
CHAPTER 11

Auctions

1. Shading in first-price auctions. A first-price auction is a selling mechanism

in which each potential buyer places a bid, the highest bidder wins the object

for sale and pays his bid. A key aspect of bidding in first-price auctions is in

deciding on appropriate shading. The tradeoff is a simple one. If the object is

worth a value v to you, bidding v results in no profit. Shading your bid will

result in a profit if you win, but your chance of winning likely decreases. So,

there is a tradeoff between a higher profit conditional on winning, and a lower

chance of winning.

To model this tradeoff, denote by b the agent’s bid, and by p the maximum

bid among other bidders. The agent cannot know p for sure. For now, let us

define f as the distribution over the possible maximum bid made by others,

and by

φ(λ)≡ Pr{v− p> λ} ≡
∫

p<v−λ
f (p)dp

the probability that our bidder wins when shading his value v by a fixed amount

λ. His expected gain is:

λφ(λ).

The function φ is a decreasing function. The tradeoff is that higher λ increases

profit in the event of winning, but lowers the chance of winning. The derivation

of the optimal shading is analogous to a standard monopoly pricing problem in

which φ(λ) is interpreted as a demand function.

2. Equilibrium shading. A key aspect of an analysis of auctions is that it

describes an equilibrium phenomenon in which each potential buyer solves

the tradeoff above, and in which the price p, the distribution f and the function

φ defined above are determined endogenously. The problem is no longer a
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128 Ignorance and Uncertainty

monopoly pricing problem, but an oligopoly pricing problem, as the demand

φ that each bidder faces depends on the behavior of others.1

Intuitively, if others shade a lot, one should have little competitive pressure

and find shading a relatively safe strategy. On the other hand, if others are

aggressive competitors who shade little, substantial shading might lead to very

little chance of winning, in which case a more aggressive strategy might be

preferable. Equilibrium analysis aims to endogenize the level of shading that

each bidder finds optimal, given the behavior of others. Equilibrium shading

reflects the degree to which the environment is competitive. It also determines

how surplus is shared between the seller and buyers: smaller shading generates

higher revenue for the seller and lower expected rents for buyers.

What follows is a simple model that captures the forces involved in

determining equilibrium shading.

Define (v1, . . . ,vn) as a vector of valuations. Uncertainty is modeled by

assuming that the vector is drawn from a (symmetric) distribution.

Bidding is assumed to be characterized for each bidder i by a uniform

shading level λi. That is, bidder i bids

bi = vi−λi

whenever his value is vi.
2 Given this behavioral assumption, we can associate,

to each vector of shading levels λ= (λ1, . . .λn) and each bidder i, an expected

gain Gi(λ):

Gi(λ)= λi Pr(vi−λi >max
j6=i

vj−λj).

Bidders are symmetric, and we look for a symmetric equilibrium. That is,

we look for a shading level λ∗ such that when all bidders shade by the same

amount λ∗, no one finds it profitable to modify his shading λ∗. This implies

λ∗ = argmaxλiφ(λi−λ∗)

where

φ(x)= Pr(vi−max
j6=i

vj > x).

1 See Caplin and Nalebuff (1986) for an analysis of price competition in an oligopolistic

environment.
2 We emphasize that the shading level λi is applied uniformly to any value vi in the range of

values considered (given the type of object considered). Clearly, acquiring a firm or a used car

are different matters, and would likely lead to different shading levels in practice. If we were to

look for a shading rule that applies universally, a multiplicative shading (as the one assumed in

Chapter 7) would be more plausible. We discuss this further at the end of this chapter.
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Looking at first-order conditions, we can characterize the only possible

candidate for a symmetric equilibrium λ∗:

λ∗ =
φ(0)

| φ′(0) |
=

1

n | φ′(0) |

3. The effect of dispersion. Intuitively, equilibrium shading depends on the

proportional change in the winning probability for a bidder when he increases

his bid. This proportional change is high (hence shading is small) when there

are many bidders (because in this case each has a small chance φ(0)= 1/n of

winning), or when values are not very dispersed (i.e., | φ′(0) | is large). This

is a standard Bertrand competition effect. When valuations are more dispersed

or bidders less numerous, the effect is weaker, and shading is larger.

