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Abstract

Motivated by the idea that lack of experience is a source of errors but that experience should

reduce them, we model agents’ behavior using a stochastic choice model, leaving endogenous

the accuracy of their choice. In some games, increased accuracy is conducive to unstable best-

response dynamics. We define the barrier to learning as the minimum level of noise which

keeps the best-response dynamic stable. Using logit Quantal Response, this defines a limitQR

equilibrium. We apply the concept to centipede, travelers’ dilemma, and 11-20 money-request

games and to first-price and all-pay auctions, and discuss the role of strategy restrictions in

reducing or amplifying barriers to learning.
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1. Introduction

Playing a Nash equilibrium requires that each player comes to play a best response to others’

behavior. One original motivation for studying QRE rather than exact equilibria is that learning

to play a best response may be hard to accomplish, or require enough experience. As McKelvey

and Palfrey [1995] put it in their seminal work, ”as a player gains experience playing a partic-

ular game and makes repeated observations about the actual payoffs received from various action

choices, he/she can be expected to make more precise estimates of the expected payoffs from different

strategies.”

This paper pursues this line of thought analyzing games in which there are natural obstacles

to learning from experience. For one, we observe by example that increased accuracy in payoff

evaluations may undermine the stability of best-response dynamics (see below), thus potentially

fueling strategic uncertainty and hurting in return the accuracy of payoff estimates. Stability of the

best-response dynamic will be viewed as a requirement which, if not met, puts an endogenous limit

on the accuracy of payoff evaluations, justifying the notion of limit QR Equilibrium we introduce.

We illustrate this notion with several well-studied games: the centipede game (Rosenthal [1981]),

the traveller’s dilemma (Basu [1994]) and the 11-20 money request game (Arad and Rubinstein

[2012]).

Second, we consider games for which the richness of the strategy set is an obstacle to learning.

Examples of such games include Bayesian games with a continuum of types and actions, like

auctions.1 In these games, from an ex ante perspective, the strategy set is a space of functions and

performance evaluations of each feasible strategy is clearly out of reach. A possible path consists in

exogenously restricting the set of strategies that players actively consider or explore, i.e., strategies

for which performance-related data is gathered.2 Given the restriction, performance evaluations are

easier, but, depending on the strategy restriction assumed, the characteristics of the environment,

or the auction format considered, the stability of best-response dynamics may or may not be an

issue, with different consequences regarding our behavioral predictions. We illustrate this with the

analysis of first-price and all-pay auctions.

Stochastic best response dynamics. The central assumption of our paper is in defining what

constitutes a barrier to learning. Given a set of alternatives A, we start from a stochastic choice

model hβ mapping each distribution f over consequences to a random choice, i.e., a probability

distribution over the alternatives hβ(f) ∈ ∆(A), with β parameterizing how close this is from best

responding. Next, for a given game g, each distribution over action profiles p induces a distribution

1 Other games with rich strategy space would include repeated games, not covered here.

2 This is in the spirit of Simon [1955] consideration set. This is also the path followed by Compte [2001], in auctions
and, more generally, Compte and Postlewaite [2018], to model moderately sophisticated agents. In the context of
games analyzed through the quantal response lense, the focus on ex ante performance along with a family of a priori
defined (”cutoff”)-strategies has been explored by Carrillo and Palfrey [2009]. To our knowledge, other papers in this
literature adopt an interim perspective, defining quantal response conditional on each type, or agent-QRE (McKelvey
and Palfrey [1998]). See also Goeree, Holt, and Palfrey [2002].

1



fg
i (p) over consequences that each play i is confronted to, from which we can construct for each

player a stochastic best-response ϕβ
i (p) = hβ(fg

i (p)), hence eventually, a function ϕβ that maps the

set of mixed-actions profiles to itself. As β ↗ ∞, ϕβ approaches the standard best-response over

pure strategies.

Having defined the stochastic best-response function ϕβ, we consider its long-run properties. If

the iterations of ϕβ converge to some p∗β and if ϕβ is locally stable at p∗β, we consider that there

is scope for improving the precision of the player’s response (i.e., scope for increasing β) up to the

point where, for some higher β, iterations of ϕβ ceases to be stable (and thus fail to converge to a

locally stable and stationary distribution p∗β). We define the limit point β∗ of this fictitious process

as our barrier to learning, and we are interested in characterizing the limit distribution p∗β∗ .

Quantal response and Limit QRE. This barrier to learning can be defined for any stochastic

choice model one likes, either belief-based or performance-based, for example depending on what

consequences are gathered by players (actions of others or payoffs). We focus here on performance-

based stochastic choice. Furthermore, for the sake of illustration, we shall focus on the (logit)

Quantal Response model where stochastic choice depends on expected value differences between

alternatives. By construction, when iterations of ϕβ converge, the distribution obtained is a QR

Equilibrium. We shall call limitQRE the distribution p∗β∗ obtained at the stability frontier β∗.

Non-gradual vs. gradual adaptation. A controversial aspect of our hypothesis is that we

examine iterations of the stochastic best response function hence the properties of the sequence of

mixed strategies

p(n) = ϕβ(p
(n−1)) = ϕ

(n)
β (p(0)), (1)

rather than the smooth evolution that would obtain under a smooth/continuous time version of

the best-response dynamic, or any replicator-like dynamic taking ϕβ(p) as an input to reinforce

the prevalence of the better fitted (mixed-)actions. These continuous-time processes over mixed

strategies have nicer convergence-to-Nash/QRE properties, in particular for the smooth stochastic

choice function ϕβ that we shall consider.3 Why then study (1)?

We see two reasons for doing so. First, the smooth evolution requires some synchronicity in the

speeds of adjustments on each side (which of course is a fine hypothesis for symmetric games with

a single population): synchronicity would get us closer to (1).

Second, and more importantly, we see it as a methodological tool to discriminate between games

and assess the degree to which learning is difficult. If we assume a learning process that always

converge to Nash in the long-run, such a discrimination cannot be made, except possibly, as in Erev

and Roth (1995,1998), through the comparison of speed-of-learning across. We see the convergence

of ϕ
(n)
β as a simple all-purpose vehicle for studying barriers to learning, vehicle that we apply across

3 See for example Hopkins [1999, 2002] and Turocy [2005].
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different well-known games.4

Nevertheless, the method proposed could allow for a smoother adaptive rule, in the spirit of a

population that gradually adapts to its environment, and one could define, for a fixed α that one

finds more appropriate, the sequence:

p(n) = ϕα,β(p
(n−1)) ≡ (1− α)p(n−1) + αϕβ(p

(n−1)) (2)

and check the stability and convergence of ϕ
(n)
α,β instead, as β rises. The drawback of course is that

if α is set very low, convergence to Nash will obtain in many games, and our ability to discriminate

between games on that stability-of-learning dimension will be reduced. We briefly explore this path

for the centipede game setting α = 0.1.

