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Abstract

We explore a model of non-Bayesian information aggregation in net-
works. Agents non-cooperatively choose among Friedkin-Johnsen type
aggregation rules to maximize payoffs. The DeGroot rule is chosen in
equilibrium if and only if there is noiseless information transmission...
leading to consensus. With noisy transmission, while some disagree-
ment is inevitable, the optimal choice of rule blows up disagreement:
even with little noise, individuals place substantial weight on their
own initial opinion in every period, which inflates the disagreement.
We use this framework to think about equilibrium versus socially ef-
ficient choice of rules and its connection to polarization of opinions
across groups.

1 Introduction

As of May 2020, 41% of US Republicans were not planning to get vacci-
nated against Covid-19, as compared to 4% of Democrats.1 We saw similar
divergences in mask-wearing, social distancing etc, which protect against the
disease. Since Covid-19 is a life-threatening ailment that had already taken
more than 3.5 million lives so far world-wide, it is hard to think of these as
being just empty gestures. There seems to be rather, a different reading of
the facts on the ground; for example, in a Pew Research Center poll,2 Re-

∗This paper was previously entitled “Information Aggregation under (not so) Naive
Learning”.

1https://www.pbs.org/newshour/health/as-more-americans-get-vaccinated-41-of-
republicans-still-refuse-covid-19-shots

2https://www.pewresearch.org/fact-tank/2020/07/22/republicans-remain-far-less-
likely-than-democrats-to-view-covid-19-as-a-major-threat-to-public-health.
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publicans were much more likely to say that Covid-19 is not a major threat
to the health of the US population (53% compared to 15% of Democrats).

Given the increasing dominance of social media as a source of informa-
tion it is natural to ask whether this divergence could be a result of the
nature of social learning on networks. Indeed this is the argument that, for
example, is made by Sunstein (2017) to explain the increasingly partisan
nature of US politics. It turns out however that making this case theo-
retically is not as easy as one might imagine. Models of Bayesian social
learning such as Acemoglu et al. (2011) propose relatively weak conditions
on signals and network structure under which information is perfectly ag-
gregated as the network grows to be very large. More recent work, in which
agents repeatedly communicate (unlike in Acemoglu et al. (2011) where
they communicate only once) include Mossel et al. 2015 who derive nec-
essary conditions on the network structure under which Bayesian learning
yields consensus and perfect information aggregation.3 The general sense
from this literature is that convergence to a consensus is likely even when
the network exhibits a substantial degree of homophily (Republicans mostly
talk to other Republicans) as long as everyone is ultimately connected.

This Bayesian route however requires that agents make correct inferences
based on an understanding of all the possible ways information can transit
through the network, which, at least for large networks, strains credibility.4

The alternative way to model learning on networks is to take a non-
Bayesian route, which avoids these very demanding assumptions about in-
formation processing by postulating a simple rule that individuals use to
aggregate own and neighbors’ opinions. In recent years the economics liter-
ature has tended to favor the DeGroot (DG) rule, where agents update their
current opinion by linearly averaging it with their neighbors’ most recent
opinions. As observed by DeMarzo et al. (2003), who brought it into the
economics literature, the rule builds in a strong tendency towards consensus
in any connected network, even when there is high degree of homophily and
people put high weight on people like them.5 Faced with this force towards
consensus, Friedkin and Johnsen (1990) came up with a learning rule which

3They build on Rosenberg et al. (2009) and the literature on ”Agreeing to Disagree”
that goes back to Aumann (1976).

4A Bayesian needs to think through all possible sequences of signals that could be
received as a function of the underlying state and all the possible pathways through which
each observed sequence of signals could have reached them. As discussed in Alatas et al.
(2016, page 1681), there is obviously an extremely large number of such pathways.

5Moreover as shown by Golub-Jackson (2010), DG has the striking property that, under
some restrictions on network structure and weights on neighbors, learning converges to
perfect information aggregation.
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is similar to DG, but allows each individual to keep putting some weight on
their own initial opinion.6 This rule, for obvious reasons, does not lead to a
consensus.

The first question we set out to answer here is whether the type of rule
proposed by Friedkin-Johnsen would be chosen by individuals from a class
of simple rules that include DG. To study this question we start from a
broader class rules in the spirit of Friedkin-Johnsen (FJ) which can formally
be written as

yti = (1− γi)yt−1
i + γi(mixi + (1−mi)z

t−1
i ) (FJ)

where yti is i’s belief in period t, xi is the initial signal that i received and

zti =
1

| Ni |
∑
j∈Ni

ytj + εti. (1)

is the average report received by i from his neighbors (denoted by Ni) plus
any error or noise in the transmission (or reception) of that signal.7,8 When
the weight mi is 0, individual i is using a DG rule.9

Within this limited class of “natural” rules, we allow agents full discre-
tion in the choice of rules and assume that each individual non-cooperatively
selects the rule that best aggregates information (for her) in the long-run.10

This is in the spirit of the approach advocated in Compte and Postlewaite
(2018) to model mildly sophisticated agents.11

Our Result 1 says that each individual decision-maker will choose DG
(and only DG) in the Nash equilibrium of the rule choice game if and only if

6Friedkin and Johnsen (1999, page 3) write, referring to the work of DeGroot and other
precursors: ”These initial formulations described the formation of group consensus, but
did not provide an adequate account of settled patterns of disagreement”.

7The error term is an important ingredient of our analysis. We shall assume that εti has
two components, a persistent one, drawn at the start of the process, and an idiosyncratic
(time-independent) one.

8In Expression (1), all neighbors contribute symmetrically. In our formal exposition
we will actually allow for non-symmetric weights but assume that relative weights across
neighbors are fixed, not subject to optimization. This is to reduce the dimensionality of
the rule-choice problem.

9Throughout our analysis, we shall assume that all γi are strictly positive.
10That is, we assume that initial signals are correlated with some underlying state of

the world, and that each i selects the rule for which the long-run opinion yi is on average
closest to the underlying state, assuming a quadratic loss function.

11The limitation to a specific class of rules is key. Otherwise the individually optimal
way to process signals among all possible signal processing rules would be the Bayesian
rule.
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there is no noise in the transmission (or reception) of the signal. Otherwise
a rule where mi > 0 will be chosen and there will be no consensus even in
the long run.

The fact that DG rules are an equilibrium absent any noise follows from
the fact that if one person chooses mi > 0 while the others don’t, then
everyone’s opinion will converge to that one person’s signal, because it is
the only one that gets fed back in every period. This is in no one’s interest,
including person i, since this means that all the other signals are lost.

Moreover, DG (i.e. mi = 0 for all i) is the only equilibrium absent
noise. The reason for this is easy to see in the two-person case: through her
decision rule, player i controls how the two initial signals are averaged in
the steady state, and in the absence of noise, she can thus guarantee herself
the efficient outcome. Since m 6= 0 leads to different averaging of initial
signals hence inefficient information aggregation for at least one player, only
DG can be an equilibrium. In fact this also shows that in the no-noise case
the equilibrium choice of decision rules (i.e. the equilibrium vector of γ
values chosen by everyone) is the one that generates optimal information
aggregation. This result complements Golub-Jackson (2010) who show that
when everyone does DG, information aggregation is almost perfect for large
networks (under certain weak conditions) but generally imperfect in finite
networks.12

The argument for the “only if” part starts from the observation that DG
has the undesirable property that the variance of every decision-maker’s
belief grows without bound in the presence of any error or noise in commu-
nication (Proposition 1). Essentially when γi > 0, agent i puts less than
one hundred percent weight on his most recent belief, so the weight that
agent i directly puts on his own initial signal is going to 0. Without noise
in transmission, this is at least partly offset by the weight agent i puts on
reports from others, which themselves contain agent i’s initial signal. This
is why the influence of initial signals on current beliefs does not dissipate. In
other words, the agent holds on to his own signal only through the feed-back
from others. The problem is that when transmission is noisy, you only get
the feedback at the cost of some extra error in every round. Given that
the initial signals enter only at the beginning and the noise keeps coming in
every period, it is no wonder errors come to dominate.

This intuition suggests that allowing each person’s initial signal to come
in with some weight every period would provide a countervailing force, which
is what FJ allows: If mi > 0 every decision-maker’s average belief as well as

12The difference is that we assume endogenous weights γi.
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its variance converges (Proposition 2). This explains why in the presence of
noise, DG rules are actually dominated by rules with mi > 0 and therefore
only such rules will be chosen in Nash Equilibrium (Proposition 6)

Some disagreement therefore is to be expected in any Nash Equilibrium
of the rule choice game. However there are two sources of divergence–a
mechanical source arising from the presence of noise or errors but also the
additional divergence that comes from always putting non-zero weight on
one’s initial signal (which is a choice, but one resulting from the noise).
The next question is which of these is the main source of divergence. To
simplify the analysis we start by assuming that the noise in transmission is
fully persistent. This, we show, allows us to restrict the choice of rules to
the sub-class of FJ rules where γ = 1. The only choice is now between rules
which differ in mi.

In this setting, our Result 2 shows that at least when the variance ω of
persistent noise is close enough to zero, the second, non-mechanical, source
dominates: in equilibrium, the weights m are comparable to ω1/3. The
reason is that the errors that one makes are fed back into the network, and
in a connected network, eventually bounce back: errors cumulate as a result
of these echo effects and the long run variance is of the order of ω/m2).
Moreover, as a result, there is an incentive to significantly increase m.

We then ask whether there is too little or too much disagreement in
any equilibrium relative to the social optimum. Result 3 shows that the
equilibrium values of mi are always lower than the socially optimal values.
The reason is that there is no consensus in the long-run. When player i
sets mi optimally to minimize the variance of his long-run opinion yi, he is
not simultaneously minimizing the variance of yj : while player j’s long-run
opinion is partially influenced by yi, it is also ”directly” influenced by the
initial opinions of players other than i, and player j would prefer a marginal
increase in mi – this would generate a second-order increase in the variance
of yi, but a first-order reduction in the correlation between yi and x−i, which
would reduce the variance of yj .

Note that the discrepancy between social and private optima arises here
only because of transmission noise and the lack of consensus that this gen-
erates. In the absence of noise, we already saw that DG rules will be chosen
in equilibrium and will deliver both consensus and perfect information ag-
gregation.

The failure of perfect information aggregation in our setting should be
contrasted with Vives (1993,1997) who analyzes Bayesian social learning in
a setting similar to ours (with agents receiving a noisy signal about current
average choice in the population) and yet obtains long-run convergence to
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the truth. The reason is that agents perfectly process signals (as Bayesians
are supposed to), without the kind of (processing) errors that we introduce
in our model.

It should also be contrasted with Banerjee (1992) or Bhikchandani et
al. (1992), where information aggregation fails due to coarse decisions (only
two actions) and the network structure assumed.13 Our model allows for
arbitrary networks and the decisions are on a continuum. Moreover we allow
agents to vary their decision rules continuously which guarantees perfect
information aggregation in the absence of noise.

Finally, the discrepancy between social and private incentives takes the
form of underweighting the private seed, which may be reminiscent of Vives
(1997). The underweighting of private signals in Vives (1997) arises be-
cause agents fail to take into account a positive informational externality on
learning: a stronger early reliance on private signals would speed up learning
and benefit all. In our case, a higher reliance on private seeds (compared
to equilibrium weights) improves welfare because this limits the correlation
between information sources.14

The result that mi is too low might suggest that there is always too
little disagreement in equilibrium. This is true for two-person networks, but
not in general. To see this consider a network where there are two dense
clusters connected by one link (say). Such a network structure is not too
dissimilar, for example, to the networks of Republicans and Democrats in
the US, who mostly communicate with each other (Cox et al. (2020)). In
this case, we show by example that there is a natural reason why lower
mi may be associated with a high degree of consensus within each cluster
but extreme polarization across the groups, reminiscent of the situation of
the Republicans and Democrats in the US. The general point, captured by
Result 4 is that social efficiency requires the dispersion of opinions within
and between subgroups to be of comparable magnitudes.

Our very simple model therefore tells a useful story why disagreements
are necessary, but also about why there could be wide divides in opinions
and when such disagreements are costly.

The rest of the paper is devoted to showing that these insights are robust.
We first return to rule selection in the case where there are idiosyncratic
shocks in information transmission in addition to permanent shocks. In this
setting the speed of updating, γi, also plays a role. Slowing down updating

13Mossel et al. (2015) shows that with few states of the world, coarse communication
can be circumvented for a large class of large networks, with consensus and almost perfect
learning obtained.

14Averaging more strongly correlated sources hurts welfare.
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by setting γi close to zero allows the agent to minimize the changes in
opinions that result from these shocks, which average out over time. This
is what Result 5 shows.

Since noise in transmission is central to the case we make for choosing
mi > 0, in the penultimate section of the paper we examine the robustness
of our results to other ways of modeling the friction in the transmission of
information. We start by examining the implications of agents adding a
slant to the opinions they share–in other words adding noise that is biased
in some direction. Recent results from survey experiments suggest this is a
real problem–people on social media are more likely to pass on messages that
they believe to be false than those that they believe to be true (Pennycook
et al. (2021) and Vosoughi (2021)). We show that this does not produce
any essential changes in our analysis, though there is a further shift towards
reliance on one’s own initial signal. A similar observation obtains when
preferences are heterogenous and players have biased perceptions of others’
preferences.

We next turn to the possibility of coarse communication–say each party
only reports their current best guess about which of two actions is prefer-
able, assuming that each has many neighbors. In this setting, the class of
potentially “natural” rules include the infection models, studied in Jackson
(2008) among (many) others, and the related class of models studied by
Ellison and Fudenberg (1993, 1995), in which agents may rely on the pop-
ularity of a particular action among neighbors. We show that systematic
errors in interpreting guesses by neighbors makes the long-run outcome from
a DG-like rule entirely insensitive to the actual state of the world (Frick et
al. (2019) report a related result for a proto-Bayesian rule), but this is not
true for FJ-type rules.

To end this section we highlight some examples where our findings are
qualitatively altered. We have so far assumed that agents know the precision
of everyone’s initial signals. We now explore the possibility that uncertainty
about the precision of everyone else’s signal is the only source of friction
in communication. We find that, in the absence of transmission errors,
this does not undermine the performance of DG-type rules. As a matter
of fact, in a set-up where each participant only knows the precision of own
initial signal, perfect information aggregation can be achieved under DG,
by choosing γi that is suitably scaled to the precision. This observation
delineates the key role played by transmission shocks in our analysis, as
opposed to other sources of shocks.

We next allow for the possibility that not everyone speaks in every pe-
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riod. We show by example that the outcome from using DG rules is sen-
sitive to who speaks when, even in the absence of noise, whereas under
FJ rules, expected opinions are always independent of the communication
protocol, whether or not there are errors in communication. However the
long-run opinions under DG remain weighted averages of initial opinions, so
the variance of long-run opinions induced by variations in protocols under
DG remains bounded, unlike where there are transmission errors.

Finally, we conclude with a discussion of non-stationary rules and when
and why they may not always be appropriate.

