CHAPTER 19

Unraveling

1. Sophistication allows one to precisely tailor behavior to circumstances.
In strategic interactions, circumstances may include not only the particular
payoff structure an agent faces, but also the behavior of other agents. For some
interactions, sophistication improves players ability to coordinate, generating
multiplicity of possible outcomes.' For other interactions, sophistication gives
rise to competitive pressures or unraveling effects.

The two-person Nash demand game provides a simple illustration of the
multiple ways in which players may coordinate in a strategic interaction. There
is a pie of given size, S, to be shared, and each makes a demand. If demands are
compatible, each gets his demand. If incompatible, the pie is lost. In this game,
any sharing (x1,x,) of the pie (such that x; +x, = §) is an equilibrium outcome.

But players’ ability to adjust to one another does not necessarily generate
multiple outcomes. The centipede game illustrates the competitive pressures
that sophistication creates. In this game, the size of the pie increases over time,
and the first to exit gets a larger share of the pie, while the other gets the remain-
der. Thus there is a joint incentive to wait to enlarge the size of the pie along
with a private incentive to exit first, driving both players to exit immediately.

2. In both examples, one may feel that adjustment to the other’s behavior
is too easily achieved, especially since equilibrium analysis is silent about
how equilibrium outcomes come about. A more realistic description of the
interaction may thus rely on limiting each player’s ability to adjust to others’
behavior. This can be done by assuming that agents tremble in making
decisions, or by introducing uncertainty on the exact size of the pie or
asymmetries in information. As is well known,”> such imperfections may
drastically reduce coordination possibilities in the Nash demand game, and
the model then typically generates a single prediction.

In the context of the centipede game, one expects that reducing sophis-
tication will reduce private incentives to exit before the other — smoothing

1 This is the topic of Chapter 20.
2 See Nash (1953) and Carlson (1991).
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232 Ignorance and Uncertainty

competitive pressures, at least to some extent. One purpose of this chapter is to
affirm that intuition. Another purpose is to propose a simple model of limited
sophistication, based on direct strategy restrictions.

3. A simple centipede game. We consider a pie growing linearly over time. The
pie stops growing as soon as a player exits, at which point the game terminates
and the pie is shared. The player who exits first gets a larger share of the pie.?

Formally, the pie at date ¢ has size St, and we denote by a the share of the
agent who exits first (@ > 1/2).* The other player gets the remainder (a share
of size 1 —a). We also denote by v;(#;,1;) player i’s payoff when the exit dates
chosen are #; and #;. To avoid technical difficulties we assume discounting; there
is a discount factor, but we take it to be arbitrarily close to 1.> Over the range
of relevant dates, and letting p = (2a — 1)/a, we thus have:

vi(t;, 1) = aS[min(z;, 1) — A(t;,1)] with
At 1) =0if 1; <t and
=ptift; <.

The term min(#;, ;) reflects the joint incentive to set high exit dates. The term
A(t;, 1)) reflects the penalty from exiting last. The penalty increases over time,
and that penalty is smaller when a is close to 1/2. When players are allowed to
choose exit dates with arbitrary precision, this game has a unique equilibrium
in which both exit immediately.®

4. Strategy restrictions and payoffs. To limit players’ ability to adjust to one
another, we assume that even when a player fargets a particular exit date A;,
his actual exit date #; is stochastic: #; is a function t(A;,7;) of the target X;
and a random component 7;, where each t; is drawn independently from a
distribution with density /4, and cumulative distribution H. In the first part of
this chapter, we assume that the noise term is additive:

=t ) =1+T1,

and in later computations, we assume that each t; is exponentially distributed
with the same parameter 1/u:

H(tj)) =1 —exp—r1;/u for t; > 0, H(t;) = 0 otherwise.

This is a continuous time version of the centipede game. The centipede game was originally
introduced by Rosenthal (1981). See Brunnermeier and Morgan (2010) for a continuous time
version. This game is also called a preemption game: there are two shares available, and when
you exit first you preempt the other players and get the larger share.

We assume equal sharing when both exit at the same date, but under the assumptions to be made,
this event will have probability 0.

This ensures that payoffs remain bounded, and that for any discount factor é, there is an upper
bound on the termination date.