Other sources of noise and games in targets. Most of the paper is concerned with

determining endogenous barriers to learning, hence as a result, endogenous noise in how players

play the game. Given our modelling of stochastic choice – which is performance-based, the shape

of the noise is structured by expected value differences between alternatives, at p∗β∗ .

A complementary perspective is that there may be exogenous sources of noise in the game,

which are not necessarily driven by expected value considerations. In the spirit of Carlsson [1991]

and the global game approach (Carlsson and van Damme [1993]), an alternative way to introduce

errors consists in assuming that when a player targets the alternative κ, she implements it with

noise, also selecting ”nearby” alternatives with positive probability.5,6 This defines a game over

targets, to which we can apply our limitQRE notion as well.

When studying limitQRE of the game over targets, the distribution over alternatives obtained

is partially driven by the exogenous trembles (given the targets chosen) and partially driven by

the value-estimation errors associated with the expected performance of targets. We shall discuss

how trembles modify (though not always) the convergence of ϕ
(∞)
β , thus raising β∗, though not

necessarily modifying substantially the induced distribution over alternatives.

Related Literature.

The question of convergence to equilibrium is central in economics: when should we expect

players to play a Nash equilibrium and if convergence occurs, which equilibrium is selected. The

examples we analyze have a unique equilibrium, so this paper is concerned with the convergence

issue, rather the selection issue.

4 This echoes Erev and Roth [1998] (page 887), who propose to study “learning in games using simple general
models” and see “how particular games and economic environments influence the dynamic of learning”.

5 We shall come back to what “nearby” can mean.

6 Trembling dates back to Nash [1953]. They are generally used as a selection device, with vanishing trembles.
Here we are interested in “trembles” that need not be of small magnitude.
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As already mentioned, since the seminal work of Maynard Smith [1972], convergence to Nash

has been examined through the lens of slow-moving processes,7 recognizing that fast adaptation

would generally create instability of the learning dynamics. The general take from the literature is

that for perturbed variations of replicator dynamics (that incorporate enough experimentation) or

stochastic fictitious play, convergence is not an issue. We examine a drastically different hypothesis

where, at the current precision β, behavior adjusts fully (and not partially) to the current behavior.8

The centipede game, the traveler’s dilemma and the 11-20 money request game have led to

extensive theory and experimental work. Let us mention McKelvey and Palfrey [1992], Nagel

and Tang [1998], Capra, Goeree, Gomez, and Holt [1999] and ?. At the heart of the explanation

for departures from Nash equilibrium are frictions coming from evolutionary pressures, imperfect

learning or various forms of stochastic choice, adequately calibrated for each variant to explain the

data observed. Given that our endogenous limit to learning in these games embodies significant

behavioral noise, the predictions we obtain will necessarily echo the intuition gathered from these

papers. Our contribution is in endogenizing a minimal level of noise, simply characterized by our

limit β∗, that must show up in these games from learning-stability considerations only. Obviously,

independently of stability considerations, other relevant sources of noise arising from limited data

processing, computation errors, exogenous trembling, payoff uncertainty or misspecified beliefs

maybe relevant in explaining the data. However, our analysis of the traveler’s dilemma and the 11-

20 money request game, where we combine exogenous trembles and endogenized quantal response,

suggests some robustness of our analysis: while these exogenous sources actually help learning, the

resulting combined noise remains relatively stable across these variations examined.

We also study first-price and all-pay auctions with continuum of types and actions. Anderson,

Goeree, and Holt [2002] examines a family of games with a continuum of actions (including a

continuous version of the traveler’s dilemma). Auctions have been examined through the QRE

lens in Anderson, Goeree, and Holt [1998], Goeree et al. [2002] and Camerer, Nunnari, and Palfrey

[2016]. Anderson et al. [1998] studies an all-pay auction with no types. Goeree et al. [2002] considers

a first-price auction with a small number of types and they study the agent-based version of QRE

where stochastic play is defined independently for each type. Camerer et al. [2016] also study an

agent-based version of QRE. In contrast, we define a grid of a priori given (linear) strategies and

next derive the limitQRE of the induced game. We note the sharp contrast between first price

and all-pay. We also note that instability is an issue for the all-pay when values are not dispersed

enough, and that exogenous trembling does not improve the stability, unlike the other games we

examined.

7 Or processes that become slow over time as in fictitious play.

8 We shall nevertheless illustrate the case of partial adaptation (in the centipede).
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2. Definitions

Quantal response functions and equilibrium. We specialize the general best-response

map ϕβ presented in the introduction to stochastic choice models hβ that are based on payoffs, and

actually, following the Quantal Response route, expected payoffs.9

Formally, consider first a decision problem with K alternatives k ∈ A. Call uk the expected pay-

off associated with k, u the maximum payoff and u = (uk)k∈A the vector of expected payoffs. With

fully accurate estimates of consequences, the decision maker would chose an alternative achieving

u. With less precise estimates or lesser experience, other actions may be played with positive

probability. Quantal Response assumes that the frequency pk with which k is played depends on

the vector of payoffs u, according to some quantal response function parameterized by a precision

parameter β

p = hβ(u)

In simulations to come, we will further restrict attention to the classic logit formulation where the

best performing strategy gets most weight and each pk is proportional to exp−β(u − uk). We

explore other functional forms capturing a notion of satisficing in the Appendix.

Turning to games where each chooses ki ∈ Ai, we let p−i ∈ ∆(A−i) denote the distribution

over strategies used by other players, vi(p−i) the vector of expected payoffs associated with each

alternative ki ∈ Ai. Finally, for any p, we let v(p) = (vi(p−i))i denote the profile of payoff vectors

induced by p. A game is characterized by its value function v.

A Quantal Response Equilibrium is then defined as the solution of the system

pi = hβ(vi(p−i)) for all i

or, in vectorial form, as a solution of

p = ϕβ(p) (3)

where ϕβ = (ϕβ
i )i and ϕβ

i (p) = hβ(vi(p−i)).

As explained in the Introduction, one interpretation of quantal response equilibria is that they

correspond to a static short-cut for modelling players with limited experience: out of some un-

modelled learning process, behavior has converged to p∗, and the justification for p∗ comes from

the fact that experience remaining limited (or learning remaining incomplete), the assessment of

which strategy is the best performing one is subject to errors. β is an accuracy parameter meant

9 More general versions could be proposed, based on the distribution of payoff differences between alternatives,
with errors stemming from limits on sample size, of expected size β. This could also be done in the spirit of Osborne
and Rubinstein [1998], with each alternative sampled the same number of times, or as in Danenberg and Spiegler
[2022], with frequently used actions possibly creating a sampling bias.

These versions would be better at capturing how the variability of consequences may impair the performance
comparison between alternatives. We could then expect the comparison of two sure alternatives to be done without
errors, even if payoffs are nearby.

5



to characterize experience, while hβ characterizes the relationship between expected payoffs and

stochastic choice for each player.