To end the introduction we briefly discuss the related literature. Our
paper is related to and inspired by the recent upsurge of interest in the so-
cial learning with less than fully Bayesian agents. Eyster and Rabin (2010),
Sethi and Yildiz (2012, 2016, 2019), Jadbabie et al. (2012) and Gentzkow
et al. (2018), among others, explore the implications of applying Bayes rule
when the underlying information structure is misspecified, as does the pre-
viously mentioned paper by Frick et al. (2019).

There are also a set of important recent papers that provide some justi-
fication for the DG rule in the absence of noise. Molavi et al. (2018) pro-
vide an axiomatic justification for DG-like (e.g. Log-linear learning) rules.15

Dasaratha et al. 2020 argue that in their set-up the Bayesian rule is DG-
like. Finally, Levy and Razin (2015) develop the Bayesian Peer Influence
Paradigm to capture the idea of an almost Bayesian aggregation rule.

2 Basic Model

2.1 Transmission on the network

We consider a finite network with n agents, assume noisy transmission/reception
of information and define a simple class of rules that players may use to up-
date their opinions.

Formally, at any date t, each agent i in the network has an opinion
that can be represented as a real number.16 We consider a class of updating
rules due to Friedkin and Johnsen (1990) (henceforth FJ), in which player i’s
current opinion yti is a convex combination of his initial opinion xi, his most

15In the work already mentioned by DeMarzo et al. (2003) and Golub and Jackson
(2010), DG is justified by arguing that it coincides with the Bayesian rule in the static
case.

16This opinion can be interpreted as a point-belief about some underlying state, which
will eventually be used to undertake an action.
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recent opinion yt−1
i and some summary perception zt−1

i of his neighbors’
opinions. Formally, this can be written as

yti = (1− γi)yt−1
i + γi(mixi + (1−mi)z

t−1
i ) (FJ)

where
zti = Ai.y

t + εti (2)

where yt is the vector of all opinions at t, Ai is a row vector whose jth element
Aij is such that

∑
j Aij = 1 and εti represents an error in transmission or

reception. zti is meant to be some average of the opinions of i’s neighbors
(denoted Ni), so the presumption is that Aij > 0 for j ∈ Ni. This average
is then modified by some noise in transmission or reception.

When mi = 0, the rule corresponds to the well-studied DeGroot rule
(DG). When mi > 0, the updating process works like DG, but the perception
of other’s opinions is adjusted using the decision-maker’s own initial opinion
as a perpetual seed. This perpetual use of the initial opinion in the updating
process gives FJ a non-Bayesian flavor, since for a Bayesian, their prior (i.e.,
the seed) is already integrated into yt−1

i and therefore there is no reason to
go back to it.17,18

To avoid technical difficulties once we give agents discretion in choosing
their updating rule, we set γ > 0 arbitrarily small and restrict attention to
FJ rules where γi ≥ γ. We also assume that the matrix A of the Ai’s is

connected in the sense that for some positive integer k, the kth power of A
only has strictly positive elements, i.e., Akij > 0 for all i, j. In other words
everyone is within a finite number of steps of the rest.

Finally, before proceeding, it is useful to define a simplified version of
the rule FJ , where γi = 1. We refer to it at SFJ :

yti = mixi + (1−mi)z
t−1
i (SFJ)

One can think of SFJ as a process that works like FJ, except that agents do
not attempt to smooth out variations in their own opinion. In the absence of

17In fact, as mentioned already, the one obvious attraction of DG has been its quasi-
Bayesian flavor. If yt−1

i is viewed as a summary statistic of past signals, and zt−1
i as a

new signal, then the linear weight γi can be seen as the optimal weighting strategy of a
Bayesian aiming to reduce the variance of his or her opinion. Of course, over time, a
Bayesian would typically not keep that parameter constant, as the relative informative
content of their own current opinion and that of others will in general not be constant.

18Note that although the expression (FJ) encompasses the DG rule, we shall refer to
FJ as a rule for which mi > 0.
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idiosyncratic shocks on the perception of the opinions of others (see details
below), SFJ and FJ will generate identical long-run opinions.

Note that all the rules considered are stationary, in the sense that the
weighting parameters mi and γi do not vary over time. We are interested in
these rules not only because they have been studied in the literature, but also
because we see them as plausible ways by which agents might incorporate
others’ opinions into their current opinion. Of course, with some knowledge
of the structure of the network, and the process by which information gets
incorporated, an agent might want to adjust the weights over time. We
shall discuss in Section 7.6 the risks that such elaborate adjustments be
misguided, in particular when there is randomness over the dates at which
communication takes place.

We have also imposed the assumption that everyone operates on the same
time schedule: periods are so defined that everyone changes their opinion
once every period and everyone else get to observe that change of opinion
before they adjust their opinion in the following period. We will discuss
what happens if we relax this assumption in Section 7.3.

2.2 Errors in opinion sharing

The term εti is an important ingredient of our model, meant to capture some
imperfection in transmission.19 It defines a distortion in what each individ-
ual “hears” that aggregates all the different sources of errors. Distortions
may result from each individual being imprecise in expressing his or her
opinion, or from an error in hearing or interpretation.

We assume that the error term has two components:

εti = ξi + νti .

The term ξi is a persistent component realized at the start of the process,
that applies for the duration of the updating process.20 The term νti is
an idiosyncratic component drawn independently across agents and time.

19There has been several recent attempts to introduce noisy or biased transmission in
networks. In Jackson et al. (2019), information is coarse (0 or 1), and noise can either
induce a mutation of the signal (from 0 to 1 or 1 to 0) or a break in the chain of transmission
(information is not communicated to the next neighbor). In Frick et al. (2019), agents
communicate through a choice of action a ∈ {0, 1} correlated with an unknown underlying
state, and they make a systematic error in interpreting these actions because they have
an erroneous model of the preferences of others. See Section 7.5.

20One interpretation is that each information aggregation problem is characterized by
the realization of an initial opinion vector x and persistent bias vector ξ, and that agents
face a distribution over problems.
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We interpret ξi as a systematic bias that slants how opinions of others are
perceived. For convenience, we assume that all error terms are homogenous
across players and unbiased (that is, Eξi = Eνti = 0).21 We let $i = var(ξi)
and $0 = var(νti ) and assume that:

$i = $

In most of the analysis, we think of the biases ξi as being drawn indepen-
dently across players. We shall also discuss cases where these biases are
positively correlated, reflecting a situation where a group of players is sub-
ject to a political bias.22

2.3 The objective function

There is an underlying state θ, and agents want their decision to be as close
as possible to that underlying state, where the decision is normalized to be
the same as the agent’s long-run opinion. In other words, we visualize a
process where agents exchange opinions a large number of times before the
decision needs to be taken.

Given this private objective, we explore each agent’s incentives to choose
his updating rule within the class of FJ rules to maximize his objective on
average across realizations of the underlying state of the world, the initial
opinions and the transmission errors. The set of possible updating rules is
extraordinary vast, so the limitation to FJ rules is of course a restriction.
Our motivation is to examine the incentives of mildly sophisticated agents
who have some limited discretion over how they update opinions. In par-
ticular we have in mind examining whether there are forces away from DG
rules, and whether private and social incentives differ. We also have in mind
that individuals choose a single rule to apply across different problems. This
is why we focus on their ex ante performance.23

Formally, we assume that the initial signals are given by

xi = θ + δi

where the θ are drawn from some distribution G(θ) with mean zero and
finite variance, δi, ξi and νit are random variables that are independent of

21The assumption Eνti = 0 is without loss of generality. We shall come back to the case
where Eξi 6= 0 is the Discussion Section.

22Positively correlated errors may also arise when an agent has a bias that slants how
her opinions are expressed to (all) her neighbors.

23That is, on average over states, initial opinions and transmission errors.
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each other for all i and t and are also independent of θ. We assume that
noise terms δi are unbiased, with variance σ2

i > 0. For convenience, except
where we need to assume otherwise to make a specific point, we set σi = 1
for all i, but we do not actually need this assumption.

For any t, each profile of updating rules (m, γ) generates at any date t,
a distribution over date t opinions. We now define the expected loss (where
the expectation is taken across realizations of θ, δi, ξi and ηit, for all i and
t):

Lti = E(yti − θ)2

Define δ = (δ1, ..., δn), ξ = (ξ1, ..., ξn) and νs = (ν1s, ..., νns) for all s. Now
given the set of updating rules that we consider, it will become evident that

yti = btiδ + ctiξ +
t∑

s=1

dtisνs + θ

for some non-negative vectors bti, c
t
i and {dtis}ts=1.24 It follows that

Lti = E[btiδ + ctiξ +
t∑

s=1

dtisνs]
2

We define the limit loss Li = limt↗∞ L
t
i.

25

2.4 Methodological assumptions

The loss Li depends on the profile of updating rules (m, γ), and our main
methodological assumptions are that (i) there is a force towards the use of
higher performing rules (e.g., justified by evolution or reinforcement learn-
ing), and (ii) in this quest for higher performing rules, each individual con-
siders (or get feedback about) only a limited set of rules (e.g., the FJ class
where each mi belong to [0, 1]).

Formally, our analysis boils down to examining a rule choice game where,
given the rules adopted by others, each agent aims at minimizing Li (using
the instrument mi or γi available to her): the object of interest is the Nash

24θ enters additively in all opinions, and θ could thus be normalized to 0.
25Alternatively, one could define Li = limh↘0(1−h)

∑
ht−1Lt

i, assuming that the agent
makes a decision at a random date far away in the future and that his preference over
decisions is ui(ai, θ) = −(ai − θ)2.
Li is well-defined for any vector m, γ so long as m 6= 0. As it will turn out, for m = 0, Li

is infinite. Note that each player can secure Li ≤ var(δi) = σ2
i = 1 by ignoring everyone

else’s opinions (mi = 1).
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equilibrium of this rule choice game. Since Li is an expectation across
various realizations of initial signals and noise in transmission, we think
of the person choosing one rule, parameterized by mi and γi, to apply in
many different life situations. These parameters are meant to capture some
general features of opinion formation: specifically the persistence of initial
opinions, and speed of adjustment of the current opinion.26

It is precisely this fact that the rule is very simple and applies across
many different problems that makes our third route cognitively less de-
manding than the Bayesian route. While we agree that choosing mi and
γi optimally is a difficult problem which in principle requires knowledge
of the structure of the model, there is no reason why the standard justi-
fication of Nash Equilibrium as a resting point of an (un-modeled) learn-
ing/evolutionary process would not apply here. Moreover, one of our most
important results is that DG rules, and indeed all rules that put too little
weight (mi) on initial opinions, are dominated, suggesting a strong force
away from DG even if agents find it difficult to find the exact optimal value
of mi.

In the next Section we start by exploring the long-run properties of
different learning rules within the FJ class. Then we turn to the optimal
choice of learning rules.

3 Some properties of the long run outcome of learn-
ing

It is well-known that in the DG case without noise (mi = 0 for all i) learning
converges to steady state values of yi for all i and that these are all equal.
The next subsections show that when there is noise there is still convergence
under FJ as long as at least one person has mi > 0, but not under DG. We
then explore what determines the variance of the limit opinion in the case
where such a limit opinion exists. In particular what part of it comes from
the “signal”– the original seeds – and what part from the noise that gets
added along the way?

26Our view is that these features probably do adjust to the broad economic environment
agents face, but for each opinion-formation problem within a certain context, the actual
sequence of opinions is mechanically generated given these features.
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3.1 Exploding dynamics under DG

Our first result shows that if all agents follow a DG rule, as long as there is
any idiosyncratic component in the noise, the variance of long-run opinions
diverges. Moreover, for almost all realizations of the persistent component,
yti must diverge in expectation over time for all i.

To show this we fix x and ξ and define yti = Eyti and V t
i = var(yti). We

have:

Proposition 1: Assume that mi = 0 for all i. (i) If $0 > 0, then for
all i and any fixed x, ξ, limt V

t
i =∞. (ii) For almost all realizations of the

persistent components ξ, lim
∣∣yti∣∣ =∞ for all i and x.

For example, the proposition shows that an error ξ1 in a single agent’s
perception may be enough to drive up the opinions of all: if ξ1 > 0, say,
the error creates a discrepancy with other’s opinions, and each time others’
opinions catch up, agent 1 further raises his opinion compared to others,
prompting another round of catching up, and eventually all opinions blow
up.

We present here some intuition that explains why DG works well without
noise and becomes fragile as soon as there is some noise. Let yt denote the
vector of opinions at t. Let ∆n be the set of vectors of non-negative weights
p = {pi}i with

∑
pi = 1. For any i, we have yti = Biy

t−1 + γiε
t
i with

Bi ∈ ∆n. Because the network is connected, there is a strictly positive
vector of weights π ∈ ∆n such that π.B = π,27 so

π.yt = π.yt−1 +
∑
i

πiγiε
t
i.

Without noise, the limit weighted opinion π.y coincides with the weighted
initial opinion π.x. This explains why in the absence of noise the influence
of initial opinions never dissipates (and also why all initial opinions matter
– as π >> 0): the direct contribution of i’s initial signal to i’s opinion van-
ishes, but it surfaces back from the influence of neighbors’ opinions (which
increasingly incorporate i’s initial signal), settling at a limit weight equal to
πi.

With noise however, π.y is a random walk, explaining why the influence
of initial opinions vanishes and why the variance diverge. Besides, the ran-
dom walk has a drift when

∑
i πiγiξi 6= 0, explaining why π.y then diverge.

27This is because when γi > 0 for all i, B = (Bi)i is an irreducible probability matrix.
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3.2 Anchored dynamics under FJ.

Fixing again x and ξ, we now examine long-run dynamics under FJ. Define
yt = (yti)i and V t = (V t

i )i as the vector of expected opinions and variances.

Proposition 2. Assume at least one player, say i0, updates according
to FJ (with mi0 > 0).Then, for any fixed x and ξ, yt and V t converge.
Besides, the limit variance V does not vary with x and ξ, and the limit
vector of expected opinions y does not depend on γ nor on the signal xi of
any individual with mi = 0.

Proposition 2 shows that to avoid that all opinions drift, it is enough
that there is one player who continues to put at least a minimum amount
of weight on his own initial opinion in forming his opinion in every period.
Proposition 2 also shows that when mi = 0, the signal initially received by
i has no influence on players’ long-run opinions. A detailed proof is in the
Appendix.

Before providing some intuition for the proof, let us consider a two-player
example where we set m2 = 1 and m1 = 0. Then player 2 always keeps the
same opinion (yt2 = x2 for all t) and

yt1 = γ1(x2 + ξ1) + (1− γ1)yt−1
1 +

= (x2 + ξ1)γ1(1 + (1− γ1) + ...+ (1− γ1)k−1) + (1− γ1)kyt−k1

implying that yt1 converges to x2 + ξ1 as t grows large, independently of
player 1’s initial opinion. Player 2 serves as an anchor that prevents agent
1’s opinion from drifting. Long-run opinions however only incorporate player
2’s initial opinion.28

The general argument for convergence runs as follows.29 For any fixed
x, ξ, the expected opinion evolves according to

yt = ΓX +Byt−1 with B = I − Γ + Γ(I −M)A

where Xi = mixi + (1−mi)ξi, Γ and M are diagonal matrices with Γii = γi
and Mii = mi. When mi0 > 0 for some i0, proving convergence is standard30

28More generally, up to noise terms, long-run opinions are determined by the opinions
of agents for which mi > 0.

