) do not
violate rules (1) and (2) above. This is, by itself, a remarkable finding. Only 70 active
actions (3%) strictly violate myopic best response: in 35 instances the mover drops a
link without forming another one; and in another 35 instances the mover makes an offer
which is payoff-dominated by the link he conditionally deletes.

In order to investigate whether certain experimental conditions make movers more
prone to make irrational matching choices, we start by estimating a linear regression of
the form:

yir = β0 + β X ir + γ Tg + δ r + λg + λi + εir (3)

where yir is the share of irrational choices in the actions taken by mover i in round
r. Vector Xir includes three regressors of interest: time historyir which represents
the number of seconds that mover i spends browsing the history of the current game
during round r; time payoffsir which represents the number of seconds that mover
i spends browsing the payoffs of other players during round r;41 and the dummy
already 2 partnersir which equals one if mover i already holds 2 links at the beginning
of turn r. The rationale for including these regressors is explained below. Other re-
gressors include the four game-level treatment dummies Tg, the round number r (which
captures the effect of time within a game), game order effects λg, and player fixed effects
λi.

Results are shown in column (1) of Table 6, taking as unit of observation all unique
turns (n = 1980). They indicate that when a player spends more time browsing other

41This is zero in the no-information treatment, or if the player did not browse the others’ payoffs
during his move.
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players’ payoffs, he is more likely to take actions that, from the point of view of myopic
best response, appear irrational. Keep in mind that in our game it is virtually impossible
for someone to work out the stable configuration through mental calculation – there
simply are too many combinations to consider. We therefore conjecture that when
players spend much time examining the payoffs of others, they end up making irrational
matching choices because they either over-think the game, e.g., try to solve for the stable
match and/or try to come up with complex strategies that, in our game, yield no obvious
benefit. This interpretation, which will be re-confirmed later on, is comforted by the fact
that, over the duration of each session, players seem to learn to refrain from such actions:
the coefficient of the second, third and forth games are all significantly negative and
they increase in magnitude. We also observe that the coefficient of already 2matchesir
is significantly positive – but this is a consequence of the fact that deviations of type (2)
can only occur when the mover already has two partners. Time spent on history has no
impact, and the same holds for the four main treatments. This is in line with our earlier
finding (Table 3) that most games reach a stable match irrespective of treatments.

In columns (2) to (4) we continue the analysis of movers’ behavior by focusing
not on decisions that actively violate myopic rationality as in column (1), but rather
on situations where the subject fails to undertake a potentially beneficial action. We
interpret such situations are indicative of satisficing behavior. We first examine those
cases where, at the beginning of his turn, a mover is not currently holding his two most
desirable partners (i.e., those links worth 40 and 50). There are 1379 turns for which
this is true. In such a configuration, a player may continue making offers in the hope of
securing his two most desirable payoffs. But making the same offers repeatedly may see
them rejected multiple times.42 If players derive a subjective dis-utility from repeated
rejections, they may refrain from making such offers. This analysis is reported in the
second column of Table 6, where we re-define the dependent variable of Equation (3):
now yir takes value 1 if the mover passed his turn without taking any action, and 0

42In our data only a minority of proposals are repeated (56% of proposals are made only once within
the same game, and only 8% of proposals are made more than three times). These repeated proposals
tend to come early in the game (61% of them are made within the first three rounds, and 75% within the
first four rounds). The (unconditional) probability of being accepted is 52% for a first-time proposal,
and then drops to a stable 20% afterwards.
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otherwise. We observe a strong round effect: players who did not yet attain their two
most desirable links are more likely to make no offers as the game progresses. This
is consistent with rejection avoidance – or more generally with not wanting to waste
time in a satisficing perspective: once players have secured some partners, the need
to make offers is less pressing. We do indeed find that players who already have two
partners are more likely to make no offers. We also observe that making no offer is
significantly more frequent in the full information treatment. This confirms our earlier
interpretation that information leads to self-censoring.

We continue this investigation in column (3) where yir represents the number of
‘wish-list’ offers made during the turn – i.e., the number of offers made that would
increase the mover’s payoff if they were accepted. In column (4) we refine this variable
to only include offers to the most desirable potential partner at the beginning of round
r.43 Results confirm earlier findings. Movers are less likely to make wish-list offers when
they already have two partners, and in the full information treatment. We nonetheless
observe that more wish-list offers are made by players who spend much time examining
other players’ payoff. The unbalanced treatment marginally increases the number of
wish-list offers in column (3) – possibly because players with zero or one partner continue
making offers even after the game has settled. We again note, in column (4), fewer top
wish-list offers being made in later rounds, which is consistent with decision fatigue
– defined as the tendency for inertia to increase as the length of the game increases,
regardless of the attained payoff (Danziger Levav and Avnaim-Pesso 2011).

We now take a different perspective on movers’ actions to investigate the impact of
the history of play. We take as unit of observation all the potential offers that could
have been made in each round, and create a dependent variable yijr equal to 1 if i made
an offer to j in round r, and 0 otherwise. We omit all dyads for which an offer could
not be made in that round, i.e., because the match ij was already in existence.44 We

43This is the player yielding a payoff of 50 if i is not matched with him yet, or the player worth 40
in case the match worth 50 already exists.

