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Abstract

We explore a model of non-Bayesian information aggregation in
networks. Agents non-cooperatively choose an aggregation rule from
the Friedkin-Johnsen (FJ) class to maximize private payoffs in the pres-
ence of noise in information transmission. We characterize rules that
get chosen. The well-known DeGroot (DG) rule, nested in FJ, is never
chosen – all near optimal rules have individuals putting enough weight
on their own initial opinion in every period unlike in DG. This precludes
full consensus even in the long-run but ensures better information ag-
gregation. This trade-off extends to a wider range of environments and
a broader class of rules.

1 Introduction

Living in a world dominated by Facebook, Twitter and their ilk, it is hard to
avoid wondering about the quality of information aggregation on networks.
We constantly get information passed onto us by others and in turn pass it
on to our network neighbors. What are properties of such a process? How
well is information aggregated?

The literature that theoretically explores these questions typically takes
one of two routes: a Bayesian route, in which agents make correct inferences
based on an understanding of all the possible ways information can transmit
through the network; and a non-Bayesian route, which avoids these very de-
manding assumptions about information processing by postulating a simple
rule that individuals use to aggregate own and neighbors opinions.1

1A Bayesian needs to think through all possible sequences of signals that could be
received as a function of the underlying state and all the possible pathways through which
each observed sequence of signals could have reached them. There is obviously a very large

1



One such simple rule is the DeGroot (DG) rule, where agents update
their current opinion by averaging their neighbors’ most recent opinions with
their own. This is usually justified by arguments that this is like Bayesian in
the sense that it coincides with the Bayesian decision rule in certain simple
cases, though recently Molavi et al. (2018) provide an axiomatic justification
for DG-like (e.g. Log-linear learning) rules.2

This paper proposes a third route. It considers a class of simple aggrega-
tion rules and postulates that, within this class, each individual selects his
or her favorite aggregation rule, based on its instrumental value.3 We focus
on the class of Friedkin-Johnsen (FJ) rules (Friedkin and Johnsen (1990)),
which nest DG, but allow each individual to keep putting some weight on
their own initial opinion. Within this limited class of “natural” rules, we
allow agents substantial discretion in the choice of rules and assume that
each individual selects the one that best aggregates information (for her)
in the long-run.4 In other words, instead of requiring our simple rule to be
like Bayesian, we ask whether the agents would want a rule that has this
characteristic.

We explore this third route in a variant of the standard setup where each
individual initially gets a noisy signal correlated with some underlying state
of the world, shares his current aggregate of information with his network
neighbors, and importantly, information transmission is assumed to be noisy.
The class of Friedkin-Johnsen (FJ) models can formally be written as

yti = (1− γi)yt−1
i + γi(mixi + (1−mi)z

t−1
i ) (FJ)

number of such pathways. Alatas et al. (2016) remark ”To give a sense of scale to this
computation, note that enumerating all such paths is # P-complete and a random graph
with n nodes and edges with probability pn has an expected number of paths between
nodes 1 and n given by (n− 2)!pn−1

n e (1 + o (1)), which is potentially an enormous number
(Roberts and Kroese (2007).”

2For example, DeMarzo et al. (2003), who brought it into economics literature and
following them, Golub and Jackson (2010), justify DG by arguing that it coincides with
the Bayesian rule in the static case. In an environment where the underlying state changes
over time, Alatas et al. (2016) justify a simple updating rule by its similarity to a Bayesian
rule in special cases, and Dasaratha et al. 2020 argue that in their set-up the Bayesian rule
is DG-like. Finally, Levy and Razin (2015) develop the Bayesian Peer Influence Paradigm
to capture the idea of an almost Bayesian aggregation rule.

3This is in the spirit of the approach advocated in Compte and Postlewaite (2018) to
model mildly sophisticated agents.

4The limitation to a class of rules is key. With no limitation, the Bayesian rule is the
individually optimal way to process signals among all possible signal processing rules.
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where yti is i’s belief in period t, xi is the initial signal that i received and

zti =
1

| Ni |
∑
j∈Ni

ytj + εti. (1)

is the average report received by i from his neighbors (denoted by Ni) plus
any noise in the transmission (or reception) of that signal. When the weight
mi is 0, individual i is using a DG rule.5 One key assumption is that there
is noise in communication of signals (or alternately, there are biases in the
reports individuals get from others). Another assumption is that only mi

and γi) will be subject to choice, not the relative weights put on neighbors:6

this is to reduce the dimensionality of the rule-choice problem.
We then assume that the initial signals xi are correlated with some un-

derlying given state of the world θ and that the individuals have a utility
function which is a decreasing function of distance between the state θ and
their long-run belief about θ, formed after the signal exchange process has
had a long enough run. Given these preferences, one can examine the per-
formance of rules by computing expected utilities on average over the many
opinion-formation problems that agents face, that is, on average over real-
izations of state, initial opinions and communication shocks.

Our main methodological assumptions are that (i) there is a force to-
wards the use of higher performing rules (e.g., justified by evolution or rein-
forcement learning), and (ii) in this quest for higher performing rules, each
individual can only examine (or compare, or get feedback about) a limited
set of rules (e.g., the FJ class where each mi belong to [0, 1]).

Formally, our analysis boils down to examining a rule choice game where,
given the rules adopted by others, each player chooses the rule within the
permitted set of rules that maximizes her own expected utility:7 we are
interested in the Nash equilibrium of this rule choice game.

To clarify the difference, note that a Bayesian optimizes his/her opinion-
formation rule for each t and every possible realization of (xi, z

1
i , .., z

t−1
i ),

while we restrict attention to a limited and fixed set of rules, applicable in
all periods, parameterized by mi and γi. These parameters are meant to
capture some general features of opinion formation: specifically the persis-
tence of initial opinions, and speed of adjustment of the current opinion.

5Throughout our analysis, we shall assume that all γi are strictly positive.
6In Expression (1), all neighbors contribute symmetrically. In our formal exposition we

will actually allow for non-symmetric weights. Our main simplification is that we assume
that relative weights across neighbors are fixed, not subject to optimization.

7Expected across different realizations of the state, initial opinions and communication
shocks. mi is thus ”chosen” at an ex ante stage.
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Our view is that these features probably do adjust to the broad economic
environment agents face, but for each opinion-formation problem within a
certain context, the actual sequence of opinions is mechanically generated
given these features. For example, people may have one rule for all political
opinions, but a different set of rules about all questions pertaining to where
to go for vacation.

It is precisely this fact that the rule is very simple and that it applies
across many different problems that makes our third route cognitively less
demanding than the Bayesian route. While we agree that choosing mi and
γi optimally is a difficult problem which in principle requires knowledge
of the structure of the model, there is no reason why the standard justi-
fication of Nash Equilibrium as a resting point of an (un-modeled) learn-
ing/evolutionary process would not apply here. Moreover, one of our most
important results is that DG rules, and indeed all rules that put too little
weight (mi) on initial opinions, are dominated, suggesting a strong force
away from DG even if agents find it difficult to find the exact optimal value
of mi.

Our main results and the logic behind them are as follows.

Fragility. We start by observing that DG has the undesirable property
that the variance of every decision-maker’s belief grows without bound in
the presence of any noise in communication (Proposition 1).

This points to a specific sense in which DG is fragile: when γi > 0, agent
i puts less than one hundred percent weight on his most recent belief, so
the weight that agent i directly puts on his own initial signal is going to 0.
Without noise in transmission, this is at least partly offset by the weight
agent i puts on reports from others, which themselves contain agent i’s ini-
tial signal. This is why the influence of initial signals on current beliefs does
not dissipate. In other words, the agent holds on to his own signal only
through the feed-back from others. The problem is that when transmission
is noisy, you only get the feedback at the cost of some extra noise in every
round. Given that the initial signals enter only at the beginning and the
noise keeps coming in every period, it is no wonder the noise comes to dom-
inate. This contrasts with DG in a noiseless environment, which has been
shown by Golub-Jackson (2010) to have the attractive property that, under
some restrictions on network structure and weights on neighbors, learning
converges to perfect information aggregation (indeed within the FJ class,
DG is the only rule with this property).

This intuition suggests that allowing each person’s initial signal to come
in with some weight every period would provide a countervailing force, which
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is what FJ does: under FJ rules, every decision-maker’s average belief as
well as its variance converges (Proposition 2). To see exactly why, note
that under FJ, the prime mover of beliefs is a change in the beliefs of an
agent’s neighbors, who in turn are reacting to changes in the beliefs of their
own neighbors. Potentially, a single change in the belief of one agent can
unleash a sequence of changes in the beliefs of others, resulting in echo
effects that end up altering everyone’s beliefs. However, with (FJ) rules,
because agent’s always put some weight on their own initial signals, these
echo effects are on average dampened at each round and this dampening
guarantees convergence. In fact we show that convergence requires only one
agent to put positive weight mi on his initial signal.

However this convergence result does not imply a discontinuity between
DG and FJ rules. We show that if the weight on initial signals in FJ is small
for all players, the variance of the long term outcome will tend to be very
large (see Proposition 3).

Incentives. We next examine incentives. The above observations suggest
that the presence of transmission errors tends to favor the use of FJ-type
rules with significant weight on the own signal. In fact Proposition 4 shows
that rules where mi is too low are dominated. One step of the argument is
obvious: essentially, if every other agent chooses DG, then choosing FJ is the
only way to stop the variance from blowing up. Moreover if some players use
FJ, then those who stick with DG become followers: their initial opinions
disappear from current opinions in the long-run, because they face players
that constantly feed in their own initial signals. Long-run opinions are a
weighted average of the signals of those who are putting positive weight
on their signals. If an individual is currently putting zero weight on his
own signal (mi = 0), increasing that weight slightly always reduces the ex
ante variance of his final opinion (because an additional independent signal
always reduces ex ante variance).

In fact we can go a step further. Restricting attention to the simpler
case where errors in transmission are modeled as a systematic bias drawn at
the start of the interaction, long-run outcomes are independent of γi and we
can characterize the equilibrium where all the players are non-cooperatively
choosing the weight mi to put on their own initial signal (Proposition 5). We
show that the equilibrium always involves putting too little weight on one’s
own signal relative to the social optimum (Proposition 6). In equilibrium
each player is trying too hard to free ride on the collective wisdom of the
others, not fully taking into account the fact that settingmi too low increases
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the correlation across opinions.8

We then return to the question of rule choice when there is also idiosyn-
cratic noise in transmission. In the presence of idiosyncratic noise, FJ rules
with large γi generate a lot of bouncing around because i is reacting every
period to the latest reports from others and each of those comes with a
different piece of noise in every period. i can limit the churn by putting
some weight on past beliefs (i.e., a smaller γi), which is what Proposition 7
addresses.

Extensions. In the penultimate section of the paper we examine other
potential sources of errors or shocks. Our first exercise shows that nothing
essential changes in our analysis when the information transmitted is de-
liberately slanted in any direction, though there is a further shift towards
reliance on one’s own initial signal. A similar observation obtains when
preferences are heterogenous and players have biased perceptions of others’
preference.

The next sub-section shows that another key difference between FJ and
DG rules comes from the way they deal with uncertainty over the exact
communication protocol – for example the fact that not everyone may speak
in every period. We show by example that the outcome from using DG rules
is sensitive to who speaks when, even in the absence of noise, whereas under
FJ rules, expected opinions are always independent of the communication
protocol, whether or not there are errors in communication. Nevertheless,
the long-run opinions under DG remain weighted averages of initial opinions,
so the variance of long-run opinions induced by these kinds of shocks remains
bounded, absent transmission errors.

In a similar vein, we examine the effect of uncertainty about the precision
of the initial signals and show that, in the absence of transmission errors,
this does not undermine the performance of DG-type rules. As a matter
of fact, in a set-up where each participant only knows the precision of own
initial signal, perfect information aggregation can be achieved under DG,
by choosing γi that is suitably scaled to the precision. This observation
delineates the key role played by transmission shocks in our analysis, as
opposed to other sources of shocks.