The simple expression that we obtain (characterizing equilibrium shading)

relies on the particular restriction on strategies that we assumed. Had we

opted for a multiplicative formulation, the mathematics would have been more

complex, and dispersion would not be captured by the slope | φ′(0) | alone.

Nevertheless, the qualitative statement would be analogous. More disper-

sion in valuations reduces competition. Both models establish a similar link

between value dispersion and competitive forces.

To formalize the effect of dispersion, assume the following structure:

vi = α+ d θi

with all variables drawn from independent distributions. α reflects characteris-

tics of the object affecting the preference of all participants, θi reflects a private

characteristic, and d is a dispersion parameter. Also define

φ0(x)≡ Pr(θi−max
j6=i

θj > x) and λ∗0 =
φ0(0)

| φ′0(0) |
.

For a fixed d, the condition vi−maxj6=i vj > x is equivalent to

θi−max
j6=i

θj > x/d,

and we obtain φ(x)= φ0(x/d); hence

λ∗ = d λ∗0.

In words, the smaller the dispersion parameter, the stronger the competitive

forces, and if d is a random variable, we obtain:

λ∗ =
1

E[1/d]
λ∗0.
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4. Objections to standard modeling. The model departs from standard

modeling of auctions in that the strategy is characterized by a single parameter

λ, while in standard modeling, one would model agents who optimally adjust

bidding, for each separate realization vi.

A possible motivation for the standard model is that, given the distribution

from which values are assumed to be drawn, values convey information about

the chance of being the highest valuation bidder, and about the dispersion of

values below one’s own value in the event one wins. Agents should have an

opportunity to use that information if it is available.

To illustrate, assume that bidder values are independently drawn on an

interval, say [100,120]. For a bidder with value 120, all other bidders have

valuations dispersed below his on the whole interval [100,120]. For a bidder

with value 101, if he has the highest value, it must be that all others are

concentrated between 100 and 101. Competition must thus be much fiercer

at the bottom of the interval. The consequence is small shading at the bottom

of the interval, higher shading at the top.

An obvious objection is that, in real auctions, one doesn’t observe the

distributions from which values are drawn. In many situations, it seems

difficult to judge, based solely on one’s valuation, whether the valuation is

high or low compared to others’. When attending an auction for a painting

that I like, I might have a personal estimate of $1,000; or possibly $1,100.

Whichever figure comes to mind, the specific number seems second order in

assessing the chances of being the highest value bidder.

It could of course be that one gets more direct information about one’s own

chances. If the painting is of my mother or if I am a collector of the artist, I may

be quite sure that I’m likely to have the highest value. But, value itself often

seems to be a poor instrument. The logic of our simplified model is to disregard

this poor instrument altogether. The parameter λ captures a systematic way in

which shading occurs (not optimally tailored to each value realization given

the particular distribution assumed).

5. A strategic issue: significant shading. In bidding in a first-price auction, an

agent faces a tradeoff between two types of strategies:

(i) Trying to beat competition by being aggressive, which gives a reasonable

chance of winning but a small gain in the event of winning.

(ii) Betting on having a high value compared to others, and shading

significantly, which possibly reduces the chance of winning, but generates

large gains in the event of winning.

What the equilibrium behavior describes is a smooth resolution of this conflict,

in which all bidders find it optimal to settle on the same shading level λ∗. An

attractive consequence of that smooth resolution is efficiency: the bidder with

the highest valuation wins the object.

There are conditions, however, under which no such smooth resolution

is possible. When valuations are most likely concentrated, the equilibrium
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shading level λ∗ must be small. Competition is fierce and leaves little rent to

bidders. Imagine now that there is a small chance that valuations are dispersed.

A bidder may be better off gambling on this being the case and shading

significantly: he will only win if in addition he turns out to have a valuation

substantially higher than others’, but when he wins he gets a substantial gain.