44This is easily illustrated with an example. In round 1 player A has no partner. For this round we
have five dyadic observations for player A, corresponding to each of the five offers he could have made,
i.e., AB, AC, AD, AE, AF . Now suppose that in round 2 player A is matched to C and D. In this
round A can make three offers: AB, AE, AF and thus we have three dyadic observations.
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further subdivide the observations into two groups: those for which making an offer
would increase i’s payoff;45 and those for which making an offer would decrease it. The
first group corresponds to dominating offers, which do not violate rationality; and the
second group corresponds to dominated offers, which violate myopic best response.

We estimate a linear regression model of the following form on each of these two
sets of observations separately:

yijr = β0 + β X ijr + γ πijg + δ Tg + ζ r + λg + λi + εijr (4)

where yijr equals one if mover i makes an offer to player j during round r. Vector Xijr

includes two regressors of interest that we include to capture the history of play between
players i and j during game g.46 The first regressor is a dummy that we call ‘previous
refusal’ and equals 1 if j has rejected an offer from i in an earlier round. This is our most
direct test of the self-censoring, which can be due to better-informed choices and/or to
the subjective cost of anticipated rejection (which may be an emotional cost or simply
wasted time). The second regressor that we call ‘previous severance’ takes value 1 if link
ij existed before and was severed by j earlier. It is important to understand that an
attempt to re-match after a previous severance (or refusal) does not necessarily signal
inconsistency in player behavior. It may naturally arise as a result of the sequential
process through which the game is organized. As players cycle through offers, it is quite
possible for j to drop a link to i to form a more advantageous link with k, only to see
this better link dropped by k later – at which point j may be willing to re-link with i.47

We also control for πijg directly – the larger the payoff, the more likely an offer may be.
As before, we include dummies for the four treatments, as well as round number, game
order, and player fixed effect. As in earlier regressions, standard errors are clustered at

45If the mover has less than two partners at the beginning of round r, all potential offers are payoff-
increasing.

46Remember that players identities are scrambled between games, so that the history of play between
two subjects cannot spill over from one game to the next.

47This would be the case for instance if j had the opportunity to move before k’s turn: following
myopic best response, k shall accept the offer as long as j is better than k’s pre-existing partners.
However, when it is his turn to move, k may propose to other players, and j may be forced to come
back to i. This behavior does not signal inconsistency, but is a consequence of the way the game
unfolds.
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the group level.
Regressions results are presented in Table 7. They indicate that, on average, per-

sonal history of play during the game does not affect decisions to make an offer. This
is reassuring because taking offense for past rejection may prevent convergence to a
stable configuration. However, if we interact previous refusal with the full-information
dummy (results available upon request), we find that subjects in the full-information
treatment are less likely to re-make a previously refused offer. The effect is significant
at the 10% level, and only for payoff-increasing offers. A likely explanation is that,
when subjects are informed about the payoff vector of other players, they can see when
the other player derives little benefit from linking with them and thus when there is
little point in renewing their offer.

4.4.3 Respondents

Next we turn to respondents, that is, players who have received an offer and must
decide to accept it or not. We observe 2305 responses. Of these, 2117 (92%) do not
violate myopic best response: the respondent accepts a dominating offer and rejects a
dominated offer. In 33 cases (1%) the respondent accepts a dominated offer, and in 155
cases (7%) the respondent rejects a dominating offer. Of these 155 rejections, 94 occur
while the respondent has fewer than two partners – and thus should accept any offer
– and 61 when he already has two partners. There is, therefore, a little more evidence
of irrationality among respondents, and by far the most frequent form is to refuse a
dominating offer.

To explore the determinants of this behavior, we take as unit of analysis all 2305
responses and estimate a linear regression model of the form:

ajir = β0 + β Xjir + γπjig + δTg + ζ r + λg + λj + εjir (5)

where ajir equals 1 if player j violated myopic best response by rejecting a dominating
offer or by accepting a dominated offer from player i in round r. Vector Xjir includes
the regressors of interest which are described below. The rest of the controls are as
before.
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Coefficient estimates for equation (5) with no Xjir regressors are reported in the
first column of Table 8 for comparison. We observe that, as anticipated, a respondent
is less likely to reject an offer with a high payoff πjig. The full information treatment is
associated with a higher tendency to reject a dominating offer (or to accept a dominated
offer). To throw some light on this finding, we re-estimate equation (5) with two
additional regressors: the time spent by j consulting the history of play during round
r, and the time spent examining the payoffs of other players. We find that when these
regressors are included, the full information treatment dummy is no longer significant.
This suggests that spending much time consulting the payoff vector of other players is
associated with departures from myopic best response for respondents as well. This is
in line with our earlier finding for movers: deviation from myopic best response seems
to occur when players are trying to come up with a more complex strategy – something
that, in this game, is very difficult to do (and is not necessary to reach a stable match).
This suggests that providing full information on others’ payoffs can be a temporary
distraction for players.

In columns (3) and (4) of Table 8, we include the same two Xjir regressors that we
had used for equation (4), namely: previous refusal by i of an offer from j; and previous
severance by i of a link with j. In both cases we find a positive effect, significant at the
10% level, on the likelihood of observing irrational matching choices. As noted above,
refusing a dominating offer is one important source of departure from myopic best
response in our experiment. What columns (3) and (4) suggest is that this behavior is
partly due to a refusal to reconnect with players who have ‘mis-behaved’ in the past, i.e.,
who have rejected a previous offer or who have dropped a pre-existing partnership.48

This claim is also supported by additional evidence at the link level: if we analyze the
history of all dyads before the end of each game, we see that at some point a proposal
was made and refused for 51% of them, and a link was formed and severed for 31%
of them. However, if we restrict our attention to links that belong to a stable match
but are not formed in the lab, these percentages rise to 80% and 52% respectively.