We next turn to the possibility of coarse communication–say each party
only reports their current best guess about which of two actions is prefer-

8Player i takes into account the correlation in opinions when setting own mi optimally,
but she does not fully take into account the consequence for player j, in particular, the
positive correlation between the sources (including j’s own signal) that directly contribute
to j’s opinion independently of i’s mediation, and player i’s opinion which also contributes
to j’s opinion and partially contains these same sources.
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able. In this setting, the class of potentially “natural” rules is more limited:
they include the infection models, studied in Jackson (2008) among (many)
others, and the related class of models studied by Ellison and Fudenberg
(1993, 1995). In this environment, systematic error in interpreting guesses
by neighbors makes the long-run outcome from a DG-like rule entirely in-
sensitive to the actual state of the world (Frick et al. (2019) report a related
result for a proto-Bayesian rule), but this is not true for FJ-type rules

In the next sub-section, we move away from the linear aggregation rule
assumption. We introduce a class of non-linear aggregation rules that remain
in the spirit of DG rules, and show that the non-linearity may actually
exacerbate the long-run drift in beliefs, suggesting the possibility that linear
rules may actually be the best case scenario for DeGroot rules.

We end this section with a discussion of non-stationary rules and where
and why they may not always be appropriate.

Literature review. DeGroot (1974) has had a significant impact in the
economics literature, possibly due to its simplicity and Bayesian flavor.
Friedkin and Johnsen (1990) provides a well-known alternative model, where
interpersonal influence does not necessarily generate long-run consensus.9

In economics, our paper is related to and inspired by the recent up-
surge of interest in the social learning with less than fully Bayesian agents.
Eyster and Rabin (2010), Sethi and Yildiz (2012, 2016, 2019), Jadbabie et
al. (2012) and Gentzkow et al. (2018), among others, explore the implica-
tions of applying Bayes rule when the underlying information structure is
misspecified, as does the previously mentioned paper by Frick et al. (2019).

Finally it relates to the literature on Bayesian social learning (see above
on why this approach imposes a heavy cognitive burden on agents). Ace-
moglu et al (2011) study the case where every agent updates their opinion
and communicates it only once. They provide conditions on signals and
network structure under which information is perfectly aggregated as the
network grows to be very large.10 More recent work, in which agents re-
peatedly communicate (like in the model we analyze) include Mossel et al.
2015 who derive necessary conditions on the network structure under which
Bayesian learning yields consensus and perfect information aggregation.11

9For example, in subsequent work, Friedkin and Johnsen (1999, page 3) write, referring
to the work of DeGroot and other precursors: ”These initial formulations described the
formation of group consensus, but did not provide an adequate account of settled patterns
of disagreement”.

10Bayesian models of social learning go back to Banerjee 1992, and Bhikchandani, Hir-
shleifer and Welch 1992 but the network structure they study is extremely special.

11They build on Rosenberg et al. 2009 and the literature on ”Agreeing to Disagree”
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2 Basic Model

2.1 Transmission on the network

We consider a finite network with n agents, assume noisy transmission/reception
of information and define a simple class of rules that players may use to up-
date their opinions.

Formally, at any date t, each agent i in the network has an opinion
that can be represented as a real number.12 We consider a class of updating
rules due to Friedkin and Johnsen (1990) (henceforth FJ), in which player i’s
current opinion yti is a convex combination of his initial opinion xi, his most
recent opinion yt−1

i and some summary perception zt−1
i of his neighbors’

opinions. Formally, this can be written as

yti = (1− γi)yt−1
i + γi(mixi + (1−mi)z

t−1
i ) (FJ)

where
zti = Ai.y

t + εti (2)

where yt is the vector of all opinions at t, Ai is a row vector whose jth element
Aij is such that

∑
j Aij = 1 and εti represents an error in transmission or

reception. zti is meant to be some average of the opinions of i’s neighbors
(denoted Ni), so the presumption is that Aij > 0 for j ∈ Ni. This average
is then modified by some noise in transmission or reception.

When mi = 0, the rule corresponds to the well-studied DeGroot rule
(DG). When mi > 0, the updating process works like DG, but the perception
of other’s opinions is adjusted using the decision-maker’s own initial opinion
as a perpetual seed. This perpetual use of the initial opinion in the updating
process gives FJ a non-Bayesian flavor, since for a Bayesian, their prior (i.e.,
the seed) is already integrated into yt−1

i and therefore there is no reason to
go back to it.13,14

that goes back to Aumann 1976
12This opinion can be interpreted as a point-belief about some underlying state, which

will eventually be used to undertake an action.
13In fact, as mentioned already, the one obvious attraction of DG has been its quasi-

Bayesian flavor. If yt−1
i is viewed as a summary statistic of past signals, and zt−1

i as a
new signal, then the linear weight γi can be seen as the optimal weighting strategy of a
Bayesian aiming to reduce the variance of his or her opinion. Of course, over time, a
Bayesian would typically not keep that parameter constant, as the relative informative
content of their own current opinion and that of others will in general not be constant.

14Note that although the expression (FJ) encompasses the DG rule, we shall refer to
FJ as a rule for which mi > 0.
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To avoid technical difficulties once we give agents discretion in choosing
their updating rule, we set γ > 0 arbitrarily small and restrict attention to
FJ rules where γi ≥ γ. We also assume that the matrix A of the Ai’s is

connected in the sense that for some positive integer k, Akij > 0 for all i, j.
In other words everyone is within a finite number of steps of the rest.

Finally, before proceeding, it is useful to define a simplified version of
the rule FJ , where γi = 1. We refer to it at SFJ :

yti = mixi + (1−mi)z
t−1
i (SFJ)

One can think of SFJ as a process that works like FJ, except that agents do
not attempt to smooth out variations in their own opinion. In the absence of
idiosyncratic shocks on the perception of the opinions of others (see details
below), SFJ and FJ will generate identical long-run opinions.

Note that all the rules considered are stationary, in the sense that the
weighting parameters mi and γi do not vary over time. We are interested in
these rules not only because they have been studied in the literature, but also
because we see them as plausible ways by which agents might incorporate
others’ opinions into their current opinion. Of course, with some knowledge
of the structure of the network, and the process by which information gets
incorporated, an agent might want to adjust the weights over time. We
shall discuss in Section 7.7 the risks that such elaborate adjustments be
misguided, in particular when there is randomness over the dates at which
communication takes place.

We have also imposed the assumption that everyone operates on the same
time schedule: periods are so defined that everyone changes their opinion
once every period and everyone else gets to observe that change of opinion
before they adjust their opinion in the following period. We will discuss
what happens if we relax this assumption in Section 7.3.

2.2 Errors in opinion sharing

The term εti is an important ingredient of our model, meant to capture some
imperfection in transmission.15 It defines a distortion in what each individ-
ual “hears” that aggregates all the different sources of errors. distortions

15There has been several recent attempts to introduce noisy or biased transmission in
networks. In Jackson et al. (2019), information is coarse (0 or 1), and noise can either
induce a mutation of the signal (from 0 to 1 or 1 to 0) or a break in the chain of transmission
(information is not communicated to the next neighbor). In Frick et al. (2019), agents
communicate through a choice of action a ∈ {0, 1} correlated with an unknown underlying
state, and they make a systematic error in interpreting these actions because they have
an erroneous model of the preferences of others. See Section 7.5.
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may result from each individual being imprecise in expressing his or her
opinion, or from an error in hearing or interpretation.

We assume that the error term has two components:

εti = ξi + νti .

The term ξi is a persistent component realized at the start of the process,
that applies for the duration of the updating process.16 The term νti is
an idiosyncratic component drawn independently across agents and time.
We interpret ξi as a systematic bias that slants how opinions of others are
perceived. For convenience, we assume that all error terms are homogenous
across players and unbiased (that is, Eξi = Eνti = 0).17 We let $i = var(ξi)
and $0 = var(νti ) and assume that:

$i = $ > 0

2.3 The objective function

There is an underlying state θ, and agents want their decision to be as close
as possible to that underlying state, where the decision is normalized to be
the same as the agent’s long-run opinion. In other words, we visualize a
process where agents exchange opinions a large number of times before the
decision needs to be taken.

Given this private objective, we explore each agent’s incentives to choose
his updating rule within the class of FJ rules to maximize his objective on
average across realizations of the underlying state of the world, the initial
opinions and the transmission errors. The set of possible updating rules is
extraordinary vast, so the limitation to FJ rules is of course a restriction.
Our motivation is to examine the incentives of mildly sophisticated agents
who have some limited discretion over how they update opinions. In par-
ticular we have in mind examining whether there are forces away from DG
rules, and whether private and social incentives differ. We also have in mind
that rules apply across problems, which is why we will evaluate their ex ante
performance.18

16One interpretation is that each information aggregation problem is characterized by
the realization of an initial opinion vector x and persistent bias vector ξ, and that agents
face a distribution over problems.

17The assumption Eνti = 0 is without loss of generality. We shall come back to the case
where Eξi 6= 0 is the Discussion Section.

18That is, on average over states, initial opinions and transmission errors.
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Formally, we assume that the initial signals are given by

xi = θ + δi

where the θ are drawn from some distribution G(θ) with mean zero and
finite variance, δi, ξi and νit are random variables that are independent of
each other for all i and t and are also independent of θ. We assume that
noise terms δi are unbiased, with variance σ2

i . For convenience, we mostly
assume that σi = 1 for all i, but we do not actually need this assumption.19

For any t, each profile of updating rules (m, γ) generates at any date t,
a distribution over date t opinions. We now define the expected loss (where
the expectation is taken across realizations of θ, δi, ξi and ηit, for all i and
t):

Lti = E(yti − θ)2

Define δ = (δ1, ..., δn), ξ = (ξ1, ..., ξn) and νs = (ν1s, ..., νns) for all s. Now
given the set of updating rules that we consider, it will become evident that

yti = btiδ + ctiξ +
t∑

s=1

dtisνs + θ

for some non-negative vectors bti, c
t
i and {dtis}ts=1.20 It follows that

Lti = E[btiδ + ctiξ +
t∑

s=1

dtisνs]
2

We define the limit loss Li = limt↗∞ L
t
i.

21 We assume that each agent i
aims at minimizing Li. Now whenever Li is finite, we can write it as

Li = L0
i + Vi where L0

i ≡ E(biδ + ciξ)
2.

The term L0
i results from variations in initial opinions and the persistent

component, while the term Vi results from the idiosyncratic components
only. Note that the distribution over θ plays no role, so θ can be normalized
to 0.

19We analyze the case with heterogenous variances only when this has pedagogical value.
20This is because θ enters additively in all opinions.
21Alternatively, one could define Li = limh↘0(1−h)

∑
ht−1Lti, assuming that the agent

makes a decision at a random large date in the future and that his preference over decisions
is ui(ai, θ) = −(ai − θ)2.
Li is well-defined for any vector m, γ so long as m 6= 0. As it will turn out, for m = 0, Li

is infinite. Note that each player can secure Li ≤ var(δi) = σ2
i = 1 by ignoring everyone

else’s opinions (mi = 1).
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There are two reasons why it is useful to decompose the loss Li. First, it
allows us to separate the effect of persistent and idiosyncratic errors. Second,
it turns out that when all γ’s are small, the losses Vi are small, and L0

i is
then the preponderant loss.

In the next Section we start by exploring the long-run properties of
different learning rules within the FJ class. Then we turn to the optimal
choice of learning rules.

3 Properties of learning rules

We are interested in long-run opinions: whether they converge to some limit
opinion and if they do, what determines the variance of the limit opinion.
In particular what part of it comes from the “signal”– the original seeds –
and what part from the noise that gets added along the way?

3.1 Exploding dynamics under DG

Our first result shows that if all agents follow a DG rule, as long as there is
any idiosyncratic component in the noise, the variance of long-run opinions
diverges. Moreover, for almost all realizations of the persistent component,
yti must diverge in expectation over time for all i.

To show this we fix x and ξ and define yti = Eyti and V t
i = var(yti). We

have:

Proposition 1: Assume that mi = 0 for all i. (i) If $0 > 0, then for
all i and any fixed x, ξ, limt V

t
i =∞. (ii) For almost all realizations of the

persistent components ξ, lim
∣∣yti∣∣ =∞ for all i and x.

For example, the proposition shows that a bias in a single player’s per-
ception ξ1 may be enough to drive up the opinions of all: if ξ1 > 0, say,
the bias creates a discrepancy with other’s opinions, and each time others’
opinions catch up, player 1 further raises his opinion compared to others,
prompting another round of catching up, and eventually all opinions blow
up.

We present here some intuition that explains why DG works well without
noise and becomes fragile as soon as there is some noise. Let yt denote the
vector of opinions at t. Let ∆n be the set of vectors of non-negative weights
p = {pi}i with

∑
pi = 1. For any i, we have yti = Biy

t−1 + γiε
t
i with

Bi ∈ ∆n. Because the network is connected, there is a strictly positive
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vector of weights π ∈ ∆n such that π.B = π,22 so

π.yt = π.yt−1 +
∑
i

πiγiε
t
i.

