


CHAPTER 6

Information Aggregation

1. A common theme in economic theory is that markets aggregate information
well: the price reflects all the information available to the agents participating
in the market. The result is surprising. Given the number of dimensions on
which uncertainty could bear, how can a price mechanism, a one-dimensional
instrument, achieve this tour de force? The truth is that in general it cannot.

2. Information aggregation is a challenge because in modeling a market,
one assumes that there is no direct information sharing between participants.
Participants make bids, based on possibly poor estimates of the value of the
item for sale, and the transaction price is determined by market rules as a
function of bids. How, then, can information transmission come about? We
explain below the logic behind information aggregation. Following this, we
shall explain the logic behind information aggregation in markets, and in
nonmarket mechanisms such as voting.

3. An urn example. Think, first, of an urn filled with coins of various sizes and
colors. Your objective is to determine the total value of the coins present in the
urn, and come up with a point estimate of that value. Your problem is that you
cannot be sure of the number of coins, nor of the nominal value of each coin.

An object for sale is like this urn. You don’t know with certainty all its
characteristics. Once you acquire the object, you learn its true value but, before
that, you have only an estimate of that value. That estimate may be overly
optimistic or overly pessimistic.

Now imagine a group of people, all staring at the same urn and willing to
guess the total value of the coins in the urn. Also imagine that you are told that,
among all participants, you have the most optimistic estimate. This information
is likely to undermine your faith in your estimate, and it is plausible that you
revise it to a more conservative figure. And presumably, one can expect that
the larger the group, the larger the change in your estimate.

Information aggregation is precisely about this adjustment. Others have
estimates or perceptions that are related to some degree to the actual value

67
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of the urn. Being told something about others’ estimates could, in principle,
improve mine.

4. A critical question is the extent of the adjustment. If I adjust too much, I may
end up being too pessimistic. If I don’t adjust enough, I may remain overly
optimistic. The literature on information aggregation generally portrays agents
who misperceive the value of an asset, but who manage to perfectly undo
their initial misperceptions when confronted with information about others’
estimates. This information about others’ estimates may differ depending on
context (the number of assets for sale, the number of buyers, the mechanism by
which assets are sold). But across these variants, the objective is the same – to
explain or show that markets lead to the asset being sold at a price that is
close to the true value of the asset, despite the fact that each agent starts with a
misperception of that value. We explain below the logic of these papers.

5. A stylized illustration. We denote by v the true value of the urn. We consider
n agents staring at the urn. We model ignorance about v by assuming that
each one gets a perception zi of that value, and by defining a particular joint
distribution ω over the value v and the perceptions zi. Specifically, let us
assume that

zi = ηiv

where v is drawn from an exponential distribution, and where each ηi is
an estimation factor drawn independently from the same distribution having
positive support on [0.9,1.1]. Roughly, this means that agents make an
estimation error, but this error, when positive, cannot exceed 10 percent of
the value of the urn.

Imagine now that n is very large, that you have the highest estimate, and
that you are informed of this. You are asked your best prediction of v, based on
your estimate z. Call b that best prediction.1 Since there are many agents, the
estimate of the most optimistic agent exceeds v by a factor that is, most likely,
very close to 1.1: that is, z � 1.1v. If told that you have the highest estimate,
then, knowing the structure of the model, you can infer that you are very likely
to be optimistic by a factor close to 1.1, so your best prediction is:

b � z

1.1
� 1.1v

1.1
= v

Thus, being told that you are most optimistic among a large group of people
permits you to almost perfectly infer the error in your perception. You end up
with an almost perfect prediction of the value.

1 Call I the event where you are the most optimistic agent. For an agent who fully exploits the
structure of the model, the best prediction is by definition the number that minimizes E((b−v)2 |
z, I), or equivalently, b = E(v | z, I).
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The example is a caricature, but it explains the process of information aggre-
gation in models. That one should take his initial estimate with caution sounds
right. The degree to which one ought to shade one’s estimate would seem to
be a difficult matter in practice. Knowing the structure of the model, the task
becomes trivial: you may infer almost exactly your initial estimation error.

6. Unbounded errors. Consider an example that is less of a caricature, in which
errors are possibly unbounded. For example, assume that ηi is lognormally
distributed. Then, being told that you are the most optimistic bidder does not
permit you to perfectly infer the size of the estimation error.