48If we interact previous refusal or previous severance with the information treatment dummy, we
find that the effect is stronger in the information treatment, but the difference is not statistically
significant.
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This suggest that in most cases the stable configuration is not reached not because
the equilibrium links were never attempted, but because they were severed or refused
earlier in the game, and the victims of a rejection have refused subsequent offers to link.

This is not altogether surprising. If our matching game was about finding a spouse
or a business partner, it is very likely that people would take offense at being rebuffed
or rejected and would subsequently refuse a come-back offer. The fear that others may
take offense, if strong enough, may induce players to hold onto a low-value match for
fear of not being able to get it back later on, should a more promising partner prove to
be unreliable. What is remarkable is that, in our experiment, these fears are not strong
enough to bring the decentralized matching process to a halt and prevent convergence
to the stable configuration most of the time. But we nonetheless find some evidence
that players do take offense for rejection and broken partnerships and this does impinge
on convergence.

5 Other treatments

As mentioned earlier, we also implemented two other modifications of the main experi-
mental protocol. The purpose of these modifications is to test two ancillary hypothesis,
which we describe now.

5.1 Negative payoffs

In the main experimental protocol, the value of holding no partner is normalized to
zero, which means that any link is better than no link. In the language of network
theory, this means that any network configuration with two links per player is pairwise
stable: no player would unilaterally sever a link. We relax this feature by inviting 12
additional groups of players from the same population to play matching games where
the payoff matrices admit only one pairwise stable match – that is, only one match
configuration is robust to deviations of both size-one and size-two coalitions. In this
treatment, we take a payoff matrix from Section 2.3 and we modify it such that all the
links that do not belong to the stable match yield a negative payoff for at least one of
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the players involved.49 This transformation ensures that no configuration other than
the stable match is pairwise stable, i.e., robust to unilateral deviations. The rest of the
experimental protocol is kept unchanged. The sequencing of information and initial
configuration treatments is the same as in Table 1, Block 1.

We find that 100% of the games with negative payoffs converge to their unique
stable configuration, and they do so faster than in the main sessions (it takes one round
less to converge on average). This is consistent with the idea of satisficing behavior
in the main treatment: players try less hard when there is less to lose. Furthermore,
when we look for evidence of irrational matching choices in the path to stability, we
find that much fewer actions deviate from myopic best response (e.g., less than 3% for
respondents, compared with 8% in the main sessions).

5.2 Partial information

We also further investigate the role of information. To do so, we invited 12 groups of
players to play what we call a partial information treatment. In this treatment, each
player i sees not only his payoff πij from matching with j, but also j’s payoff πji from
matching with him. But i does not see the rest of j’s payoff vector, that is, we do not
reveal to i the payoff that j would get from matching with other players (πjk and πkj for
all other j, k). This information treatment lies in between the control game (where the
player sees only his own payoff) and the full information game (where the player has
access to the entire payoff matrix). In this treatment the possibility of self-censoring
is present, but the scope for elaborating complex (and unsuccessful) strategies is more
limited. Here too we use the treatment sequencing from Block 1 in Table 1, except that
partial information replaces full information – i.e., with letters B and D now refer to
the partial information treatment. The rest of the experimental protocol is essentially
the same.50 We find that the proportion of games converging to a stable match is
virtually identical to the main sessions. In Table 9 we replicate the game-level analysis

49For example, if the ij match is not stable, then we set either πij = −10 or πji = −10.
50Except that players have now 10 seconds to make a move.
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of Table 1 adding the games from the partial information sessions.51 The results are
very similar to those reported in Table 3: the full information treatment has an effect
on the number of links formed, the total gains, and the number of rounds. But the
partial information treatment is not statistically different from the control treatment.
Other findings remain unchanged.

6 Concluding remarks

Many departures from rationality and self-interest have been studied in the lab, but
few experiments have focused on decentralized matching and none has introduced com-
petition for partners. Our paper fills this gap and provides new insights on the design
of decentralized matching games of deferred acceptance and on the determinants of
players’ behavior in such games.

We design a laboratory experiment to investigate behavior in a matching game with
deferred acceptance in which players have heterogeneous preferences. Organized in the
manner of a board game, the experimental protocol is decentralized and interactive:
when their turn comes, players are free to make offers and counter-offers to multiple
partners. But they do so in a sequential manner and deferred acceptance is externally
enforced. We select payoff matrices for which this game has either one or two stable
match configurations – where stability is defined in terms of two-player deviations. We
study whether players are able to reach a stable match with no centralized guidance,
and which individual motivations are associated with irrational matching choices.