The form of penalty is not important. We briefly discuss other payoff structures in Section 9.
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The parameter p reflects noise in decision making. A plausible interpretation
of this noise is that a player can be in two possible states of mind: one in which
he is inclined not to exit (i.e., prior to A;) and a second in which he thinks
that he should exit (i.e., after X;), but doesn’t exit with certainty: he exits with
probability df/pu per period of time df. With this interpretation in mind, the
additive noise 7; seems natural.

For each player i, a target date A; generates a distribution over exit dates ;.
We denote by V;(x, 1) the expected payoff obtained by player i when he targets
date A + x while the other targets date A:

Vi, ) = ETi,iji()L +x+T1,A+T)

5. Equilibrium. We are looking for a symmetric equilibrium, that is, a target
date A* such that neither player wishes to select a different target date,
or equivalently such that V;(x,1*) is maximized at x = 0. Payoffs being
proportional to aS, we normalize aS to 1. We have:

Vitx,A) =A+Emin(x + 7, 7)) — p /(/\ +1)h(7)(1 — H(z; —x))dT;.

In equilibrium, the target date A* satisfies %(lk*) =0, implying that:”
. 1-H
p(M+Et|n=nl)=E - Il =1n|. (19.1)

The right-hand side is the benefit from a marginal increase in the target date,
which exploits the fact that the other player’s exit date is dispersed, hence
possibly higher (when the distribution is concentrated, / is large and this term
is small). The left-hand side is the marginal cost of increasing the target date.
For an exponential distribution with parameter 1/u we get:®
=22
2p

The expression reflects the two forces at work. For p close to 0, the private
incentive to exit before the other player is weak, because there is not
much to gain from early exit. When p is large, these incentives are even
weaker, because getting the larger share with meaningful probability requires
a substantial (and costly) decrease in the target date.

6. Noisy instruments and incentives to delay. As discussed in Chapter 4, one
can think of each agent being endowed with a set of instruments that enables

7 Differentiating the above expression yields Jh(x)A=H()dr =p [(A+ r)(h(r))zdr, hence
the desired conclusion. Note that this is a necessary condition for equilibrium. For the
distributions we consider, the local condition is sufficient.

8 For the exponential distribution, % =pand E[t | 1y =10l = /2.
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him to parse the environment and adjust to it. From an ex ante perspective,
the pair (A, ) defines a mixed strategy o™ over possible exit dates, and we
have just examined the consequence of restricting each player’s strategy to the
family

= {oM ).

Each strategy o™ can be represented as a cumulative distribution F** over
exit dates. The figure below shows the functions F*/(¢) for u = 2 and for
various targets A.

E(t)
10

0.5

When p = 0, {F**}, is a family of step functions. When each player has
this family available, unraveling is extreme and leads to immediate exit. As p
gets larger, the functions F**(.) get flatter, and unraveling weakens.

Intuitively, randomness in the other’s action generates incentives to delay
exit, and this effect is sufficient to weaken unraveling. To see why, assume that
only player 2’s exit date is subject to noise (u; = 0 and @y = u > 0). When
player 2 targets A, the optimal exit date #* for player 1 satisfies:”

C1=H@ -
o h(rr—1)

*

For exponential distributions, * = 11/p independently of the target date A.'°
Another consequence of noise is randomness in one’s own action: a player

should take this into account in setting his target, as on average, his exit date

occurs Et = p after the target. Anticipating this delay, the target should be

9 A marginal increase of df yields a gain df in events where A + 75 > t, and a loss pth(t)dt for ©
such that A + 7 = ¢, hence the first-order condition 1 — H(t — t) = pth(t — A).

10 Similarly, in response to a deterministic exit date 7, the optimal target is A* such that pt =

H(t — A*)/h(t — A*). Combined with the expression for *, we obtain that H(r* — 1*) = 1/2.

When the distribution is exponential, we obtain r* — A* = Ln2, hence A* = ;u(1/p —Ln2) > 0.
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reduced. Expression (19.1) reflects this component, and shows that in the
symmetric equilibrium the target is reduced in equilibrium by E[7 | 1) = 1] =
/2, hence only half of the expected individual delay .

7. Multiplicative noise. We provided a motivation for additive noise, but other
sources of noise seem equally plausible. The previous analysis suggests that the
parameter n = “%—_") should drive the extent of delay, and the agent might wish
to adjust his target based on his perception of 1. In that case, multiplicative

noise about perceptions of i seems plausible, and the relevant model might be
=t t) =Ani+ T

where the coefficients 7; are drawn independently from a lognormal distribu-
tion (logn; ~ N(0,52)). We denote by H™ the cumulative distribution of n;
and by /™ its density.