29The argument follows Friedkin and Jensen (1999), extended to our setting.
30The key to convergence is whether

∑
j Bij < 1 for all i. When this is the case, we say

that B has the contraction property. When mi > 0 for all i, this property trivially holds:∑
j Bij = (1− γi) + γi(1−mi)

∑
j Aij < 1 for all i. When mi > 0 for only some players,

we use the fact that the network is connected to conclude that for some large enough K,
C = BK has the contraction property: with large enough K, then for any i, there are
paths of length K that go through i0 for which mi0 > 0.
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and the limit expected opinion y is the unique solution of

y = X + (I −M)Ay (3)

and this limit is independent of Γ. Next, defining ηt = yt − yt and wtij =
Eηtiη

t
j , we have

ηti = (1−mi)γiν
t
i +Biη

t−1

implying an expression for the evolution of the covariance vector wt = (wtij)
of the form

wt = Λ +Bwt−1,

where Bij is the row vector (Bij,hk)hk with Bij,hk = BihBjk and Λ is the col-
umn vector with Λii = (1−mi)

2γ2
i$0. Proving convergence to the solution

of
w = Λ +Bw (4)

is also standard.31

Letting Li ≡ var(yi), one immediate corollary of Equations (3) and (4)
is that the loss Li can be decomposed into

Li = Li + Vi

where the variance Li of the expected opinion yi does not depend on γ (nor
on $0) and the loss term Vi is proportional to the idiosyncratic component
$0. When $0 = 0, Li = Li, so this implies that the parameters γ have no
effect on Li, and we can focus on the weights m and the analysis of the rule
SFJ .

3.3 The dominance of noise under low m.

Although convergence is guaranteed when at least one player does not use
DG, there is no discontinuity at the limit where all mi get small: long-run
opinions then become highly sensitive to the permanent component of the
noise, and the variance induced by the idiosyncratic errors becomes very
high. We have:

Proposition 3: Let m = maxmi. Then Li ≥ $
n

(1−m)2

m2 and Vi ≥
$0
2n

γ2(1−m)2

m .

31This is by the same logic as Footnote 30. Among all the K-step paths that start

in ij, there is at least one that goes through i0k for some k implying that B
K

has the
contraction property.
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The proof is in the Appendix. The lower bound on Vi is obtained as
a simple extension of the proof of Proposition 1. We provide here the key
step enabling us to obtain the lower bound on Li, as it highlights interesting
properties of the FJ process.

The lower bound on Li is obtained by showing that for given x, ξ, long-
run expected opinions are weighted average of modified initial opinions, de-
fined, whenever mi > 0, as

x̃i = xi + (1−mi)ξi/mi.

When mi > 0 for all i, one can write (using previous notations) X = Mx̃
and (3)) implies that each yi is an average over modified initial opinions:

y = Mx̃+ (I −M)AMx̃+ ((I −M)A)2Mx̃+ ... = Px̃ (5)

where P = (I − (I −M)A)−1M is a probability matrix (see Lemma 4 in
appendix). Intuitively, in each period, x̃i can be thought of as the effective
seed for individual i, and all long-run opinions are averages over effective
seeds. For a fixed xi, the variance of each x̃i induced by the persistent

component is bounded below by $(1−m)2

m2 , so we obtain the desired lower
bound.

The argument can be generalized to the case where a subset N0 of agents
follows DG (mi = 0). Then long-run expected opinions become linear com-
binations of modified seeds of the agents not in N0 (that is, agents not using
DG), and these modified seeds are

˜̃xi = x̃i + (1−mi)Giξ
0/mi

where ξ0 is the vector of perception errors of agents using DG, and Gi is
a positive vector that only depends on the structure of the network and
captures the influence of agents in N0 on i (see Lemma 5). Our conclusion
regarding Li extends to this case.

The two-player case. With two players, assuming m1 and m2 strictly
positive and γ1 = γ2 = 1 (both use SFJ), the model can be solved by directly
substituting yt−2

2 , then yt−2
1 , and so on. Letting ρ = (1 −m1)(1 −m2), we

have:

yt1 = m1x̃1 + (1−m1)νt1 + (1−m1)yt−1
2

= m1x̃1 + (1−m1)m2x̃2 + (1−m1)νt1 + ρνt−1
2 + ρyt−2

1

17



which further implies:

yt1 =
K−1∑

0

ρk(m1x̃1+(1−m1)m2x̃2+(1−m1)νt−2k
1 +ρνt−2k−1

2 )+ρKyt−2K
1 (6)

which in turn gives us (7) and (8) below for the limits y1 and V1:

y1 = p1x̃1 + (1− p1)x̃2 with p1 = m1/(m1 + (1−m1)m2). (7)

V1 = $0
(1−m1)2 + ρ2

1− ρ2
(8)

This example confirms that x1 does not influence y1 when m1 = 0 and it
illustrates that when both m1 and m2 get close to 0, 1− ρ ' m1 +m2, and
the variance of opinion V1 induced by the idiosyncratic noise gets arbitrarily
high, approximately equal to $0/(m1 +m2).

3.4 Understanding the difference between DG and FJ

(a) On anchoring, influence and consensus: DG and FJ generate a very
different dynamic of opinions. Permanently putting weight on one’s initial
opinion is equivalent to putting a weight on the opinion of an individual
that never changes opinion: it anchors one’s opinion, preventing too much
drift. As a result, it also anchors the opinions of one’s neighbors, hence, the
opinions of everyone in the (connected) network.

The channel through which each player influences long-run opinions also
differs substantially. In the absence of noise, and for a given network struc-
ture, relative influence in DG depends on relative speed of adjustment γ.
More precisely, let ρ ∈ ∆n be the vector such that ρ.A = ρ. When the
γi’s are identical across players, long-run opinions all converge to ρ.x, so ρi
defines i’s influence as determined by the network structure. When the γi’s
differ, long-run opinions all converge to π.x where π ∈ ∆n and

πi/πk = (ρi/γi)/(ρk/γk), (9)

which explains how both the network and speeds of adjustment determine
influence.32

32To see why (9) holds, observe that, up to a multiplicative constant, π is the unique
solution of π.B = π where B = I − Γ + ΓA. Now observe that π = ρΓ−1 is one such
solution. Note that (9) also explains how speeds of adjustment γ can be set to induce the
efficient weighting of signals π∗ (which minimizes the variance of π.x).
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In contrast, under FJ , only the mi’s (and the structure of the network)
affect the expected long-run opinions y. The speeds of adjustment γ have
no effect on expected long-run opinion, they only affect the variance induced
by idiosyncratic noise.

Regarding influence under FJ , it can be shown that at the limit where
all mi’s are very small, all long-run expected opinions are close to another
and close to p.x̃ where all pi are proportional to miρi, that is:

pi/pk = miρi/(mkρk),

Thus, close to the limit, mi plays the same role as 1/γi does in DG and
consensus obtains. As the mi’s go up however, consensus disappears: players
”agree to disagree”.

(b) On the fragility of DG: There is something inherently fragile
about the long-run evolution of opinions under DG. Since individuals don’t
put any weight on their own initial signal after the first period, the direct
route for that signal to stay relevant is through the weight put on their own
previous period’s opinion. This source clearly has dwindling importance
over time. This gets compensated by the growing weight on the indirect
route–each individual i adjusts his or her opinion based on the opinions of
their neighbors, and these are in turn influenced by i’s past opinions and
through those, by i’s initial signal. In DG without transmission errors, the
second force at least partly offsets the first one – but this is no longer true
when there is any transmission error because of the cumulative effect of noise
that comes with the feedback from others.

(c) On the source of change in opinion: One way to assess the
difference between DG and SFJ is to express them in terms of changes of
opinions and opinion spreads. Defining the change of opinion Y t

i = yti−y
t−1
i ,

the change in perception of neighbors’ opinions Zti = zti−z
t−1
i , and the spread

between own and neighbors’ opinions Dt
i = zti − yti , we have the following

expressions:

Y t
i = γiD

t−1
i (DG)

Y t
i = (1−mi)Z

t
i (SFJ)

Under DG, one changes one’s opinion whenever there is a difference between
that opinion and the opinions of one’s neighbors: any difference generates an
adjustment, which is why the evolution is so sensitive to transmission errors.
Errors are eventually incorporated into the opinions of all the players, and
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repeated errors tend to cumulate and generate a general drift in opinions.
The force towards consensus is too strong.

At the opposite extreme, under SFJ, players only incorporate changes in
the opinions of others. So, in the case where the transmission error is always
the same, ξ1 will generate a one time change on 1’s opinion, but it won’t
by itself generate any further changes for player 1. Of course, this initial
(unwanted) change of opinion will trigger a sequence of further changes – it
will be partially incorporated in player 2’s opinion, and therefore come back
to player 1 again. This is what we call an echo effect. But, when mi > 0
for at least one player, the echo effect will be smaller than the initial impact
and will get even smaller over time. Hence over all it won’t blow up. If all
mi are small however, the echo effects are not dampened enough, and the
consequence is a high sensitivity of the final opinion to the magnitude of the
errors.

3.5 How large are the echo effects?

In this subsection we develop the idea of echo effects more formally. The
next proposition derives an expression for the cumulated error resulting from
the echo effect and highlights the impact of the choice of low mj by others
on i’s payoff’s and strategic possibilities. This will be key in understanding
the equilibrium impact of noise.

We consider an agent i who sets mi > 0, which ensures that long-run
expected opinions y are well-defined.

yi = mixi + (1−mi)ξi + (1−mi)ŷi with ŷi ≡
∑
k 6=i

Aikyk (10)

Equation (10) describes how i’s expected opinion builds on the opinion ŷi
of a (fictitious) composite neighbor who aggregates the opinions yk. Letting

Ãikj =
Akj

1−Aki
, we rewrite (10) to describe how each opinion yk builds on yi:

yk = mkxk+(1−mk)ξk+(1−mk)Akiyi+(1−mk)(1−Aki)
∑
j 6=k,i

Ãikjyj (11)

So in effect, in incorporating the opinion ŷi, player i is partially incorporating
her own opinion yi. In other words, the opinions that i gets from others are
partially echoes of her own opinion. The following Proposition measures
this echo effect for i.

Proposition 4: Let M i (resp. αi) be the diagonal N − 1 matrix for
which M i

kk = mk for k 6= i (resp. αikk = Aki). Define the matrix Qi =
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(I − (I −M i)(I − αi)Ãi)−1 and vector Ri such that Rij =
∑

k AikQ
i
kj. We

have ri ≡
∑

j 6=iR
i
jmj ≤ 1 and

yi = pixi + (1− pi)(x̂i + ξ̂i) where (12)

pi =
mi

mi + (1−mi)ri
, x̂i =

∑
j 6=iR

i
jmjxj∑

j 6=iR
i
jmj

and ξ̂i =
1

ri
(ξi +

∑
j 6=i

Rijξj(1−mj))

In the long-run, player i’s expected opinion is thus an average between
own seed xi and some composite seed x̂i (an average over the others’ seeds)
plus an error term ξ̂i. This error term ξ̂i captures the cumulated error that i
faces because of echo effects. At the limit where m−i tends to 0, ri tends to
0 and yi tends to xi + 1−mi

mi
(ξi +

∑
j 6=iR

i
jξj),

33 with echo effects thus rising

without bound when mi gets small as well.34

The next section builds upon this proposition and the previous propo-
sitions to characterize the equilibrium of the rule choice game. We are
interested in the rule that people will choose in equilibrium both in terms
of how much divergence in opinions we would expect to observe and how it
relates to the efficient choice of rules.

4 Choosing the rule

4.1 When there is no noise

A direct implication of Proposition 4 is that in the absence of noise, the
equilibrium must be DG and that in equilibrium, information aggregation
must be perfect. Recall that in this case DG does converge to a stationary
outcome. Formally, define π∗ as the vector of weights on seeds that achieve
perfect information aggregation, i.e., π∗ = arg minπ var(

∑
k πkxk), and let

v∗ = var(π∗.x). We have

33In the limit where all mj tend to 0, yi remains well-defined because for a given network
(characterized by A), Qi and Ri are uniformly bounded (with a well-defined limit when
all mj tends to 0). In this case (1 − pi)x̂i tends to 0, and as expected, player i is not
influenced by others’ initial opinions.

34Note that at the other limit where mj = 1 for all j 6= i, Ri
j = Aij , ri = 1 and

yi = mixi + (1−mi)(x̂i + ξi). Other players do not incorporate i’s opinions, and player i
is thus not subject to echo effects.
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Proposition 5: In the absence of transmission errors, the equilibrium
must be DG. In addition, in equilibrium, yi = π∗.x.

In other words, as long as there is no noise, we get perfect agreement in
opinions in equilibrium and perfect information aggregation. As mentioned
in introduction, the main difference with De Marzo et al. (2003) and Golub
and Jackson (2010) is that we allow for endogenous weights γi, and for any
connected network, this is enough to obtain efficiency in equilibrium.35

Intuitively, both yi and the neighbor’s composite opinion ŷi are weighted
averages between xi and the composite seed x̂i, with a different weighting
when the equilibrium is not DG. Since i chooses optimally the weighting to
reduce variance, the variance v(yi) must be strictly smaller than the variance
v(ŷi), which itself is no larger than the maximum variance maxk v(yk). Since
this cannot be true for all i, the equilibrium must be DG.

Regarding efficiency, in a DG equilibrium, player i chooses the relative
weight πi on her own seed by modifying γi, and any departure from perfect
information aggregation leads i to choose a relative weight πi no smaller
than π∗i . In a DG equilibrium, πi also characterizes the influence of xi on
the common long-run opinion (there is consensus), so the weights πi must
add up to 1 hence coincide with the efficient weights π∗i , which implies a
unique (and efficient) equilibrium outcome.

4.2 Rule choice when there is noise

We already saw that as soon as there is some noise, the outcome generated
by any DG rule drifts very far from minimizing Li. The loss grows without
bound. Indeed from the point of view of the individual decision maker
it would be better to ignore everyone else than to follow DG. In fact all
strategies that put too little weight on their own seed (recall DG puts zero
weight) are dominated from the point of view of the individual decision-
maker, as well as being socially suboptimal.

Proposition 6: Let m = $/(1 + $). Any (mi, γi) with mi < m is
dominated by (m, γi), from the individual and social point of view.