We observe a surprisingly high rate of convergence to a stable match, in spite of
the complexity of the game. One possible interpretation is that competing for the best
partner is a scenario for which subjects have good heuristics, probably because these
situations are ubiquitous in real life. We find little or no evidence that play is affected
by inertia or other-regarding preferences (altruistic or invidious), but some observed
behavior is consistent with a satisficing heuristic. Importantly we find that lack of
information on others’ payoffs does not prevent convergence to a stable match: with

51We have 47 (instead of 48) of such games – because of a problem in the parametrization in the
laboratory, one game needed to be excluded from the analysis.
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our experimental design, subjects do not need that information to reach stability as
long as they experiment enough with offers and counter-offers. More information does,
however, speed up convergence thanks to self-censoring. We trace irrational matching
choices mostly to two sources: the tendency of over-think in a setting where strategic
thinking is not necessary; and a ‘once bitten twice shy’ effect: players refuse offers from
people who have been disloyal in the past, even though accepting them would be in
their interest.

This last finding is particularly striking because it suggests the existence of a be-
havioral tendency to punish disloyalty in matching markets. This tendency is inimical
to deferred acceptance as it can lead to unraveling. To illustrate, imagine a popula-
tion of agents who compete in decentralized matching games with deferred acceptance.
Suppose that by playing these games repeatedly against each, some players build a
reputation for refusing offers from those who have been disloyal. This means that these
players are making one-off, take-it-or-leave-it offers. It is easy to see that such reputa-
tion puts them at an advantage: other players will think twice before dropping one of
their offers – i.e., they will be loyal. Since dropping an offer is only useful upon receiving
a better offer, loyalty leads to unraveling and turns a game of deferred acceptance into
a sequential matching market. In our experiment, players could not build a reputation
since we reshuffled their identity across games and each game was short. In spite of this,
some players showed an instinctive willingness to punish those who betrayed them.

These findings have implications for many real-life problems in organization and
personnel economics that pertain to the formation of teams. Centralized matching
algorithms were developed at a time when rapid internet-based interaction was imprac-
tical. Things have changed: many P2P decentralized matching markets now operate
through interactive apps. At this point in time, however, they tend to operate sequen-
tially: a match is final once it is accepted. In contrast, online auctions implement
deferred acceptance but focus on a single good or match at a time. We believe that
there may be situations in which P2P decentralized matching with deferred accep-
tance can achieve better outcomes than either of these two options. Examples include
moderate-size matching markets that are currently run through a clearing house – e.g.,
assignment of students to dorms or classes, centralized job markets, assignment of pupils
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to schools. For instance, the specific design used for this paper could easily be adapted
for matching individuals in multiple teams of two – e.g., homework team assignments,
team-based sports tournaments, and online gaming.
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Tables and Figures

Table 1: The treatment allocation scheme

game 1 game2 game 3 game4 game 1 game2 game 3 game4
group: 1 A B C D 13 A B D C
group: 2 B C D A 14 B C A D
group: 3 C D A B 15 C D B A
group: 4 B A C D 16 B A D C
group: 5 C B D A 17 C B A D
group: 6 D C A B 18 D C B A
group: 7 C A B D 19 C A D B
group: 8 D B C A 20 D B A C
group: 9 A D B C 21 A D C B
group: 10 D A B C 22 D A C B
group: 11 A C D B 23 A C B D
group: 12 B D A C 24 B D C A

BLOCK 2BLOCK 1

Notes: letter A indicates a game with empty initial configuration and no information, B
indicates a game with empty initial configuration and full information, C indicates a game
with complete initial configuration and no information and D indicates a game with complete
initial configuration and full information. Underlined letters indicate unbalanced equilibria,
letters in green indicate games with two equilibria.
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Table 2: Mean outcomes at game level, by treatment

(1) (2) (3) (4)
reach % eq. matches n. matches tot. gains

equilibrium formed formed in lab
TOT 0.86 0.96 5.53 426.25
T1=0 0.88 0.96 5.50 422.29
T1=1 0.85 0.95 5.56 430.21
T2=0 0.88 0.96 5.54 425.83
T2=1 0.85 0.95 5.52 426.67
T3=0 0.88 0.96 5.92 443.00
T3=1 0.85 0.96 5.11 408.04
T4=0 0.86 0.95 5.48 424.76
T4=1 0.92 0.99 5.92 436.67

(5) (6) (7) (8)
tot. gains in n. rounds n. offers n. offers
equilibrium accepted rejected

TOT 427.76 3.44 9.02 14.99
T1=0 427.71 3.83 10.31 18.27
T1=1 427.81 3.04 7.73 11.71
T2=0 426.15 3.31 10.17 14.35
T2=1 429.38 3.56 7.88 15.63
T3=0 448.50 3.58 10.12 13.90
T3=1 405.22 3.28 7.83 16.17
T4=0 426.07 3.42 8.70 14.90
T4=1 439.58 3.58 11.25 15.58
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Table 4: Match-level Analysis