Formally, profits under our tentative equilibrium are equal to λ∗φ(0). This

profit must be compared to the gain from shading by a larger amount, say 1.

If the following condition (E) holds:

max
1
1φ(1−λ∗) > λ∗φ(0), (E)

then at least one player prefers to deviate.

Dispersion uncertainty. To better understand circumstances under which

(E) might hold, assume that the parameter d takes two values, d with

probability 1 − p, and value d > d with probability p. Then, under minor

conditions on φ0, it is sufficient that:

p(1− p)

4
> d/d

for condition (E) to hold.3 This means that if p is small, but large compared

to relative dispersion d/d, at least one bidder prefers to engage in significant

shading, gambling that his valuation is quite high relative to others’.

Intuitively, for any fixed p > 0, it is sufficient that d is small to drive λ∗,

and hence profits, to 0. The reason is that a small change in shading then has

a strong effect on the winning probability. And as d increases, the gains from

the large shading strategy increase.

6. Revenue comparisons. We now compare revenues generated by first-price

and second-price auctions. Bidding in a first-price auction is not as obvious as

it may seem. For the winner, the best strategy is to bid just above the second

highest bid. But the winner cannot anticipate what this second highest bid

will be. In contrast, in the second-price auction, the winner precisely pays the

second highest bid, so he need not adjust his bid to the second highest.

The consequence is that, in the first-price auction, optimal shading depends

on a tradeoff between various circumstances; sometimes, it would have been

optimal to shade little; and, sometimes, it would have been optimal to shade

significantly. Depending on the relative weight of these low- and high-shading

3 A sufficient condition on φ0 is that for all positive 1, | φ′0(1) |≤| φ
′
0(0) |. Since E[1/d] ≥

(1− p)/d, the tentative equilibrium shading satisfies λ∗ ≤ λ∗0d/(1− p).

When the bidder opts for a large shading 1, he wins with probability at least pφ0(1/d).

His expected gain is thus at least equal to max11pφ0(1/d) = pd max11φ0(1). Under the

condition above on φ0, 1φ0(1) ≥ 1(φ0(0)+1φ′0(0)) = φ0(0)1(1−1/λ∗0), implying that

max11φ0(1)≥ φ0(0)λ
∗
0/4. The optimal deviation thus gives an expected payoff at least equal

to φ0(0)pdλ∗0/4. When the latter payoff exceeds φ0(0)λ
∗
0d/(1− p), (E) holds.
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situations, bidders may end up finding that “somewhat” small shading is

optimal, or that “somewhat high” shading is optimal. In the former case, we

can expect the first-price auction to generate more revenue, and, in the latter

case, we can expect the opposite.

To illustrate, let us return to our low/high dispersion example. If there

is a significant chance that values are concentrated (small d), this may be

enough to generate fierce competition. In this case, competition is tough even

in events where dispersion is large (high d), that is, even in events where

rents could potentially be quite high for the buyers. Rents remain small for

buyers because they cannot tailor shading to dispersion: shading remains small

whether dispersion is small or large, and this is a source of increased revenues

for the seller.4

Formally, in a second-price auction, the winner, say player i, gets y= θi−
maxj6=i θj in events where y is non-negative. Since y is distributed according

to the density −φ′(y) (by definition of φ), a bidder’s expected gain, which we

denote GII , is therefore:

GII =
∫

y≥0

−yφ′(y)dy=
∫

y≥0

φ(y)dy,

which can be compared to a bidder’s expected gain GI in the first-price auction:

GI = λ∗φ(0). The following figure illustrates graphically the gains GI and GII

in the case of two bidders (φ(0)= 1/2).