Without noise, the limit weighted opinion π.y coincides with the weighted
initial opinion π.x. This explains why in the absence of noise the influence
of initial opinions never dissipates (and also why all initial opinions matter
– as π >> 0): the direct contribution of i’s initial signal to i’s opinion van-
ishes, but it surfaces back from the influence of neighbors’ opinions (which
increasingly incorporate i’s initial signal), settling at a limit weight equal to
πi.

With noise however, π.y is a random walk, explaining why the influence
of initial opinions vanishes and why the variance diverge. Besides, the ran-
dom walk has a drift when

∑
i πiγiξi 6= 0, explaining why π.y then diverge.

3.2 Anchored dynamics under FJ.

Fixing again x and ξ, we now examine long-run dynamics under FJ. Define
yt = (yti)i and V t = (V t

i )i as the vector of expected opinions and variances.

Proposition 2. Assume at least one player, say i0, updates according
to FJ (with mi0 > 0).Then, for any fixed x, ξ, yt and V t converge. Besides,
the limit variance V does not vary with x and ξ, and the limit vector of
expected opinions y does not depend on the signal xi of any individual with
mi = 0.

Proposition 2 shows that to avoid that all opinions drift, it is enough
that there is one player who continues to put at least a minimum amount
of weight on his own initial opinion in forming his opinion in every period.
Proposition 2 also shows that when mi = 0, the signal initially received by
i has no influence on players’ long-run opinions. A detailed proof is in the
Appendix.

Before providing some intuition for the proof, let us consider a two-player
example where we set m2 = 1 and m1 = 0. Then player 2 always keeps the
same opinion (yt2 = x2 for all t) and

yt1 = γ1(x2 + ξ1) + (1− γ1)yt−1
1 +

= (x2 + ξ1)γ1(1 + (1− γ1) + ...+ (1− γ1)k−1) + (1− γ1)kyt−k1

22This is because when γi > 0 for all i, B = (Bi)i is an irreducible probability matrix.
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implying that yt1 converges to x2 + ξ1 as t grows large, independently of
player 1’s initial opinion. Player 2 serves as an anchor that prevents agent
1’s opinion from drifting. Long-run opinions however only incorporate player
2’s initial opinion.23

The general argument for convergence runs as follows. For any fixed x, ξ,
the expected opinion evolves according to

yt = ΓX +Byt−1 with B = I − Γ + Γ(I −M)A

where Xi = mixi + (1−mi)ξi, Γ and M are diagonal matrices with Γii = γi
and Mii = mi. When mi0 > 0 for some i0, proving convergence is standard24

and the limit expected opinion y is the unique solution of

y = X + (I −M)Ay (3)

Next, defining ηt = yt − yt and wtij = Eηtiη
t
j , we have

ηti = (1−mi)γiν
t
i +Biη

t−1

implying an expression for the evolution of the covariance vector wt = (wtij)
of the form

wt = Λ +Bwt−1,

where Bij is the row vector (Bij,hk)hk with Bij,hk = BihBjk and Λ is the col-
umn vector with Λii = (1−mi)

2γ2
i$0. Proving convergence to the solution

of
w = Λ +Bw (4)

is also standard.25

One immediate corollary of Equations (3) and (4) is that the loss terms
L0
i do not depend on γ or on the magnitude of the idiosyncratic component

$0, while the loss terms Vi are proportional to the idiosyncratic component

23More generally, up to noise terms, long-run opinions are determined by the opinions
of agents for which mi > 0.

24The key to convergence is whether
∑
j Bij < 1 for all i. When this is the case, we say

that B has the contraction property. When mi > 0 for all i, this property trivially holds:∑
j Bij = (1− γi) + γi(1−mi)

∑
j Aij < 1 for all i. When mi > 0 for only some players,

we use the fact that the network is connected to conclude that for some large enough K,
C = BK has the contraction property: with large enough K, then for any i, there are
paths of length K that go through i0 for which mi0 > 0.

25This is by the same logic as Footnote 24. Among all the K-step paths that start

in ij, there is at least one that goes through i0k for some k implying that B
K

has the
contraction property.
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$0 (and equal to 0 when $0 = 0). This also implies that when $0 = 0, the
parameters γ have no effect on Li, and we can focus on the weights m and
the analysis of the rule SFJ .

3.3 Fragility under low m.

Although convergence is guaranteed when at least one player does not use
DG, there is no discontinuity at the limit where all mi get small: long-run
opinions then become highly sensitive to the permanent component of the
noise, and the variance induced by the idiosyncratic errors becomes very
high. Formally, we have:

Proposition 3: Let m = maxmi. Then L0
i ≥ $

n
(1−m)2

m2 and Vi ≥
$0
2n

γ2(1−m)2

m .

The proof is in the Appendix. The lower bound on Vi is obtained as
a simple extension of the proof of Proposition 1. We provide here the key
step enabling us to obtain the lower bound on L0

i , as it highlights interesting
properties of the FJ process.

The lower bound on L0
i is obtained by showing that for given x, ξ, long-

run expected opinions are weighted average of modified initial opinions, de-
fined, whenever mi > 0, as

x̃i = xi + (1−mi)ξi/mi.

When mi > 0 for all i, one can write (using previous notations) X = Mx̃,
and (3) implies that each yi is an average over modified initial opinions:

y = Mx̃+ (I −M)AMx̃+ ((I −M)A)2Mx̃+ ... = Px̃ (5)

where P = (I − (I −M)A)−1M is a probability matrix (see Lemma 4 in
appendix). Intuitively, in each period, x̃i can be though of as the effective
seed for individual i, and all long-run opinions are averages over effective
seeds. For a fixed xi, the variance of each x̃i induced by the persistent

component is bounded below by $(1−m)2

m2 , so we obtain the desired lower
bound.

The argument can be generalized to the case where a subset N0 of agents
follows DG (mi = 0). Then long-run opinions become linear combinations
of modified opinions of the agents not in N0, and these modified opinions
are

x̂i = x̃i + (1−mi)Riξ
0/mi
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where Ri is a positive vector that only depends on the structure of the
network which captures the influence of agents in N0 on i (see Lemma 5).
In other words, long-run expected opinions only depend on the seeds x̂i that
agents not using DG incorporate into their own opinions. Our conclusion
regarding L0

i extends to this case.

The two-player case. With two players, assuming m1 and m2 strictly
positive and γ1 = γ2 = 1 (both use SFJ), the model can be solved by directly
substituting yt−2

2 , then yt−2
1 , and so on. Letting ρ = (1 −m1)(1 −m2), we

have:

yt1 = m1x̃1 + (1−m1)νt1 + (1−m1)yt−1
2

= m1x̃1 + (1−m1)m2x̃2 + (1−m1)νt1 + ρνt−1
2 + ρyt−2

1

which further implies:

yt1 =

K−1∑
0

ρk(m1x̃1+(1−m1)m2x̃2+(1−m1)νt−2k
1 +ρνt−2k−1

2 )+ρKyt−2K
1 (6)

which in turn gives us (7) and (8) below for the limits y1 and V1:

y1 = p1x̃1 + (1− p1)x̃2 with p1 = m1/(m1 + (1−m1)m2). (7)

V1 = $0
(1−m1)2 + ρ2

1− ρ2
(8)

This example confirms that p1 = 0 when m1 = 0 and it illustrates that when
both m1 and m2 get close to 0, 1−ρ ' m1 +m2, and the variance of opinion
V1 induced by the idiosyncratic noise gets arbitrarily high, approximately
equal to $0/(m1 +m2).

3.4 Comments

(a) On anchoring, influence and consensus: DG and FJ generate a very
different dynamic of opinions. Permanently putting weight on one’s initial
opinion is equivalent to putting a weight on the opinion of an individual
that never changes opinion: it anchors one’s opinion, preventing too much
drift. As a result, it also anchors the opinions of one’s neighbors, hence, the
opinions of everyone in the (connected) network.

The channel through which each player influences long-run opinions also
differs substantially. In the absence of noise, and for a given network struc-
ture, relative influence in DG depends on relative speed of adjustment γ.
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More precisely, let ρ ∈ ∆n be the vector such that ρ.A = ρ. When the
γi’s are identical across players, long-run opinions all converge to ρ.x, so ρi
defines i’s influence as determined by the network structure. When the γi’s
differ, long-run opinions all converge to π.x where π ∈ ∆n and

πi/πk = (ρi/γi)/(ρk/γk), (9)

which explains how both the network and speeds of adjustment determine
influence.26

In contrast, under FJ , only the mi’s (and the structure of the network)
affect the expected long-run opinions y. The speeds of adjustment γ have
no effect on expected long-run opinion, they only affect the variance induced
by idiosyncratic noise.

Regarding influence under FJ , it can be shown that at the limit where
all mi’s are very small, all long-run expected opinions are close to another
and close to p.x̃ where all pi are proportional to miρi, that is:

pi/pk = miρi/(mkρk),

Thus, close to the limit, mi plays the same role as 1/γi does in DG and
consensus obtains. As the mi’s go up however, consensus disappears: players
”agree to disagree”.

(b) On the fragility of DG: There is something inherently fragile
about the long-run evolution of opinions under DG. Since individuals don’t
put any weight on their own initial signal after the first period, the direct
route for that signal to stay relevant is through the weight put on their own
previous period’s opinion. This source clearly has dwindling importance
over time. This gets compensated by the growing weight on the indirect
route–each individual i adjusts his or her opinion based on the opinions of
their neighbors, and these are in turn influenced by i’s past opinions and
through those, by i’s initial signal. In DG without transmission errors, the
second force at least partly offsets the loss due to the force–but this is no
longer true when there is any transmission error because of the cumulative
effect of noise that comes with the feedback from others.

(c) On the source of change in opinion: One way to assess the
difference between DG and SFJ is to express them in terms of changes of

26To see why (9) holds, observe that, up to a multiplicative constant, π is the unique
solution of π.B = π where B = I − Γ + ΓA. Now observe that π = ρΓ−1 is one such
solution.
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opinions and opinion spreads. Defining the change of opinion Y t
i = yti−y

t−1
i ,

the change in perception of neighbors’ opinions Zti = zti−z
t−1
i , and the spread

between own and neighbors’ opinions Dt
i = zti − yti , we have the following

expressions:

Y t
i = γiD

t−1
i (DG)

Y t
i = (1−mi)Z

t
i (SFJ)

Under DG, one changes one’s opinion whenever there is a difference between
that opinion and the opinions of one’s neighbors: any difference generates an
adjustment, which is why the evolution is so sensitive to transmission errors.
Errors are eventually incorporated into the opinions of all the players, and
repeated errors tend to cumulate and generate a general drift in opinions.
The force towards consensus is too strong.

At the opposite extreme, under SFJ, players only incorporate changes
in the opinions of others. So, in the case where the transmission error is
always the same, ξ1 will generate a one time change on 1’s opinion, but it
won’t by itself generate any further changes for player 1. Of course, this
initial change of opinion will trigger a sequence of further changes – it will
be partially incorporated in player 2’s opinion, and therefore come back to
player 1 again. But, when mi > 0 for at least one player, the knock-on effect
will be smaller than the initial impact and will get even smaller over time.
Hence over all it won’t blow up. If all mi are small however, these indirect
effects are not dampened enough, and the consequence is a high sensitivity
of the final opinion to the magnitude of the errors.

(d) On talking and listening. We have so far introduced noise in the
reception of opinions. Other sources of noise are also plausible: for example,
not everyone needs to express their opinions to their neighbors every period,
potentially generating some randomness in the communication protocol. Or
there may be randomness in whether expressed opinions are actually heard
or processed. We will argue in Section 7.7 that these add to the fragility of
DG but leave SFJ largely unaffected.

4 Choosing the rule

Equipped with these insights about the properties of different rules, we now
return to the main question of this paper: what rule will people choose
and what rule should they choose (and are these the same)? Recall that
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we already specified the objective function of any individual i, which is to
minimize the loss function.

Li = E(yi − θ)2

To fix ideas it is worth starting with the case where there is no noise. In
this case

yti = (1− γi)yt−1
i + γi(mixi + (1−mi)Aiy

t−1)

As t becomes large, this system of equations must converge to limiting values
of yi, given by the system of equations

yi = mixi + (1−mi)Aiy

for all i. This implies that

yi =
∑
j

bijxj =
∑

bij(θ + δj) = θ +
∑
j

bijδj

where βij ≥ 0 and
∑

j βij = 1. Therefore

Li = E(
∑
j

bijδj)
2

Under our assumption that the variance of the δj ’s are identical, it is evident
that across all possible probability vectors (bij)j , Li is minimized by choosing
bij = 1

n so that all the yi would be equal to
∑

j
1
nxj . However bij are

endogenously determined by the underlying rules that the players adopt, so
there is no guarantee that these weights will be implemented as a result of a
rule that results from individual choice. In particular, if all the yi are going
to be the same then they must all satisfy

yi = mixi + (1−mi)yi or equivalently, miyi = mixi.