Regarding the choice of the individually optimal rule, Proposition 6
builds on two ideas. First, if all other players use DG, then for agent i,

35As observed in the seminal paper by De Marzo et al. (2003), for generic networks, for
any finite n, DG rules will not implement the efficient weighting of seeds π∗, though for
large n the outcomes generated by DG rules will approximately minimize Li, for a large
class of networks (Golub and Jackson (2010)).
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any mi > 0 is preferable to DG because everyone’s opinion drifts off indef-
initely if mi = 0, as we saw above. Second, if some players use FJ (with
mj > 0), then initial opinions of these players xj (plus any persistent noise
in their reception of the signal) totally determines the long run outcome and
the seeds of all the players that use DG do not get any weight – they end
up as pure followers. This is not desirable for these DG players for the same
reason why, in the absence of noise, each one wishes to let their own seed
influence their long-run opinion. Hence the lower bound on mi.

To see why this is also true of the socially optimal rule, i.e. the rule
that minimizes

∑
i Li, we observe that when mi = 0, the only effect of

information transmission by i to his neighbors is to introduce i’s perception
errors into the network. When i raises mi above 0, he raises the quality of
the information he transmits, while reducing the damaging echo effect that
low mi generates.

This sequence of propositions are summarized as

Result 1. As long there is no noise in communication the unique equilib-
rium choice of rules is DG and this delivers perfect information aggregation.
When there is any noise, DG rules are strictly dominated by rules that put
a minimum amount of weight on the initial signal of the decision-maker in
each period and will never be chosen.

The next Proposition provides further characterization of the privately
optimal choice of mi. To simplify exposition, we focus on the case where the
idiosyncratic component is absent ($0 = 0), so the outcome does not depend
on γ. For the purpose of explaining howmi is affected by the quality of initial
signals and transmission errors, we allow both to vary across people. Recall
σ2
k is the variance of k’s initial opinion and $k the variance of k′s persistent

component. Also let Wk = σ2
k + $k(

1−mk
mk

)2. The following Proposition is
an immediate Corollary of Proposition 4:

Proposition 7. Player i’s optimal choice mi satisfies:

mi

1−mi
=
$i +

∑
k 6=i(R

i
kmj)

2Wk

σ2
i ri

where Rik and ri, defined in Proposition 4, only depend on A and m−i.

We see from this that mi’s response shifts up when the variance of his
own signal (σ2

i ) goes down or that of anyone else (σ2
k) goes up. It also shifts

up when the variance of the error term goes up. It further implies that the
best response is a continuous function (which we know maps into a compact
set [m, 1]), so existence of an equilibrium is guaranteed.
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4.3 How big is the divergence in opinions?

Result 1 has the obvious implication that full consensus is never going to be
an equilibrium when there are persistent errors–there are in fact two sources
of deviation, the error itself (which mechanically prevents consensus) and
the extra weight mi on one’s initial signal (which fuels further divergence
unless mi is small.)

Result 2 below shows that because of echo effects, the optimal weight
put on one’s own seed tends to be relatively large, comparable to $1/3.36

As a result when $ is small, the extra weight on one’s own seeds becomes
the preponderant source of dispersion. Assuming no idiosyncratic noise
($0 = 0), we have:

Result 2: For any given finite network and any $ > 0 small, all mi

and pi − π∗i are positive and comparable to $1/3.

One immediate implication of Result 2 is that all error terms ξ̂i have
variance comparable to $1/3, thus directly driving the variance of opinions
above the efficient level v∗ by a term at least comparable to $1/3. There is
another source of inefficiency in equilibrium, the fact that seeds are not effi-
ciently weighted. But that inefficiency is comparable to $2/3: a socially op-
timal choice of weights mi would trade-off more inefficient weighting (larger
m) against decreasing the variance of the echo effect.

One consequence of this observation is that even between two neighbors,
the dispersion of opinion is at least comparable to m2 ' $2/3.

The intuition for Result 2 runs as follows. The error terms ξ̂ are compa-
rable to $/m2. These errors terms degrade the quality of information that
each i gets, which in turn implies a weighting pi of i’s seed larger than the
efficient weighting π∗i , that is, pi−π∗i is at least comparable to $/m2. When
m > 0, players end up weighing seeds differently, but when all m are small,
the spread between weights is small, comparable to m. So if pk is the weight
that k puts on xk, the weight that i puts on xk must be pk + O(m). Since
the weights that i puts on all seeds must add to 1, the pk’s must add up to
at most 1+O(m). And since the sum

∑
k(pk−π∗k) is at least comparable to

$/m2, m must be at least comparable to $/m2 in equilibrium. This gives
a lower bound on m, comparable to $1/3.37

36When we mention that m is comparable to say g($), we mean m = O(g($)), which
means that |m/g($)| has a finite limit when $ tends to 0.

37The proof also shows that there is no slack: all mi and losses (away from efficient
information aggregation) are comparable to $1/3 in equilibrium. The weights mi cannot
be larger for the same reason that the equilibrium without error terms must be DG: each
player sets the weighting pi of own seed xi optimally, and this creates a force towards
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Note that Result 2 focuses on the case where variances are small. When
the mi’s rise, the relative weights on seeds eventually depart from efficient
weighting sufficiently that this fuels a further rise in m. The examples in
Section 5 will illustrate this.

4.4 Privately versus socially optimal choices

We already showed that both private and social optima must deviate from
DG when there is noise. The next result shows that there is a sense in
which the Nash Equilibrium is closer to DG than is desirable from the point
of view of social welfare maximization.38

Result 3. At any Nash equilibrium, a marginal increase of mi by any
player i would increase aggregate social welfare.

To see why this result holds, assume mj ∈ (0, 1) and observe that player
j’s opinion can be expressed as an average between the (modified) seeds x̃−i
of players other than i and player i’s opinion

yj = (1− µji)Cjix̃−i + µjiyi (13)

where Cji is a probability vector and µji ∈ (0, 1),39 with µji and Cji both
independent of mi.

40

The expression above highlights that when player i chooses mi optimally
(for him) to minimize the variance of yi, he may not be minimizing the
variance of yj . There is no consensus, thus incentives may not be aligned.

To check incentives and the direction of departure that improves welfare,
we use (13) to separate the loss Lj into three terms:

Lj = (1− µji)2var(Cjix̃−i) + µjiLi + 2(1− µji)µjiCov(Cjix̃−i, yi). (14)

When mi is raised above i′s private optimum, there is no effect on the first
term. There is a second-order effect on the second term (because we start at

optimal information aggregation
38The result shows that a marginal increase over equilibrium weights enhances welfare,

but we do not have a full characterization of socially efficient weights.
39This assumes mj ∈ (0, 1). Cji

j is positive because j is using her own seed.
40The expression follows from solving the system of equations (11) for all yk with k 6= i

(see Lemma 6 in Appendix). The coefficients of this system do not involve mi, so Cji and
µji are independent of mi. Intuitively, µji characterizes the influence of yi on j’s opinion
(through paths that reach j from i), and (1− µji)C

ji
k characterizes the direct influence of

seed x̃k on yj (through paths that reach j from k without going through player i). These
contributions are independent of mi because information does not transit through i along
these paths.
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i′s private optimum). The last term is what creates a discrepancy between
private and social incentives.

This last term depends on the correlation between seeds other than i
(x̃−i) and the opinion of i (yi), and how these separately contribute to yj
(given Cji and µji). When all mk ∈ (0, 1), this term is positive even without
persistent errors because in a connected network all xk covary with yi.

41 The
effect is amplified with persistent errors (because x̃k = xk + 1−mk

mk
ξk, and

ξk and yi covary), and even more so when persistent errors are positively
correlated.42

Increasing mi has no effect on µji and Cji, but when mi increases, the
influence of each k 6= i on i’s opinion is reduced, and the correlation between
yi and x̃k is also reduced. Overall, starting at a Nash equilibrium, Lj goes
down when mi is raised.

5 Equilibrium, efficiency and polarization in sim-
ple networks.

In this section we explore the quantitative significance of our results through
a set of simple examples. We are particularly interested in whether a small
amount of noise can lead to large distortions of information aggregation,
how much of extra information loss comes from non-cooperative behavior,
and the connection between individuals over-weighting their own signal and
polarization at the population level. We focus on the case where there are
only persistent errors, unless mentioned otherwise.

We start with the example of a large directed circle, where the intuition
for Result 3 would suggest that there would be no divergence between private
and social incentives: for a fixed m and a long enough loop, an individual
does not need to worry about his opinion traveling back to him. This is
confirmed by our analysis. Nevertheless there is very substantial information
loss even in the presence of small amounts of noise.

5.1 Large circle case.

Social optimum Consider a large circle where information transmission
is directed and one-sided: player i communicates to player i+ 1, who com-

41A single loop is enough. When there is a path from i to j, µji ∈ (0, 1), and when
there is a path from j to i, Cji

j > 0 and xj covaries with yi.
42Although we do not prove it, we expect the terms Cov(xk, yi) to be preponderant in

equilibrium, relative to 1−mk
mk

Cov(ξk, yi), hence also expect Result 3 to hold even with
negatively correlated errors.
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municates to i+ 2, and so on.43 Long-run opinions satisfy

yi = mix̃i + (1−mi)yi−1.

Hence if player i chooses mi and all other players choose m, we have

yi = mix̃i + (1−mi)(Z + (1−m)n−1yi) where Z = m

n−2∑
k=0

(1−m)kx̃i−1−k.

(15)
One can use this expression to derive yi and its variance J(m) when all
choose the same m and n is set arbitrarily large.44 When transmission
errors ξi are independent,

J(m) =
m

2−m
(1 + X (m)), (16)

where X (m) = $ (1−m)2

m2 represents the effect of cumulated errors. Expres-
sion (16) captures the trade-off between improving information aggregation
(which calls for reducing all mi close to 0) and reducing the amplification of
communication errors (which calls for increasing all mi). It is minimized at

m∗∗ for which J ′(m∗∗) = 0, that is, m∗ solving m2

1−m = $.45

Note that for small variance, m∗∗ ' $1/2, which seems to contradict Re-
sult 2. This is because we consider here the limit where the network becomes
large: with independent errors and for this specific network, transmission
errors tend to compensate one another to some extent.46,47 With correlated
errors, no such compensation occurs and m∗∗ ' (4$)1/3.48

Private and social incentives. We first check directly that private and
social incentives coincide when persistent errors are independent across play-
ers. One may use (15) to write:

Li = (mi)
2(1+X (mi))+(1−mi)

2J(m) = (mi)
2+(1−mi)

2($+J(m)) (17)

43Player n+ 1 coincides with player 1.
44Since σ2

i = 1 for all i, the social optimum is symmetric (See Appendix B)
45It is easy to check that at the social optimum, J(m∗∗) = m∗∗.
46When m is positive, the influence of neighbors living many steps away becomes very

small. But when m is small, many neighbors remain influential, and with comparable
influence.

47Nevertheless, for most pairs i, j in the network, each i and j build their opinions on
the opinions of disconnected sets of players, so the dispersion of opinion is significant,
comparable to $1/2.

48With perfectly correlated errors, Expression (16) becomes J(m) = m
2−m

+ X (m).
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At a symmetric Nash equilibrium m∗, private incentives require mi = (1 −
mi)($ + J(m∗)) with mi = m∗. Since J(m) = m2 + (1 −m)2($ + J(m)),
this implies J ′(m∗) = 0, so m∗ is also a social optimum.

To connect this result with the intuition provided earlier on the source
of discrepancy between private and social incentives, consider j = i+k, that
is, j is k communication steps away from i. We have

yj = m

k−1∑
s=0

(1−m)sx̃j−s + µjiyi where µji = (1−m)k

As explained earlier, the magnitude of the terms µjiCov(x̃j−s, yi) is key.
When n is large, either k is large and µji = (1−m)k is negligible, or n− k
is large and then Cov(x̃j−s, yi) is small (because j − s is at least n − k
communication steps away from i). So as the circle gets very large, private
and social incentives coincide.

Note that this alignment of social and private incentives fails with corre-
lated errors. When errors are perfectly correlated, x̃i and Z are correlated,
and this adds a term 2(1−mi)

2$(1−m)/m to the expression of Li in (17).49

Similarly, even when j is many communication steps away from i, the co-
variance Cov(x̃j , yi) is positive. Computations show that in equilibrium,
m∗ ' (2$)1/3 < m∗∗.

Information aggregation and welfare loss. Despite the convergence
in private and social incentives, the loss in welfare is significant relative to
the benchmark case where players would observe (with transmission errors)
the initial opinion of each of the other players in the network and perfectly
aggregate these signals.50 Under this benchmark and with transmission
errors independent across players, each player’s loss would be close to 0
when the circle grows large.51

Under FJ however, the weight m∗ and the loss J(m∗) remain bounded
away from 0 as the circle grows large, andN = 1/J(m∗) measures the quality
of the aggregation of information: it represents the number of signals that
are eventually aggregated into the information of each player. For example,
with $ = 0.05, m∗ = 0.2, J(m∗) = 0.2, and a player’s long-run information

49With J(m) thus now equal to m2 + (1−m)2($ + J(m) + 2$(1−m)/m)).
50For i, this corresponds to getting the opinion zj = xj + εi if j is a neighbor, and

zk = xk + εi + εj if k is not a neighbor of i but a neighbor of j, and so on.
51In the benchmark, the variance of the opinion of a neighbor at k steps is vk = 1 +k$.

Since it grows linearly with k, the optimal weighting of these opinions would lead to an
opinion with variance (

∑
1/vk)−1, which goes to 0 with k.
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is comparable to her having received only five independent signals (hence
only four additional signals), out of the infinite pool that is available when
the circle is arbitrarily large. We draw N as a function of $.

0.00 0.02 0.04 0.06 0.08 0.10
ϖ0

2

4

6

8

10

12
N

Figure 1: Information aggregation: large circle

5.2 Two-player case.

We next move to another canonical example, where there are just two play-
ers. Here the simple loop creates powerful echo effects (which favor a higher
value of m) and strong correlations between one’s own seed and the opinion
of the other, which tend to drive a divergence between the equilibrium and
optimal choices of m’s.

Social optimum. Recall that with two players (see (7))

yi = pix̃i + (1− pi)x̃j with pi = mi/(mi + (1−mi)mj) (18)

With independent transmission errors this yields

L1 = I(p1) + (p1)2X (m1) + (1− p1)2X (m2)

where I(p) = p2+(1−p)2 is the variance of long run opinion in the absence of
transmission noise and X (m) is as before. The total social loss is L = L1+L2.

It is easy to check that minimizing the social loss requires setting identical
values for m1 and m2. When both players use the same rule (m = m1 = m2),
pi = 1

2−m and the social loss is:

L = 2I(
1

2−m
)(1 + X (m))

As in the long circle case, the expression highlights a trade-off between
decreasing m for information aggregation purposes (I(p) is minimized at
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p = 1/2),52 and increasing m to limit the effect of cumulated communica-
tion errors (when $ > 0 and m is small, communication errors are hugely
amplified).