Multiplicative noise on the exit date may qualitatively alter the outcome. In
the additive noise case, the incentive to delay eventually vanishes for large exit
dates, because the penalty A(#;,1;) becomes large compared to the magnitude
of the noise, explaining why target dates have the same order of magnitude as
M.

In contrast, with multiplicative noise, the incentive to delay exit does not
vanish for large exit dates, because the randomness in the other’s exit date is
larger for large exit dates. We illustrate this by ignoring the additive noise (i.e.,
7; = 0), and by computing the expected payoff V{"(x,A) for player 1 when his
target is xA, while the other’s target is A. Player 1 gets Amin(xn;,7,) and he
suffers a penalty of pAn, when xn; > n,. Thus we have:

Vit (x,A) = A[Emin(xn;, 172) — p/n(l —H"(n/x)h" (n)dn].

Consequently, incentives are independent of A, and it is immediate that when
. AVI(1,% .
p is below some threshold p* 1 —% > 0 for all A, demonstrating that

players wish to increase their target date indefinitely — competitive pressures
completely vanish.'? The next figure shows the locus of p* for lognormal
noise, as a function of the standard deviation o .!3

11 Differentiating the above expression, one obtains p* = f nh(n)(1 —H(n))dn/ fnz(h(n))zdn.

12 Of course, with a fixed discount factor, this incentive to set the target date above the other
would vanish for sufficiently large targets, and we would find an equilibrium target A*. This
target would decrease as players become more impatient.

13" Qur analysis ignores the possibility that both choose the target 4; = 0. In the absence of additive
noise, this target would be implemented without noise, and could constitute an equilibrium.
Additive noise, however, would preclude an equilibrium with immediate exit. We omit this
issue in the rest of this chapter.
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8. End game effects. The structure of noise is important and may hinge on
how the game is framed. If the game exogenously terminates at date 7, and if
players are perfectly aware of that termination date, it seems plausible that
the noise in exit dates vanishes as players approach the terminal date. An
expression for exit dates consistent with this constraint is then:

niriT

t,'zt )\.i, ,',T i a— 192
(i, T) Tt (19.2)

where 7; is lognormally distributed (i.e., log n; ~ N(0,02)) and A; € (0,00).
In the absence of noise (1; = 1), the exit date would be a fraction

¢i=ri/(1+ A1)

of the total game duration 7. The actual exit date is a random fraction of the
total duration 7', obtained by assuming that X, is implemented with noise.

Proceeding as before, we compute the equilibrium target A*, or equivalently,
the equilibrium fraction ¢* = A*/(1 4+ A*). That fraction captures the
competitive pressure — when ¢* = 0, these pressures are extreme, and when
¢* =1, they are completely absent. The figure on the next page shows how ¢*
varies as a function p, forc =0.2 and o = 0.3.

We see from the figure that as p decreases, the competitive pressure starts
weakening at p*(o) (as defined in the previous section). Because of the pres-
ence of an end date, the competitive pressures no longer fully vanish as soon
as p falls below p*(0), but only do so gradually as p decreases below p* (o).

9. Other payoff structures. In the centipede game defined in Section 3 above,
the loss from late exit (as compared to early exit) grows linearly over time. One
might imagine interactions (see below) for which this loss remains constant
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QS*

over the course of the interaction: the player who exits first gets a bonus G,
while the other suffers a penalty L. Formally, letting A = G 4L, this yields the
following payoff structure:

{G—l—aSmin(ll,tz) ifty <n

vi(t, ) = . .

G+aSmin(t,) — A  ifty <ty

We consider the noise structure defined above (see (19.2)) with a terminal date
T large compared to A. For any target fraction ¢, we now define the parameter
y =T(1 — ¢), which represents the length of the end game.

As the target fraction ¢ decreases from 1, the dispersion in exit dates
increases, and for y large enough, the dispersion is large enough to provide
players with incentives to delay exit. In equilibrium, exit dates are thus pushed
toward the terminal date 7" in equilibrium, until some date 7 — y*, which we
calculate next.

To quantify y* simply, we use the approximation 1 — ¢ >~ 1/X and obtain:

=T =y /ni.

y; is a strategic variable for player i that represents the length of the end game,
as targeted by player i. The term y;/n; corresponds to a noisy implementation
of that target. As before, we define player 1’s expected gain V;(x,y) when he
targets xy and the other targets y:

Vitx,y) =T — yEmax(x/n1,1/m) + APr(x/n1 > 1/n2) — L.