VARIABLES match
Aijg (initial match) 0.017

(0.018)
Xijg (extreme match) 0.042

(0.026)
EQijg (equilibrium link) 0.934***

(0.025)
T1 (full information) -0.000

(0.006)
T1 (2 initial matches) -0.008

(0.010)
T3 (unbalanced eq.) 0.003

(0.003)
T4 (double eq.) -0.014*

(0.008)
game n. 2 0.009

(0.007)
game n. 3 0.005

(0.005)
game n. 4 -0.000

(0.004)
dyad fixed effect yes
Constant 0.018**

(0.007)
Observations 1440
R-squared 0.874

Robust standard errors in parentheses, clustered
by group. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Irrational matching choices by treatment

proposals
tot proposals drop a make a

(N) match (%) dominated offer (%)
TOT 2340 1.5 1.5
T1=0 1396 1.7 1.4
T1=1 944 1.2 1.6
T2=0 1188 0.9 1.8
T2=1 1152 2.1 1.2
T3=0 1221 1.6 1.5
T3=1 1119 1.3 1.5
T4=0 2016 1.6 1.6
T4=1 324 0.6 0.9

responses
tot responses accept dominated reject dominating

(N) offer (%) offer (%)
TOT 2305 1.5 7
T1=0 1372 1.5 5.4
T1=1 933 1.3 8.7
T2=0 1177 1.1 7.5
T2=1 1128 1.8 5.9
T3=0 1201 1.3 7.1
T3=1 1104 1.6 6.3
T4=0 1983 1.6 6.5
T4=1 322 0.6 8.1
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Table 6: Movers analysis

(1) (2) (3) (4)
% violations status quo n. wishlist 1st wishlist

offers offer
time on history 0.035 0.135 -0.585 -0.169

(0.038) (0.126) (0.494) (0.143)
time on payoffs 0.004** -0.042*** 0.159*** 0.038***

(0.001) (0.004) (0.011) (0.004)
already 2 partners 0.024*** 0.206*** -1.322*** -0.132***

(0.007) (0.021) (0.078) (0.024)
T1 (full information) -0.011 0.330*** -1.077*** -0.346***

(0.007) (0.033) (0.096) (0.032)
T2 (2 initial matches) -0.002 -0.030 0.026 0.002

(0.005) (0.019) (0.060) (0.018)
T3 (unbalanced eq.) 0.004 0.011 0.130* 0.014

(0.006) (0.018) (0.063) (0.026)
T4 (double eq.) 0.006 -0.031 -0.004 0.076

(0.010) (0.056) (0.133) (0.069)
round -0.002 0.023** -0.006 -0.039***

(0.002) (0.008) (0.018) (0.010)
game n. 2 -0.017* -0.032 0.009 0.030

(0.009) (0.026) (0.087) (0.033)
game n. 3 -0.017** -0.040 -0.066 0.035

(0.008) (0.026) (0.095) (0.031)
game n. 4 -0.019** -0.038 0.118 0.036

(0.008) (0.032) (0.088) (0.035)
player fixed effects yes yes yes yes
Constant 0.056*** 0.102** 1.958*** 0.828***

(0.009) (0.039) (0.076) (0.042)
Observations 1,980 1,379 1,379 1,379
R-squared 0.155 0.388 0.550 0.373

Robust standard errors in parentheses, clustered by group.
*** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Movers analysis (history of play)
(1) (2) (3) (4)
payoff-increasing payoff-decreasing

offers offers
previous refusal -0.041 0.037

(0.029) (0.035)
previous severance 0.019 0.001

(0.028) (0.019)
payoff 0.012*** 0.012*** 0.000 0.001

(0.001) (0.001) (0.000) (0.000)
T1 (full information) -0.137*** -0.135*** -0.002 -0.002

(0.021) (0.021) (0.005) (0.005)
T2 (2 initial matches) 0.038* 0.034 -0.003 -0.003

(0.019) (0.020) (0.005) (0.005)
T3 (unbalanced eq.) 0.067** 0.066** -0.002 -0.003

(0.025) (0.025) (0.005) (0.005)
T4 (double eq.) 0.024 0.026 -0.004 -0.006

(0.036) (0.036) (0.006) (0.006)
round -0.009 -0.017*** 0.000 0.001

(0.007) (0.006) (0.002) (0.002)
game n. 2 -0.005 -0.007 -0.013* -0.014*

(0.024) (0.023) (0.007) (0.007)
game n. 3 -0.004 -0.003 -0.010 -0.011

(0.030) (0.030) (0.008) (0.008)
game n. 4 0.036 0.036 -0.002 -0.003

(0.027) (0.027) (0.008) (0.007)
player fixed effects yes yes yes yes
Constant 0.020 0.038 0.038*** 0.035**

(0.041) (0.036) (0.012) (0.013)
Observations 3,871 3,871 2,819 2,819
R-squared 0.244 0.244 0.129 0.126
Robust standard errors in parentheses, clustered by group.
*** p<0.01, ** p<0.05, * p<0.1.
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Table 8: Respondents analysis
(1) (2) (3) (4)

Violation of myopic best response
payoff -0.002* -0.001* -0.002** -0.002**

(0.001) (0.001) (0.001) (0.001)
time on history 0.002

(0.003)
time on payoffs 0.008***

(0.003)
previous refusal 0.058*

(0.033)
previous severance 0.055*

(0.031)
T1 (full information) 0.019* -0.021 0.020* 0.020*

(0.010) (0.015) (0.010) (0.010)
T2 (2 initial matches) -0.004 -0.002 -0.006 -0.007