Beyond this motivation, the general view is also that, given convergence, absent exogenous

limitations on experience accumulation, and so long as play remains stationary, the performance

evaluations of each action should become more accurate, i.e., β should rise, and behavior should

eventually approximate Nash Equilibrium play. This paper is about qualifying that view, suggesting

that, in some games, there may be endogenous limits to learning.

Best response dynamics, convergence and limit QRE.

We are interested in the ability of players to come to play a Nash or QR equilibrium from

experience. Many learning processes could qualify in this endeavor. But we are not so much

interested in designing a dynamic process that ”works”, but whether convergence is somewhat

robust. To this effect, we shall focus on a specific dynamic process that generally does not have

good convergence properties when β is large, (stochastic) best-response dynamics, which means that

starting from p(0), we consider iterations10

p(n) = ϕβ(p
(n−1)) = ϕ

(n)
β (p(0)).

If the process converges, then the limit behavior p∗β solves (3) and is a QR equilibrium.

Our hypothesis is that so long as play remains stationary, there are evolutionary pressures

towards more precise performance evaluations, i.e. a raise of β. We thus envision a global dynamic

process where, so long as convergence obtains, β gradually rises, until the point β∗ where a further

rise by a small increment would undermine convergence. Such a rise would likely make play non-

stationary, hurting the precision of performance evaluations (so in effect diminishing β).

We see β∗ as a endogenous barrier to precision and refer to the limit behavior p∗ ≡ p∗β∗ obtained

under β∗ as a limit QRE.

Intuitively, estimation errors (β) affect convergence of the best response dynamics. When errors

are large, choice probabilities p are barely responsive to any variations in v.11 In such cases, one

expects the best response function to be globally stable (i.e. converging from any initial p(0)). In

contrast, when evaluations are close to accurate, choice probabilities can become very sensitive to

(some) small variations in v, possibly making the best response dynamic locally unstable.12

Summarizing this discussion formally, we define (mostly for computational reasons in simula-

tions) a small increment ν > 0, and consider the joint process which starts from β0 = 0 and the

10 Alternatively, one could consider asyncronized best response dynamics where players are selected in random
order to generate a change p

(n)
i = ϕβ

i (p
(n−1)), keeping p

(n)
j = p

(n−1)
j .

11 For the logit response with parameter β = 0, the response is to play all strategies with same probability,
independently of v.

12 The process is locally stable at p if convergence to p obtains from any p′ such that |p′ − p| ≤ ε for some ε > 0.
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uniform distribution over alternative p0 (for which by p0 = ϕ
(∞)
β0

(p0)), and then sets, by induction

on n,

βn = βn−1 + ν and pn = ϕ
(∞)
βn

(pn−1)

defined so long as ϕ
(∞)
βn

is well-defined and pn locally stable. We shall look at the largest β∗ obtained

under this process.13

Endogenous versus exogenous barriers to learning.

We interpret β∗ as an endogenous barrier to learning, limiting the accuracy of value estimates,

and inducing behavioral errors shaped by expected value differences between strategies.

In many economic environments, it is conceivable that there are other sources of errors are

relevant, if not first order. Departures from the exact best response may stem from attempts

by players to experiment, or may reflect the fact when the environment varies, as there may be

discrepancies between current environment and the one that generated the data from which players

learn. Or they may reflect some misperception in the environment.

We wish to understand whether and how these exogenous barriers to learning compete with the

endogenous barrier we propose.

To this end, in the spirit of Nash [1953], Carlsson [1991] and the global game approach (Carls-

son and van Damme [1993]), we shall introduce exogenous perturbations, assuming trembling to

“nearby” strategies.

Formally we define a game over targets κi ∈ Ki. We assume that when a player targets

the alternative κi, she actually implements it with noise, selecting ”nearby” alternatives ki with

probability πq
κi(ki), where q is a parameter characterizing dispersion (q = 0 means no errors).14

The shape of the distributions πq
κi and the notion of “nearby strategies” may depend on the

application considered. It may require a natural topologically structure on the strategy space, or a

structure that reflects a player’s strategic thinking about the problem. For example, to illustrate,

in games where there is a natural topology on the set of alternatives, we shall use:

πq
κi
(ki) = q|ki−κi|πq

κi
(κi) with

∑
ki∈Ki

πq
κi
(ki) = 1 (4)

where |ki−κi| is the distance between the target and the alternative. Whichever interpretation one

favors for the source of noise, these trembles are exogenous and not structured by payoff differences

between alternatives, and we shall see them as exogenous barriers to learning.

13 A continuous version would consists in defining a path p(β) having the property that each p(β) is locally stable

under ϕ
(∞)
β and p(β) = ϕ

(∞)
β (p(β′)) for all β′ ∈ (β − ε, β) for some ε > 0.

Also note that we start for low β, so the origin p(0) is irrelevant. Furthermore, for all the game we consider here,
ϕ
(∞)
β will be globally convergent for β < β∗.

14 The global game approach is generally interested in the selection induced by vanishing noise. We shall be
interested here in cases where q is not small.
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Given an exogenous noise structure characterized by q and a profile of targets κ = (κi)i, one

can compute the distribution πq
κ over profiles k and the expected values

V q
i (κ) = E[vi(k)|κ, q]

This defines, for each q, a game over targets.15 When q = 0, we are back to the original game.

When q > 0, one can study the limitQR equilibria of the game over targets.

Whether we consider the original game defined over alternatives, or the perturbed game defined

over targets, eventually, both approaches generate a distribution over alternatives which we are

interested in comparing.

Methodologically, when studying limitQRE of the original game, we are endogenizing simulta-

neously the best performing alternative and the distribution over errors in selecting alternatives

(based on expected value differences between alternatives).

When studying limitQRE of the perturbed game, we are endogenizing the best performing

target, as well as the distribution over errors in selecting targets (based on expected value differences

between targets), keeping exogenous the distributions over alternatives conditional on the target

selected.

In other words, in the later case, the distribution over alternatives obtained is partially driven by

the exogenous trembles (given the targets chosen) and partially driven by the value-estimation errors

associated with expected performance of targets. We shall see that to some extent, introducing

exogenous errors does not alter the induced limitQRE distribution over alternatives.

3. Applications

3.1. A centipede game

We consider the two-player game where each player i chooses an exit time ti ∈ {1, ..., 100},
assuming that the joint benefit is t = min(t1, t2) and the player who exits first gets a share a > 1/2

of the joint benefit, the other player getting the rest, assuming equal sharing when t1 = t2:

vi(ti, tj) = amin(ti, tj) if ti < tj

= (1− a)min(ti, tj) if ti > tj

=
1

2
min(ti, tj) if ti = tj

Each player in this game thus has an incentive to slightly undercut his opponent (except possibly

for small values of t).