4 The opposite argument works, of course, when the chance of a large dispersion drives shading

to high levels. There are events where dispersion turns out to be small and yet buyers get large

rents.
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Call ρ the ratio between GII and GI :

ρ =GII/GI ,

and ρ0 this ratio when the dispersion parameter d is equal to 1.5 Since the

allocation does not change across formats, the seller’s revenue is highest when

the bidder’s expected gain is smallest. So the first-price auction generates more

revenue than the second-price if and only if ρ > 1, and we have:

ρ > 1⇔
∫

y≥0

φ(y)

φ(0)
dy>

φ(0)

| φ′(0) |
. (P)

Our main observation is that dispersion uncertainty makes it easier to satisfy

inequality (P). Indeed, we have:6

ρ = κρ0 where κ = E(1/d)∗Ed,

and the coefficient κ is equal to 1 if d is certain, larger than 1 otherwise. So for

a fixed distribution φ0, dispersion uncertainty increases ρ.

Said differently, the first-price auction is better for the seller when the

“demand” function combines high concentration and substantial dispersion:

concentration (i.e., high | φ′(0) |) implies a strong Bertrand competition effect,

hence low gains for buyers in the first-price auction, while substantial dis-

persion implies high rents in the second-price auction. Dispersion uncertainty

makes it easier to satisfy these two conditions.7

7. Misperceptions and misadjustments. In an ascending-price auction, the best

strategy is obvious – dropping from the auction when the price reaches one’s

value. Bidding optimally in a first-price auction is less obvious as it depends on

the degree to which the environment is competitive, on the number of bidders,

and on the dispersion of values.

Said differently, we have characterized equilibrium shading λ∗, and in so

doing, we have proposed a model that links properties of the distribution over

values to behavior. Distributions, however, are not meant to be observable by

participants. The model is a shortcut that leaves unmodeled the process by

which people conform to equilibrium behavior: we can only hope that agents

eventually figure out that behaving in this way is optimal, and, for example,

5 ρ0 =
∫

y≥0
φ0(y)
φ0(0)

dy/λ∗0 .
6 This is because for any given d, φ(y)= φ0(y/d).
7 Note that dispersion uncertainty may also generate incentives for large shading (strategic issue).

It can be checked, however, that (P) may hold without generating such incentives. The technical

reason is that
∫

y≥0 φ(y)dy>maxy yφ(y).
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that they will shade less when there are more bidders or when values are less

dispersed.

So, although the model does not explain or describe the agents’ thought

process, it suggests features of the environment that agents should consider

when deciding how to bid, such as the number of bidders or the dispersion of

values (i.e., φ′(0)).

Standard models thus portray agents as adjusting perfectly and instan-

taneously to these features of the environment. This is a useful modeling

simplification; but in a world in which one cannot presume such an immediate

and perfect adjustment, strategies are bound to diverge from the “correct”

equilibrium outcome. Sources of discrepancies are numerous, as an agent may

possibly rely on poorly informative or irrelevant signals about the environment

without realizing their strength or lack of relevance.

Our aim, in what follows, is to describe the consequences of these

misperceptions or misadjustments.

8. Noisy shading and misperceptions. A simple way to model mispercep-

tions/misadjustments is to assume noisy shading, with agents having only

imperfect control over shading. A mechanical consequence of noise is that we

are bound to lose on efficiency, hence on the surplus to be shared. Another

consequence, which we analyze below, is that noise modifies incentives to

shade, possibly altering the way that surplus is shared between the seller and

the buyers.

Formally, we model misperceptions by assuming bid strategies that take the

following form:

bi = vi−λi+ εi. (11.1)

The parameter εi is meant to be a (small)8 noise parameter, which we

take to be centered on 0, and that prevents each bidder i from perfectly

adjusting shading to the underlying distribution over values. We keep, however,

the assumption that bidder i controls λi and tries to find the optimal

target shading. This ensures that despite his errors, his behavior is driven

by relevant welfare comparisons, in expectation over the mistakes that he

might make.

8 We keep εi small to ensure that shading remains positive despite the noise. There are many ways

to introduce errors, and other ways to correct for errors that we could imagine. For example, we

could assume: bi= vi−λi/(1+ηi)where ηi is a positive random variable. This way of modeling

noise and strategies would introduce a more direct motive for shading less (and possibly other

comparative statics with respect to noise), as smaller shading is a way to reduce mistakes. Our

objective however is not to be exhaustive about possible strategic effects, but to illustrate two

different forces that may affect bidding.
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An alternative interpretation of the model is that the agent has access only

to a noisy estimate of value, denoted zi:

zi = vi+ εi

and that bidding takes the form assumed earlier:

bi = zi−λi.