Welfare is maximized for an m∗∗ that optimally trades off these two
effects and the socially efficient weight m∗∗ (which minimizes L) can be
significantly different from 0 even when $ is small. Specifically, for $ =
0.0001, m∗∗ = 0.13 and for $ = 0.001, m∗∗ = 0.21. Furthermore, for $
small, m∗∗ ' (4$)1/4.53

Nash Equilibrium. We now assume that individuals choose their rules
non-cooperatively. Equation (18) can be rewritten as

yi = pixi + (1− pi)(xj + ξ̂i) where ξ̂i =
ξi + ξj
mj

− ξj

This means that in effect, i uses mi (and hence pi) to optimally weight
two independent signals: her own seed xi and a noisy correlate of the other
player’s seed xj , where the noise term ξ̂i is independent of mi.

54 Hence she
should set

pi =
1 + $̂i

2 + $̂i
where $̂i = Eξ̂2

i

which gives the best response for i, as a function of mj :

mi =
mj(1 + $̂i)

1 +mj(1 + $̂i)

In the absence of noise, $̂i = 0, and player 1 should set m1 so that
p1 = 1/2 (for information aggregation purposes), which requires m1 < m2,
which explains why there is no equilibrium with positive m (this is the
force towards DG). With noise, the variance $̂i explodes when mj gets
small, reflecting the cumulation of errors when mj is low. This provides
i with incentives to raise pi (hence mi) which in turn puts a lower bound
equilibrium weights: in equilibrium, m∗1 = m∗2 = m∗ and m∗ is a solution to

m∗ =
$̂∗

1 + $̂∗
with $̂∗ = $

1 + (1−m∗)2

m∗2
.

When $ is small, we have m∗ ' (2$)1/3 when $ is small.
Figure 2 plots the best responses for $ = 0.01.

52This is under our assumption that seeds are equally informative (σ2
i = 1 for all i).

53This is because for $ small L ' 1+ m2/4 +$/m2.
54Note that the choice of mi affects ξ̂j , with a low mi amplifying the noise term ξ̂j ,

which is another reason why the social optimum requires higher m.
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Figure 2: Best responses, $ = 0.01

Since m∗ ' (2$)1/3 when $ is small while m∗∗ ' (4$)1/4, the ratio of
m∗∗ to m∗ explodes when $ is small.

5.3 The star network

We consider a network consisting of K peripheral players, each of whom
has a seed xi, and a central player 0 who has no seed but aggregates the
opinions of all the peripheral players with some error ( ξ0). We assume
that the central player uses a DG rule since he has no seed, and his long-
run opinion is y0 = 1

K

∑
k yk + ξ0. Simple computations (see Appendix)

show that long-run opinions have a simple expression, similar to the one
we derived for the two-player case, which in turn yields simple closed form
solution for the Nash outcome and social optimum.

When all players other than i use m, Proposition 4 gives:

yi = pixi + (1− pi)(x̂i + ξ̂i)

with pi = mi(1+(K−1)m)
mi+(K−1)m , a composite seed x̂i = 1

K−1

∑
k 6=i xk (the average

seed of agents other than i) and a cumulated error term

ξ̂i =
K

m(K − 1)
(ξ0 +

1

K

∑
k

ξk) + ξi −
1

K − 1

∑
k 6=i

ξk,

Social optimum. When all players use the same m, the loss for a player
is

L = p2 + (1− p)2 1

K − 1
+ (1− p)2Eξ̂2

i (19)
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where p = 1
K + K−1

K m. With independent errors,

Eξ̂2
i =

K

m2(K − 1)
($0 +

$

K
(1 + (1−m)2)) (20)

and (19) illustrates again the tradeoff between decreasing m for information
aggregation purposes (the first terms are minimized for p = 1/K) and raising
m to limit the effect of cumulated communication errors. When $0 and $
are small, m∗∗ ' (2(1− 1

K )($0 + 2
K$))1/4.55

Nash Equilibrium. Regarding private incentives, ξ̂i does not depend on
mi, which implies that mi is optimally set so that

p∗i
1− p∗i

=
1

K − 1
+ Eξ̂2

i

condition which can be used to solve for the symmetric equilibrium weight
m∗:

m∗

1−m∗
= (1− 1

K
)Eξ̂2

i

When errors are independent, from (20), this gives an equilibrium weight
m∗ ' ($0 + 2

K$))1/3, which is significantly below the social optimum.
Note that in contrast with the large circle case, m∗ remains at least

comparable to $
1/3
0 even when K grows large and the transmission errors

are independent across players. With independence, the increase in the size
of the star helps because the persistent component of peripheral players are
averaged out, so m∗ is then essentially driven by the variance of ξ0. But
since the central player’s opinion affects all peripheral players, the cumulated
error still grows like $0/m

2 with m, so m∗ remains comparable to $1/3.

5.4 Implications for the divergence of opinions

In the absence of noise, and if players use DG with appropriate weights
γ, long-run opinions converge to a consensus y∗ = π∗.x which efficiently
aggregates seeds. In a large network, this opinion y∗ will essentially coincide
with the underlying state θ (y∗ ' θ), which implies that if we consider two
such identical networks, there will be both consensus within each network
and consensus across networks.

55With correlated errors, Eξ̂2
i = K

K−1
($0 +$) and one obtains m∗∗ ' (2(1− 1

K
)($0 +

$))1/4.
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In the presence of noise, two things may happen. A divergence of long-
run opinions y away from y∗, which means a divergence of opinions across
networks (fueled by within-networks echo effects), and a dispersion of opin-
ions within networks (resulting from the use of FJ rules with non-zero
weights m). This section argues that there is a connection between con-
sensus within subgroups (low dispersion) and polarization (high divergence
across subgroups).

To fix ideas, we consider below the case of two large disconnected star
networks modeled as above.56 This description generally fits the maps
of social networks in the US population with the two stars representing
Democrats and Republicans (Cox et al. 2020). Assuming that in each star
network all peripheral players use the same weight m, we have

yi = mxi + (1−m)(y0 + ξi)

Hence the dispersion of opinions between two peripheral players is

d = E(yi − yj)2 = 2(m)2 + 2(1−m)2$

For m not too small, the dispersion d increases with m. Across the networks
however, opinions are independent (conditional on θ) and the dispersion of
opinion D between two individuals belonging to different networks is equal
to twice the variance, which yields, assuming independent errors ξi,

D = 2L = 2Ey2
i = 2(m2 +

$0

m2
) ' d+

4$0

d

In other words, the social optimum requires a high enough dispersion of

opinion within subgroups (with m set so that d = 2$
1/2
0 and m comparable

to $
1/4
0 ) and D ' 2d.

Result 4: Social efficiency requires that the dispersion of opinions within
and across subgroups be of comparable magnitude. Too much consensus
within subgroups (low d) favors polarization across subgroups (high D).

Our equilibrium analysis provides one possible reason for m being too
low, but there may be other reasons. For example, imagine that for some
issues, the errors ξi are correlated across network members (calling for higher
m), while for other issues, the errors are independent (calling for lower m).
If agents are unable to adjust m to the type of problem they face, the weights
m will be inefficient low for the correlated-error problems, thus fostering too
much consensus and polarization for these problems.

56Result 4 below would also hold if the set of cross-star links were a vanishingly small
proportion of the total number of links.
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6 Choosing among a richer class of rules

In Section 4, we examined incentives to modify the weight mi. We now
turn to the other sets of weights, the γi. A potential issue with FJ where
γi is large is that long-run opinions are sensitive to idiosyncratic noise in
transmission, and more generally to temporary changes in other’s opinions.
Choosing a lower γi slows down these reactions, hence opinions are only
mildly affected by temporary shocks on perception and temporary variations
in others’ opinions. The next Proposition examines the effect of γ on the
variance Vi induced by the idiosyncratic errors, as well as incentives for an
individual to choose a low γi:

Result 5: Fix m. We have:
(i)There exists c such that for any γ > 0 and m ≥ m, Vi ≤ cmax γj .
(ii) For any γ−i > 0, there exists c such that for all m ≥ m, Vi ≤ cγi.

The proof is in Appendix B. Item (i) shows that when all γi are small,
all Vi are small. Item (ii) shows that by choosing γi very small, a player can
get rid of the additional variance induced by the idiosyncratic noise.

While the incentive is clear, a technical issue potentially arises if players
wish to set γi arbitrarily small, as γi > 0 is an open interval.57 We address
this issue in the Appendix by showing that when all γ’s are restricted to
be above some lower bound γ, any player i can secure a loss Vi no larger
than 1/ | log γ | by choosing γi = γ.58 So if γ is small, Vi must be small
in equilibrium. This also implies that investigating the properties of the
game without idiosyncratic noise is a good enough approximation when γ is
small.59

Also observe that the incentive to set γi arbitrarily small obviously de-
pends on the assumption that players only care about long-run opinions. If
players also cared about opinions at shorter horizons, then they would have
incentives to increase γi to more quickly absorb information from the opin-
ions of others: the trade-off is between increasing the rate of convergence
(which is desirable when the relevant horizon is shorter) and increasing the
variance induced by idiosyncratic noise (which is not desirable).

57Note that the limit opinion-formation process where γi tends to 0 is not the process
where γi = 0 (under which no change in opinion would occur).

581/ | log γ | is small number when γ is small.
59In particular, if (m∗, γ∗) is an equilibrium of the game, then m∗ is an ε−equilibrium

of the game with no idiosyncratic noise, with ε comparable to 1/ | log γ |.
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7 Extensions and interpretations

In this section we discuss extensions of and possible variations upon our
base model, with the view to understand why different rules lead to different
degrees of information aggregation in different settings. The general point
is that long-run dispersion of opinion remains part of the answer and indeed
there are reasons to expect that adding the new elements exacerbates this
property.

7.1 Biased persistent errors

We have so far assumed that the persistent error is drawn from a distribution
that is mean zero. One can however imagine settings where it is more
reasonable to assume that the persistent error is biased, centered on ξ0

i for
player i, for example because some individuals are systematically biased in
what they report (for whatever reason). That could for example be because
they are truly biased and therefore try to sway opinion in the direction of
their bias, or because they believe that others are biased and try to correct
for it.

In any case it makes sense to consider a variant of the updating rule FJ
in which the agent can shift the opinion he incorporates by a constant ci,
so as to try to undo the systematic biases in his perception or perception of
others:

yti = (1− γi)yt−1
i + γi(ci +mixi + (1−mi)z

t−1
i ) (FJc)

Suppose that in all other respects, the model is as before. For any (m, γ, c),
this shift does not affect the variance of opinions resulting from idiosyncratic
noise, but it shifts all long-run opinions. Regarding expected long-run opin-
ions, theses shifts imply as before (see (5)) that yi is a linear combination
Pi of the modified opinions x̃j where

x̃j = xj +
(1−mj)ξj + cj

mj
.

If ci can be adjusted optimally, each i can set ci to fully offset the sys-
tematic bias in transmission and this turns out to be optimal.60 If ci cannot
be adjusted (e.g., ci = 0 for all i) however, then the bias ξ0

i adds a fixed

60Letting L0
i denote the loss when all ξi are centered on 0, and Ci = (1−mi)ξ

0
i +ci. We

have Li = L0
i + (PiC)2 where Ci is a choice variable for i, and Li is minimized for Ci =

−
∑

j 6=i Pi,jCj/Pi,i. The equilibrium loss thus coincides with L0
i , and ci = −(1 −mi)ξi

for all i is an equilibrium.
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amount to all the cumulated error terms ξ̂j defined in Proposition 4, thus
increasing the variance of these error terms and generating for each player
further incentives to increase m.

These effects are obviously reinforced if all players in the network have
biases that have the same sign, while otherwise, and depending on the struc-
ture of the network and the distribution of biases within the network, they
could partially offset one another.

7.2 Heterogenous preferences

Assume that preferences of player i are quadratic (i.e., u(a, θi) = −(a−θi)2)
but vary in their relation to the common component θ:

θi = θ + bi (21)

and that xi is a noisy estimate of one’s preferred point, that is,

xi = θi + δi (22)

Define Y t
i = yti−bi, Xi = xi−bi and βi = (bj−bi)j . The ”debiased” opinions

Y t
i evolve according

Y t
i = (1− γi)Y t−1

i + γi(ci +miXi + (1−mi)(z
t−1
i +Aiβi))

and the problem becomes formally equivalent to the homogenous preference
case with a persistent transmission term Aiβi added. If the biases b are
fixed and if players can adjust ci optimally, then like in the previous case,
in equilibrium players can offset the bias by setting

ci = −(1−mi)Aiβi.

and the analysis is formally equivalent to the homogenous preference case,
and the issue we raised (in particular, the fragility of long-run opinions to
transmission errors) apply. In contrast, if players are unable to adjust ci
(e.g., ci = 0), then the term Aiβi is akin to a systematic bias ξ0

i , which, as
explained in the previous subsection, generates incentives to further increase
mi.

Finally, consider the intermediate case where players can adjust ci, but
biases are not fixed and players can only adjust ci on average across realiza-
tions of the β’s. Said differently, across problems, there are variations in the
nature and extent of heterogeneity, and players are unable to tune ci to each
realization of the heterogeneity. Then the problem is formally equivalent to
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one where preferences are homogenous and a persistent transmission term
Aiβi is added.61

The general take-away should be that there are many potential sources
of errors which will favor the choice of FJ over DG rules. To illustrate
with one final example, assume that i misperceives other’s preferences. He
perceives β̂i instead of βi and erroneously sets ci = −Aiβ̂i(1−mi). Then the
difference (1−mi)Ai(βi − β̂i) is akin to an additional (independent) source
of persistent bias/noise in transmission.

7.3 Other communication protocols

We have followed the standard approach to modeling communication in this
literature, with each player communicating with all his neighbors at every
date.62 We now consider an extension where each round of communication is
one-sided and, at any date t, each agent i only hears from a subset N t

i ⊂ Ni

of his neighbors but there exists K such that each player hears from all
his neighbors at least once every K periods.63 Imperfect communication is
modeled as before, through the addition of an error term εti that slants what
i hears. Together these give us

zti,j = yt−1
j + εti if j ∈ N t

i

zti,j = zt−1
i,j if j ∈ Ni\N t

i

where zti,j is i’s current perception of j’s opinion, based on the last time he
has heard from j. Player i uses these perceptions to construct an average
over neighbor’s opinions

zti = AiZ
t
i

where Zti = (zti,j)j is the vector of i’s perceptions and Ai defines as before

how i averages neighbors’ opinions.64 We continue to assume FJ updating.
As before, for fixed x, ξ, we define yti = Eyti . We have:

61One difference with the case examined in the basic model however is that the βi’s are
correlated: with two players, Aiβi = bj − bi = −Ajβj . Nevertheless, so long as there still
exists a persistent noise term ξi (with all ξi drawn independently of the βi’s), Proposition
3 applies, as for each realization of β, all mi < m are dominated.

62Banerjee et al. (2019) introduce the idea of a Generalized DeGroot model where not
everyone starts with a signal and therefore does not participate in the communication till
they get a signal. They show that this partially weaken the ”wisdom of crowds”.

63That is, for all t : ∪s=1,..,KN
t+s−1
i = Ni.