15 Note that the value V q
i (κ) is computed ex ante, taking into account the tremble that i herself is subject to.

Player i is implicitly gathering information about the effect of selecting a particular target, and this evaluation thus
takes into account own trembling.
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In this game, there is an equilibrium force towards low values of t, and this force is more

pronounced for larger values of a, and with sufficiently large β, the Quantal Response equilibrium

would naturally concentrate most weight on low values of t. Nevertheless, there is an endogenous

barrier β∗ which limits this unravelling. Figure 1 below shows the limit QRE for different values

of a, where the curves plot the equilibrium distributions over strategies:

a=0.55
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Figure 1: Limit QRE distributions

a=0.55

a=0.6

a=0.8

α=0.1

20 40 60 80 100

0.01

0.02

0.03

0.04

0.05

0.06

Figure 2: Gradual adj. α = 0.1

As one expects, a higher value of a generates more competitive pressures. As a matter of

fact, one can examine the quantal response equilibria for a fixed β, and observe that competitive

pressures are stronger for higher a, leading to more unravelling. And competitive pressure are also

higher for higher β’s, as higher β gets one close to equilibrium. The stability frontier β∗
a however is

decreasing in a,16 which implies that the limitQRE outcomes across a’s are close to another than

what would be predicted by an analysis of QRE with fixed β.

Intuitively, the reason why β cannot rise to levels that would foster unravelling and low t′s is

that whenever β starts being high enough to be conducive to such low t’s, payoff differences across

strategies become small, so many strategies including some with high t′s must get weight, fueling

a rise in the incentives to choose high t’s which in turn destabilize the best response dynamics.

Formally, for any given β (and p0) and at any step of the best response dynamics, one can

compute p(n) = ϕ
(n)
β (p0) as well as the best performing alternative t(n) = argmax vi(ti, p

(n−1)). For

small enough values of β, p(n) converges to p∗β and so t(n) also converges to some t∗β. For large

enough β, however, convergence stops and t(n) cycles.

To illustrate, set a = 0.7. Convergence stops at β∗
0.7 = 0.3 and the limit distribution has a

mode at t∗β∗ = 42. Then for a large range of values of β above β∗
0.7, t

(n) cycles.17 Cycles have low

amplitude when β is close to β∗, and the amplitude increases as β increases. For β = 0.5, the

sequence is:

58, 52, 45, 39, 34, 29, 25, 58, 52...

For β = 10, the sequence takes almost all values between 60 down to 3 before jumping back to

16 β∗ respectively equal to 0.23, 0.47 and 0.79 (for a = 0.8, 0.6 and 0.55).

17 Technically, there is a tiny range of β > β∗
0.7 where p(n) is no longer stable and yet t(n) still does not cycle.
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60. And it takes β = 30 to get again full unravelling (to t∗
β
= 3). In other words, over the range

β ∈ (0.3, 30), cycling prevails, suggesting a thick barrier to unravelling.

Gradual adaptation. Finally, we report how the limitQRE would be altered under a more

gradual version of the best-response dynamics, defined in introduction (see (2)). We report above

(see Figure 2) the distributions obtained for α = 0.1 (the dashed curves corresponds to α = 1).

The gradual adjustement shifts all distributions to lower demands and raise all β∗’s, preserving

the natural comparative statics and the ranking of β∗
a. In the Appendix, we also report how the

distribution over claims would be modified under an alternative to logit.

As is well-known, the centipede game (Rosenthal [1981]) was designed precisely to illustrate how

noise could greatly undermine the unravelling forces suggested by subgame perfect equilibrium

analysis. The prevalence of cycling for large β is reminiscent of work that has examined the

centipede game through an evolutionary lens (Cressman and Schlag [1998] and in particular Ponti

[2000]). Our limitQRE analysis selects an (a-dependent) upperbound β∗
a on precision above which

cycling prevails.

3.2. The Traveler’s dilemma

We next consider a version of the traveler’s dilemma, where two players report a claim ti ∈
{180, .., 300}. When reports are ti and tj , they each get t = min(t1, t2), but the player making a

strictly lower report gets a bonus G, while the other gets a penalty L. Formally:

vi(ti, tj) = min(ti, tj) +G if ti < tj

= min(ti, tj)− L if ti > tj

= min(ti, tj) if ti = tj

This game thus has a structure similar to the centipede game defined above: the pie grows linearly

with t, but the reward (respectively the penalty) for claiming a lower (respectively a higher) amount

is constant, rather than linear and rising with t.

Figure 3 reports limitQRE distributions for L = G = 5 (red), 10 (orange) and 15 (blue) and 50

(green) with lower rewards and penalties generating less unravelling. The thick orange distribution

also corresponds to the distribution obtained when G = 13 and L = 7, illustrating that only the

sum G+ L matters.18

Let us call t∗G,L the optimal claim at the limitQRE and d∗G,L = 300 − t∗G,L the distance to the

maximal feasible claim. This game has a finitely repeated prisoner’s dilemma interpretation,19

18 This is because, omitting the rare event where t1 = t2, v(t1) ≃ t1 Pr(t2 > t1) +G+
Pr(t2 < t1)(E(t2|t2 < t1)− (G+ L)), so the comparison between two alternative claims only depend on G+ L.

19 Assume 1 is the benefit from joint cooperation, g the extra gain from defecting while the other cooperates and
ℓ the loss from cooperating while the other defects. If it takes a lapse of time δ before being detected, G = δg and
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Figure 3: The Traveler’s Dilemma

where the distance d can be interpreted as the length of the end game (during which defections

occur).

For moderate values of L and G, low claims are essentially not played, and neither the lower-

bound 180 or the upperbound 300 play a role in determining the limitQRE distance d∗G,L: when the

upperbound is changed by T , one may just shift the distributions over claims by T and incentives

are not modified (to the extent that the shifted distributions do not hit the lower bound).

The comparative statics with respect to ∆ ≡ G + L are analogous to those of the centipede

game, with higher β (for a fixed ∆) and higher ∆ (for a fixed β) both generating more unraveling.

We also observe that in the range of bonus and penalties considered, β∗ decreases with ∆, thus

moderating the effect of ∆ on the extent of unravelling, compared to what a standard QRE analysis

with fixed β would deliver.

Intuitively, raising ∆ increases incentives to lower claims, but it also raises payoff differences

between alternative claims. This implies more concentration in claims, and this increased concen-

tration destabilizes the best response dynamics, so β has to go down to stabilize it.20 This also

explains why, at limitQRE, the dispersion of claims increases when ∆ rises.

Compte and Postlewaite [2018] (see Chapter 19) examines the target version of this game, where

the targets di are implemented with multiplicative noise, observing that higher variance fosters

cooperation, and that higher stakes ∆ increase unravelling – and dispersion. But the increased

dispersion there was obtained as a by-product of the multiplicative noise assumption. LimitQRE

permits to simultaneously endogenize the magnitude and shape of the noise, given the logit response

assumption, with similar qualitative predictions.

It is obviously not novel that noise – whether coming from imperfect information, stubbornness,

or payoff or game-length uncertainty – helps foster cooperation (Kreps, Milgrom, Roberts, and

L = dℓ approximately corresponds to the cumulated gain from taking advantage of the other (while not detected)
and the loss of being taken advantage of (while not detecting it).