Of course, we are not suggesting that misadjustments to the environment and

misperceptions of one’s own value are always equivalent. We just point out

that (11.1) encompasses both interpretations.

9. Strategic consequences. Misperceptions can have two effects: they may

increase the dispersion of bids, and may generate a selection bias (as a

bidder with a positive noise term εi has a greater chance of being selected).

Higher dispersion weakens competition. The selection bias is potentially

favorable to sellers, though bidders may try to compensate for it by increasing

shading.

Given our behavioral assumption, we can compute the gain Gi(λi,λ) that

bidder i obtains when he shades by λi and others shade by λ. To do this, we

define

yi = vi+ εi−max
j6=i
(vj+ εj)

as the margin by which player i wins when all use the same bid strategy. Next,

define

φε(y)≡Pr(yi> y); ψ(y)≡E[εi | yi> y] and 9(y)=E[εi | yi= y].

ψ(y) (and 9(y)) are thus the expected error that bidder i makes when he wins

by a margin at least equal to y (exactly equal to y). Note that ψ(y) is positive

and increasing because bidder i tends to win more often when εi is positive.

This is a selection bias, and the selection bias is stronger when you are winning

by a larger margin.

If other bidders shade by λ, we have:

Gi(λi)= (λi−ψ(λi−λ))φε(λi−λ).

A symmetric equilibrium shading λ∗ε must thus satisfy:

λ∗ε +ψ(0)=
φε(0)

−φ′ε(0)
(1−ψ ′(0)),
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or equivalently:9

λ∗ε =
φε(0)

−φ′ε(0)
+9(0).

This formula captures the two strategic consequences of noise on incentives.

Noise creates greater dispersion in bids, which typically increases shading

(because −φ′ε(0) typically decreases). It also generates a selection bias of size

ψ(0), which bidders only partially offset by shading an additional 9(0).10 For

bidders, the consequence for profits is:

Gi(λ
∗
ε)= φε(0)

[

φε(0)

−φ′ε(0)
+9(0)−ψ(0)

]

,

where we see that the partial offsetting of the selection bias may reduce profits

(9(0) < ψ(0)); while the dispersion of bids generally makes the environment

less competitive (smaller −φ′ε(0)), hence conducive to higher profit.

For normal distributions and two bidders, total welfare and total profits can

be characterized in closed form. Assume vi and εi are normal distributions with

mean and variance respectively equal to (v0,η2) and (0,σ 2). Let ρ=σ 2/η2. We

provide below the exact formula for total welfare (W) and total profits (G):11

W = v0+
η

√
π(1+ρ)

and G=
η
√
π
(

1
√

1+ρ
+

√

1+ρ(π −
√

2).

Thus, as ρ increases above 0, welfare decreases (because the object is no longer

necessarily allocated to the highest value bidder), but total profits for buyers

nevertheless increase. The reason for this is that, due to noise, competition is

weaker (smaller −φ′ε(0)), and this effect dominates the fact that the selection

bias is only partially offset (9(0) <ψ(0)). The immediate consequence is that

the seller is worse off.

To summarize, a bidder is more likely to win when optimistic about his

own valuation. This is a selection bias, which creates a gap between the

9 This follows because 9 = (ψφ)′
φ′ =ψ +ψ ′ φ

φ′ .
10 Intuitively, the reason that bidders only partially offset the selection bias is that at the optimal

shading, bidders implicitly consider what happens when they win by a zero margin; while, on

average, they win by a larger-than-zero margin. They, thus, face a selection bias of magnitude

ψ(0) (larger than 9(0)).
11 To simplify notation, denote by h = −φ′ε the density over yi. Note that yi ∼ N (0,σ 2

y ) with

σy =
√

2
√

σ 2+ η2. Define M = E[zi− v0 | zi > zj]. We observe that W = v0+M−ψ(0) and

that by symmetry,

M =
1

2
E[zi− zj | zi− zj > 0] =

∫

yi>0
yih(yi)dyi = E max(0,yi)= σy/

√
2π .