64We abuse previous notations here, using the restriction of vector Ai to i’s neighbors
(Ai was previously defined over all players, with weight 0 on non-neighbors).
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Proposition 8: Assume at least one player, say i0, updates according
to FJ with mi0 > 0. Then for any fixed x, ξ, yt converges and the limit
vector of expected opinions y is independent of the protocol.65

Intuitively, convergence obtains for standard reasons, and at the limit,
since expected opinions do not change, the timing with which one hears
others does not matter (see Appendix).

This robustness contrasts with what happens when players use DG rules.
For example, consider two agents using DG rules and assume that agent 1
updates every period, while agent 2 updates every other three periods. At
dates t where 2 updates, we have:

yt1 = (1− γ1)3yt−3
1 + (1− (1− γ1)3)yt−3

2

yt2 = (1− γ2)yt−3
2 + γ2y

t−1
1

= (1− γ2)yt−3
2 + γ2((1− γ1)2yt−3

1 + (1− (1− γ1)2)yt−3
2 )

= (1− γ2(1− γ1)2)yt−3
2 + γ2(1− γ1)2yt−3

1

So, the process evolves as if weights where γ′1 = 1 − (1 − γ1)3 > γ1 and
γ′2 = γ2(1 − γ1)2 < γ2. This means that with DG rules, changes in the
frequencies with which players communicate amount to changes in the values
of γi (when you hear less often from others, your opinion changes more
slowly, effectively reducing γi). And when communication is noiseless, these
changes modify long-run opinions: if γi goes down, long-run opinions get
closer to i’s opinions (see Section 3.4 Equation (9)).

Thus, even in the absence of transmission errors, variations in the com-
munication protocol induce additional variance in long-run opinions which
can be mitigated by the use of FJ rules by all players. That said, in the
absence of transmission errors, long-run opinions under DG remain averages
over initial opinions, so the fragility is not as severe as the one already high-
lighted: the variance induced by variations in the protocol remains bounded
even when mi = 0.

7.4 Uncertainty over the precision of initial signals.

We examine here another variation of the model, assuming that the precision
of initial signals is a random variable. We will argue that in the absence of
transmission errors, this type of shock does not affect the performance of
DG and therefore, unlike where there is say noise in transmission, there is
no incentive for players to use the instrument mi.

65So long as the condition in footnote 63 holds.

38



Formally, assume that each the speed of adjustment γi as a linear func-
tion of the variance of signal, that is, γi = µiσ

2
i . Then for well-suited

coefficients µ∗ = (µ∗i )i information aggregation is perfect, which further im-
plies that this particular µ∗ is also a Nash Equilibrium of the game where
each chooses µi.

To see why, recall that under DG, the consensual long-run opinion is a
weighted average of initial opinions, with weights proportional to ρi/γi (see
(9)). So if the µi’s are proportional to ρi, the weights become proportional to
ρi/γi, hence proportional to 1/σ2

i , implying that perfect aggregation obtains
for each vector of realization (σ1, ..., σn).

7.5 Coarse communication

In the social learning literature, it is common to focus on choice problems
where there are two possible actions, and the information being aggregated
is which of the two is being recommended by others. Coarse communication
is potentially a source of herding, but when agents have many neighbors, the
fraction of players choosing a given action may become an accurate signal
of the underlying state. We explain below how our model can accommodate
an economic environment of this kind, and we use this to relate our findings
to Ellison and Fudenberg (1993,1995) and Frick et al. (2019).

Preferences are heterogenous as in Section 7.2, with θi = θ + bi charac-
terizing i’s value from choosing 1 over 0, so the optimal action a∗i is 1 when
θi > 0, 0 otherwise.66 Agent i knows bi but does not know θ perfectly. He
has an initial opinion xi = θ+δi and aggregates opinions of others to sharpen
his assessment of θ. Assume the bi’s are drawn from identical distribution
g (and cumulative denoted G) with full support on R.

We define, as before, yti as agent i’s opinion (about θ) at date t and we
assume that an agent with current opinion yti reports ati = 1 if yti + bi > 0
and ati = 0 otherwise. Each agent i observes the fraction f ti of neighbors
that choose action 0, which she can use to make an inference ψi(f

t
i ) about

θ, and update her opinion using an FJ-like rule:

yt+1
i = (1− γi)yti + γi(mix

t
i + (1−mi)ψi(f

t
i ))

Long-run opinions clearly depend on the inference rule assumed, but
there is a natural candidate. Let h(y) ≡ G(−y) = Pr(y + bi < 0) be the

66Thus for i with preference parameter bi, choosing 0 when θ+bi > 0 costs θ+bi. When
agents choose between products 1 or 0, θ represents a relative quality dimension affecting
all preferences, as in Ellison and Fudenberg (1993).
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fraction of agents that choose a = 0 when their opinions are all equal to
y.67 The inverse function φ ≡ h−1 is a natural candidate for the inference
function ψi: if others’ opinions are correct and equal to θ, a fraction f ' h(θ)
choose a = 0 and h−1(f) is a good proxy for θ. Of course this assumes that
agents know the distribution over preferences. In the spirit of our previous
analysis, let’s assume that

ψi(f) = φ(f) + ξi

where ξi is a persistent error in interpreting f .68,69 To fix ideas, we assume
correlated errors (ξi = ξ for all i) with variance $.

Within this extension, we may ask about the fragility of long-run opin-
ions when m is small, as well as equilibrium and socially efficient weights
(details are provided in the Appendix).

DG-like rules (m = 0) generate long-run opinions unanimously in favor
of a = 1 if ξ > 0, a = 0 if ξ < 0, independently of the underlying state and
the initial signals received.

Under FJ with small m, long-run opinions remain anchored on initial
opinions, but long run opinions drift away from θ and converge to θ+ (1−m)ξ

m .
The trade-off is thus similar to the one in our basic model. Raising m
reduces fragility with respect to transmission noise, dampening the echo
term (1−m)ξ

m . And agents retain dispersed beliefs in the long-run. The
consequence regarding social incentives and private incentives is as before,
with m∗ and m∗∗ respectively comparable to $1/3 and $1/4: agents do not
incorporate in their choice of mi the damaging echo effect that an mi set
too low produces.

Frick et al. (2019) obtain a fragility result similar to the one obtained
above under DG. They consider players who naively apply Bayesian up-
dating to their erroneous priors. Like DG, Bayesian updating incorporates

67h(y) ≡ Pr(y + bi < 0) = G(−y)
68Following Frick et al. (2018), ξi could stem from an erroneous prior gi 6= g, with

agents using the inference function ψi = h−1
i where hi(θ) = Gi(−θ). The difference

ξ(f) = ψ(f)−φ(f) is a systematic (and possibly non-uniform) error in making inferences.
With preferences centered on b, and agent having an erroneously translated prior centered
on bi, the error is uniform and equal to ξi = bi − b.

69Ellisson and Fudenberg (1993, Section 1) examines social learning assuming bi = 0 for
all and ψi(f) = f − 1/2: choices are tilted in favor of the more popular one. EF find that
small enough ms generate perfect learning in the long-run. A key aspect of the inference
rule ψi(f) is that it correctly maps the sign of f − 1/2 to the sign of θ, which, given
homogeneity, is the only thing that agents care about. (Note that in EF, agents receive
many signals xi about the state, but, given their assumptions, their model is equivalent
to the one proposed here where agents just receive one signal at the start).
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a strong forces towards consensus, which eventually makes both processes
(DG and Bayesian updating) fragile to errors.

FJ processes can be seen as a potential fix to the fragility of DG or
Bayesian processes: by allowing for heterogenous opinions or beliefs and
by triggering updates based on changes in others’ opinions (rather than
discrepancies between others’ and own opinions), they end up being more
robust, avoiding this particular form of fragility.

7.6 Non-stationary weights.

The updating processes that we consider have stationary weights. Agents
do not attempt to exploit the possibility that early reports possibly reveal
more information than latter reports: later reports from neighbors may
incorporate information that one has oneself transmitted to the network,
and therefore should have lesser impact on own opinion.

As a matter of fact, with two players, one could imagine a process in
which (i) player 1 combines the first report he gets with own opinion, yielding
y1 = m1x1 + (1 −m1)(x2 + ε), and then ignores any further reports from
player 2; and (ii) player 2 follows DG. With m1 set appropriately, such a
process would permit player 1 to almost perfectly aggregate information and
player 2 to benefit from that information aggregation performed by player
1.

There are however important issues with such time-dependent processes.
In particular, it is not obvious how one extends these to larger networks since
they require that each person knows his or her role in the network. They
are also sensitive to the timing with which information gets transmitted or
heard. With some randomness in the process of transmission, it could for
example be that the first report y2 that player 1 hears already incorporates
player 1’s own signal (because after a while y2 starts being a mixture between
x2 and x1), and as a result, player 1 should put more weight on the opinions
of others. But of course, in events where y2 = x2, this increase in weight
makes information aggregation worse.

To illustrate this strategic difficulty in a simple model with noisy trans-
mission, assume that time is continuous, communication is one-sided (either
1->2 or 2->1), with each player getting opportunities to communicate at
random dates. The processes generating such opportunities are assumed
to be two independent Poisson process with (identical) parameter λ. Also
assume that a report, once sent, gets to the other with probability p. Con-
sider the time-dependent rule where each person communicates own cur-
rent opinion, and their current opinion coincides with their initial opinion
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if one has not received any report (yi = xi), and otherwise coincides with

yi = mixi+(1−mi)z
f
i where zfi is the perception of the first report received.

Even if perceptions are almost correct (i.e. perceptions almost coincide with
the other’s current opinion), the noise induced by the communication chan-
nel generates uncertainty about who updates first, hence variance in the
final opinion for all mi. For example, in events where player 1 already sent
a report and receives one from player 2, it matters whether player 2 received
the report that 1 sent and incorporated it into her opinion, or whether player
2 failed to receive the report, in which case what player 1 gets is player 2’s
initial opinion.

In contrast, the time-independent FJ is not sensitive to that noise and
achieves reasonably good information aggregation for many values of m =
m1 = m2. FJ rules conveniently address a key issue in networks: whether
what I hear already incorporates some of what I said.

8 Concluding remarks

We end the paper with a discussion of issues that we have not dealt with,
and which may provide fruitful directions for future research.

One premise of our model is that everyone has a well-defined initial
signal.70. However the analysis here would be essentially unchanged if some
players did not have an initial opinion to feed the network and were thus
setting mi = 0 for the entire process. FJ would aggregate the initial opinions
of those who have one.

In real life many of our opinions come from others and in ways that
we are not necessarily aware of, and the existence of a well-defined ”initial
opinion” could be legitimately challenged. In other words, people may have
a choice over the particular opinion they want to hold on to and refer back
to (in other words, the one that gets the weight mi).

To see why this might matter, consider a variation of our model where
some players (Ndg) have initial opinions but use DG rule (or set mi very
low), while other agents (Nfj) have no initial opinions (or very unreliable
ones). In this environment, there is a risk that the initial opinions of the
DG players eventually disappear from the system, and soon be overwhelmed
by noise in transmission. The FJ players could provide the system with
the necessary memory, using the initial communication phase to build up
an ”initial opinion” based on the reports of their more knowledgeable DG

70As mentioned earlier, Banerjee et al. (2019) introduce the idea of a Generalized
DeGroot model where not everyone starts with a signal
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neighbors, and then seed in perpetually that ”initial opinion” into the net-
work. In other words, in an environment where information is heterogeneous
and weights mi are set sub-optimally by some, there could be a value for
some agent in adopting a more sophisticated strategy in which the ”initial
opinion” is temporarily updated until it becomes anchored. In other words,
it may be optimal for some of the less informed to listen and not speak for a
while as they build up their own “initial opinions” before joining the public
conversation.

Another important assumption of our model is that the underlying state
θ is fixed. In particular, there would be no reason to keep on seeding in the
initial opinions if the underlying state drifts. However it may still be useful
to use a FJ type rules where the private seed is periodically updated by each
player to reflect the private signals about θ that each one accumulates.

Finally, one interesting property of FJ type rules that we already empha-
sized is that one’s opinions vary as a result of changes in others’ opinions,
rather than because of a difference between one’s and others’ opinions. In
particular, players’ opinions may differ in the long run. One can clearly
envisage applying a similar idea to beliefs about the state of world. With
two states for example, one could let yti = ln pti/(1 − pti) measure the belief
of i over the underlying state,71 xi ≡ y0

i the initial belief, and assume an
updating process for yi in the spirit of SFJ rules:

yti = mixi + (1−mi)z
t−1
i with zt−1

i = Ayt−1 + εti

These rules keep beliefs anchored on initial beliefs xi, with own beliefs
only varying in response to variations in others’ opinions (i.e., yti − y

t−1
i =

(1−mi)(z
t−1
i −zt−2

i )). This contrasts with Bayes-inspired rules, which would
incorporate initial beliefs only once and then adjust beliefs as a response
to the spread (used as a new informative signal) between other’s opinions
(such as zt−1

i ) and own opinion (yt−1
i ), an adjustment process conducive

to consensus. By allowing diverse long-run beliefs and keeping agents from
over-reacting to (the signal embodied in) variations in other’s beliefs (i.e.,
with mi not too low), some FJ-like updating rules turn out to be less sen-
sitive to transmission noise or biases (hence eventually better information
aggregators) than Bayes-inspired rules.

71This is in the spirit of log-linear learning rules that use the logarithm of likelihood
ratios, as in Molavi et al. (2018).
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Appendix A
Notations. Define M and Γ as the N × N diagonal matrices where

Mii = mi and Γii = γi. For any fixed vectors of signals x and systematic
bias ξ, we let

X = Mx+ (I −M)ξ

and, whenever mi > 0, we let x̃i = xi + ξi(1−mi)/mi denote the modified
initial opinion, and x̃ = (x̃i)i the vector.

Next define the matrix B = I − Γ + Γ(I −M)A, the N2 vector Λ with
Λij = 0 if i 6= j, Λii = (γi(1−mi))

2$0 and B the (N2 ×N2) matrix where
Bij is the row vector (Bij,hk)hk with Bij,hk = BihBjk.

For any fixed (x, ξ), we define the expected opinion at t, yti = Eyti and
the vector of expected opinions yt = (yti)i. We further define ηt = yt − yt,
wtij = Eηtiη

t
j and the vector of covariances wt = (wtij)ij .

We shall say that P is a probability matrix if and only if
∑

j Pij = 1 for
all i. Note that A is a probability matrix and throughout, we assume that
the power matrix Ak only has strictly positive elements for some k. Finally,
we refer to v(y) as the variance of y.