20 For example, for β∗
5,5 obtained when G = L = 5, the best response dynamics obtained under β∗

5,5 but applied to
G = L = 9 cycles from 283 down to 180 before jumping back up to 283.

11

http://www.parisschoolofeconomics.com/compte-olivier/Chapter19Unraveling.pdf


Wilson [1982]). The contribution here is to suggest, based on difficulties in learning to play the

game, an endogenous limit to precision – hence a limit to unraveling, given the logit response

assumed.

Another implication of the analysis, worth noting in view of experimental work, is that these

limits β∗ vary depending on the game considered and also for different variations of the same game.

So, with our interpretation of the logit parameter in mind, there may not be reasons to expect that

the agent’s accuracy of choices (measured by β) be similar across games or variations of the same

game.

Adding exogenous noise. We now examine the game over targets for different level of noise.

Formally, for any target τ , we define a distribution πq
τ where πq

τ (t) is the probability of selecting

claim t when claim τ is targeted, and we assume:

πq
τ (τ +m) = q|m|πq

τ (τ) for any m ̸= 0 such that τ +m ∈ {180, .., 300} (5)

where q > 0 thus characterizes dispersion. In other words, when targeting τ , players tremble to

“nearby” strategies applying a geometrically decaying factor as a function of the distance |m| to the

target. We think of these trembles as capturing exogenous reasons for the agent failing to choose

the optimal claim.

Figure 4 plots three distributions q = 0.6, 0.8 and 0.9 for target τ = 260. The dashed curve

corresponds to the limitQR equilibrium previously obtained (thus in the game without trembles),

when L = G = 10. As q increases from 0.6 to 0.9, the magnitude of the exogenous errors thus

increases significantly.
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Figure 4: Cond. distributions over claims given
target τ = 269.
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Figure 5: Induced distributions over claims in
limitQRE

Each q defines a game with trembles, and we look for the limitQR equilibrium of these games.

The limitQRE gives us a distribution over targets, and we then compute the induced distribution

over claims, for different values of q. These distributions over claims thus combines exogenous
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uncertainty over claims given the target chosen, and endogenous uncertainty over targets. Figure 5

summarizes our finding (the dashed curves correspond to the limitQRE when q = 0 (no noise)).

Intuitively, the exogenous uncertainty improves the stability of the dynamic system, and the

limit β∗ rises with q. Nevertheless, when combining both sources of uncertainty, the effect is remark-

ably small, except for q = 0.9: in the latter case, endogenous uncertainty plays little role, targets

become concentrated on few claims, and the limitQR equilibrium is mostly driven by exogenous

noise.

3.3. The 11-20 Money Request game

We review the game proposed by Arad and Rubinstein [2012]. In its basic version, each player

i ∈ {1, 2} chooses a claim ti ∈ {11, ..., 20} and obtains it. In addition, player i obtains a bonus

equal to 20 whenever ti = tj − 1, the payoffs are thus summarized by

vi(ti, tj) = ti + 20 if ti = tj − 1

= ti otherwise

Like in previous games, each player thus has an incentive to undercut the other player. But there

are two notable differences. Undercutting does not reduce the payoff that the other side can secure,

as each can secure 20 by choosing ti = 20. So standard equilibrium analysis cannot give rise to full

unravelling to the lowest feasible claim and the Nash equilibrium must be in mixed strategy. Second,

reducing one’s claim (which is costly) delivers a bonus only in the event where one undercuts by

just one unit. Since behavior is likely to incorporate some randomness, undercutting is potentially

risky, and even more so for low claim levels (as one forgoes sure gains), unless these low levels

claims are played with higher probability.

This explains why, in the Nash equilibrium of this game, among the claims t chosen with

positive probability p(t), lower claims are chosen with higher probability in equilibrium (i.e., p(t) is

downward sloping). As Arad and Rubinstein [2012] shows, the equilibrium outcome conflicts both

with data and intuition (see Figure 6, Nash distribution plotted in dashed red, data in red), and

the authors suggests that some form of level-k thinking may be at work.

We examine this game through the limit QRE lens. We also examine the game over targets for

different level of noise. Formally, for a given q > 0 measuring noise and τ ∈ {11, ..20}, we define

the stochastic strategy πq
τ where πq

τ (t) is the probability of selecting claim t when τ is selected, and

we assume:

πq
τ (τ +m) = q|m|πq

τ (τ) for any m ̸= 0 such that τ +m ∈ {11, ..20} (6)

For a given q, each pair of targets τ = (τi, τj) induces an expected gain V q
i (τ) and a game over

targets.

For each value of q, the limit QRE of this game is a distribution over targets, from which

one obtains the distribution over the claims induced, given the trembles. We report below these

13



limitQRE distribution over claims for different values of q (darker curves for higher values of q

where q’s are multiples of 0.1 from 0 to 0.4).
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Figure 6: The 11-20 game

Note that while the exogenous trembles improve the stability of the best response functions ϕβ,

yielding significantly more concentrated distributions over targets as q rises, the consequence for

the distribution over claims is mild. In all cases, the range 17-19 gets a weight approximately equal

to 70%.

A similar robustness obtains when one adds a small fraction of stubborn/naive types that do

not optimize and play t = 20.21 The presence of this naive type induces (other) players to reduce

the weight on the τ = 20. Overall, the distributions look alike, except for a small shift towards

higher claims (see Appendix).

Cognitive hierarchies.

By considering targets rather than actual claims, we effectively consider a game where players

choose a strategy within a family of stochastic strategies, parameterized by a target τ ∈ {11, 20},
where each ”error” in selecting the actual claim has a probability that depends only on the distance

|t− τ |: they are homogenous in τ , only exploiting the natural topology on the strategy set, and not

exploiting some other plausible causes of errors: in the spirit of the cognitive hierarchies proposed

by Camerer, Ho, and Chong [2004], one could define a family for which the error probability also

depends on τ , with higher cognitive levels (i.e., lower τ) generation move dispersion.

Specifically, let us associate to each claim t a cognitive level kt = 20 − t. The target τ = 20

is assumed to be implemented with no noise, but for any target τ < 20, which corresponds to a

target cognitive level κτ = 20− τ , we assume that the player implements a cognitive level k (hence

21 Let α be the probability of type t = 20. For a given α, the payoffs associated with τ become V α
i (τ) = (1 −

α)Vi(τ) + αE[vi(ti, 20)|τi], which defines a new game.
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a claim t = 20− k) that follows a (truncated) Poisson distribution with parameter κτ , that is
22

πκτ (k + 1)

πκτ (k)
=

κτ
k + 1

or equivalently,
πτ (t− 1)

πτ (t)
=

κτ
kt−1

and
∑
t
πτ (t) = 1 (7)

So if τ = 19 (and κ = 1), the induced distribution over claims has an expected cognitive level equal

to κ = 1 with weights on 20 to 17 equal to 58%, 29%, 9%, 2% respectively. Endowed with a family

of targets τ ∈ {11, ..., 20}, one finds that the limit QRE is also the Nash equilibrium of game over

targets cognitive levels, and it is concentrated on κ∗ = 2 (or τ∗ = 18). Figure 6 plots (thick dashed

blue curve–”CH”) the induced distribution over claims.23

Intuitively, the larger dispersion in claims conditional on lower targets τ makes lower targets

more risky, hence less attractive, explaining the distribution shifts towards on higher claim levels,

compared to the previous case where trembles where homogenous across targets.