Since the realizations of xi may differ, the equality of the yi requires mi = 0
for all i. There is thus no way to get to bij = 1

n unless mi = 0 for all i.
In other words, within the class of rules we consider, DG rules are the only
ones that even offer the possibility of reaching the lowest feasible Li.

27

27In fact as observed in the seminal paper by De Marzo et al. (2003), for generic
networks, for any finite n, even DG rules will not implement these weights, though for
large n the outcomes generated by DG rules will approximately minimize Li, for a large
class of networks (Golub and Jackson (2010)).
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However as soon as there is some noise, we already saw that the outcome
generated by any DG rule drifts very far from minimizing Li. The loss grows
without bound. Indeed from the point of view of the individual decision
maker it would be better to ignore everyone else than to follow DG. In
fact all strategies that put too little weight on their own seed (recall DG
puts zero weight) are dominated from the point of view of the individual
decision-maker, as well as being socially suboptimal.

Proposition 4: Let m = $/(1 + $). Any (mi, γi) with mi < m is
dominated by (m, γi), from the individual and social point of view.

Regarding the choice of the individually optimal rule, Proposition 4
builds on two ideas. First, if all other players use DG, then for agent i,
any mi > 0 is preferable to DG because everyone’s opinion drifts off indef-
initely if mi = 0, as we saw above. Second, if some players use FJ (with
mj > 0), then initial opinions of these players xj (plus any persistent noise
in their reception of the signal) totally determines the long run outcome and
the seeds of all the players that use DG do not get any weight – they end
up as pure followers. This is not desirable for the same reason why, in the
absence of noise, the ideal rule puts strictly positive weight on all the seeds.
Hence the lower bound on mi.

To see why this is also true of the socially optimal rule, i.e. the rule
that minimizes

∑
i Li, we observe that when mi = 0, the only effect of

information transmission by i to his neighbors is to introduce i’s perception
errors into the network. When i raises mi above 0, he raises the quality of
the information he transmits, while reducing the damaging echo effect that
low mi generates.

The next Proposition provides further characterization of the privately
optimal choice of mi. To simplify exposition, we focus on the case where
the idiosyncratic component is null ($0 = 0), so the outcome does not
depend on γ. For the purpose of explaining how mi is affected by own and
others quality of initial signals and transmission errors, we allow here for
heterogenous disturbances. Recall σ2

k is the variance of k’s initial opinion and
$k the variance of k′s persistent component. Also let Wk = σ2

k+$k(
1−mk
mk

)2.
We have:

Proposition 5. Player i’s optimal choice mi satisfies:

mi

1−mi
=
$i + (1− λi)2

∑
k 6=i(rik)

2Wk

σ2
i (1− λi)

where λi and ri = (rik)k 6=i ∈ ∆N−1 only depend on A and m−i.
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We see from this that mi’s response shifts up when the variance of his
own signal (σ2

i ) goes down or that of anyone else (σ2
k) goes up. It also shifts

up when the variance of the error term goes up. It further implies that the
best response is a continuous function (which we know maps into a compact
set [m, 1]), so existence of an equilibrium is guaranteed.

Finally, although we are unable to fully characterize the social optimum,
the following Proposition clarifies the relationship between the private and
social optima.

Proposition 6: At any Nash equilibrium, any player would increase
aggregate social welfare by increasing mi further.

The next subsection fully studies a simpler environment (two players),
where we explore the equilibrium, the social optimum and the relation be-
tween the two in greater detail. We provide below some intuition for Propo-
sition 6.

A convenient way to express player j’s opinion is by seeing it as an
average between sources different from i that are unmediated by i’s opinion,
and player i’s opinion (see Lemma 6 in Appendix):

yj = (1− µji)Qij x̃−i + µjiyi

where µji ∈ (0, 1) and Qij is a probability vector. Since we consider the

influence of x̃−i through channels that are unmediated by i, µji and Qij are
independent of mi.

The expression above permits us to separate the loss Lj into three terms:

Lj = (1− µji)2var(Qij x̃−i) + µjiLi + 2(1− µji)µjiCov(Qij x̃−i, yi). (10)

When mi is raised above i′s private optimum, there is no effect on the first
term because it only depends on sources other than i. There is a second-
order effect on the second term (because we start at i′s private optimum).
The last term is what creates a discrepancy between private and social
incentives.

This last term captures the correlation between sources other i and the
opinion of i. The correlation is positive for two reasons:

(i) Any report made by j incorporates x̃j and eventually reaches i who
also incorporates it in yi, and yi in turn affects j (µji > 0). This is an echo
effect.

(ii) Whenever there are paths that go from k to j without going through
i and others that go from k to i without going through j, x̃k contributes to
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j’s opinion through both the unmediated channel (so Qijk > 0) and through
i’s opinion (µji > 0). This a confounding effect : when j hears yi, she/he
cannot separate the seeds x̃i and x̃k (for k 6= i) which both contribute to yi.

When mi increases, the influence of each k 6= i on i’s opinion is reduced,
and the correlation between yi and x̃k is also reduced. Overall, starting at
a Nash equilibrium, Lj goes down when mi is raised.

5 Equilibrium and Efficiency in Simple networks.

To derive more specific insights into the relation between equilibrium and
efficiency in the rule choice game, we now turn to two specific examples:
a two-player network and a network in the form of large circle, both cases
where closed-form expressions are easy to compute. We focus on persistent
errors, unless mentioned otherwise.

5.1 Two-player case.

Social optimum. With two players we have

yi = mix̃i + (1−mi)yj , (11)

which yields yi = pix̃i+(1−pi)x̃j with pi = mi/(mi+(1−mi)mj) (see (7)).
This further yields

L1 = I(p1) + (p1)2X (m1) + (1− p1)2X (m2)

where I(p) = p2 + (1− p)2 is the variance of long run opinion in the absence

of transmission noise (minimized at p = 1/2),28 and X (m) = $ (1−m)2

m2

measures the variance of cumulated error term. The total social loss is
L1 + L2.

It is easy to check that minimizing the social loss requires setting identical
values for m1 and m2. When both players use the same rule (m = m1 = m2),
the loss is:

L = I(
1

2−m
)(1 + X (m)) =

1

2
(1 +

m2

(2−m)2
)(1 +$

(1−m)2

m2
)

Given that initial opinions are equally informative, optimal information ag-
gregation in the absence of noise by both players (which amounts to mini-
mizing I(p)) would require setting pi = pj = 1/2. This is not feasible, but

28This is under our assumption that the variance σ2
i is equal to 1 for all i.
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if m is small enough, pi and pj are both close to 1/2 and I(p) is potentially
close to its minimum. When m goes up from close to zero, the contribution
of initial opinions to long-run opinions become asymmetric (pi, pj > 1/2),
and this pushes I(p) up. Indeed as the expression for I( 1

2−m) makes clear,
the logic of standard information aggregation gives the players a joint in-
centive to reduce m. However as the second term in the expression for L,

(1 + $ (1−m)2

m2 ), makes evident, there is also a cost to lowering m. When
$ > 0 and m is small, communication errors are hugely amplified. Welfare
is maximized for an m∗∗ that optimally trades off these two effects and the
socially efficient weight m∗∗ (which minimizes L) can be significantly dif-
ferent from 0 even when $ is small (for $ = 0.0001, m∗∗ = 0.13 and for
$ = 0.001, m∗∗ = 0.21).29

Nash Equilibrium. We now assume that individuals choose their rules
non-cooperatively and see what this does to the choice of rules.

For very low m2, player 1 should choose m1 close to m2 for information
aggregation purposes, but this would generate very high cumulated error,
and player 1 is better off ignoring player 2 (m1 close 1). For higher m2, in-
formation aggregation is the main issue, and getting p1 close to 1/2 requires
choosing m1 < m2. A similar best response curve obtains for player 2.

0.0 0.1 0.2 0.3 0.4 0.5
m20.0

0.1

0.2

0.3

0.4

0.5
m1

m2
*(m1)

m1
*(m2)

Figure 1: Best responses, $ = 0.01

The point where curves cross defines the equilibrium weights (m∗1,m
∗
2).

29For $ arbitrarily small, 2L ' 1+ m2/4 +$/m2, so m∗∗ ' (4$)1/4.
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Private versus social incentives. Computing the social optimum and
Nash equilibrium values as a function of $, we obtain the following Figure.
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ϖ0.0
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m
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Figure 2: Equilibrium and socially optimal weights m∗ and m∗∗

Equilibrium weights are below socially optimal weights, as expected.
As explained earlier, the discrepancy between social and private incentives
arises from the covariance term Cov(x̃2y1) (see (10)) and the observation
that this term strictly decreases with m1, which can be checked directly as,
using (11), we have:

Cov(x̃2y1) =
(1−m1)m2

m1 + (1−m1)m2
var(x̃2).

Finally, we observe that, under SFJ, adding idiosyncratic noise to the
persistent noise makes the incentive to increase mi even stronger. Using (6)
we get:30

L1 = I(p1) + ((p1)2X (m1) + (1− p1)2X (m2))(1 +
1− ρ
1 + ρ

$0

ω
).

With idiosyncratic transmission errors, the variance of the error term is
thus amplified proportionally. Efficient and Equilibrium weights on one’s
own signal both go up.

Information aggregation and welfare loss. The loss in welfare is sig-
nificant relative to a benchmark case where players would observe (with
transmission noise) the initial opinion of the other player(s) in the network
and perfectly aggregate this (these) signal(s) with their own opinion. Under

30Recall ρ = 1− (m1 + (1−m1)m2).
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this benchmark, a persistent noise of magnitude $ = 0.05 would yields a
total loss L = 1.024. Under FJ, the minimum loss rises up to 1.164. The
equilibrium loss is even higher, 1.187. Figure 3 summarizes how welfare
levels compare between the Nash equilibrium, the social optimum and the
benchmark case as $ varies.

0.02 0.04 0.06 0.08 0.10
ϖ

1.05

1.10

1.15

1.20

1.25

Total Loss

Social optimum

NE

Benchmark

Figure 3: Losses

Even when transmission errors are small, equilibrium weights may be
high, implying significant dispersion in opinions and welfare losses in the
long-run.

5.2 Large circle case.

Social optimum Next we consider a large circle where information trans-
mission is directed and one-sided: player i communicates to player i+1, who
communicates to i+ 2, and so on.31 Long-run opinions satisfy

yi = mix̃i + (1−mi)yi−1.

Hence if player i chooses mi and all other players choose m, we have

yi = mix̃i + (1−mi)(Z + (1−m)n−1yi) where Z = m

n−2∑
k=0

(1−m)kx̃i−1−k.

(12)
One can use this expression to derive yi and its variance J(m) when all
choose the same m and n is set arbitrarily large:

J(m) =
m

2−m
(1 + X (m)),

31Player n+ 1 coincides with player 1.
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which is minimized at some m∗∗ for which J ′(m∗∗) = 0.32 As in the two-
player case, there is trade-off between improving information-aggregation
(which calls for reducing all mi close to 0) and reducing the amplification of
communication errors (which calls for increasing all mi).

Private and social incentives. We first check directly that private and
social incentives coincide. One may use (12) to write:

Li = (mi)
2(1+X (mi))+(1−mi)

2J(m) = (mi)
2+(1−mi)

2($+J(m)). (13)

At a symmetric Nash equilibrium m∗, private incentives require mi = (1 −
mi)($ + J(m∗)) with mi = m∗. Since J(m) = m2 + (1 −m)2($ + J(m)),
this implies J ′(m∗) = 0, so m∗ is also a social optimum.33

To connect this result with the intuition provided earlier on the source
of discrepancy between private and social incentives, consider j = i+k, that
is, j is k communication steps away from i. We have

yj = m

k−1∑
s=0

(1−m)sx̃j−s + µjiyi where µji = (1−m)k

As explained earlier, the magnitude of the terms µjiCov(x̃j−s, yi) is key.
When n is large, either k is large and µji = (1−m)k is negligible, or n− k
is large and then Cov(x̃j−s, yi) is small (because j − s is at least n − k
communication steps away from i). So as the circle gets very large, private
and social incentives coincide.