Also observe that 9(y) = E[εi | yi = y] = αy, with α = σ2

2σ2+2η2 , hence ψ(0) =
2α

∫

yi>0 yih(yi)dyi. To obtain G, we observe that G = W − S where S is the seller’s gain.

To compute S, we observe that S=M− γ ∗ε and, since yi ∼N (0,σ 2
y ), λ

∗
ε =

√
πσy.



Auctions 137

estimated value and the realized value conditional on winning. This gap is

called the winner’s curse, and profit-maximizing bidders ought to bid in a

way that takes into account this selection bias. The analysis above highlights

that in equilibrium, the offsetting of the selection bias is incomplete, which

is detrimental to bidders. But, it also highlights that the dispersion in bids

that misperceptions create may sufficiently weaken competition that bidders

may nevertheless benefit from the noisier environment. It is not increased

information that is a source of rents, but increased dispersion.

Further Comments

Independence and correlation. A standard division in studying auctions is

whether values are independent or correlated. Technically the distinction

means that in the former case, values should be thought of as being drawn

from independent distributions, while in the latter case, one should think of a

random parameter affecting all values.

The distinction seems awkward. The object for sale is the same for every

potential buyer, it has characteristics that each one can observe. These

characteristics may not be valued in the same way, but to any potential buyer,

the value of a car surely differs substantially from the value he attaches to a

plant. This justified our representation

vi = α+ d θi,

where α is a shift parameter that captures the “typical” value of the object for

sale.

So there should be no question that values are correlated across auctions.

The idea that the analyst can nevertheless focus on the case where values are

independent stems from the fact that, if bidders know α, d and the structure of

the model, they can infer the value of the independently drawn characteristic

θi ≡ (vi − α)/d, and use it as an instrument to derive optimal/equilibrium

bidding b∗(vi)= vi−λ∗(θi). From this perspective, the independent value is the

more cognitively demanding, as it requires knowing α and d, and determining

how to condition bids on three variables (vi, α and d).

Nevertheless, whether bidders condition behavior on vi or on (vi,α,d), both

formulations are quite demanding cognitively. In both formulations, bidders

may exploit the structure of the model and, for example, adjust their shading

strategy using information on the difference D= vi−maxj6=i vj conveyed by vi

(or vi, α and d).

What we have proposed is a drastic simplification in which vi is used in

bidding, but where the information about D potentially provided by vi is not.

This provides a more parsimonious auction model. It also opens the path to

intermediate models in which bidders get “some” information about D, in

the form of coarse signals about rank that they could condition behavior on,
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without necessarily embodying the level of sophistication assumed in standard

models.12

Dispersion rents or information rents? The literature often refers to “infor-

mation rents” to describe the gains that an “informed” player gets. In auctions,

a more appropriate terminology might be “dispersion rents”: bid dispersion

generates rents, and private information in standard models generates rents

insofar as it creates bid dispersion. Our model illustrates that poor information

(i.e., noisier estimates) may translate into higher bid dispersion, and that

improving an agent’s information (i.e., less noisy estimates) may induce less

bid dispersion, hence smaller rents.13

This effect of noise on bid dispersion would not hold in a standard model –

the opposite would actually be true. Noisier estimates would translate into less

dispersed posteriors (by a regression to the mean effect), and therefore greater

competition when symmetry is assumed. The latter conclusion, however, is (in

our view) an artifact of the standard model, and of the implicit assumption that

agents know (or behave as if they knew) all distributions: as noise increases,

value estimates decrease in importance and more weight is put on priors,14 as

explained in Chapter 10.