Discussion. Level-k thinking may certainly be at work in structuring how people play or think

about the game and the strategies that they find relevant. Here, the cognitive levels are proxies

for the strategies that player use (according to the relationship k = 20− t). Level-k thinking may

also be important in structuring the distribution over errors, with for example more dispersion for

higher levels as in (7). We have examined the consequences of players targeting a cognitive level (or

a claim) with more or less precision (i.e., different values of q). Our analysis of limit QRE suggests

that, whether noise is endogenous (with β∗ reflecting a frontier to experience accumulation) or only

partially endogenous (i.e., looking at the game over targets), with enough experience playing the

game, there should be forces that drive a large fraction of claims (about 70%) on the 17-19 range,

with a mode on 18 under homogenous errors, and even higher mode for level-dependent errors. In

both cases, expected claims are higher than that reported in Arad and Rubinstein [2012].

Said differently, level-k thinking and an exogenous bound on sophistication may be relevant in

explaining how players with little experience play this game. We suggest that in this game, even

with experience, unravelling towards lower claims is unlikely, suggesting that exogenous bounds on

sophistication may not be a binding constraint.

3.4. Auctions

We consider an auction where each participant has a private value vi for the object, drawn

independently from the same distribution f . In simulations to come, we further assume that f is

a lognormal distribution with variance σ.

22 Note that this differs from Camerer et al. [2004] in the sense that players are not trying to assess the cognitive
level of others: they target a cognitive level κ, but they implement it with noise, and noise is larger for higher
cognitive levels.

23 As a matter of fact, since the parameter of the Poisson distribution need not be an integer, players could be
endowed with a finer grid of targets, say τ ∈ T = {20 − 0.1j, j ∈ {0, ...90}} and one can then solve for a Nash
equilibrium and limitQRE in this finer grid. One finds that both coincide, with κ∗ = 1.9 (and τ∗ = 18.1).
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We think of players attempting to learn how to bid in this environment. The usual strategy

space is a space of functions where all functions bi(vi) should in principle be compared. In the spirit

of Compte [2001] and Compte and Postlewaite [2018], we assume that players are more limited in

their ability to gather experience and only compare a limited (here finite) number of strategies.

Specifically, we consider a finite family or grid Γ of linear shading strategies24

bλi
i (vi) = λivi with λi ∈ Γ = {ki/K, ki ∈ {0, ...,K}}.

For any profile of strategies λ = (λi, λ−i), each value vector realization v = (vi)i induces a vector

of bids bλ(v) = (bλi
i (vi))i, from which we compute, given the auction format considered, the gain

ui(vi, b
λ(v)). One can therefore compute the (ex ante) expected gains, where the expectation is

taken over value vector realizations:

Ui(λ) = Evui(vi, b
λ(v))

Given Ui(λ) and the grid Γ assumed, we adopt the limit QRE methodology to solve this game, and

examine two auction formats, first-price and all-pay auctions. If β can grow without bound, this

will imply that the limitQRE coincides with a Nash equilibrium of the constrained game (i.e., the

game played on the grid). We wish to illustrate when and why such a convergence may or may

not occur. We also wish to illustrate how the approach can be used to draw (at least qualitative)

comparisons between formats.

3.4.1. First-Price Auctions.

We choose K = 20 and check for limit QRE. We also focus on two players (n = 2). Our first

observation is that limit QRE coincides with the Nash outcome, with β∗ ↗ ∞ and the limit QRE

distribution concentrated on single shading factor λ∗
σ. The best response dynamics is thus well-

behaved for all values of β. As a matter of fact, the game defined without the grid restriction (or

with an arbitrarily fine grid) also has a Nash equilibrium λ∗∗
σ , and the shading factor λ∗

σ obtained

under the grid restrictions approximates λ∗∗
σ .25 For the sake of comparison, we plot below the

equilibrium bid and the standard Bayesian solution of this game (which is obtained by not putting

restrictions on the strategy space). The Bayesian solution is not linear and the linear solution is

not an approximation of it: the restriction induces less competition on most value realizations (the

distribution is the dashed line). Figures 7 and 8 report the distribution over values for σ = 0.5, the

Bayesian solution of the first price auction, and the equilibrium bid λ∗
σ under our restriction, for

σ = 0.2 and σ = 0.5.26

Intuitively, under the restriction, players cannot adjust shading to the realized value: if they

24 For simplicity, we consider identical grids across players, but this assumption is not necessary.

25 Actual equilibrium shading in the game with arbitrarily fine grids are respectively λ∗∗
0.1 = 0.84, λ∗∗

0.2 = 0.715,
λ∗∗
0.3 = 0.61, λ∗∗

0.4 = 0.525, and λ∗∗
0.5 = 0.454.

26 For σ = 0.2, the distribution over values has been scaled down (by a factor 0.7) so that it fits in the frame.
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Figure 7: σ = 0.5

λ*

Bayesian solution

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 8: σ = 0.2

could and if they were able to infer from a, say, high, realization that they are likely to be the

highest value bidder by a substantial margin, they would shade more: thus, for sufficiently high

draws, there is less shading under the restriction. The opposite is true for middle range values.

The case of dispersion uncertainty

We wish to illustrate here that when the dispersion σ is uncertain, convergence of limit QRE

is no longer ensured, thus limiting the usual efficiency properties of the first-price auction, in spite

of the symmetric environment considered.

Assume that σ may take two values σ or σ with equal probability. Then σ calls for fierce

competition (hence high λ likely generating low profits), while σ calls for weaker competition. When

σ and σ are not too far apart, then there exists a smooth resolution of these conflicting incentives:

there exists a pure Nash equilibrium of the constrained game, and the limitQRE continues to

converge to it.

When σ is sufficiently low (σ and σ sufficiently far apart) however, such a smooth resolution

does not exist.27 Then β∗ remains bounded, and limit QRE settles short of the (mixed) Nash.28

Figure 9 gives the distribution over λ’s induced by limit QRE for (σ, σ) = (0.05, 0.5) (continuous

curve):

Weights are no longer concentrated on a single λ but mostly spread over {0.6, .., 0.8}, these
strategies cumulating 86% of the weights.