Information aggregation and welfare loss. The loss in welfare is again
significant relative to the benchmark case where players would observe (with
transmission noise) the initial opinion of each other players in the network
and perfectly aggregate these signals.34 Under this benchmark, each player’s
loss would be close to 0.35 Under FJ, the loss remains bounded away from

32m∗∗ solves m2

1−m = $, which further implies J(m∗∗) = m∗∗.
33Note that the social optimum is symmetric: if L is the minimum loss that a player

experiences at the social optimum, then L ≥ φ(L) = minm(m)2 + (1−m)2($+L), which
implies L ≥ limn φ

n(0). φ(L) = ($ + L)/(1 + $ + L), so φ is a contraction and since
φ(J(m∗∗)) = J(m∗∗), limn φ

n(0) = J(m∗∗).
34For i, this corresponds to getting the opinion zj = xj + εi if j is a neighbor, and

zk = xk + εi + εj if k is not a neighbor of i but a neighbor of j, and so on.
35Even with transmission errors, the variance of the opinion of a neighbor at k steps

is vk = 1 + k$. Since it grows linearly with k, the optimal weighting of these opinions
would lead to an opinion with variance (

∑
1/vk)−1, which goes to 0 with k.
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0: m∗ is of the order of $1/2 when $ is very small, and N = 1/J(m∗) is
a measure of the quality of the aggregation of information: it represents
the number of signals that are eventually aggregated into the information
of each player. For example, with $ = 0.05, m∗ = 0.2, J(m∗) = 0.2, and a
player’s long-run information is comparable to her having received only five
independent signals (hence only four additional signals), out of the infinite
pool that is available when the circle is arbitrarily large. We draw N as a
function of $.
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Figure 4: Information aggregation: large circle

6 Choosing among a richer class of rules

In Section 4, we examined incentives to modify the weight mi. We now
turn to the other sets of weights, the γi. A potential issue with FJ where
γi is large is that long-run opinions are sensitive to idiosyncratic noise in
transmission, and more generally to temporary changes in other’s opinions.
Choosing a lower γi slows down these reactions, hence opinions are only
mildly affected by temporary shocks on perception and temporary variations
in others’ opinions. The next Proposition examines the effect of γ on the
variance Vi induced by the idiosyncratic errors, as well as incentives for an
individual to choose a low γi:

Proposition 7: Fix m. We have:
(i)There exists c such that for any γ > 0 and m ≥ m, Vi ≤ cmax γj .
(ii) For any γ−i > 0, there exists c such that for all m ≥ m, Vi ≤ cγi.

The proof is in Appendix B. Item (i) shows that when all γi are small,
all Vi are small. Item (ii) shows that by choosing γi very small, a player can
get rid of the additional variance induced by the idiosyncratic noise.
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While the incentive is clear, a technical issue potentially arises if players
wish to set γi arbitrarily small, as γi > 0 is an open interval.36 We address
this issue in the Appendix by showing that when all γ’s are restricted to
be above some lower bound γ, any player i can secure a loss Vi no larger
than 1/ | log γ | by choosing γi = γ.37 So if γ is small, Vi must be small
in equilibrium. This also implies that investigating the properties of the
game without idiosyncratic noise is a good enough approximation when γ is
small.38

Also observe that the incentive to set γi arbitrarily small obviously de-
pends on the assumption that players only care about long-run opinions. If
players also cared about opinions at shorter horizons, then they would have
incentives to increase γi to more quickly absorb information from the opin-
ions of others: the trade-off is between increasing the rate of convergence
(which is desirable when the relevant horizon is shorter) and increasing the
variance induced by idiosyncratic noise (which is not desirable).

7 Extensions and interpretations

In this section we discuss extensions of and possible variations upon our
base model, with the view to understand why different rules lead to different
degrees of information aggregation in different settings. The general point
is that long-run dispersion of opinion remains part of the answer and indeed
there are reasons to expect that adding the new elements exacerbates this
property.

7.1 Biased persistent noise

We have so far assumed that the persistent noise is drawn from a distribution
that is mean zero. One can however imagine settings where it is more
reasonable to assume that the persistent noise is biased, centered on ξ0

i for
player i, for example because some individuals are biased in what they report
(for whatever reason). That could for example be because they are truly
biased and therefore try to sway opinion in the direction of their bias, or
because they believe that others are biased and try to correct for it.

36Note that the limit opinion-formation process where γi tends to 0 is not the process
where γi = 0 (under which no change in opinion would occur).

371/ | log γ | is small number when γ is small.
38In particular, if (m∗, γ∗) is an equilibrium of the game, then m∗ is an ε−equilibrium

of the game with no idiosyncratic noise, with ε comparable to 1/ | log γ |.
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In any case it makes sense to consider a variant of the updating rule FJ
in which the agent can shift the opinion he incorporates by a constant ci,
so as to try to undo the systematic biases in his perception or perception of
others:

yti = (1− γi)yt−1
i + γi(ci +mixi + (1−mi)z

t−1
i ) (FJc)

Suppose that in all other respects, the model is as before. For any (m, γ, c),
this shift does not affect the variance of opinions resulting from idiosyncratic
noise, but it shifts all long-run opinions. Regarding expected long-run opin-
ions, theses shifts imply as before that yi is a linear combination Pi of the
modified opinions x̃j where

x̃j = xj +
(1−mj)ξj + cj

mj

The linear combination Pi is independent of c, so for any fixed (m, γ), each i
can in principle set ci to fully offset the systematic bias in transmission and
this turns out to be optimal. 39 If ci cannot be adjusted (e.g., ci = 0 for
all i), then the bias ξ0

i amounts to an increase in the variance of own error
term $i, which, as Proposition 5 explains, generates further incentives to
increase mi: intuitively, when ξ0

i increases, opinions of others become a less
accurate estimate of θ, and i prefers to put more weight on his/her own.

7.2 Heterogenous preferences

Assume that preferences of player i are quadratic (i.e., u(a, θi) = −(a−θi)2)
but vary in their relation to the common component θ:

θi = θ + bi (14)

and that xi is a noisy estimate of one’s preferred point, that is,

xi = θi + δi (15)

Define Y t
i = yti−bi, Xi = xi−bi and βi = (bj−bi)j . The ”debiased” opinions

Y t
i evolve according

Y t
i = (1− γi)Y t−1

i + γi(ci +miXi + (1−mi)(z
t−1
i +Aiβi))

39Letting L0
i denote the loss when all ξi are centered on 0, and Ci = (1−mi)ξ

0
i +ci. We

have Li = L0
i +(PiC)2, and Li is minimized for Ci = −

∑
j 6=i Pi,jCj/Pi,i. The equilibrium

loss thus coincides with L0
i , and ci = −(1−mi)ξi for all i is an equilibrium.
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and the problem becomes formally equivalent to the homogenous preference
case with a persistent transmission term Aiβi added. If the biases b are
fixed and if players can adjust ci optimally, then like in the previous case,
in equilibrium players can offset the bias by setting

ci = −(1−mi)Aiβi.

and the analysis is formally equivalent to the homogenous preference case,
and the issue we raised (in particular, the fragility of long-run opinions to
transmission errors) apply. In contrast, if players are unable to adjust ci
(e.g., ci = 0), then the term Aiβi is akin to a systematic bias ξ0

i , which, as
explained in the previous subsection, generates incentives to further increase
mi.

Finally, consider the intermediate case where players can adjust ci, but
biases are not fixed and players can only adjust ci on average across realiza-
tions of the β’s. Said differently, across problems, there are variations in the
heterogeneity, and players are unable to tune ci to each realization of the
heterogeneity. Then the problem is formally equivalent to one where prefer-
ences are homogenous and a persistent transmission term Aiβi is added.40

The general take-away should be that there are many potential sources
of errors which will favor the choice of FJ over DG rules. To illustrate
with one final example, assume that i misperceives other’s preferences. He
perceives β̂i instead of βi and erroneously sets ci = −Aiβ̂i(1−mi). Then the
difference (1−mi)Ai(βi − β̂i) is akin to an additional (independent) source
of persistent bias/noise in transmission.

7.3 Other communication protocols

We have followed the standard approach to modeling communication in this
literature, with each player communicating with all his neighbors at every
date.41 We now consider an extension where each round of communication is
one-sided and, at any date t, each agent i only hears from a subset N t

i ⊂ Ni

of his neighbors but there exists K such that each player hears from all
his neighbors at least once every K periods.42 Imperfect communication is

40One difference with the case examined in the basic model however is that the βi’s are
correlated: with two players, Aiβi = bj − bi = −Ajβj . Nevertheless, so long as there still
exists a persistent noise term ξi (with all ξi drawn independently of the βi’s), Proposition
3 applies, as for each realization of β, all mi < m are dominated.

41Banerjee et al. (2019) introduce the idea of a Generalized DeGroot model where not
everyone starts with a signal and therefore does not participate in the communication till
they get a signal. They show that this partially weaken the ”wisdom of crowds”.

42That is, for all t : ∪s=1,..,KN
t+s−1
i = Ni.
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modeled as before, through the addition of an error term εti that slants what
i hears. Together these give us

zti,j = yt−1
j + εti if j ∈ N t

i

zti,j = zt−1
i,j if j ∈ Ni\N t

i

where zti,j is i’s current perception of j’s opinion, based on the last time he
has heard from j. Player i uses these perceptions to construct an average
over neighbor’s opinions

zti = AiZ
t
i

where Zti = (zti,j)j is the vector of i’s perceptions and Ai defines as before

how i averages neighbors’ opinions.43 We continue to assume FJ updating.
For fixed x, ξ, define yti = Eyti , Y

t
i = (yt−ki )k=0,..,K , the column vector of

i’s past recent opinions, and Y t = (Y t
i )i. One can write Y t = X + BY t−1.

Y t converges for standard reasons, to some uniquely defined Y . Consider
now the vector y solution to

yi = mixi + (1−mi)Ai(y + ξi)

and let Y i = (yi, ..., yi) and Y = (Y i)i. By construction, under this profile
of opinions, it does not matter when i heard from j because opinions do not
change. Y thus solves Y = X + BY and it coincides with Y . The limit
expected opinion vector under FJ is thus independent of the communication
protocol.44

This robustness contrasts with what happens when players use DG rules.
As we explain in the Appendix with a simple example, changes in the pro-
tocol and in particular, the frequencies with which players communicate
amount to changes in the values of γi (when you hear less often from others,
your opinion changes more slowly, effectively reducing γi), and even when
communication is noiseless, changes in γi modify long-run opinions.

To illustrate this, consider the two-player case with noiseless communi-
cation. Under DG, for i and j 6= i, yti = (1− γi)yt−1

i + γiy
t−1
j , so for any α,

β such that βγ2 = αγ1,

αyt1 + βyt2 = ((1− γ1)α+ βγ2)yt−1
1 + ((1− γ2)β + αγ1)yt−1

2

= αyt−1
1 + βyt−1

2 = αx1 + βx2

43We abuse previous notations here, using the restriction of vector Ai to i’s neighbors
(Ai was previously defined over all players, with weight 0 on non-neighbors).

44So long as the condition in footnote 42 holds.
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Since yt1 − yt2 converge to 0,45 yti converges to the common long-run opinion

y =
αx1 + βx2

α+ β
=
γ2x1 + γ1x2

γ1 + γ2

Thus when γ1/γ2 rises, long run opinions get closer to player 2’s initial
opinion (see also (9) in Section 3.4).

Thus, even in the absence of transmission errors, variations in the com-
munication protocol induce additional variance in long-run opinions which
can be mitigated by the use of FJ rules by all players. Nevertheless, in the
absence of transmission errors, long-run opinions under DG remain averages
over initial opinions, so the fragility we have highlighted is not as severe: the
variance induced by variations in the protocol remains bounded even when
mi = 0.

7.4 Uncertainty over the precision of initial signals.

We examine here another variation of the model, assuming that the precision
of initial signals is a random variable. We will argue that in the absence of
transmission errors, this type of shock does not affect the performance of DG
and therefore, unlike in the case of the previous examples of variations on
the classic DG setting, there is no incentive for players to use the instrument
mi.

Formally, assume that each the speed of adjustment γi as a linear func-
tion of the variance of signal, that is, γi = µiσ

2
i . Then for well-suited

coefficients µ∗ = (µ∗i )i information aggregation is perfect, which further im-
plies that this particular µ∗ is also a Nash Equilibrium of the game where
each chooses µi.