(0.011) (0.012) (0.011) (0.011)
T3 (unbalanced eq.) -0.012 -0.015 -0.011 -0.010

(0.010) (0.010) (0.010) (0.010)
T4 (double eq.) 0.032 0.028 0.031 0.032

(0.022) (0.021) (0.021) (0.021)
round -0.007 -0.005 -0.008 -0.009*

(0.005) (0.005) (0.005) (0.005)
game n. 2 0.006 0.007 0.006 0.005

(0.017) (0.017) (0.017) (0.017)
game n. 3 0.007 0.008 0.007 0.006

(0.014) (0.015) (0.014) (0.014)
game n. 4 -0.005 -0.001 -0.005 -0.006

(0.014) (0.014) (0.014) (0.014)
player fixed effects yes yes yes yes
Constant 0.150*** 0.143*** 0.157*** 0.159***

(0.028) (0.030) (0.029) (0.029)
Observations 2,305 2,305 2,305 2,305
R-squared 0.162 0.168 0.164 0.164
Robust standard errors in parentheses, clustered by group.
*** p<0.01, ** p<0.05, * p<0.1.
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Appendix A: Computer interface and information
We provide here a detailed description of the computer interface. All the information relative to the
game is presented to each player in the form of an hexagon with the six corners representing the six
players in the group. An example of this screen is presented in Figure A1 below. The player always
sees himself at the bottom of the hexagon, associated with his identification letter in the game (letter
F in figure A1). In Figure A1, it’s F ’s turn to play and he can decide whether to make an offer to
any other player or pass his turn. The other five players are distributed on the other five corners, each
with his letter. Within a game this configuration does not change. Next to player j, player A sees
πAj , the payoff associated with matching to that player. Depending on the treatment, he may also see
information about the payoffs vector of each other player – more about this was said in Section 3.2.

The matches that all players are currently holding are represented graphically on the screen as
black lines linking two players. The network that all players see changes in real time each time a
match is added or dropped. The screen also reports in real time the current state of the game, i.e.,
the game number (from 1 to 4), the round number (from 1 to 8), which player’s turn it is (the mover’s
letter is highlighted in green), and the time left to make a decision – see Figure A1. Furthermore, the
background color of the screen changes to red when the player is called to take an action (either when
it is his turn, or when he receives an offer).

When it’s a player turn, he can make decisions of three kinds: drop an existing partner, make
an offer, and terminate the turn. If he decides to make an offer to another player, a blue dotted line
appears on the screen (visible to himself and the offered player only). Figure A3 depicts player F
(who has no match) who has made an offer to A and is waiting for a response. In case the mover is
already holding two other partners, one of those must be deleted if the new offer is accepted, and this
information is also depicted graphically on the screen: the two appear in red and the mover is asked
to select the partnership to delete in case the new offer is accepted, which then turns into a red dotted
line. Figure A4 represents player B who is matched to C and A, and has made an offer to F – he’s
ready to drop C if the offer to F is accepted. In the moment depicted in Figure A4, B is waiting for
F ’s response. If the offer is accepted, the blue dotted line turns into a black continuous line, and the
red dotted line disappears. This new configuration becomes visible to all players (Figure A5). Within
his turn the mover can also decide to sever a partnership – Figure A6 represents player D about to
confirm the deletion of his match with player E.

Similarly, when a respondent receives an offer, a dotted line from the offering player appears on
his screen. Figure A7 depicts player B receiving an offer from D. Since player B already has two
partners, he is asked to select one to drop (Figure A8). Upon his choice, the offer will be considered
accepted and turns into a continuous black line while the line selected for deletion disappears. Changes
resulting from accepted offers become immediately visible to all players in the group, whether it is
their turn or not.
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A player can never see information on offers that do not involve him directly. So if player i is
making an offer to j, this is only visible to players i and j - the new line will eventually become visible
to everyone if the offer is accepted. Moreover, another player, say k, does not see that player i to
whom he is currently matched is intentioned to drop him if his offer to another player j is accepted.
This feature is intended to mimic the functioning of real-life markets where an agent observes the
offers he makes and receives, but does not typically observe offers between other players before they
are accepted.

At any time during a game, players can browse through the entire history of the current game. This
history appears on the left-side of the screen in a separate dedicated window (Figure A9). However
the history is only visible if the player requests so by clicking on the left side of the screen - by default,
the left side is empty (figures A1-A8). The history of the game can be visualized in two different
ways: by round, or by turn. All the retrospective information that was available to a player during
the game (including the order of the unaccepted offers he has made) is made available to him. Figure
A9 illustrates the following situation: during turn number 4 (of game 3, round 1), player E (at the
bottom of the hexagon) is browsing the history of turn 1.

Since the game is rather intricate, each experimental session begins with a period of time during
which participants are invited to read the written instructions (reproduced in Appendix B). At the
end of this reading period, participants are given a PowerPoint presentation followed by question time.
To avoid strategical behavior at the end of the experiment, players are informed that they would
have to wait for all groups to complete their last game before they could leave the laboratory. After
this presentation, participants play a training session lasting approximately 20 minutes to familiarize
themselves with the game and the different screens. The training session is the same for all participants,
and is designed to illustrate all the main features of the game as well as the different treatments.
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Figure A1
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Figure A2

Figure A3
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Figure A4

Figure A5
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Figure A6

Figure A7
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Figure A8

Figure A9
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APPENDIX	B:	DESCRIPTION	OF	THE	GAME	

Welcome	 to	 the	 laboratory!	Today	you	are	going	 to	play	a	 game	whose	 rules	are	explained	 in	
what	follows.		

