
Consensus and Disagreement:

Information Aggregation under (not so) Naive Learning*

Abhijit Banerjee and Olivier Compte

April 2023

Abstract

We explore a model of non-Bayesian information aggregation in networks. Agents non-
cooperatively choose among Friedkin-Johnsen type aggregation rules to maximize payoffs.
The DeGroot rule is chosen in equilibrium if and only if there is noiseless information
transmission... leading to consensus. With noisy transmission, while some disagreement
is inevitable, the optimal choice of rule blows up disagreement: even with little noise,
individuals place substantial weight on their own initial opinion in every period, which
inflates the disagreement. We use this framework to think about equilibrium versus socially
efficient choice of rules and its connection to polarization of opinions across groups.

1 Introduction

As of May 2020, 41% of US Republicans were not planning to get vaccinated against Covid-
19, as compared to 4% of Democrats.1 We saw similar divergences in mask-wearing, social
distancing etc, which protect against the disease. Since Covid-19 is a life-threatening ailment
that had already taken more than 3.5 million lives so far world-wide, it is hard to think of
these as being just empty gestures or entirely reflective of different preferences, though there is
surely some of that. There seems to be rather, a different reading of the facts on the ground;
for example, in a Pew Research Center poll,2 Republicans were much more likely to say that
Covid-19 is not a major threat to the health of the US population (53% compared to 15% of
Democrats). This goes with a general deepening in the political divide between Democrats
and Republicans in recent years.3

The source of this shift is a subject of much discussion: one potential source of change
is the massive growth in the use of the internet. However the evidence from the careful
work by Gentzkow and Shapiro (2011) suggests that online news consumption is not more
segregated by political leanings than other sources of information that already existed, contrary
to the concerns expressed for example by Sunstein (2001).4 The most segregated sources of

*This paper was previously entitled “Information Aggregation under (not so) Naive Learning”.
1https://www.pbs.org/newshour/health/as-more-americans-get-vaccinated-41-of-republicans-still-refuse-

covid-19-shots
2https://www.pewresearch.org/fact-tank/2020/07/22/republicans-remain-far-less-likely-than-democrats-to-

view-covid-19-as-a-major-threat-to-public-health.
3Pew Center (2014) documents such a shift on a 10-point scale of political values for the period 1994-2014)
4Though Guess (2021) suggests that the segregation in news consumption has been increasing in recent years.
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information, according to Gentzkow and Shapiro (2011) seem to be social networks (voluntary
associations, work, neighborhoods, family, “people you trust”, etc), which were of course always
there. However there is evidence that online networks such as Facebook are substantially more
segregated than other social networks and as a result, news that comes from being shared
on Facebook tends to be more segregated than news from other media sources (Bakshy et
al. (2015)).5 It is true that social media are still a relatively small, though growing, part of
news consumption, but the volume of ”information” that can be quickly shared on Facebook
may be larger than other more traditional sources. Moreover while information was always
shared through social connections, the evidence of growing affective polarization along political
lines, especially in the US (Boxell et al. (2022)), raises the concern that the actual exchange of
sensitive information in the social network is increasingly confined to those on the same side.

We feel therefore that it is worth exploring theoretically when and why social learning
on networks can lead to large and persistent disagreements. As a starting point, we note
that models of Bayesian social learning such as Acemoglu et al. (2011) propose relatively weak
conditions on signals and network structure under which information is perfectly aggregated as
the network grows to be very large. More recent work, in which agents repeatedly communicate
(unlike in Acemoglu et al. (2011) where they communicate only once) include Mossel et al. 2015
who derive necessary conditions on the network structure under which Bayesian learning yields
consensus and perfect information aggregation.6 The general sense from this literature is that
convergence to a consensus is likely even when the network exhibits a substantial degree of
homophily (Republicans mostly talk to other Republicans) as long as everyone is ultimately
connected.

This Bayesian route however requires that agents make correct inferences based on an
understanding of all the possible ways information can transit through the network, which, at
least for large networks, strains credibility.7

The alternative way to model learning on networks is to take a non-Bayesian route, which
avoids these very demanding assumptions about information processing by postulating a sim-
ple rule that individuals use to aggregate own and neighbors’ opinions. In recent years the
economics literature has tended to favor the DeGroot (DG) rule, where agents update their
current opinion by linearly averaging it with their neighbors’ most recent opinions. As observed
by DeMarzo et al. (2003), who brought it into the economics literature, the rule builds in a
strong tendency towards consensus in any connected network, even when there is high degree
of homophily and people put high weight on people like them, though convergence between
those far from each other in the network can be very slow.8 Faced with this force towards
consensus, Friedkin and Johnsen (1990) came up with a learning rule which is similar to DG,
but allows each individual to keep putting some weight on their own initial opinion.9 This

5The Facebook news feed turns out to be even more seggregated (Levy (2021)).
6They build on Rosenberg et al. (2009) and the literature on “Agreeing to Disagree”that goes back to

Aumann (1976).
7A Bayesian needs to think through all possible sequences of signals that could be received as a function of

the underlying state and all the possible pathways through which each observed sequence of signals could have
reached them. As discussed in Alatas et al. (2016, page 1681), there is obviously an extremely large number of
such pathways.