To see why, recall that under DG, the consensual long-run opinion is a
weighted average of initial opinions, with weights proportional to ρi/γi (see
(9)). So if the µi’s are proportional to ρi, the weights become proportional to
ρi/γi, hence proportional to 1/σ2

i , implying that perfect aggregation obtains
for each vector of realization (σ1, ..., σn).

7.5 Coarse communication

In the social learning literature, it is common to focus on cases where the
choice problem is about whether action 1 or action 0 should be taken, and the

45The usual contraction argument works: yt2 − yt1 = (1 − (γ2 + γ1))(yt−1
2 − yt−1

1 ) so
| yt2 − yt1 |≤ k | yt−1

2 − yt−1
1 | for k < 1
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information being aggregated is which of the two is being recommended by
others. Frick et al. (2019) explore this class of models under the assumption
that the agents may have erroneous priors, which is related to our emphasis
on the role of errors in transmission in social learning.

We introduce this into our model by assuming that θi = θ + bi charac-
terizes i’s preference (as in (14)) but that the optimal action a∗i is 1 when
θi > θ∗, 0 otherwise. Agent i knows the bias bi and does not know θ per-
fectly. He has an initial opinion xi = θ+δi and aggregates opinions of others
to sharpen his assessment of θ. Assume the bi’s are drawn from identical
distribution F with full support on R. Call q = h(θ) the fraction of agents
that would choose a = 0 if their opinion was θ, and let φ(q) ≡ h−1(q).46

A player with current opinion yti about θ reports ati = 1 to neighbors if
yti + bi > θ∗ and ati = 0 otherwise. From a vector of reports, he computes
the fraction f ti that report 0, and uses this as an input to make an inference
about others’ opinions. A plausible rule is

zti = φ(f t−1
i ) + ξi

where ξi is a persistent bias in making inferences.47 He next incorporates zti
using FJ to generate a new opinion yt+1

i .48

In the special case where the number of agents is large, each player hears
from all other and all agents are subject to a perception bias ξi = ξ > 0, DG
rules generate a dynamic that induces all players to report 1 independently
of the state of the world.49 Assume a fraction at most equal to f > 0 reports
0. Each makes an inference zi at least equal to φ(f)+ξ regarding neighbors’
opinions, so eventually, under DG, each player of type bi may only report 0

46h(θ) = Pr(θ + bi < θ∗) = F (θ∗ − θ). Choosing an F that arises from a density with
full and unbounded support ensures that h is strictly decreasing from R to (0, 1).

47In the terminology of Frick et al. (2018), ξi could stem from an erroneous prior F̂ 6= F .

Indeed, define ĥ(θ) = F̂ (θ∗ − θ) and φ̂ = ĥ−1. If agents use φ̂ to make inferences, i.e.,

zti = φ̂(f ti ), then the difference φ̂(f ti )− φ(f ti ) is a systematic bias in making inferences.
48Note that the loss function is no longer quadratic, but once one defines utili-

ties u(a, θ, θi), one can define loss functions, hence, further, express long-run expected
losses as a function of the profile of updating rule. The optimal action given θ is
σ∗(θ, θi) = arg maxu(a, θ, θi). Players form opinions yti and report ati = σ∗(yti , θi). We
assume that, eventually, if they take a decision at t, they mechanically use yti and choose
ati = σ∗(yti , θi).The loss associated with a decision taken at t is

Lti = E(u∗i (θ, θi)− u(σ∗(yti , θi), θi))

where u∗i (θ, θi) = u(σ∗(θ, θi), θi), and agent i cares about minimizing the long-run ex-
pected loss Li = limt↗∞ L

t
i.

49The assumption can be weakened to heterogenous biases ξi at least equal to ξ > 0.
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if bi + φ(f) + ξ < θ∗. Under the large number approximation, a fraction at
most equal to f ′ = h(φ(f) + ξ) < f report 0, hence this fraction of agents
reporting 0 eventually vanishes.

In contrast, under FJ with mi sufficiently large, long-run opinions remain
anchored on initial opinions, and opinions remain bounded (and correlated
with the underlying state θ). For example, when all signals xi coincide (say,
xi = x = θ + δ), the long-run opinion must solve:

h(m(x+
(1−m)ξ

m
)) + (1−m)φ(f)) = f

hence

φ(f) = x+
(1−m)ξ

m
.

The trade-off is thus similar to the one in our basic model. Raising m
reduces fragility with respect to transmission noise, dampening the echo
term (1−m)ξ

m . However, it creates heterogeneity in agents beliefs when initial
opinions xi differ.50

Said differently, with agents who constantly seed in their own initial
opinion xi, the drift in opinions remains bounded. Information aggregation
is not perfect because of the positive weight mi, opinions remain dispersed
in the long run, but they remain correlated with the underlying state.

Frick et al. (2019) obtain a fragility result similar to the one obtained
above under DG. They consider players who naively apply Bayesian up-
dating to their erroneous priors. Like DG, Bayesian updating incorporates
a strong forces towards consensus, which eventually makes both processes
(DG and Bayesian updating) fragile to errors.

FJ processes can be seen as a potential fix to the fragility of DG or
Bayesian processes: by allowing for heterogenous opinions or beliefs and
by triggering updates based on variations in others opinions (rather than
discrepancies between others’ and own opinions), they end up being more
robust, not subject to this particular form of fragility.

50With a large number of neighbors, and heterogenous initial opinions, the long-run
fraction f must solve:

Eh(m(θ + δi +
(1−m)ξ

m
) + (1−m)φ(f)) = f

If h is locally linear around, this yields φ(f) = θ + (1−m)ξ
m

: aggregation of private signals

allows a perfect inference θ, up to the persistent echo effect (1−m)ξ
m

.
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7.6 Non-linear aggregation rules

We consider next an extension to non-linear updating rules. In DG, opinions
adjust as a function of the spread between of own and others’ opinions, and
the adjustment is linear in the spread. We examine a two-player example
where the adjustment is linear for player 1, and non-linear for player 2.

Formally, denote by ∆t
i = ytj − yti the spread of opinion between j and i,

and assume that
yti = yt−1

i + γi(φi(∆
t−1
i ) + εti)

where
φ1(∆) = ∆ and φ2(∆) = ∆− dρ(∆)

with ρ(∆) = 1−exp−∆2. In other words, player 1 adopts the standard linear
DG rule, while player 2 adopts a rule in the spirit of DG but less sensitive
to bigger variations in ∆ than a linear rule (for small ∆, φ2(∆) ' ∆−d∆2).

Choose α and β such that α+ β = 1 and αγ1 = βγ2. Next define

Y t = αyt1 + βyt2 and ∆t
1 = yt2 − yt1.

Letting εt = αγ1ε
t
1 + βγ2ε

t
2, we have:

Y t = Y t−1 + αγ1φ1(∆t−1
1 ) + βγ2φ2(−∆t−1

1 ) + εt

= Y t−1 − dβγ2ρ(∆t−1
1 ) + εt

In other words, when both players use the linear DG, Y t is a random walk.
When players do not both use the linear DG rule, and one player uses an
adjustment that is more conservative for large spread, then Y t is a random
walk with a negative drift. The drift is determined by ρ(∆t−1

1 ), so it is
vanishing if ∆t

1 tends to 0, but, for any t, ∆t is actually bounded away from
0 with positive probability,51 which implies that Y t diverge.

7.7 Non-stationary weights.

The updating processes that we consider have stationary weights. Agents
do not attempt to exploit the possibility that early reports possibly reveal

51Indeed, the evolution of ∆t
1 is determined by

∆t+1
1 = (1− (γ1 + γ2))∆t

1 − dβγ2ρ(∆t
1) + ηt

where ηt = γ2ε
t
2−γ1εt1. This implies that the spread ∆t

1 tends to revert to 0, but the noise
term ηt keeps it up bounded away from 0 with positive probability. Hence the negative
drift for Y t.
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more information than latter reports: later reports from neighbors may
incorporate information that one has oneself transmitted to the network,
and therefore should have lesser impact on own opinion.

As a matter of fact, with two players, one could imagine a process in
which (i) player 1 combines the first report he gets with own opinion, yielding
y1 = m1x1 + (1 −m1)(x2 + ε), and then ignores any further reports from
player 2; and (ii) player 2 follows DG. With m1 set appropriately, such a
process would permit player 1 to almost perfectly aggregate information and
player 2 to benefit from that information aggregation performed by player
1.

There are however important issues with such time-dependent processes.
In particular, it is not obvious how one extends these to larger networks since
they require that each person knows his or her role in the network. They
are also sensitive to the timing with which information gets transmitted or
heard. With some randomness in the process of transmission, it could for
example be that the first report y2 that player 1 hears already incorporates
player 1’s own signal (because after a while y2 starts being a mixture between
x2 and x1), and as a result, player 1 should put more weight on the opinions
of others. But of course, in events where y2 = x2, this increase in weight
makes information aggregation worse.

To illustrate this strategic difficulty in a simple model with noisy trans-
mission, assume that time is continuous, communication is one-sided (ei-
ther 1->2 or 2->1), with each player getting opportunities to communi-
cate at random dates. The processes generating such opportunities are as-
sumed to be two independent Poisson process with (identical) parameter
λ. Also assume that a report, once sent, gets to the other with probabil-
ity p. Consider the time-dependant rule where each person communicates
own current opinion, and current opinion coincides with their initial opin-
ion if one has not received any report (yi = xi), and otherwise coincides

with yi = mixi + (1 −mi)z
f
i where zfi is the perception of the first report

received. Even if perceptions are almost correct (i.e. perceptions almost
coincide with the other’s current opinion), the noise induced by the com-
munication channel generates uncertainty about who updates first, hence
variance in the final opinion for all mi. For example, in events where player
1 already sent a report and receives one from player 2, it matters whether
player 2 received the report that 1 sent and incorporated it into her opinion,
or whether player 2 failed to receive the report, in which case what player 1
gets is player 2’s initial opinion.

In contrast, the time-independent FJ is not sensitive to that noise and
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achieves reasonably good information aggregation for many values of m =
m1 = m2. FJ rules conveniently address a key issue in networks: whether
what I hear already incorporates some of what I said.

8 Concluding remarks

We end the paper with a discussion of issues that we have not dealt with,
and which may provide fruitful directions for future research.

One premise of our model is that everyone has a well-defined initial
signal.52. However the analysis here would be essentially unchanged if some
players did not have an initial opinion to feed the network and were thus
setting mi = 0 for the entire process. FJ would aggregate the initial opinions
of those who have one.

In real life many of our opinions come from others and in ways that
we are not necessarily aware of, and the existence of a well-defined ”initial
opinion” could be legitimately challenged. In other words, people may have
a choice over the particular opinion they want to hold on to and refer back
to (in other words, the one that gets the weight mi).

To see why this might matter, consider a variation of our model where
some players (Ndg) have initial opinions but use DG rule (or set mi very
low), while other agents (Nfj) have no initial opinions (or very unreliable
ones). In this environment, there is a risk that the initial opinions of the
DG players eventually disappear from the system, and soon be overwhelmed
by noise in transmission. The FJ players could provide the system with
the necessary memory, using the initial communication phase to build up
an ”initial opinion” based on the reports of their more knowledgeable DG
neighbors, and then seed in perpetually that ”initial opinion” into the net-
work. In other words, in an environment where information is heterogeneous
and weights mi are set sub-optimally by some, there could be a value for
some agent in adopting a more sophisticated strategy in which the ”initial
opinion” is temporarily updated until it becomes anchored. In other words,
it may be optimal for some of the less informed to listen and not speak for a
while as they build up their own “initial opinions” before joining the public
conversation.

Another important assumption of our model is that the underlying state
θ is fixed. In particular, there would be no reason to keep on seeding in the
initial opinions if the underlying state drifts. However it may still be useful

52As mentioned earlier, Banerjee et al. (2019) introduce the idea of a Generalized
DeGroot model where not everyone starts with a signal
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to use a FJ type rules where the private seed is periodically updated by each
player to reflect the private signals about θ that each one accumulates.