Evolution of expected opinions and covariances. The evolution
of opinions and expected opinions (given x, ξ) follows

yt = Γ(X + (I −M)ν) +Byt−1 (23)

yt = ΓX +Byt−1, (24)

from which we obtain:

ηt = Γ(I −M)νt +Bηt−1

Since the νti are independent random variables, the evolution of the vector
of covariances follows:

wt = Λ +Bwt−1 (25)

We relegate to Appendix B the proof that the matrices H ≡
∑

k≥0B
k

and H ≡
∑

k≥0B
k

are well-defined (see Lemma 1 and 2) or equivalently

that the inverse (I − B)−1 and (I − B)−1 are well-defined, which implies
that yt and wt have well-defined limits

y = HΓX and w = HΛ. (26)

The limit y must solve y = ΓX +By, which yields

y = X + (I −M)Ay. (27)
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The long-run expected opinion is thus independent of Γ (Proposition 2).72

We also relegate to Appendix B the proof that long-run opinions are
weighted average of suitably modified initial opinions. Specifically, we will
show:

Lemma 4. Assume mi > 0 for all i. Then for each i, there exists
Pi ∈ ∆n such that for all x, ξ, yi = Pi.x̃.

We will also show how Lemma 4 extends to cases where a strict subset
N0  N of agents follow a DG rule (mi = 0). Denote by ξ0 the vector of
persistent errors of players. We have

Lemma 5. Assume mi > 0 for all i /∈ N0. There exist G and Q (defined

independently of m) and a probability matrix P such that y = P ˜̃x + Qξ0

and ˜̃xi = x̃i + (1−mi)Giξ
0/mi for each i /∈ N0.

We now turn to the proof of our main Propositions.

Proof of Proposition 1: Let yt denote the vector of opinions at t. Let
∆n be the set of vectors of non-negative weights p = {pi}i with

∑
pi = 1.

We have yti = Biy
t−1 + γiε

t
i with Bi ∈ ∆n. So for any p ∈ ∆n, there exists

q ∈ ∆n such that:73

p.yt = q.yt−1 +
∑
i

piγiε
t
i. (28)

Define V t = minp∈∆n var(p.y
t). We have V t

i ≥ V t and since γi ≥ γ for all i,

Equality (28) implies V t ≥ V t−1 + 1
nγ

2E(εti)
2, hence the divergence.

Next let Γ = (γiξi)i. In matrix form, we have yt = Byt−1 + Γ, which
implies:

yt =
∑

0≤k<t
BkΓ +Btx

Since the network is connected, for some large enough k, Bk is a strictly
positive probability matrix. Let π be the stationary distribution (πB = π).
Consider a realization ξ such that π.ξ 6= 0, say π.ξ > 0. For k large enough,
each row of Bk is close to π, implying that for k large enough, all BkΓ are
positive and bounded away from 0, which proves the divergence of yt.�

Proof of Proposition 3. The lower bound on Li follows immediately
from Lemma 4 and 5. We focus here on loss Vi induced by the idiosyncratic
shocks. Recall

ηti = γi(1−mi)ν
t
i + (1− γi)ηt−1

i + γi(1−mi)Aiη
t

72For the purpose of computing yi and its variance Li, we can thus set Γ = I (i.e.,
γi = 1 for all i, the SFJ rule) and B = (I −M)A.

73Bii = 1− γi and Bij = γiAij . qi =
∑

i pjBji = pi(1− γi) +
∑

j γjpjAji.
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This implies that for any p ∈ ∆n, there exists q ∈ ∆n such that:

p.ηt = q.ηt−1 +
∑
i

γi(1−mi)piν
t
i and

∑
i

qi ≥ 1−m (29)

Define V t = minp∈∆n var(p.η
t). Note that V t

i ≥ V t. Since var(q.ηt−1) ≥
(1−m)2V t−1, Equality (29) implies V t ≥ (1−m)2V t−1 + 1

nγ
2(1−m)2$0,

which yields the desired lower bound.�

Proof of Proposition 4: Assume m >> 0 so x̃j is well-defined for all
j.74 For j 6= i let Xj = mj x̃j + (1 −mj)Ajiyi and cij = mj + (1 −mj)Aji.

(11) can be written in matrix form to obtain, by definition of Qi, y−i =
QiX. Note that if x̃j = 1 for all j and yi = 1, then yk = 1 for all k, so∑

j 6=iQ
i
kjc

i
j = 1 for all k, which implies∑

j 6=i
Qikj(1−mj)Aji = 1−

∑
j 6=i

Qikjmj , (30)

and, since Qi is a positive matrix,75
∑

j 6=iQ
i
kjmj ≤ 1, so

∑
j 6=iR

i
jmj ≤ 1.

(30) further implies

yk =
∑
j 6=i

Qikjmj x̃j + (1−
∑
j 6=i

Qikjmj)yi, (31)

thus characterizing the influence of yi on k’s opinion. In particular, the
smaller

∑
j 6=iQ

i
kjmj the larger the influence of i on k. Averaging over all

neighbors of i, and taking into account the weight Aik that i puts on k, we
obtain:

yi = mix̃i + (1−mi)(
∑
j 6=i

Rijmj x̃j + yi(1−
∑
j 6=i

Rijmj) (32)

which, since mj x̃j = mjxj + (1 − mi)ξj and ri =
∑

j 6=iR
i
jmj , gives the

desired expressions (12) for yi, x̂i, pi and ξ̂i.�

Proof of Proposition 5: There are two parts in this proof. We first
prove that the m′is cannot be positive. Next we show that the equilibrium
outcome must be efficient. Recall π∗ = arg minπ v(

∑
k πkxk) is the efficient

weighting of seeds and v∗ ≡ v(π∗.x).

74Cases where some or all mj are 0 can be derived by taking limits as Qi remains
well-defined.

75Qi =
∑

n≥0((I −M i)(I − αi)Ãi)n so Qi is non-negative. If in addition, m−i << 1,

and since A is connected, then Qi >> 0.
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Assume by contradiction that mj > 0. Then (12) implies that mi > 0
for all i, so m >> 0. Next, from (32) we obtain ŷi = rix̂i + (1− ri)yi, hence
substituting yi,

ŷi = (1− ri)pixi + (1− (1− ri)pi)x̂i. (33)

So both ŷi and yi are weighted average between xi and x̂i, and since m >> 0,
ri > 0, the weights are different. Since i optimally weighs xi and x̂i (using
pi on xi), the weight (1− ri)pi is suboptimal so

v(yi) < v(ŷi) ≤ max
j 6=i

v(yj), (34)

where the second inequality follows from ŷi being an average of the yj ’s.
Since (34) cannot be true for all i, we get a contradiction. The equilibrium
must thus be DG.

Consider now a DG equilibrium. Call π = (πi)i the weights on seeds
induced by γ and A, π̂i the relative weights on k 6= i, and x̂i = π̂i.x−i. We
have yi = πixi + (1− πi)x̂i, and modifying γi allows the agent to modify πi
without affecting x̂i (player i increases πi by decreasing γi). Therefore the
optimal choice πi satisfies

πi
1− πi

=
v(x̂i)

σ2
i

Let v∗i = minq v(q.x−i). Since optimal weighting of all seeds requires optimal
weighting on seeds other than i, we have:

π∗i
1− π∗i

=
v∗i
σ2
i

which implies

πi = π∗i +
(1− pi)(1− π∗i )

σ2
i

(v(x̂i)− v∗i ) (35)

Since all πi (and π∗i ) add up to one, one must have v(x̂i) − v∗i ≤ 0, hence
information aggregation is perfect.�

Before showing Proposition 6, we start with two intermediate results
that we also use to prove Result 3:

Lemma 6: For each j 6= i, there exists µji and a probability vector
Cji ∈ ∆N−1, each independent of mi, such that

yj = (1− µji)Cjix̃−i + µjiyi (36)
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Proof: This immediately follows from Expression (30) in the proof of
Proposition 4.�

Lemma 7: if ∂Li
∂mi
≤ 0, then

∂Lj

∂mi
< 0 for all j.

Proof: Since µji and Cji are independent of mi, we obtain:

∂Lj
∂mi

= (µji)
2 ∂Li
∂mi

+ µji(1− µji)
∑
k 6=i

Cjik
∂Cov(x̃kyi)

∂mi

We substitute yi = pixi + (1 − pi)(x̂i + ξ̂i) (see (12)). Since x̃k and xi are
independent, and since x̂i, x̃k and ξ̂i do not depend on mi, we get

∂Lj
∂mi

= (µji)
2 ∂Li
∂mi

− µji(1− µji)
∂pi
∂mi

∑
k 6=i

Cjik Cov(xkx̂i + x̃kξ̂i)

The terms ∂pi∂mi
and Cov(xkx̂i) are positive, and so are the terms Cov(x̃kξ̂i)

when persistent errors are independent or positively correlated. The sum on
the right side is thus positive (and the effect is amplified with errors), which
proves Lemma 7.76�

Proof of Proposition 6. Let m = $/(1 +$). We show that DG and
all strategies mi < m are dominated by m.

Assume first that all other players use DG. Then, if player i uses DG
as well, Lti diverges and by Proposition 4, for any mi > 0, yi = x̂i =
xi+ (1−mi)(ξi+Riξ−i)/mi. The variance of yi thus decreases strictly with
mi.

Now assume that at least one player j chooses mj > 0. Then Li =

p2
i + (1− pi)2v(x̂i + ξ̂i). Whether persistent errors are independent or fully

correlated, the variance of ξ̂i is at least equal to $/r2
i , which implies that

Li strictly decreases for all pi such that pi
1−pi < $/r2

i , hence also for any mi

such that mi
1−mi

< $/ri, and from Lemma 7, we conclude that Lj increases
as well (on this range of mi).

We now examine the effect of mi on the vector of covariances w where
wjk = limE(ytj − ytj)(ytk − ytk). Recall w = Λ +Bw. Since Λ and B are non-
increasing in mi and Λii is strictly decreasing in mi, wii strictly decreases
with mi, and w is non-increasing in mi. Combining all steps, over the range

76With negatively correlated errors the terms Cov(x̃k ξ̂i) = 1−mk
mk

Eξk ξ̂i could be neg-
ative. However, we suspect that in equilibrium, with the mk’s set optimally, the terms
Cov(xkx̂i) remain the preponderant ones – with small errors for example, Cov(x̃k ξ̂i) is
comparable to $/m2 ' $1/3, hence we expect that Result 3 continues to hold.
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mi < m, Li = Li + wii strictly decreases with mi, and
∑

k Lk also strictly
decreases with mi.�

Proof of Proposition 7. When there are no idiosyncratic errors, yi =
yi and since xi and x̂i + ξ̂i are independent variables, unaffected by mi,

player i optimally sets pi such that pi
1−pi = v(x̂i+ξ̂i)

v(xi)
, from which we derive

the desired expression for mi.�

Proof of Result 2:
Step 1: lowerbounds on mi ≡ maxj 6=imj .
With transmission errors, optimal weighting of xi and x̂i implies

pi
1− pi

=
v(x̂i) + v(ξ̂i)

σ2
i

(37)

and (35) becomes

pi = π∗i +
(1− pi)(1− π∗i )

σ2
i

(v(x̂i)− v∗i + v(ξ̂i)) (38)

The weight pi is thus necessarily above the efficient level π∗i , and there are
now two motives for doing that: inefficient aggregation by others, and the
cumulated error term ξ̂i.

While (38) implies a lower bound on pi, as (35) did, there is a major
difference here with the no noise case where DG is used by all: pi is the
weight that i puts on own seed, but since there is no consensus, the sum∑

i pi is not constrained to be below 1. Nevertheless, when all m are small,
players are close to consensus, and

∑
i pi is close to 1, and this allows us to

bound v(ξ̂i) (and the difference v(x̂i)− v∗i ), as we now explain.
From Proposition 4, each opinion yi may be written as yi = P ix+ (1−

P ii )ξ̂i, where P i is a weighting vector (such that P ii = pi). (31) implies that
when all m are small, the vectors P i must be close to one another: seeds
must be weighted in almost the same way, and differences in opinions are
mostly driven by the terms ξ̂i. Specifically, let mi = maxj 6=imj . (31) implies
that for all k 6= i,

pk = P kk ≤ P ik + cmi

for some constant c independent of m and k. Since Pkk = pk ≥ π∗k, adding
these inequalities yield

1− pi =
∑
k 6=i

P ik ≥
∑
k 6=i

pk −Kcmi ≥ 1− π∗i −Kcmi (39)
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which, combined with (38) yields

mi ≥ d(v(x̂i)− v∗i +
$

(mi)2
). (40)

Since var(x̂i)−v∗i ≥ 0, this implies mi ≥ (d$)1/3 for some constant d, which

further implies that the variance v(ξ̂i) is at most comparable to $1/3.

Step 2: upperbounds on mi. Recall ri =
∑

j 6=iRjmj and ŷi =∑
k 6=iAikyk. With transmission errors, we obtain:

ŷi = (1− ri)pixi + (1− (1− ri)pi)(x̂i + ξ̂i) + ξi

where ξi = −pξi + (1 − pi)
∑

j 6=iRj(1 −mj)ξj . Since pi is set optimally by
i, we have:

v(ŷi)− v(yi) ≥ (ripi)
2(σ2

i + v(x̂i) + v(ξ̂i))−Eξi − (1− pi)Eξiξ̂i ≥ cr2
i −

d$

ri

for some constant c and d (independent of $ and m). Since v(ŷi) ≤
max v(yk), the right-hand side cannot be positive for all i, so ri0 ≤ (d$/c)1/3

for some i0. From step 1, we conclude that mi0 and all mj with j 6= i0 are
comparable to $1/3, and that mi0 is thus at least comparable to $1/3.

It only remains to check that mi0 cannot be large. From (39), pi0 ≤
π∗i0 +O($1/3), and since pi0 ≥ 1

1+ri0/mi0
, we conclude that all mi (and thus

mi) are comparable to $1/3, which further implies that all variances v(ξ̂i)
are comparable to $1/3.

These variances imply that Ey2
i − v∗ is at least comparable $1/3. Ey2

i

also rises because of inefficient weighting of seeds, but the loss is comparable
to (pi − π∗i )2, that is, $2/3, a significantly lower loss.�

Proof of Result 3: this follows from Lemma 7 since at equilibrium
∂Li
∂mi

= 0. �
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Appendix B (for on-line publication)

We first prove that the matrices H ≡
∑

k≥0B
k and H ≡

∑
k≥0B

k
are

well-defined (Lemma 1 and 2), and obtain Proposition 2 as a Corollary. Next
we prove that long-run expected opinions are weighted average of suitably-
defined modified initial opinions (Lemma 3 to 5).

Lemma 1: Consider any non-negative matrix C = (cij)ij such that
µ = mini(1 −

∑
j cij) > 0. Then I − C has an inverse H ≡

∑
k≥0C

k, and

for any X0 and Y 0, Y t = X0 + CY t−1 converges to HX0.

Lemma 2: If mi0 > 0, then for K large enough, C = BK and C = B
K

both satisfy the condition of Lemma 1, and I−B and I−B have an inverse.

Proof of Proposition 2: We iteratively substitute in (24) to get:

yt = X0 + Cyt−K

where X0 = DΓX with D ≡ I +B + ...+BK−1, and C = BK . By Lemma
2, Lemma 1 applies to C, so convergence of yt to y is ensured, and I−B has
an inverse, which we denote H. We have y = HΓX, hence the conclusion
that y does not depend on xi when mi = 0 (since X does not depend on xi
when mi = 0). From (27), we also conclude that y is not affected by γ.