Example	of	screen	

	

General	setting	

There	are	6	players,	visually	 located	around	a	circle	and	 labelled	with	 letters	(A,	B,	C,	D,	E,	F).	
You	are	the	player	located	at	the	bottom	of	the	circle:	your	icon	is	indicated	by	“ME”	plus	your	
identifying	letter	(in	the	example	above	you	are	player	B).	Existing	links	are	indicated	with	a	tick	
black	line.		

This	is	a	link	formation	game	where	links	are	formed	by	mutual	consent:	

‐ Each	player	can	have	up	to	2	links	at	each	moment	of	the	game	(but	it	is	always	possible	
to	have	one	link	or	no	links);			

‐ During	the	game,	players	have	the	opportunity	to	delete	existing	links	and/or	create	new	
links	among	them.	

The	gains	

“your	 gain”:	 below	 the	 name	 of	 other	 players	 you	 can	 see	 a	 label	 “your	 gain”	 indicating	 a	
numerical	value.	The	total	gain	of	a	game	is	for	you	the	sum	of	your	gains	for	all	players	linked	



with	you	at	 the	end	of	 the	game.	For	 instance,	 if	 the	configuration	of	 the	 image	above	was	the	
final	configuration	of	the	game,	your	total	gain	of	the	game	would	be	6+42=48	points.		

“his	gains”:	sometimes	(but	not	always)	you	can	also	see	“his	gains”,	 that	 is,	 the	gains	of	other	
players	for	the	links	that	they	can	possibly	form.	When	you	see	the	symbol	 	below	a	player’s	
name	it	means	that	you	can	browse	his	gains:	just	put	your	mouse	on	this	symbol,	and	a	window	
with	this	information	will	appear.		

For	 instance,	 in	 the	 figure	above	you	can	see	 “his	gains”	 for	player	D.	 In	order	 to	browse	 this	
information,	go	with	your	mouse	on	 	and	you	will	see:		

	

Thus,	if	you	form	a	link	with	D	you	get	a	gain	of	21	and	he	gets	a	gain	of	17.	

- Note	that	gains	are	player‐specific.	This	means	that	if	D	is	worth	21	for	you,	it	does	not	
mean	that	he	is	worth	21	for	the	others!	

Your	final	payoff	is	given	by	the	sum	of	the	values	of	people	you	are	linked	to	at	the	end	of	the	
session.	Your	goal	 is	 therefore	 to	 end	 the	 session	with	 the	most	profitable	 links	you	can	 form	
(keeping	in	mind	that	you	can	form	up	to	2	links,	but	you	may	also	end	up	with	1	link	or	none).	If	
the	 configuration	 in	 the	 picture	 above	was	 the	 configuration	of	 the	 end	of	 the	 game,	Player	F	
(“ME”)	would	get	a	payoff	of	3+5=8.		

The	game	

The	game	is	organized	in	several	rounds:	

- At	round	0	the	game	starts	from	a	given	network	configuration;	
- 	In	each	round	all	6	players	have	the	turn	to	form	and/or	sever	links;	
- 	the	order	of	move	changes	at	each	round	(for	instance,	you	can	be	the	first	to	move	in	

round	2,	and	the	4th	to	move	in	round	3).	

The	game	ends:	

‐ At	the	end	of	the	8th	round,	
‐ Before	the	8th	round,	if	for	one	entire	round	no	new	link	is	created	and	no	existing	link	is	

severed.		

The	screen	

At	each	moment	of	the	game	on	the	right	of	the	screen	you	see:	

- The	existing	links	(indicated	with	a	tick	black	line);	
- The	offers	that	you	make	or	you	receive	(indicated	with	a	dotter	arrow);	
- The	player	who	is	moving	in	this	turn	(his	name	appears	in	green);		



If	you	click	on	the	left	of	the	screen	you	can	browse	back	and	re‐see	the	history	of	all	past	
rounds	(in	a	way	we	will	explain	later	on).	

When	 you	 are	 called	 to	 do	 an	 action	 (because	 it	 is	 your	 turn	 to	move	 or	 because	 you	 are	
called	 to	 accept/reject	 an	 offer)	 the	 background	 colour	 of	 your	 screen	 becomes	 red	 to	
capture	your	attention.		

The	actions	

When	 it’s	 your	 turn	 to	move,	 three	buttons	appear	 in	 front	of	 you:	 “propose	a	 link”,	 “delete	 a	
link”,	“end	of	move”.		

You	can:		

- Make	offers	to	all	players	to	which	you	are	currently	not	linked	to,	if	you	wish	(but	keep	
in	mind	that	you	cannot	have	more	than	2	links	at	each	moment	of	the	game:	if	your	offer	
is	accepted,	you	may	need	to	cut	an	existing	link);	

- Cut	one	of	both	the	links	you	hold,	if	you	wish.	

You	can	use	the	buttons	“propose	a	link”	and	“delete	a	link”:	

- As	many	times	as	you	want,	subject	to	the	constraints	above	(in	the	example	of	the	figure	
you	can	cut	the	link	with	C	and/or	A,	and	you	can	propose	a	 link	to	one	of	more	of	the	
following	players:	D,	E	or	F);	

- In	the	order	of	your	choice	(for	instance	you	can	first	propose	a	link	to	D,	then	you	cut	a	
link	with	A,	and	later	on	propose	a	link	to	F);		

- If	you	change	your	mind	you	can	get	back	to	the	main	screen	or	press	the	button	“end	of	
move”.		