Competition in targets. To conclude on the analysis of first-price, we analyze the game where

players choose target shading factors. In the spirit of the 11-20 money request game, we assume

that rather than choosing k ∈ {0, ..,K}, players each select a target κ ∈ {0, ..,K}, with each κ

inducing a probability distribution over actual shadings λk, i.e. a probability distribution {πq
κ(k)}k,

27 The reason for non-existence of a pure strategy equilibrium is analogous to those arising in price competition
with differentiated products (Caplin and Nalebuff [1986]), where some conditions on the demand function are needed
to ensure existence of a pure strategy equilibrium.

28 In the QRE equilibrium, weights on strategies are unequal, reflecting the fact that expected values differ across
the strategy played.
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Figure 9: Limit QRE and Equilibrium in targets (under dispersion uncertainty)

where dispersion is parameterized as in (6) by q. As for the 11-20 money request game, for any

given dispersion q, one can compute the limitQRE of the game defined over targets. With enough

dispersion q > q∗(= 0.17), the game over targets has a Nash equilibrium in pure strategies, κ∗q , and

the limitQRE of that game converges to it.

In Figure 9, we plot (dashed curve) the distribution over λ’s induced by κ∗q for q = 0.5. This

illustrates the connection between limit QRE without trembles and the equilibrium in targets

where trembles are high enough. These are two different (and possibly complementary) ways to

introduce frictions in learning how to play a game, with, for this game, similar consequences on the

distribution over λ’s, for an appropriately chosen q.

3.4.2. All-pay Auctions.

With 2 players, limitQRE converges to a pure λ∗ when σ ≥ 0.5. This λ∗ is also a Nash

equilibrium of the game with restrictions. In contrast to the first-price auction however, convergence

of limitQRE fails when dispersion of values is too low (σ < 0.5).29 We plot in Figure 10 the

limitQRE for σ = 0.4.
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Figure 11: σ = 0.2

29 With more than 2 players, even more dispersion in values would be needed to obtain convergence to a pure
shading λ∗.
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A notable feature of the limitQRE distribution is that it has two modes, with very low bids

surfacing as reasonably good strategies. The reason is the following.

When σ is not too high, each player has an incentive to overbid the other for a large range of

shading factors: upward competitive pressures are strong.30 But when λ becomes too high, λ = 0

becomes a better option. In other words, with restrictions to linear strategies and σ < 0.5, the

game has the structure of a Rock-Paper-Scissors game (a non-zero sum one with more than three

options): if one looks at the best response dynamics over pure strategies (k1, k2 best response to

k1 etc...) when σ = 0.4, the sequence obtained eventually cycles over 8 strategies:

k = 0, 1, 3, 6, 9, 11, 12, 13, 0, 1...

So there cannot be pure strategy equilibria in this game.

It is instructive to compare with the Bayesian solution (where no strategy restrictions are made).

The Bayesian solution would be in pure strategies,31 and the equilibrium bid function beqσ would

be S-shaped, with more steepness at the inflection point for lower σ. (See Figure 11– which plots

for beqσ for σ = 0.4 (blue curve) and σ = 0.25 (orange curve) – the dashed curves give the shape of

the distributions over values).32 Under the Bayesian solution, players draw correct inference from

getting a low draw of v, i.e., their chances of winning are slim hence bidding is low: players are not

spending unnecessary resources on auctions they will most certainly lose.33

With linear strategies, such savings are not possible. So long as σ is large, this is not so much

of an issue, because competitive pressures are not too strong and there are only two players: λ = 0

is not best response. With smaller σ, this becomes an issue, because competitive pressures make λ

rise (up to 13/20 when σ = 0.4), at which point λ = 0 is a better strategy, which fuels the cycle.

Comparing with the 11-20 money request game. It is also instructive to compare with the

11-20 request game, which exhibits a similar (cycling) best response dynamic over pure strategies.

One key difference between the two games appears when one examines the game over targets,

where, as before, players target κi and tremble over nearby strategies, with q characterizing the

dispersion of the trembles. In the money request game, there is a level of dispersion q that restores

a pure strategy equilibrium in targets. This is not the case in the all-pay auction.

Intuitively, to get a Nash equilibrium in targets, one has to ensure that players do not have

too much incentive to overbid. This can be done by increasing the dispersion of errors. The

30 When σ is very small, slight overbidding is sufficient to win with very high probability. For larger σ, the gap has
to be large enough to significantly modify the winning probability, and for large enough σ, this bid increase is too
costly relative to the increase chance of winning.

31 By revenue equivalence, equilibrium bids of the (unconstrained) Bayesian game would be such that the utility
u(v) of type v coincides with that obtained in a second price auction, so u(v) = vF (v)−b(v) = F (v)(v−E[v2|v2 < v])

32 These dashed curves are scaled down on the vertical axis (by a factor 0.7) in order to fit in the same figure.

33 But of course, this requires that the agent understand which v’s are low. A possible inability to perform that
task is what motivates the linear shading rules.
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issue however is that the level of dispersion needed leads to negative expected profits. So if no

participation is an option, or if the agent does not tremble when choosing the lowest target κ = 0,

this cannot be an equilibrium.

These observations are consistent with the two-mode distribution of Figure 10, and they suggest

a bidding behavior in all-pay auctions that differs substantially from first-price (not surprisingly),

where players either behave as strong competitor (high κ or k, with the risk of facing another

stronger competitor), or behave safe, aiming for an easy win (hoping that others’ too will behave

safe), and not participating. It also suggests that, with more potential participants, and since

incentives to overbid are then stronger, the expected number of strong competitors will generally

not exceed 2 (as it cannot be profitable to have more than 2 strong bidders). So unlike in first price

where efficiency and seller’s revenue will increase with competition, this is unlikely to be the case

with all-pay.

Including more sophisticated strategies. When bidding in an all-pay auction, having some

idea of how one’s valuation compares to others’ is key, so that one can afford to bid safely when

one has a low valuation. Linear strategies induce lower bidding for low values, but the reduction is

not strong enough to induce a pure strategy equilibrium (conducive to efficient allocations) when

the dispersion is below 0.5.

To conclude this section, we wish to check whether the inclusion of S−shaped strategies which

are better suited for all-pay would favor their selection under limitQRE. Specifically, let us define

beqσ as the Bayesian solution of the game where dispersion is σ. Figure 11 reports these S−shaped

bid functions for σ = 0.4 and σ = 0.25). We consider strategy sets Γ = Γ ∪ {beqσ } that include the

linear strategies from our previous grid, plus an additional S−shaped strategy beqσ . We make the

following observations:

(i) If σ = 0.4 and Γ = Γ ∪ {beq0.4}, the limitQRE converges to beq0.4.

(ii) if σ = 0.3 and Γ = Γ∪ {beq0.3}, the limitQRE puts a weight only equal to 9% on beq0.3.

(iii) If σ = 0.4 and Γ = Γ ∪ {beq0.25}, the limitQRE puts weight 29% on beq0.25 and the

induced distribution on Γ has a single mode.

(iv) If σ = 0.3 and Γ = Γcoarse ∪ {beq0.3} where Γcoarse ∈ {0, 0.3, 0.5, 0.7}, the limitQRE

converges to beq0.3.