Finally, one interesting property of FJ type rules that we already empha-
sized is that one’s opinions vary as a result of variations in others’ opinions
vary, rather than because of a difference between one’s and others’ opinions.
In particular, players’ opinions may differ in the long run. One could imag-
ine applying a similar idea to beliefs about the state of world. With two
states for example, one could let yi = ln pi/(1 − pi) measure the belief of
i over the underlying state53 and assume an updating process to yi in the
spirit of SFJ rule:

yti − yt−1
i = (1−mi)(z

t−1
i − zt−2

i )

where

zti − zt−2
i =

1

Ni

∑
j∈Ni

(yt−1
j − yt−2

j ) + εti

measures the perceived variations in others’ opinions. This updating pro-
cess allows for diverse beliefs in the population, and also transmission of
information when some signals in the network induce variations in beliefs.
These updating rules (with mi set appropriately) could turn out be more
robust than Bayesian rules when the updating process is subject to noise or
biases.
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Appendix.
Notations. Define M as the N × N diagonal matrix where Mii = mi

(and Mij = 0 for j 6= i). For any fixed vectors of signals x and systematic
bias ξ, we let

X = Mx+ (I −M)ξ

and, whenever mi > 0, we let x̃i = xi + ξi(1−mi)/mi denote the modified
initial opinion.

Next define Bij = (1 −mi)Aij and the N × N matrix B = (I −M)A.
Also define the (N2) vector Λ with Λij = 0 if i 6= j, Λii = (1 − mi)

2$0

and B the (N2 × N2) matrix where Bij is the row vector (Bij,hk)hk with
Bij,hk = BihBjk.

For any fixed (x, ξ), we define the expected opinion at t, yti = Eyti and
the vector of expected opinions yt = (yti)i. We further define ηt = yt − yt,
wtij = Eηtiη

t
j and the vector of covariances wt = (wtij)ij .

Finally, we shall say that P is a probability matrix if and only if
∑

j Pij =
1 for all i. Note that A is a probability matrix.

Evolution of expected opinions and covariances. Under SFJ, the
evolution of opinions and expected opinions (given x, ξ) follows

yt = X + (I −M)ν +Byt−1 (16)

yt = X +Byt−1, (17)

from which we obtain:

ηt = (I −M)νt +Bηt−1

Since the νti are independent random variables, the evolution of the vector
of covariances follows:

wt = Λ +Bwt−1 (18)

In the general case (FJ rather than SFJ), the evolution is defined similarly,
with Xi = γi(mixi + (1−mi)ξi) and Bij = (1− γi)Iij + γi(1−mi)Aij and
Λii = (γi(1−mi))

2$0.

Paths. For any K, any K−sequence q = (i1, ..., iK) and any probabil-
ity matrix D = (Dij)ij , we let πD(q) ≡

∏K−1
k=1 Dik,ik+1

, and for any set of
sequences Q, we abuse notations and let πD(Q) =

∑
q∈Q π

D(q). We define

a K−path as a K−sequence q for which πD(q) > 0. For any i, j is a K-

neighbor of i if there exists a K−path ending in j, and we denote by N
D
i

the set of individuals that are K−neighbors of i for some K, under D.
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Assumption 1: N
A
i = N for all i.

We denote by QKi,j the set of paths of length K from i to j, and QKi the

set of paths of length K that start from i. QKi = ∪jQKi,j and by construction,
for any i, j

AKij ≡ πA(QKi,j) and
∑
j∈N

AKij = πA(QKi ) = 1 (19)

We also extend the notion of sequences and paths to pairs ij ∈ N2

(rather than individuals). For any sequence of pairs q = (i1j1, ..., iKjK) (or
equivalently, any pair of sequences q = (q1, q2) = ((i1, ..., iK), (j1, ..., jK)))
and any matrix D = (dij)ij , and we let πD(q) = πD(q1)πD(q2). We define a
path q as a sequence such that πA(q) > 0.

Proof of Proposition 1: Let yt denote the vector of opinions at t. Let
∆n be the set of vectors of non-negative weights p = {pi}i with

∑
pi = 1.

We have yti = Biy
t−1 + γiε

t
i with Bi ∈ ∆n. So for any p ∈ ∆n, there exists

q ∈ ∆n such that:54

p.yt = q.yt−1 +
∑
i

piγiε
t
i. (20)

Define V t = minp∈∆n var(p.y
t). We have V t

i ≥ V t and since γi ≥ γ for all i,

Equality (20) implies V t ≥ V t−1 + 1
nγ

2E(εti)
2, hence the divergence.

Next let Γ = (γiξi)i. In matrix form, we have yt = Byt−1 + Γ, which
implies:

yt =
∑
k

BkΓ +Btx

Since the network is connected, for some large enough k, Bk is a strictly
positive probability matrix. Let π be the stationary distribution (πB = π).
Consider a realization ξ such that π.ξ 6= 0, say π.ξ > 0. For k large enough,
each row of Bk is close to π, implying that for k large enough, all BkΓ are
positive and bounded away from 0, which proves the divergence of yt.�

Before proving Proposition 2, we start with two standard results.

Lemma 1: Consider any non-negative matrix C = (cij)ij such that
µ = mini(1 −

∑
j cij) > 0. Then I − C has an inverse H ≡

∑
k≥0C

k, and

for any X0 and Y 0, Y t = X0 + CY t−1 converges to HX0.

Lemma 2: Under Assumption 1, if mi0 > 0, then for K large enough,

C = BK and C = B
K

both satisfy the condition of Lemma 1, and I − B
and I −B have an inverse.

54Bii = 1− γi and Bij = γiAij . qi =
∑
i pjBji = pi(1− γi) +

∑
j γjpjAji.
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Proof of Proposition 2: We iteratively substitute in (17) to get:

yt = X0 + Cyt−K

where X0 = DX with D ≡ I + B + ... + BK−1, and C = BK . By Lemma
2, Lemma 1 applies to C, so convergence of yt to y is ensured, and I − B
has an inverse, which we denote H. We have y = HX, hence the conclusion
that y does not depend on xi when mi = 0 (since X does not depend on xi
when mi = 0).

Regarding the covariance vector, we iteratively substitute in (18) to get

wt = Λ0 + Cwt−K

where Λ0 = DΛ with D = I + B + ...+ B
K−1

and C = B
K

. By Lemma 2,
Lemma 1 applies to C, so convergence of wt to w is ensured, and I −B has
an inverse which we denote H. We have w = HΛ, which is thus independent
of initial opinions.�

Before proving Proposition 3, we report standard results (Lemma 3 and
Corollary 3 below) enabling us to show that long-opinions are weighted
average of suitably defined modified opinions (Lemma 4 and 5). Let 1N
denote the column vector of dimension N for which all elements are equal
to 1.

Lemma 3: Let A0 be a non-negative N0 × N0 matrix and A1 a non-
negative N0 × N1 matrix. Assume I − A0 has an inverse and A01N0 +
A1.1N1 = 1N0. Then P = (I − A0)−1A1 is a N0 × N1 probability matrix,
i.e., P1N1 = 1N0.

We apply Lemma 3 to the case where A1 = M and A0 = B = (I −
M)A. By construction A01N +A1.1N = 1N holds, which gives the following
immediate corollary:

Corollary 3: Assume mi0 > 0 and let P = (I − B)−1M. Then P is a
probability matrix.

Lemma 4. Assume mi > 0 for all i. Then for each i, there exists
Pi ∈ ∆n such that for all x, ξ, yi = Pi.x̃.

Proof of Lemma 4: When mi > 0 for all i, the condition of Proposition
2 applies. Let H = (I −B)−1 and P = HM . (16) can be rewritten as:

y = Mx̃+By
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implying that y = Px̃ with P = (I −B)−1M , and P is a probability matrix
by Corollary 3.�

Lemma 4 can be generalized to the case where a subset N0 of agents has
mi = 0. Call N1 the set of agents with mi > 0, and accordingly define the
vectors of expected long-run opinions y0 and y1, and the vectors of persistent
errors ξ0 and ξ1. We have:

Lemma 5. Fix N0. There exists R and Q (defined independently
of m) such that, for any m, there exists a probability matrix P such that
y = Px̂+Qξ0 and x̂i = x̃i + (1−mi)Riξ

0/mi for each i ∈ N1.

Proof of Proposition 3. The lower bound on L0
i follows immediately

from Lemma 4 and 5. We focus here on loss Vi induced by the idiosyncratic
shocks. Recall

ηti = γi(1−mi)ν
t
i + (1− γi)ηt−1

i + γi(1−mi)Aiη
t

This implies that for any p ∈ ∆n, there exists q ∈ ∆n such that:

p.ηt = q.ηt−1 +
∑
i

γi(1−mi)piν
t
i and

∑
i

qi ≥ 1−m (21)

Define V t = minp∈∆n var(p.η
t). Note that V t

i ≥ V t. Since var(q.ηt−1) ≥
(1−m)2V t−1, Equality (21) implies V t ≥ (1−m)2V t−1 + 1

nγ
2(1−m)2$0,

which yields the desired lower bound.�

Proof of Proposition 4. Let m = $/(1 +$). We show that DG and
all strategies mi < m are dominated by m.

Assume first that all other players either use DG. Then, if player i uses
DG as well, Lti diverges and by Corollary 2, for any mi > 0, yi = x̂i =
xi + (1−mi)(ξi +Riξ−i)/mi. The variance of yi thus decreases strictly with
mi.

Now assume that at least one player j chooses mj > 0. Then, long-run
expected opinions converge to y. Now define Y i

j ≡ EyjXi and the N vector

of covariances Y i ≡ (Y i
j )j . Also define Y jk = Eyjyk and Y jk = (Y jk)jk as

the N2 vector of covariances. From (17) we have:

Y i = Γi +BiY i and

Y = Γ +B Y

where Γij = EXjXi and Γi = (Γij)j , and Γjk = Γkj + (1 −mk)AkY
j + (1 −

mj)AjY
k and Γ = (Γjk)jk.
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Given our independence assumptions, Γi has just one positive element,
Γii = EX2

i and for any mi < m, Γii is strictly decreasing in mi. Next observe
that Bi only has non-negative elements, and that Bi is non-increasing in
mi. So Y i is strictly decreasing in mi for all mi < m. Applying the same
argument to the vector Y k ≡ EyXk, and since Γk = EXXk does not vary
with mi, we obtain that Y j is non-increasing in mi.

It follows that all terms Γjk for k 6= i and j 6= i are non-increasing in
mi and all terms Γij are strictly decreasing on the range mi < m. Since
B is non-increasing in mi, it follows again that for all mi < m, Y is non-
increasing in mi and Y ii is strictly decreasing in mi, and Y is non-increasing
in mi.

We now examine the effect of mi on the vector of covariances w where
wjk = limE(ytj − ytj)(ytk − ytk). Recall w = Λ +Bw. Since Λ and B are non-
increasing in mi and Λii is strictly decreasing in mi, wii strictly decreases
with mi, and w is non-increasing in mi. Combining all steps, over the range
mi < m, Li = Y ii + wii strictly decreases with mi, and

∑
k Lk also strictly

decreases with mi.�

From Lemma 4, yi = Pix̃ where Pi is the probability vector. We now
characterize Pi and derive how each Pk varies with mi. As a preliminary
observation, we express y−i as an average of x̃−i and yi.

Lemma 6: For each k 6= i, there exists µji and a probability vector
Qij ∈ ∆N−1, each independent of mi, such that

yj = (1− µji)Qij x̃−i + µjiyi (22)

The proof consists in using y = Mx̃ + By to solve y−i as an average
over x̃−i and yi. Since for each yj with j 6= i, all coefficients in Bj are
independent of mi, the result follows. Details are in Appendix B. Note that
Lemma 6 immediately implies

∂Pj
∂mi

= µji
∂Pi
∂mi

and Pj = (1− µji)Q
i
j + µjiPi (23)

where Q
i ∈ ∆N with Q

i
jk = Qijk and Q

i
ji = 0.