Consider for example the case where logηi is distributed normally with
expectation 0 and standard deviation σ = 0.2. With a thousand participants,
the maximum estimate may vary substantially. The following graph plots the
empirical distribution of the largest estimation factor η0 = maxi η, obtained
through 10,000 independent trials, each involving 1,000 participants.

On average across these trials, the largest factor is 1.92, and the standard
deviation is 0.14. This means that when you are told that your estimate
is highest, you should adjust your initial estimate downward, dividing it
by a factor close to 2. The resulting estimate, however, remains a noisy
approximation of value, because the distribution over the highest factor is not
concentrated on a particular number.

Assume, now, that you are told that among all participants, your estimate is
not the highest, but that it coincides with the 10th percentile: only 10 percent
of bidders have an estimate higher than yours.

Then, this information, jointly with the knowledge of the distribution over
errors, permits you to almost perfectly infer the size of your error when the
number of participants is large. Call η0.1 the estimation factor of the participant
for whom 10 percent of participants have a larger estimation factor than his.
For a population of 1,000 participants, this means that his estimate is ranked
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101st. The following figure shows the empirical distribution of η0.1 (obtained
through 10,000 independent trials, each involving 1,000 participants).

The graph shows that η0.1 is much more concentrated than η. The average
value of η0.1 is 1.29, and the standard deviation is 0.014.

Of course, the conclusions above draw heavily on the presumption that the
agent knows the distribution from which estimation errors are drawn. Different
values for the variance σ 2 would generate quite different predictions for the
factor η0.1. With σ = 0.3, the average value of η0.1 increases to 1.47.

Information aggregation works insofar as the distribution over errors is
known with precision. With uncertainty about the distribution over errors,
being told about the ranking of one’s estimate does not pin down with precision
the size of one’s error.

7. Markets. In a market, nobody tells you how your estimate compares with
others’, if it is the highest, or if it coincides with the 10th percentile. However,
with bidders that differ only in their estimate zi but are otherwise identical, one
expects that higher estimates will translate into higher bids. So if there is a
single good for sale, we expect the most optimistic bidder to win. And if there
are 130 identical objects being sold to 1,300 bidders, each willing to acquire
only one object, we expect the bidders having the highest 130 estimates to
win.2 In particular, the least optimistic bidder among those who win has an
estimate that coincides with the 10th percentile.

One contribution of theoretical models has been to prove that for an agent
bidding in a uniform auction,3 it is optimal for him to behave as if he was
pivotal, that is, as if he was winning by a zero margin. The reason is that in

2 This is a simple market setup inspired by Pesendorfer and Swinkels (2000). In practice, and for
most markets, agents would be allowed to bid for more than one unit.

3 In a uniform auction, all winning bidders pay the same price, equal to the highest bid among
losers.
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other events, small changes to his bid are of no consequence to his chance of
winning or losing, nor to the price he pays in the event he wins.

This means that he should behave as if he was approximately the least
optimistic among the winners (or most optimistic among the losers). With
many participants, this precisely pins down how he ought to correct his initial
estimate: when he knows the distribution over perception errors (his own and
that of others), being the least optimistic among the winners tells with precision
the size of the mistake that he makes.

To illustrate simply why transaction prices must be close to v in a uniform
auction, assume that each potential bidder i chooses to bid a fraction λi of his
estimate:

bi = λizi.

Look for a symmetric equilibrium in which all bidders use the same shading
factor λ∗.4 With 130 goods sold to 1,300 participants, the price must settle on
the 131st largest bid, that is, on a bid equal to λ∗η0.1v. If λ∗η0.1 happens to be
above 1 for most realizations, winners pay too much, providing each bidder an
incentive to forgo participating in the auction or to decrease λi to win less often.
If the quantity λ∗η0.1 happens to be below 1 for most realizations, winners pay
too little, and some bidders will find that a larger λi profitably increases the
chance of winning. With a large number of bidders, η0.1 is concentrated on the
expectation Eη0,1 and, in a symmetric equilibrium, it must be that:

λ∗ � 1

Eη0.1
,

and the price, equal to λ∗η0.1v, must thus be concentrated on v.

8. Partial versus complete information about estimates. The information
revealed in a price mechanism is partial: bidders don’t have access to the
estimate that each particular participant receives. Why isn’t this an issue?