This yields a simple expression for the equilibrium length y* of the end game.
This length y* depends only on A and the distribution of the noise. It is
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independent of the length of the interaction, and grows linearly with A. The
figure below illustrates how y*/A varies with the standard deviation o.'*
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From the figure, we see that even very small noise can seriously suppress
unraveling.

10. Application to finite duration repeated games. Consider a prisoner’s
dilemma game played in continuous time until a terminal date 7. The payoff
structure below describes the flow payoff to the players as a function of the
actions currently played (either Cooperate or Defect):

| ¢ D
cl 1.1 -LG
D|G.—L 0.0

with G > 1 and L > 0. We assume that when a player defects, his defection is
detected with certainty after a lapse of time of d, leading to mutual defection
for the rest of the interaction. We are interested in the date #; at which a player
initiates defection. As in the centipede game, both players have a joint interest
in choosing late defection dates, but each has a private incentive to defect
before the other.

Formally, we look for an equilibrium in which players targets a defection
date. The payoff that player 1 obtains as a function of defection dates #,
and 1, is:

min(ty,t) + Gmin(t, — t1,d) ift; <t

vi(tLh) =1 . ) )
min(ty,t,) —Lmin(t; —fh,d) ifth <t

14 We have y*/A = [n(h(m)*dn/ [(1/n) () (1 —H())dn.
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The temptation to defect before the other is thus bounded by (G + L)d,
which makes this game akin to the centipede game examined in the previous
section: when the target is implemented with noise, then, even with tiny noise,
unraveling is limited. Additionally, the length of the end game (during which
players defect) is independent of the duration (7’) of the game, and it increases
with (G+ L)d. In other words, that length increases with the stakes (how much
one gains from exiting first, how much one loses when the other exits first) and
the duration d needed to detect the deviation. The exact characterization is left
for future research.

11. Comparison with a standard Bayesian model. An alternative modeling
strategy might add noise to model parameters, say the share a, with agents
observing a noisy signal @; of a, and assume that each chooses optimally an
exit date as a function of the signal a; received.”> Our proposed modeling
strategy differs in that we do not try to provide a rational justification for
each possible exit date that the agent picks. We leave some aspects of decision
making unmodeled, arguing only that the exit dates may be subject to shocks.
Nevertheless, exit dates are not assumed to be arbitrary. They are driven by
realized welfare comparisons on the agent’s part, through the optimal choice
of the target A;.

Said differently, Bayesian models try to endogenize the structure of
mistakes that agents make, taking as given the structure of their signals, and
assuming that agents can exploit arbitrarily finely these signals, as though
they knew precisely the process that generated the signals. In contrast, we
make no attempt to endogenize the structure of mistakes, and instead focus
on the implications that plausible noise structures have on strategic behavior.
We do so for several reasons. We are skeptical of what can fruitfully be
endogenized or rationalized as far as mistakes are concerned: the source of
mistakes presumably lies in what agents observe or perceive, and we seldom
have access to these perceptions. Furthermore, the agents are not likely to
have access to the details of the process that generates their perceptions. Also,
mistakes need not always be rationalized within the model: one may construct
parsimonious models that do not adhere strictly to the Bayesian methodology
and, nevertheless, explore strategic consequences of noisy perceptions.

There is another advantage of our approach. One message from this chapter
is that the form of the noise may largely shape a model’s prediction. One may,
of course, rely on perception or psychometric studies to uncover which are the
most relevant. But by considering various forms of noise, one may discover
which forms lead to predictions that are consistent with our intuitions (or
with experimental data). In Section 9, the prediction is that the equilibrium
length of the end game is an increasing function of the stake A. With additive

15 Brunnermeier and Morgan (2010), for example, examine a similar game, assuming that the
date at which the cake starts growing above 0 is random, and that agents observe noisy signals
of that starting date.
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noise, we would obtain a threshold A* above which the game unravels back
to the start of the game, and below which players stay in for most of the
game. We find the prediction obtained from the multiplicative noise structure
appealing.

Further Comments

The centipede game was originally proposed by Rosenthal (1981). It provides a
simple illustration of the strength of backward induction. The finitely repeated
prisoner’s dilemma and the chain store game (Selten (1978)) are two other
examples of games in which backward induction plays a key role in generating
somewhat implausible predictions.