Regarding the covariance vector, we iteratively substitute in (25) to get

wt = Λ0 + Cwt−K

where Λ0 = DΛ with D = I + B + ...+ B
K−1

and C = B
K

. By Lemma 2,
Lemma 1 applies to C, so convergence of wt to w is ensured, and I −B has
an inverse which we denote H. We have w = HΛ, which is thus independent
of initial opinions.�

We now report standard results (Lemma 3 and Corollary 3 below) en-
abling us to show that long-opinions are weighted average of suitably defined
modified opinions (Lemma 4 and 5). Let 1N denote the column vector of
dimension N for which all elements are equal to 1.

Lemma 3: Let A0 be a non-negative N0 × N0 matrix and A1 a non-
negative N0 × N1 matrix. Assume I − A0 has an inverse and A01N0 +
A1.1N1 = 1N0. Then P = (I − A0)−1A1 is a N0 × N1 probability matrix,
i.e., P1N1 = 1N0.
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We apply Lemma 3 to the case where A1 = M and A0 = B = (I −
M)A. By construction A01N +A1.1N = 1N holds, which gives the following
immediate corollary:

Corollary 3: Assume mi0 > 0 and let P = (I − B)−1M. Then P is a
probability matrix.

Lemma 4. Assume mi > 0 for all i. Then for each i, there exists
Pi ∈ ∆n such that for all x, ξ, yi = Pi.x̃.

Proof of Lemma 4: When mi > 0 for all i, the condition of Proposition
2 applies. Let H = (I −B)−1 and P = HM . (23) can be rewritten as:

y = Mx̃+By

implying that y = Px̃ with P = (I −B)−1M , and P is a probability matrix
by Corollary 3.�

Lemma 4 can be generalized to the case where a strict subset N0  N of
agents has mi = 0. Call N1 the set of agents with mi > 0, and accordingly
define the vectors of expected long-run opinions y0 and y1, and the vectors
of persistent errors ξ0 and ξ1. We have:

Lemma 5. Assume mi > 0 for all i /∈ N0. There exist G and Q (defined

independently of m) and a probability matrix P such that y = P ˜̃x + Qξ0

and ˜̃xi = x̃i + (1−mi)Giξ
0/mi for each i /∈ N0.

Proof of Lemma 1: Consider the matrix Ht = (htij)ij defined recur-

sively by H0 = I and Ht = I + CHt−1. Let zt = maxij |htij − h
t−1
ij |. We

have zt ≤ (1 − µ)zt−1, implying that Ht has a well-defined limit H, which
satisfies H ≡

∑
k≥0C

k. By construction, (I − C)H = H(I − C) = I, so

H = (I − C)−1. Similarly, defining zt = maxi
∣∣Y t
i − Y

t−1
i

∣∣, we obtain that
Y t has a limit Y which satisfies (I − C)Y = X0, implying Y = HX0.�

Before turning to the proof of Lemma 2, we define sequences, paths and
probabilities over paths associated with a probability matrix A = (Aij)ij .

For any sequence q = (i1, ..., iK), we let πA(q) ≡
∏K−1
k=1 Aik,ik+1

, and for any
set of sequences Q, we abuse notations and let πA(Q) =

∑
q∈Q π

A(q). We

define a path as a sequence q for which πA(q) > 0.

Denote by QKi,j the set of paths of length K from i to j, and QKi the set

of paths of length K that start from i. QKi = ∪jQKi,j and by construction,
for any i, j

AKij ≡ πA(QKi,j) and
∑
j∈N

AKij = πA(QKi ) = 1 (41)
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where AK is the Kth power of matrix A.
We also extend the notion of sequences and paths to pairs ij ∈ N2

(rather than individuals). For any sequence of pairs q = (i1j1, ..., iKjK) (or
equivalently, any pair of sequences q = (q1, q2) = ((i1, ..., iK), (j1, ..., jK)))
and any matrix A = (Aij)ij , and we let πA(q) = πA(q1)πA(q2). We define a
path q as a sequence such that πA(q) > 0.

Proof of Lemma 2: We consider A connected, that is, such that Akij >

0 for all i, j, and consider K ≥ 2k. Call QK,i0i ⊂ QKi the set of paths of
length K that start from i (to some j) and go through i0. For any such
path, πB(q) ≤ (1−mi0)πA(q).77 This implies∑

j

Cij ≡ πB(QKi ) ≤ (1−mi0)πA(QK,i0i ) + πA(QKi \Q
K,i0
i ) < 1

where the last inequality follows from (41) and QK,i0i non empty for K ≥ 2k.
This implies that C satisfies the condition of Lemma 1, hence I −C has an
inverse. Let D ≡ I +B + ...+BK−1 and H = (I − C)−1D. We have∑

k≥0

Bk =
∑
k≥0

CkD = H,

so H(I −B) = (I −B)H = I and I −B also has an inverse.
Regarding C, the argument is similar. We work on paths q of pairs

rather than paths q of individuals. Call Q
K
ij the set of paths q = (q1, q2)

of length K that start from ij (to some hk), Q
K,i0
i those for which q1 goes

through i0. We have∑
hk

Cij,hk ≡ πB(Q
K
ij ) ≤ (1−mi0)πA(Q

K,i0
i ) + πA(Q

K
i \Q

K,i0
i ) < 1

hence C satisfies the condition of Lemma 1, I − C has an inverse, and so
does I −B.�

Proof of Lemma 3: Let q = P1N1 − 1N0 . P = A1 + A0P so Pij =
A1
ij +

∑
k∈N0 A0

ikPkj . Since
∑

j∈N1 A1
ij = 1−

∑
j∈N0 A0

ij we have

qi =
∑
j∈N1

Pij − 1 =
∑

k∈N0,j∈N1

A0
ikPkj −

∑
j∈N0

A0
ij = A0

i q

implying that q = A0q, hence, since I −A0 has an inverse, q = 0.�

77In the general case (FJ rather than SFJ), πB(q) ≤ (1−mi0γ)πA(q).
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Proof of Lemma 5: Let x̃1 denote the vector of modified initial
opinions of players in N1, and M1 the restriction of M to N1. We have:

y0 = A00y0 +A01y1 + ξ0 (42)

y1 = M1x̃1 + (I1 −M1)(A10y0 +A11y1) (43)

Under A, for K large enough, all agents in N0 have a K-neighbor in N1,
so (A00)K satisfies the condition of Lemma 1 and I − A00 has an inverse,
which we denote H0. We thus have:

y0 = P 0y1 +H0ξ0 (44)

where P 0 ≡ H0A01 is a probability matrix (by Lemma 3 and because
A01.1N1 +A00.1N0 = 1N0).78

Substituting y0 in (43), and letting G = A10H0 and x̂i = x̃i + (1 −
mi)Giξ

0/mi, we get

y1 = M1x̂+ (I1 −M1)Ây1 where Â ≡ A11 +A10P 0

Since P 0 is a probability matrix, so is Â, and C1 = (I1 −M1)Â therefore
satisfies the condition of Lemma 1 (as all mi > 0 for i ∈ N1). Letting
H1 = (I1 − C1)−1, we get y1 = P 1x̂ where P 1 = H1M1. Again, P 1 is a
probability matrix because Â is a probability matrix and because P 1 = M1+
(I1 −M1)ÂP 1. Substituting y1 in (44) we finally get y0 = P 0P 1x̂ + H0ξ0

and y1 = P 1x̂, which concludes the proof.�

Proof of Result 5. In addition to item (i) and (ii), we shall prove the
following statement: (iii) If the lower bound γ on the choice set is sufficiently
low and γi = γ, Vi ≤ 1/ | log γ | for all m ≥ m and γ within the choice set.

Let γ = max γi and recall:

wij =
∑
h,k

BihBjkwhk + Λij (45)

where Λij = 0 if i 6= j and Λii = (1 − mi)
2(γi)

2$0, and Bii = 1 − γi,
Bij = γiAij(1−mi).

The proof starts by proving item (i), that is, computing a uniform upper
bound on all wij of the form (see step 1)

wij ≤ cγ (46)

78Indeed, for any i ∈ N0,
∑

j∈N0 A
00
ij +

∑
j∈N1 A

01
ij =

∑
j∈N Aij = 1
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To prove (ii), we define ŵ = (wij)j as the vector of covariances involving i,
and show that there exists a matrix C for which

∑
k Cjk ≤ 1 for all j and

such that
ŵ ≤ (1−m)Cŵ + Γ (47)

where Γj ≤ dpij for some d, with pij = γi/(γi + γj). This in turn implies
that maxj wij ≤ maxj Γi/m, which will prove (ii) (see step 3).

Finally, to prove (iii), we consider two cases. Either γ is “small” and (46)
applies, or we can separate individuals into a subgroup J where all have a
small γj , and the rest of them with significantly larger γj . In the latter
case, we redefine ŵ = (wjk)j∈J,k as the vector of covariances involving some
j ∈ J , and obtain inequality (47) with Γjk ≤ dpjk for k /∈ J and Γjk ≤ dγj
for k ∈ J , for some d. By definition of J , all γj and pjk are small, and all
Γjk are thus small, which will prove (iii). Details are below.

Step 1 (item (i)) wij ≤ cγ with c = $0/m.

Let V = maxiwii and w = maxi,j 6=iwij and w = maxwi. For all j 6= i,
wij is a weighted average between all wh,k and 0, so wij < max(w, V ), hence
w < max(w, V ), which thus implies w ≤ V . Consider i that achieves V .
Since

∑
h,k BihBik = (1− γimi)

2, we have:

V = wii ≤ (1− γimi)
2V + γ2

i (1−mi)
2$0 hence

V ≤ γi(1−mi)
2

mi
$0 ≤

$0γ

m

Step 2. Let pij = γi/(γi + γj) and v = 2(cγ + ω0). We have:

wii ≤ γipiiv + (1−m)
∑
k

Aikwik (48)

wij ≤ γjpijv + (1−m)(pij
∑
k

Aikwkj + pji
∑
k

Ajkwik) (49)

These inequalities are obtained by solving for wij in equation (45), that is,
we write

(1−BiiBjj)wij = Γij +
∑
k 6=i

BiiBjkwik +
∑
k 6=i

BjjBikwkj +
∑

k 6=i,h 6=j
BjkBihwkj .

Observing that 2BiiBik/(1−BiiBjj) ≤ (1−mi)Ajk, BiiBjk/(1−BiiBjj) ≤
(1 − mj)pjiAjk, and BjkBih/(1 − BiiBjj) ≤ 2γjpijAjkAih and Γii/(1 −
BiiBjj) ≤ γiω0 yields (48-49).
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Step 3 (item (ii)). It is immediate from (48-49) that (47) holds with
Cjk ≡ Ajk and Γj = pijγjv + pijcγ ≤ pijγ(v + c) ≤ dγi for all j, for some d,
which permits to conclude that ŵ ≤ dγi/m.

Step 4 (item (iii)). Let ε = 1
K|Logγ| with K = 5$0/m

2 and set γi = γ.

Let us reorder individuals by increasing order of γj . Consider first the case
where γj+1 ≤ γj/ε for all j = 1, ..., N − 1. Then γ < γ/εN−1, and for γ

small enough, γ/εN−1 < ε, so Vi ≤ cε < 1/ | Logγ |.
Otherwise, there exists j0 such that γj ≤ γ/εj0−1 for all j ∈ J , and

γk > γj/ε for all k /∈ J and j ∈ J . It is immediate from (48-49) that (47)
holds with Γ such that, for any j ∈ J ,

Γjk = γjv if k ∈ J and

Γjk = γjv + pjk
∑
h/∈J

Ajhwhk if k /∈ J

By definition of J , for all j ∈ J , γj ≤ γ/εN−1 < ε and for all k /∈ J , pjk ≤ ε,
which further that all Γjk are bounded by ε(v + c) ≤ m/ | Logγ |, which
concludes the proof.�

Large Circle case. We check that the social optimum is symmetric:
if L is the minimum loss that a player experiences at the social optimum.
Define φ(L) = minm(m)2 +(1−m)2($+L). We have Li ≥ φ(L) for all i, so
L ≥ φ(L), which implies L ≥ limn φ

n(0). Since φ(L) = ($+L)/(1+$+L),
φ is a contraction and since φ(J(m∗∗)) = J(m∗∗), limn φ

n(0) = J(m∗∗).

Proof of Proposition 8:
For fixed x, ξ, let yti be i’s expected opinion at t, Y t

i = (yt−ki )k=0,..,K the
column vector of i’s past recent opinions, and Y t = (Y t

i )i. One can write
Y t = X + BY t−1. Y t converges for standard reasons, to some uniquely
defined Y . Consider now the vector y solution to

yi = mixi + (1−mi)Ai(y + ξi)

and let Y i = (yi, ..., yi) and Y = (Y i)i. By construction, under this profile
of opinions, it does not matter when i heard from j because opinions do not
change. Y thus solves Y = X + BY and it coincides with Y . The limit
expected opinion vector under FJ is thus independent of the communication
protocol.
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Coarse communication:
Recall f is the fraction of agents choosing a = 0, and call y = φ(f) the

associated ”population opinion”. We now consider two cases:
Case 1: m = 0. Set ξ > 0 and assume f > 0. Each makes an inference

zi at least equal to y+ ξ regarding neighbors’ opinions, so eventually, under
DG, each player of type bi may only report 0 if bi + y + ξ < 0. Under the
large number approximation, a fraction at most equal to f ′ = h(y + ξ) < f
reports 0, hence the fraction of agents reporting 0 eventually vanishes.

Case 2: m small. When m > 0, agents with signal xi believe the
state is mxi + (1 − m)(y + ξ), which generates, under the large number
approximation, a fraction f = Eh(mxi + (1 −m)(y + ξ)) choosing a = 0.
The long-run opinion y thus solves

y = h−1(Eh(m(θ + δi) + (1−m)(y + ξ)))

Call ξ̂ = y − θ the resulting population estimation error. when m is small,
h is locally linear, so, since Eδi = 0, y ' h−1h(m(θ + 1−m

m ξ) + (1 −m)y),

which implies ξ̂ ' 1−m
m ξ.

Assume now that player chooses mi while others choose m. For player
i, the estimation error is ∆i ≡ miδi + (1−mi)(ξ̂ + ξ) ' miδi + (1−mi)

ξ
m .

Assuming that θ is drawn from a flat distribution with large support, the
expected loss Li(∆) from estimating θ with an error ∆i is quadratic in ∆i

and independent of bi,
79 so L(∆) is proportional to the variance of the error

that i makes. To minimize the variance of ∆i, player i sets mi = $
m2 , so in

equilibrium m∗ = $1/3.
Regarding the social optimum, when all choose m, the estimation error

is mδi + (1−m) ξm . For $ small, the variance of this error is minimized for

m ' (2$1/4).

79When ∆i > 0, L(∆i) =
∫ −bi
−∆i−bi

−(θ + bi)dθ = ∆2

2
.
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