Common values, interdependence and estimation errors. In modeling auc-

tions, the distinction between private and common values is often seen as a key

dividing line. In common or interdependent value auctions, the bids of others’

reveal information about one’s own valuation, and, in bidding, a rational

bidder ought to take into account those inferences. An omniscient bidder will

indeed find this advice useful. To most bidders, however, the precise ways in

which preferences are interdependent are likely obscure, and the appropriate

inference likely out of reach.

From a less sophisticated bidder’s perspective, a more useful dividing line

may be whether he is subject to estimation errors or not. If a bidder is subject

to estimation errors, he faces selection bias: he is more likely to win when the

error is positive. This selection bias has been identified first by Capen et al.

(1971), and the optimal response to it is caution.15 This phenomenon is not

specific to auctions or the presence of interdependencies in valuations: it may

arise in any decision problem where an agent compares an alternative that is

easy to evaluate (not buying) to one that is more difficult to evaluate hence

subject to estimation error.16

12 This is the path taken in Compte and Postlewaite (2012). In this paper, we investigate whether

and when some rank related signals promote or diminish competition.
13 Note that the motive invoked here as to why poor information hurts the seller is different from

that invoked in Milgrom and Weber (1982), which relies on affiliation.
14 That logic is pursued in Ganuza (2004) for example.
15 See Compte (2001), which examines the effect of increasing the number of bidders on this

selection bias, in the context of the second-price auction.
16 See Compte and Postlewaite (2012) and Chapter 21.
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Now, the level of caution depends on context, and indeed, the degree of

interdependence then matters. If idiosyncratic components are less dispersed

(small d), which can be interpreted as values being more interdependent, the

estimation errors carry more weight and caution should increase.

Efficiency in first price. In a symmetric environment with independent values,

an equilibrium in monotonic strategies is guaranteed to exist, implying an

efficient allocation of the object.17 With our focus on a restricted set of

strategies, this is no longer guaranteed, and we explained in Section 6 when

it may fail to exist.18 Since our model may be interpreted as one in which

players are unable to draw precise inference about rank given their values,

as in a correlated value model, our model also gives hints as to when there

may be nonexistence of an equilibrium in monotonic strategies in a standard

correlated value model.

In any event, one reason that first-price auctions are likely to generate

inefficient outcomes is that symmetry in perceptions of the environment is

likely to fail, hence differences in shading levels are likely to arise, generating

inefficient allocations. Whether these inefficiencies are large in practice

remains, however, an important applied question.

Additive versus multiplicative shading. Technically, one difference between

additive and multiplicative shading is that the latter mechanically incorporates

into bidding some information about rank that the former does not: in the

multiplicative version, shading is stronger for higher value realizations. For

some auction formats such as the first-price auction, the qualitative effects are

similar under both assumptions. For other auction formats such as the all-pay

auction, an additive shading assumption could drastically modify the analysis

and make existence of an equilibrium an issue even with few bidders. To us,

however, failure of existence is not a weakness of the additive formulation, but

an illustration of what is necessary to generate stable predictions under that

particular auction format.

Suggestions for further research/applications. Through strategy

restrictions, one obtains a more parsimonious treatment of auctions, with

only one, or few, dimensions of behavior being endogenized. This, in

turn, may help deal with problems that are technically difficult to address

within the standard framework, or at least simplify their analysis. In the

spirit of Chapter 7, it may also help assess the robustness of existing

17 See Milgrom and Weber (1982).
18 In essence the reason is similar to why competition for differentiated goods may not generate

a pure strategy equilibrium. See Caplin and Nalebuff (1986).



140 Ignorance and Uncertainty

models in which players’ knowledge of their rank in the distribution

plays a key role.

Specific topics and relevant references: (i) auctions in which buyers

get other signals beyond their own valuation (Fang and Morris (2006));

(ii) auctions in which multiple units or slots are sold;19 (iii) dynamic

selling problems in which the seller faces a sequence of buyers

(Lauermann and Wolinski (2016)); (iv) contests in which one or several

prizes are offered (Moldovanu and Sela (2001)),20 and more generally,

matching problems;21 (v) auctions in which the seller chooses a reserve

price strategically, as a function of his perception of the buyers’

valuations.22
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