This is not an issue because by construction, we built a model in which
there is a stable relationship (i.e., “almost one-to-one”) between the value of
the asset v and the μ0-largest estimate, for μ0 = 0.1. The inference that one
makes from observing the μ0-largest estimate is thus perfect, and observing
the whole empirical distribution over estimates (which amounts to observing
theμ-largest estimate for all values ofμ) cannot further improve this inference.
Many factors can alter this conclusion. We mention two.

Variations in dispersion of errors. Depending on the characteristics of the
asset, the variance of the error term might differ substantially. Agents could,

4 We only provide below a necessary condition on λ∗. Proving that such a symmetric equilibrium
exists is more involved. We shall come back to this issue in Chapter 16.
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of course, be aware of that possibility. But having a precise idea of these
variations across assets seems unrealistic.

Heterogeneity. Gauging the quality of one’s estimate and how it compares
to others’ is a second key issue in markets. The model circumvents these
difficulties by assuming symmetric agents. Departing from that benchmark
likely creates further difficulties, as agents’ perceptions of the characteristics
of the asset may be correlated, partially driven by their own reading of these
characteristics, with variations in readings across assets generating further
sources of dispersion and bias of the estimates.

9. Aggregating many versus few estimates. Aggregating two expert opinions
is difficult. If I ask a young French demographer and a renowned Congolese
historian about life expectancy in Congo, I might get two quite different
responses. Deciding how to weigh these expert opinions is a challenge, because
the quality or bias of any given expert opinion is difficult to assess with
precision. Why would this issue mysteriously disappear once we move to a
large number of opinions, expert or not. Do we believe that getting a million
opinions would improve our assessment of life expectancy in Congo?

The same issue arises in markets. For a given asset, some experts are
presumably better qualified than others at estimating its value. I care about
whether those participating actively in the market are those actually getting
better estimates. And I also care about the fraction of optimistic bidders
participating in the market, as their participation may affect prices. Do we
believe that as the number of participants increases, the fraction of optimistic
bidders will remain stable across different kinds of sales?

10. The wisdom of crowds. Notwithstanding previous comments, the belief
that large crowds make it easy to get to the truth is widespread, and it is often
referred to as the wisdom of the crowd. The usual story behind the idea stems
from a single field experiment by Francis Galton at a cattle market. Galton
asked participants to estimate the weight of a given cow. Most quotes were off
track by a substantial amount. However, the median quote got it (almost) right.

One could take the lack of replication of the Galton experiment as
suggesting that the wisdom of crowds is perhaps not so prevalent. Of course, it
may simply be that few have attempted to replicate it. As always, inference is
difficult.

11. Voting under majority rule. An implication of the wisdom-of-crowds logic
is that majority voting aggregates information nicely. Imagine that a group
considers the possible adoption of a new alternative A, comparing it to the
status quo S. All group members are assumed to have the same preferences: the
problem is not one of aggregating preferences, but of aggregating information.5

5 This is a simple voting setup inspired by Feddersen and Pesendorfer (2000).
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Define u as a measure of the difference in value between A and S and let
v = expu. The group would like to select A if and only if u is positive or,
equivalently, if and only if v is above 1. However, members are ignorant of the
exact value of v. We model this by assuming that v is a random variable, and
that each member gets a noisy estimate of v:6

zi = ηiv.

This means that when ηi is above 1, the member is optimistic, and when ηi is
below 1, he is pessimistic.

This simple model illustrates what is behind the wisdom of crowds. If each
ηi is independently drawn from the same distribution and if Pr(ηi > 1)= 1/2,
a large group will always get it right. In a large group, optimists (i.e., ηi > 1)
and pessimists (i.e., ηi < 1) are in almost equal numbers. Whenever A is better
(v > 1), not only the optimists vote for A, but also the mildly pessimistic as
well, and the alternative A gets majority support.

The wisdom-of-crowds hypothesis may seem suspicious, as one can think
of many reasons why crowds’ judgements would be subject to systematic
biases. Nevertheless, the typical voting model in economics goes one step
beyond. It portrays agents who behave as though they knew with precision
the distribution over the errors that each member makes. We examine the
consequence of this assumption below.

12. Voting under qualified majority rules. We now have in mind that the new
alternative A passes if and only if it gets sufficient support. “Sufficient” can
mean different things. We consider qualified majority rules: A passes if a
fraction q of the population votes for it.