You	have	15	seconds	max	to	make	your	choice.	If	you	do	not	press	any	button	within	15	seconds,	
your	turn	will	end.			

1. Button	“propose	a	link”:		
	
By	 pressing	 the	 “propose	 a	 link”	 button	 and	 then	 clicking	 on	 a	 player’s	 icon,	 you	 can	
propose	 a	 link	 to	 a	node.	Only	 the	 icons	of	 the	 nodes	 to	which	 you	 are	 not	 linked	 are	
active.	

- If	 you	 have	 currently	 less	 than	 2	 links:	 when	 you	 propose	 a	 link	 to	 a	 certain	
player	(for	example	player	D),	the	screen	will	display	“invitation	to	D	sent”	and	
will	send	D	the	notification	of	your	offer.		

- If	you	have	currently	already	2	links:	when	you	propose	a	link	to	a	certain	player	
(for	example	player	D),	the	program	will	open	a	window	showing	the	list	of	you	
current	partners	(C	and	A)	asking	“which	link	do	you	want	to	delete,	if	D	accepts	
your	offer?”		Once	you	have	decided	which	link	you	want	to	cut,	the	program	will	
display	 “invitation	 to	D	sent”	and	will	 send	D	 the	notification	of	 the	offer.	Note	
that	the	old	link	will	be	cut			only	in	case	the	new	link	is	accepted!	

The	other	player	shall	accept	or	refuse	your	offer:	In	both	cases,	the	player	to	which	
you	want	to	link	(D	in	this	case)	receives	a	notification,	and	he	must	make	the	current	
choice:		



- If	D	 has	 currently	 less	 than	2	 links:	 he	 has	 to	 decide	whether	 to	 accept	 or	 not	
your	offer.		

- If	D	has	already	2	links:	he	has	to	decide	whether	to	accept	or	not	your	offer,	and	
if	 he	presses	YES	 the	program	will	 show	him	a	 list	 of	his	 current	partners	 and	
asks	him	“which	link	do	you	want	to	delete”?		

- If	 D	 does	 not	 press	 any	 button	 within	 15	 seconds,	 the	 offer	 is	 considered	 as	
refused.		
	

If	 the	 offer	 is	 accepted,	 the	 network	 configuration	 changes	 and	 the	 new	 link	 appears:	
When	D	has	decided	whether	to	accept	or	reject	the	offer	You	are	notified	of	his	decision	
(a	 window	 displays	 “offer	 accepted”	 or	 “offer	 rejected”).	 If	 the	 offer	 is	 accepted,	 the	
network	configuration	changes:	the	new	link	appears	on	the	screen	in	a	solid	black	line,	
and	the	deleted	links	disappear	(these	changes	are	visible	to	all	players).		

2. Button	“delete	a	link”:		
By	pressing	 it	and	then	click	on	the	 icon	of	a	player	 to	which	you	are	currently	 linked,	
you	can	arbitrarily	delete	a	link	of	your	choice	(and	have	it	disappear	from	the	screen).	
Yu	do	not	need	the	consent	of	a	player	to	delete	the	link	with	him.					
	

3. Button	 “end	 of	move”:	 	 once	 you	 are	 done	with	 the	 two	 buttons	 “propose	 a	 link”	 and	
“delete	a	link”	you	can	click	on	“end	of	move”	

The	history	

If	you	click	on	the	buttons	at	 the	 left	of	 the	screen,	you	can	browse	the	history	of	 the	ongoing	
game:	

- You	can	navigate	by	round	and	by	move,	
- You	 always	 see:	 the	 initial	 configuration,	 who	 was	 in	 charge	 of	 moving,	 the	 links	

formed/deleted,	the	propositions	of	links	to	you;	
- If	it	was	your	turn	to	move,	you	can	also	see	ther	propositions	that	you	made	and	were	

not	accepted.			

Today	

Today	you	will	start	with	a	training	game	(to	get	used	to	the	software).	After	that,	you	will	play	4	
games.		

At	the	end	of	each	game,	the	identity	of	the	players	with	whom	you	are	playing	will	stay	the	
same	but	the	letters	will	be	reshuffled.	This	means:	

- You	may	be	called	D	during	the	first	game,	and	A	during	the	second	game	
- You	never	know	how	the	other	players	have	changed	position	(the	person	named	C	

during	the	first	game	may	be	called	D	during	the	second	game)	

Your	final	payment	

Each	game	will	have	his	final	gain	(which	is	the	sum	of	the	values	of	“your	gain”	for	the	players	
you	are	linked	to	at	the	end	of	the	game,	as	explained	above).	At	the	end	of	the	session,	the	



computer	will	randomize	one	of	these	4	games,	and	your	final	payment	will	be	based	on	the	final	
gain	of	this	game.	The	gain	of	the	training	game	will	not	be	considered.		

The	payment	rule	is	the	following:	6	euros	fixed	+	0.2	euros	for	each	point.	

In	order	to	be	paid	and	leave	the	laboratory,	you	need	to	wait	(in	silence)	until	we	call	you.		

Now	you	will	attend	a	PowerPoint	presentation	in	order	to	clarify	further	the	rules	of	the	
game.	All	questions	are	welcome.			

	

	