In the expression yi = mix̃i + Biy, we now substitute each yk obtained
in Lemma 6. This permits us to get an expression of Pi that makes explicit
the dependence on mi. Specifically, we have (see Appendix B):

45



Lemma 7: There exists λi and ri = (rik)k ∈ ∆N−1 that only depend on
A and m−i such that

Pii =
mi

1− λi +miλi
and Pik =

(1−mi)(1− λi)rik
1− λi +miλi

(24)

We now express the loss L0
i as a function of Pi. Define Wk = σ2

k +
$k(

1−mk
mk

)2, where σ2
k is the variance of k’s initial opinion and $k the vari-

ance of k′s persistent component. We have:

L0
i =

∑
k

(Pik)
2Wk

Given the expression for Pi (see (24), optimization over mi is simple, yield-
ing Proposition 5 below. Next, Proposition 6 is also obtained as a simple
corollary of (23) and (24). We prove here a more general version of Propo-
sition 5, allowing here for heterogenous quality of signals and noise terms.
That is, we let Wk = σ2

k +$k(
1−mk
mk

)2, where σ2
k is the variance of k’s initial

opinion and $k the variance of k′s persistent component. We have

Proposition 5: Let ci =
∑

k 6=i(rik)
2Wk. Player i’s optimal choice mi

is uniquely defined and satisfies:

mi

1−mi
=
$i + (1− λi)2ci
σ2
i (1− λi)

Proof. Let di = ($i + (1− λi)2ci)/(σ
2
i (1− λi)). Rewrite L0

i as

L0
i = σ2

i (
(mi)

2 + (1−mi)
2(1− λi)di

(mi + (1−mi)(1− λi))2
)

Since di and λi do not depend on mi, checking the first order condition
yields mi/(1−mi) = di, as desired.�

Proof of Proposition 6. We show that if ∂Li
∂mi

= 0, then
∂Lj
∂mi

< 0 for
all j. Using (23), and assuming no idiosyncratic noise, we rewrite

Lj =
∑
k

((1− µji)Q
i
jk + µjiPik)

2Wk
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Since µji, Q
i
jk and Wk are independent of mi for k 6= i, and since Q

i
ji = 0,

we obtain:

∂Lj
∂mi

= µji(1− µji)
∑
k 6=i

Qijk
∂Pik
∂mi

Wk + (µji)
2 ∂Li
∂mi

, (25)

By Lemma 2, we further have ∂Pik
∂mi

< 0 for all k 6= i, which concludes the
proof.�

Example with modified protocol of communication. We illus-
trate below how changing protocol amounts to changing the weights γi. We
consider two players and assume that player 1 updates every period, while
player 2 updates every other three periods. Then, at dates t where 2 updates,
we have:

yt1 = (1− γ1)3yt−3
1 + (1− (1− γ1)3)yt−3

2

yt2 = (1− γ2)yt−3
2 + γ2y

t−1
1

= (1− γ2)yt−3
2 + γ2((1− γ1)2yt−3

1 + γ2(1− (1− γ1)2)yt−3
2

= (1− γ2(1− γ1)2)yt−3
2 + γ2(1− γ1)2yt−3

1

So, the process evolves as if weights where γ′1 = 1 − (1 − γ1)3 > γ1 and
γ′2 = γ2(1− γ1)2 < γ2.
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Appendix B (for on-line publication)

Proof of Lemma 1: Consider the matrix Ht = (htij)ij defined recur-

sively by H0 = I and Ht = I + CHt−1. Let zt = maxij

∣∣∣htij − ht−1
ij

∣∣∣. We

have zt ≤ (1 − µ)zt−1, implying that Ht has a well-defined limit H, which
satisfies H ≡

∑
k≥0C

k. By construction, (I − C)H = H(I − C) = I, so

H = (I − C)−1. Similarly, defining zt = maxi
∣∣Y t
i − Y

t−1
i

∣∣, we obtain that
Y t has a limit Y which satisfies (I − C)Y = X0, implying Y = HX0.�

Proof of Lemma 2: Call QK,i0i ⊂ QKi the set of paths of length K that
start from i (to some j) and go through i0. For any such path, πB(q) ≤
(1−mi0)πA(q).55 This implies∑

j

Cij ≡ πB(QKi ) ≤ (1−mi0)πA(QK,i0i ) + πA(QKi \Q
K,i0
i ) < 1

where the last inequality follows from (19) and QK,i0i non empty for K large
enough.56

This implies that C satisfies the condition of Lemma 1, hence I −C has
an inverse. Let D ≡ I +B + ...+BK−1 and H = (I − C)−1D. We have∑

k≥0

Bk =
∑
k≥0

CkD = H,

so H(I −B) = (I −B)H = I and I −B also has an inverse.
Regarding C, the argument is similar. We work on paths q of pairs

rather than paths q of individuals. Call Q
K
ij the set of paths q = (q1, q2)

of length K that start from ij (to some hk), Q
K,i0
i those for which q1 goes

through i0. We have∑
hk

Cij,hk ≡ πB(Q
K
ij ) ≤ (1−mi0)πA(Q

K,i0
i ) + πA(Q

K
i \Q

K,i0
i ) < 1

hence C satisfies the condition of Lemma 1, I − C has an inverse, and so
does I −B.�

Proof of Lemma 3: Let q = P1N1 − 1N0 . P = A1 + A0P so Pij =
A1
ij +

∑
k∈N0 A0

ikPkj . Since
∑

j∈N1 A1
ij = 1−

∑
j∈N0 A0

ij we have

qi =
∑
j∈N1

Pij − 1 =
∑

k∈N0,j∈N1

A0
ikPkj −

∑
j∈N0

A0
ij = A0

i q

55In the general case (FJ rather than SFJ), πB(q) ≤ (1−mi0γ)πA(q).
56N is finite, so K can be chosen large enough that QK,i0i is non-empty for all i.
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implying that q = A0q, hence, since I −A0 has an inverse, q = 0.�

Proof of Lemma 5: Let x̃1 denote the vector of modified initial
opinions of players in N1, and M1 the restriction of M to N1. We have:

y0 = A00y0 +A01y1 + ξ0 (26)

y1 = M1x̃1 + (I1 −M1)(A10y0 +A11y1) (27)

Under A, for K large enough, all agents in N0 have a K-neighbor in N1,
so (A00)K satisfies the condition of Lemma 1 and I − A00 has an inverse,
which we denote H0. We thus have:

y0 = P 0y1 +H0ξ0 (28)

where P 0 ≡ H0A01 is a probability matrix (by Lemma 3 and because
A01.1N1 +A00.1N0 = 1N0).57

Substituting y0 in (27), and letting R = A10H0 and x̂i = x̃i + (1 −
mi)Riξ

0/mi, we get

y1 = M1x̂+ (I1 −M1)Ây1 where Â ≡ A11 +A10P 0

Since P 0 is a probability matrix, so is Â, and C1 = (I1 −M1)Â therefore
satisfies the condition of Lemma 1 (as all mi > 0 for i ∈ N1). Letting
H1 = (I1 − C1)−1, we get y1 = P 1x̂ where P 1 = H1M1. Again, P 1 is a
probability matrix because Â is a probability matrix and because P 1 = M1+
(I1 −M1)ÂP 1. Substituting y1 in (28) we finally get y0 = P 0P 1x̂ + H0ξ0

and y1 = P 1x̂, which concludes the proof.�

Proof of Lemma 6. Let m̂ji = 1−(1−mj)(1−aji). Define M i and M̂ i

as (N − 1) × (N − 1) diagonal matrices where M̂ i
jj = m̂ji and M i

jj = mj .

Let Âijk =
(1−mj)ajk

1−m̂ji defined for all j, k different from i, and gji =
(1−mj)aji

m̂ji
.

Âi is a probability matrix. Also let X̂j = (1−gji)x̃j +gjiyi. By construction

yj = m̂jiX̂j + (1− m̂ji)
∑

k 6=i Â
i
jkyk, which in matrix form gives

y−i = M̂ iX̂−i + B̂iy−i

where B̂i = (I − M̂ i)Âi, which in turn yields y−i = RiX̂−i where Ri ≡ (I −
B̂i)−1M̂ i is a probability matrix (by Lemma 1). Letting µji =

∑
k 6=iR

i
jkgki

and Qijk = Rijk(1 − gki)/(1 − µji), we obtain the desired expression for yj ,

57Indeed, for any i ∈ N0,
∑
j∈N0 A

00
ij +

∑
j∈N1 A

01
ij =

∑
j∈N Aij = 1
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and Qi is by construction a probability matrix. Note that M i, M̂ i and Âi

depend on A and m−i only, so the same is true for Qi and µji for all j.�

Proof of Lemma 7. Using yj = Pj x̃ and (23) we get

yi = mix̃i + (1−mi)
∑
j 6=i

Aij((1− µji)Q
i
j + µjiPi)x̃

Letting λi =
∑

j Aijµji, and rik =
∑

j 6=iAij((1−µji)Qijk/(1−λi), and using

yi =
∑

k Pikx̃ik, we get the desired expressions.58 Since µji and Qi depend
only on A and m−i, the same is true for λi and rik.�

Proof of Proposition 7. In addition to item (i) and (ii), we shall
prove the following statement: (iii) If the lower bound γ on the choice set
is sufficiently low and γi = γ, Vi ≤ 1/ | log γ | for all m ≥ m and γ within
the choice set.

Let γ = max γi and recall:

wij =
∑
h,k

BihBjkwhk + Λij (29)

where Λij = 0 if i 6= j and Λii = (1 − mi)
2(γi)

2$0, and Bii = 1 − γi,
Bij = γiAij(1−mi).

The proof starts by proving item (i), that is, computing a uniform upper
bound on all wij of the form (see step 1)

wij ≤ cγ (30)

To prove (ii), we define ŵ = (wij)j as the vector of co-variances involving i,
and show that there exists a matrix C for which

∑
k Cjk ≤ 1 for all j and

such that
ŵ ≤ (1−m)Cŵ + Γ (31)

where Γj ≤ dpij for some d, with pij = γi/(γi + γj). This in turn implies
that maxj wij ≤ maxj Γi/m, which will prove (ii) (see step 3).

Finally, to prove (iii), we consider two cases. Either γ is “small” and
(30) applies, or we can separate individuals into a subgroup J where all
have a small γj , and the rest of them with significantly larger γj . In the
later case, we redefine ŵ = (wjk)j∈J,k as the vector of co-variances involving

58For example, focusing on the contribution of x̃i, and since Q
i

ji = 0, we get Pii =
mi + (1−mi)

∑
j 6=iAijµjiPii.
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some j ∈ J , and obtain inequality (31) with Γjk ≤ dpjk for k /∈ J and
Γjk ≤ dγj for k ∈ J , for some d. By definition of J , all γj and pjk are small,
and all Γjk are thus small, which will prove (iii). Details are below.

Step 1 (item (i)) wij ≤ cγ with c = $0/m.

Let V = maxiwii and w = maxi,j 6=iwij and w = maxwi. For all j 6= i,
wij is a weighted average between all wh,k and 0, so wij < max(w, V ), hence
w < max(w, V ), which thus implies w ≤ V . Consider i that achieves V .
Since

∑
h,k BihBik = (1− γimi)

2, we have:

V = wii ≤ (1− γimi)
2V + γ2

i (1−mi)
2$0 hence

V ≤ γi(1−mi)
2

mi
$0 ≤

$0γ

m

Step 2. Let pij = γi/(γi + γj) and v = 2(cγ + ω0). We have:

wii ≤ γipiiv + (1−m)
∑
k

Aikwik (32)

wij ≤ γjpijv + (1−m)(pij
∑
k

Aikwkj + pji
∑
k

Ajkwik) (33)

These inequalities are obtained by solving for wij in equation (29), that is,
we write

(1−BiiBjj)wij = Γij +
∑
k 6=i

BiiBjkwik +
∑
k 6=i

BjjBikwkj +
∑

k 6=i,h 6=j
BjkBihwkj .

Observing that 2BiiBik/(1−BiiBjj) ≤ (1−mi)Ajk, BiiBjk/(1−BiiBjj) ≤
(1 − mj)pjiAjk, and BjkBih/(1 − BiiBjj) ≤ 2γjpijAjkAih and Γii/(1 −
BiiBjj) ≤ γiω0 yields (32-33).

Step 3 (item (ii)). It is immediate from (32-33) that (31) holds with
Cjk ≡ Ajk and Γj = pijγjv + pijcγ ≤ pijγ(v + c) ≤ dγi for all j, for some d,
which permits to conclude that ŵ ≤ dγi/m.

Step 4 (item (iii)). Let ε = 1
K|Logγ| with K = 5$0/m

2 and set γi = γ.

Let us reorder individuals by increasing order of γj . Consider first the case
where γj+1 ≤ γj/ε for all j = 1, ..., N − 1. Then γ < γ/εN−1, and for γ

small enough, γ/εN−1 < ε, so Vi ≤ cε < 1/ | Logγ |.
Otherwise, there exists j0 such that γj ≤ γ/εj0−1 for all j ∈ J , and

γk > γj/ε for all k /∈ J and j ∈ J . It is immediate from (32-33) that (31)
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holds with Γ such that, for any j ∈ J ,

Γjk = γjv if k ∈ J and

Γjk = γjv + pjk
∑
h/∈J

Ajhwhk if k /∈ J

By definition of J , for all j ∈ J , γj ≤ γ/εN−1 < ε and for all k /∈ J , pjk ≤ ε,
which further that all Γjk are bounded by ε(v + c) ≤ m/ | Logγ |, which
concludes the proof.�
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