At first glance, a more stringent majority rule should make alternative A
more difficult to pass, because it then takes fewer people to reject A. The
contribution of economics models has been to point out that individuals adjust
(or should adjust) their decisions to the qualified majority rule considered:
somebody willing to support S under the majority rule might be less inclined
to do so if a very large support is needed to get A through. A negative vote
carries more weight, and one may be reluctant to cast a negative vote unless
the evidence that one receives against A is strong enough.

The problem is similar to the urn question. Think of the case where
unanimity for A is required, so that any individual has the option to veto A
through a single vote for S. I might have received evidence against A, but if
all others received evidence more favorable to A than I did, I may want to
reconsider my position, and avoid vetoing A.

As for the urn, the difficulty is the degree to which one should adjust the
decision. When will I think that my evidence against A is strong enough that it
justifies voting for S? What exactly does strong enough mean?

6 An alternative formulation could be zi = u+εi. We adopt the multiplicative formulation to make
the comparison with earlier formalizations easier.
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Economic models provide a clear-cut answer. A sophisticated voter should
adjust his behavior to the voting mechanism, tailoring the adjustment to the
distributions over errors. The optimal adjustment induces perfect information
aggregation: A passes if and only if it is worthwhile, irrespective of the
particular voting rule considered.

13. A formal illustration. Consider the qualified majority rule q in which
adopting A requires support by at least a fraction q of voters (with q < 1/2).
Assume agent i supports A if and only if his signal is strong enough, that is:

zi > λi.

The threshold λi characterizes agent i’s strategy, and one can compute the
expected gains associated with the strategies (λ1, . . . ,λn) and look for a
symmetric equilibrium λ∗. The insight that the voting rule affects voting
behavior will be reflected in the fact that the equilibrium threshold λ∗ decreases
when the majority requirement q increases.

Assume all voters other than i use the same strategy λ∗. To voter i, the only
event he cares about is when he is pivotal, that is, when his choice determines
the outcome. This happens when among all other voters, exactly k − 1 vote
for A, where k satisfies (k − 1)/n < q < k/n, which roughly means that the
q-highest estimate is close to λ∗, hence that vηq � λ∗.7

With a large number of voters, ηq is concentrated on the scalar ηq for which
Pr(ηi > η

q)≡ q. So in the event that i is pivotal, one may infer the value of v
almost perfectly: v � λ∗/ηq. If voter i infers that v almost certainly exceeds 1,
he should vote for A (unless zi is extremely low). If he infers v < 1, he should
vote against A (unless zi is extremely high). The only case when his optimal
threshold is not extreme is when the inference is v � 1, hence equilibrium
requires λ∗ � ηq, which decreases when q increases.

To illustrate this numerically, assume logηi is normally distributed with
standard deviation equal to σ = 0.2. When the majority rule is 1/2, the
equilibrium threshold λ∗ is 1. When the necessary majority q increases to 0.7,
the equilibrium threshold λ∗ decreases to 0.9.

The graphs on the next page illustrate the latter case (i.e., q = 0.7 and λ∗ =
0.9), showing the extent of actual support when v = 1 and when v = 1.1. In
these graphs, the curve defines the density over estimates when v = 1 (on the
left) and when v = 1.1 (on the right).8 All group members getting an estimate
above λ∗ = 0.9 vote in favor of A. The shaded area indicates the probability that
a given individual gets a draw above 0.9. With large numbers, the support for A
approximately coincides with that probability. The threshold λ∗ is precisely set
so that when v = 1, support exactly coincides with 0.7. When v = 1.1, support
is 0.87, above the required majority 0.7.

7 Recall that ηq designates the estimation factor of the participant for whom q percent of
participants have a larger estimation factor than his.

8 In both cases, v is the median estimate – half of the voters get an estimate above v.
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14. Perfect information aggregation across various voting systems can be seen
as an embellishment of the wisdom of crowds. As for the urn and markets, it
builds on the assumption that not only the fraction of optimists remains the
same across instances, but also that, for any given x, the degree of optimism of
the x-percent-most-optimistic agents remains stable as well.

Rephrasing this in terms of Galton’s cow experiment, one could tell a farmer
the following:

“You know what, among all the many estimates that I have received, there are exactly
13 percent of estimates that are more optimistic than yours. . .”;

With the farmer soon replying:

“Ah, okay, my mistake. I know what the correct figure is then. Thanks.”

15. While much emphasis is generally put on the performance of institutions
in aggregating information, the literature recognizes that when uncertainty
bears on more than one dimension, a price or voting mechanism will often
not aggregate information well, opening the path for understanding how
performance differs across institutions.