We also report in Figures 12 and 13 the (unconditional) distributions induced on Γ for case (ii)

and (iii), respectively. These observations show that indeed, the inclusion of the Bayesian solution

may allow convergence to it (i). However convergence is not always guaranteed (by (ii)), and

the inclusion of a strategy that is only ”close to” the equilibrium, may not be sufficient to reach

convergence (by (iii)). (iv) however indicates that a coarsening of the strategy set Γ may help the

selection of the Bayesian solution.
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Let us give some intuition for these observations. Call bS the S−shaped bid strategy and b̃β∗

the mixture induced on Γ at the limitQRE. In both cases (ii) and (iii), at the limitQRE, bS is

a best performing strategy, both against itself and against b̃β∗ .34 So if play was restricted to bS

and b̃β∗ , one would expect that evolution eventually selects bS , as more accurate estimates become

available. This is not what happens however.

As β increases even slightly above β∗, the best response dynamics starts cycling over various

distributions b̃ and along the cycle, bS ceases to be the best performing strategy. With Γ consisting of

multiples of 0.1, and β = 1.2β∗, one gets the following cycle of length 14 among the best performing

strategies:

0.4, 0.6, 0.7, 0, bS , 0.5, 0.6, bS , bS , bS , 0.5, 0.6, 0, bS , 0.4...

with bS occurring a fraction 5/14 of the time.

Here is below another symmetric game with a unique pure strategy equilibrium, for which the

limitQRE does not converge to it:

1 2 3 4

1 1,1 0,2 1,0 0.9,0

2 2,0 0,0 0,2 0,1

3 0,0 2,0 0,0 0,2

4 0,0.9 1,0 2,0 1,1

The restriction to the first three strategies in a game with a unique mixed strategy equilibrium,

where the best response cycles 1− > 2− > 3− > 1. In the presence of the fourth strategy, the game

has a unique Nash, playing 4,35 but the limitQRE stops short of it (at β∗ ≃ 2.5) at distribution

σ̃ = (0.3, 0.21, 0.13, 0.36). As estimates get more precise, strategy 4 picks up more weight, but this

improves the performance of strategy 1, creating a cycle of best performing strategies which, at

β = 3 is as follows: 4, 4, 1, 2, 3, 4, 1, 2, 3, 4, 4, 1, 2, 4, 4, 1...

34 In case (ii), bS is a best response against itself because it is an equilibrium. One can see from the weight
distribution (which puts most weight on bS) that bS is also the best strategy against the limit QRE distribution. It

turns out that is also better against the conditional distribution b̃β∗ .

35 Mixing over strategies 2 and 3 would require p1 = p2, but then the 4th strategy dominates others.
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4. Conclusion

The issue of convergence to equilibrium is central in economics. The experimental data is a

reminder that not all games are conducive to equilibrium play and the analysis of dynamic learning

and evolutionary models have been useful in understanding observed departures from equilibrium.

In this spirit, our purpose has been to design a simple method for discriminating between

games and making behavioral predictions that incorporate the difficulties that players might face

in playing them.

What makes learning difficult? Our premise has been that non-stationary behavior is likely to

hurt the ability of player’s to find best responses to their environment, hence generate randomness

into how people behave. Randomness however is good news: noise makes players less responsive to

variations in others’ behavior (or the environment), and this has the virtue of stabilizing long-run

behavior.

Our method consists in finding the tipping point where player’s understanding of their environ-

ment is low enough to induce stationary behavior, and where any further precision gathered on it

would induce non-stationarities.

We believe that incorporating barriers to learning into the analysis of games is important

because it highlights an issue often felt unexplored: the players’ ”consideration set”, i.e., the set

of strategies that players do compare. Simon [1955] argued that a key aspect of decision making is

the subset of actions that agents actually consider (out of those a priori available), and that this

subset depends on the extent of exploration.

Our analysis of auctions highlights the importance of this ”consideration set”. With a restriction

to linear-shading rules, the analysis of competition under first-price is not qualitatively altered

(though uncertainty about the dispersion of valuation may be an issue). The competition under

all-pay however produces a strategic interaction akin to the Rock-Paper-Scissors game, for which

learning how to play is a challenge.

From the agent’s perspective, it is not obvious that faced with such a challenge, evolution will

be conducive to the exploration of more sophisticated strategies, such as S−shaped strategies, as

this may require a difficult search for the better locus of the inflexion point. Furthermore, even if

reasonably adequate S−shaped strategies are added to the consideration set, their selection is not

guaranteed, and may depend on the richness of the initial set (a finer grid hurting selection in our

auction example).

In summary, we suggest that it is worth worrying about barriers to learning, in particular in

games with a rich set of a priori feasible strategies, and study how strategy restrictions may either

mitigate or amplify these difficulties.
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Appendix

An alternative to logit with application to the centipede game.

The logit formulation of QR assumes a particular structure on errors. We wish to illustrate the

properties of limitQRE with other formulations that implicitly incorporate a notion of satisficing

– which may be relevant from a learning perspective. Specifically, we shall fix c ≥ 1 and examine

the family (hβc )β whereby

qk is proportional to exp−(λ(v − vk)
c

where v is the maximum expected gain. For c = 1, this corresponds to the family of logit functions.

For c large, the family captures the idea that the agent attempts to discriminate between actions

that yield a payoff close enough to the max, and actions that yield a payoff sufficiently away from

the maximum. With v normalized to 1, the figure below shows that for c = 5 and λ = 5 (red curves)

strategies that yield 90% of the maximum get approximately the same weight (and that weight is

thus close to the maximum weight), while this weight quickly drops down for strategies yielding a

fraction of the maximum lower than 90%. This is to be contrasted with the blue curve (drawn for

c = 1 and λ = 5) which corresponds to the logit response (this response has a much thicker tail).

In summary, the size of c determines the sharpness of the drop for strategies that perform

sufficiently below the best one, and β determines the threshold below which the drop occurs.

We illustrate the consequence of a higher c in the centipede. Fixing a = 0.6, we compute the

limitQRE obtained for different value of c:
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Figure 14: LimitQRE under an alternative to logit

Thus as one raises c, more strategies get played with comparable weight: for large c, the limit

QRE comes close to a set-concept that determines a range of good enough strategies, which are then

all played with comparable weight, as if discriminating between these strategies was too difficult

for the agent.
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The 11-20 money request game with stubborn types.

In Figure 15 below, we report (orange) the limitQRE distributions obtained when a player

has a 5% chance of being a stubborn player claiming k = 20 (without trembling). We derive

these distributions for the game where players target κ but tremble, with trembling probabilities

characterized by q = 0, 0.1 etc...0.4. Lighter curves for q = 0. The figure reports the unconditional

distributions (i.e., including the behavior of the stubborn type). We also recall (in blue) the

distributions obtained in the absence of stubborn type. The figure suggests a small (but only tiny)

shift towards higher claims.
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Figure 15: The 11-20 game with stubborn types
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