In these three games, noise in decision making reduces the strength
of backward induction, and generates predictions more in accord with
experimental evidence and intuition. For example in the finitely repeated
prisoner’s dilemma, one expects that subjects do not defect at all dates, and
that their propensity to remain cooperative depends on the payoff structure
considered (the benefits from mutual cooperation, the gain from defecting, and
the loss from being cooperative against an opponent who defects), in the same
way that we expect large exit dates when a is close to 1/2 or p close to 0.1

Rosenthal (1981) explores the fragility of backward induction arguments to
the introduction of noise in decision making. In justifying such departures from
“full rationality,” he writes:

“Although a player may not consciously intend to randomize [...] it may be that
for some reason his intention is not realized [...] If players with preceding moves
realize that this may be the case, they would be wise to consider it when making their
choices.”

Rosenthal thus calls for introducing noisy decisions, but decisions still driven
by self-interest. Implementing these two considerations simultaneously is a
challenge. How should one model mistakes? How should one model the force
toward self-interest? If one sees a move that seems unexpected, should this be
viewed as evidence that further unexpected moves are to be expected, or should
this be viewed as a one-time mistake, inconsequential to figure the benefits of
each alternative available?

These considerations lie at the heart of the reputation literature,"” which
proposed (i) a special structure on mistakes, assuming that with some small
probability behavior is determined exogenously (say, an agent never exits) and
(ii) a special way of modeling the force toward self-interest: if the agent’s
behavior is not determined exogenously, then he must be “fully rational” —
that is, exploiting to a maximal degree the structure of the model.

Rosenthal follows a different path. He proposed that the decision is subject
to a random component, drawn independently at each date, but driven by the

16 See Embrey, Fréchette and Yuksel (2016) for experimental evidence.
17 See Chapter 13 and Milgrom and Roberts (1982) for example.
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utility differences between the alternatives available at that date, where the
utility is computed taking into account the mistakes that the agent and others
might make in the future.'®

Our modeling strategy falls in neither category. We do not examine
incentives at each date, calculating what each believes based on hypothetical
presumptions about what could have led to the other not exiting so far; nor
do we presume the existence of various types of players, some of whom are
crazy or altruistic, while others are perfectly rational; nor do we tailor the
magnitude of mistakes made in each round to the correct value comparisons
that would be performed in that round, as proposed by Rosenthal. Our family of
noisy decision rules directly embodies the two concerns above, i.e., the need to
introduce some randomness in decision making and to introduce self-interest.

Finally, this chapter (as well as the other chapters in which we consider
noisy strategies) is related to the literature that introduces noise to capture
evolutionary pressure (Foster and Young (1990)), or incomplete learning (Roth
and Erev (1995)).'° One interpretation of this chapter is that equilibrium in
noisy strategies is a shortcut to predict behavior in interactions where learning
remains incomplete.

Further research. One could examine various extensions, varying
the number of players involved, and relaxing the assumption that the
termination date is known with certainty. One could, for example, define
the exit function t(A;,n;,7;) where T; is a noisy estimate of the terminal
date, and analyze the effect of all players missing the true termination
date (either the pie is lost, or shared equally). The analysis could provide
insight about the effect of the number of players on the duration of the
end game in the prisoner’s dilemma. It might also provide insight about
the Dutch auction and the effect of setting a public reserve price: with
several objects sold, this game has the structure of a centipede game,’
and the reserve price, if public, plays the role of a termination date.?!

18 McKelvey and Palfrey (1995,1998) elaborate on this idea to define a quantal response
equilibrium. In dynamic games, the logic of quantal response applied at each node of the game
(rather than ex ante over all dynamic strategies) would be to introduce independent noise at
each date.

19 See also Gale et al. (1993).

20 The Dutch auction is a descending-price auction in which the bidder who exits first gets the

object. If there are K objects sold to N bidders, each of whom has the same valuation v for the

object, and if, as soon as one bidder exits, others follow immediately, the first mover gets one
object with certainty, while the others get it with probability p = (K — 1)/(N — 1). This game

has the structure of a centipede game (the pie increases linearly once the price reaches v).

If the reserve is not public, players may only have a noisy estimate of that termination date, and,

therefore, may risk losing the pie altogether. Other possible extensions include: (i) examining

the incentive to exit after the first exit (in the spirit of Bulow and Klemperer (1994)); and (ii)

dealing with the case that exit by others is learned with a random delay.

2
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