One interpretation of our critique is that information aggregation results
hinge on the presumption that uncertainty bears on a single dimension. In
general however, there is no reason to think that uncertainty would only bear
on one dimension. For mathematical convenience, we describe precisely the
distribution from which a given variable is drawn. Once we recognize that
there is no reason that this distribution should be known, we need to introduce
the possibility that uncertainty bears on more than one dimension, and as a
result, institutions will generally fail to aggregate information well.

Further Comments

Galton. We referred to Galton’s cow experiment9 because it sometimes lends
support to the idea that the median opinion would be the wisest, closest to the

9 Galton (1907).
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truth. Note, however, that Galton’s main interest was not to elicit some “truth,”
but to improve how a jury would assess damages, with the objective of finding
a method that would select the fairest compromise between necessarily diverse
opinions.10 His idea was that a fair compromise would be better achieved by
eliciting the median estimate among jury members, rather than by asking each
jury member his estimate and computing the average.

Part of his objection was that reporting a precise figure for damages is too
difficult,11 and interestingly, Galton proposed a method to elicit the median
estimate which does not rely on agents reporting such a precise figure. Based
on the presumption that estimates are normally distributed around the median,
he advocates choosing two numbers x and y > x, and asking jury members
to report whether they think damages should be below x, between x and y
or above y. Fitting these answers to a normal distribution, one can elicit the
median estimate (simultaneously with the dispersion of opinions).

Condorcet. Formal analysis comparing voting institutions, with the aim of
producing better decisions (say judicial ones) goes back at least to Condorcet.
In relation to the ideas developed in this chapter, and the issue as to whether
larger crowds would help, Condorcet comments that larger consent that a
proposition is true may only prove this fact (that the consent is larger), without
bringing new certitude to the truth of the proposition itself.12

Market efficiency hypothesis. In the 1970’s, with the development of infor-
mation economics, a number of authors addressed the question of whether
markets could be efficient, with prices perfectly revealing the value of the
underlying assets. The issue often takes the form of analyzing a stylized
market composed of a set of identically informed and a set of identically
uninformed agents, and determining whether prices reflect the information
held by informed agents.13 In these stylized models, price is a simple function

10 With respect to the question of finding “the most suitable amount of money to be granted for
any particular purpose” [such as compensation of damages], Galton (1899, page 638) asks:
“How is the medium amount to be ascertained, which is the fairest compromise between many
different opinions?” So it is not the “true” level of compensation but the fairest, that one is
looking for.

11 His other objection to using the average opinion is that this leaves undue influence or voting
power to those coming up with absurdly large or small ones.

12 Condorcet, Essai sur l’application de l’analyse à la probabilité des décisions (page 148 (cxlviii):
“le jugement de tous les hommes, en faveur de cette proposition, ne peut produire une proba-
bilité plus grande [. . .] Si ceux qui y croient se bornent aux preuves données avant eux, et n’en
cherchent pas de nouvelles, leur consentement, en supposant qu’il put produire une certitude,
prouverait seulement qu’il est certain que ce fait, que cette proposition sont probables.”
[The [unanimous] judgment of all men in favor of this proposal cannot produce a larger
probability [. . .] If all that believe in it restrict attention to the existing evidence, without looking
for new ones, their [unanimous] approval, if it ever were to produce a certitude, could only
prove one, that it is certain that the proposal is probable].

13 See, for example, Kihlstrom and Mirman (1975) and Green (1973).
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of the information held by the informed traders, and of some other parameter
reflecting “market conditions.” To the extent that this extraneous market
parameter remains unknown to agents, prices cannot reveal perfectly the
information held by informed traders. Grossman and Stiglitz (1980) pointed
out that the existence of some residual uncertainty is critical to the functioning
of markets, because otherwise no trader would have an incentive to pay the
cost of acquiring information in the first place.

In this chapter, we also ask whether prices can reflect the underlying value
of the asset in the presence of a population of diversely informed agents.
Our emphasis, however, is not on the theoretical impossibility of markets
that perfectly reveal prices, but on the practical difficulty/impossibility of
determining what to make of each and everyone’s opinion even if it were freely
available. Said differently, “market conditions” include the particular way
that information and opinions are dispersed across agents, and one suspects
that these market conditions (hence prices) are subject to shocks unrelated to
underlying values.
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