8Moreover as shown by Golub-Jackson (2010), DG has the striking property that, under some restrictions
on network structure and weights on neighbors, learning converges to perfect information aggregation in large
networks.

9Friedkin and Johnsen (1999, page 3) write, referring to the work of DeGroot and other precursors: “These
initial formulations described the formation of group consensus, but did not provide an adequate account of
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rule, for obvious reasons, does not lead to a consensus.
The first question we set out to answer here is which type of rule, i.e., Friedkin-Johnsen

(FJ) or DG would be favored by individuals given a choice. In other words are there good
reasons to prefer rules where individuals anchor themselves to their initial beliefs even while
updating their opinions based on what they are hearing from others?

To study this question, we start from a broad class rules in the spirit of Friedkin-Johnsen
(FJ), which includes DG and can formally be written as

yti = (1− γi)y
t−1
i + γi(mixi + (1−mi)z

t−1
i ) (FJ)

where yti is i’s belief in period t, xi is the initial signal that i received, correlated with some
underlying state of the world, and

zti =
∑
j∈Ni

Aijy
t
j + εti (1)

is the weighted average of reports received by i from his neighbors (denoted Ni),
10 plus any

processing or transmission error. This error term is an important ingredient of our analysis.
We assume that εti has two components, a persistent one, drawn at the start of the process,
and an idiosyncratic one, drawn at each date, though, to simplify the exposition, much of the
paper focuses on persistent errors. When the weight mi is 0, individual i is using a DG rule.11

Within this limited class of “natural” rules, parameterized by γi and mi,
12 we allow agents

full discretion in the choice of rules and assume that each individual non-cooperatively selects
mi and γi to ensure that the long-run opinion yi is on average closest to the underlying state.
This is in the spirit of the approach advocated in Compte and Postlewaite (2018) to model
mildly sophisticated agents.13

Our results highlight the major role of errors in shaping equilibrium choices and outcomes.
Result 1 says that absent errors, each individual decision-maker will choose DG (mi = 0) in the
Nash equilibrium of the rule-choice game, hence there will be consensus. Moreover, we show
that each individual will choose γi in such a way that information is efficiently aggregated.
This result thus complements Golub-Jackson (2010) who show that when everyone does DG
(but do not choose their γi), information aggregation in large networks is almost perfect under
certain weak conditions, but generally imperfect in finite networks.

In contrast, Result 2 shows that in the presence of any error in transmission, each decision-
maker must choose mi > 0 in equilibrium, so there will be no consensus even in the long run.
The reason is that when all the mi are small (a fortiori when everyone uses DG) the errors tend
to cumulate, with the result that long-run opinions explode. Intuitively, a positive error by i
pushes up i’s opinion, which raises the opinions of others’, fueling a further rise in i’s opinion,
and so on –We call these echo effects. Raising mi allows individuals to limit this cumulation of
errors, at the cost of potentially putting too much weight on their own seeds. Moreover there
is no way to use γi to mitigate this problem: in fact as long as there is no idiosyncratic error

settled patterns of disagreement”.
10The matrix A = (Aij)ij defines the weight Aij that i puts on j’s opinion, with Aij > 0 if and only if j ∈ Ni,

and
∑

j Aij = 1.
11Throughout our analysis, we assume that all γi are strictly positive.
12We assume that the weights Aij are fixed, not subject to optimization.
13The limitation to a specific class of rules is key. Otherwise the individually optimal way to process signals

among all possible signal processing rules would be the Bayesian rule.
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and mi > 0 for a least one player, γi’s play no role: long-run opinions are fully determined by
the mi’s. Later in the paper we show that γi does play an important role in controlling the
effects of idiosyncratic errors, but that does not change the need to set mi > 0.

It should be clear that in any Nash Equilibrium of the rule choice game, there are two
sources of divergence of opinions–the errors themselves, but also the additional divergence
that comes from always putting non-zero weight on one’s initial signal (which is a choice, but
one resulting from the presence of errors). The next question is which is the main source of
divergence.

Result 3 shows that at least when the variance ϖ of persistent error is close enough to zero,
the second, non-mechanical, source dominates: specifically we show that in equilibrium, the
weights m are comparable to ϖ1/3. A rough intuition goes as follows: from the perspective of
player i, when other players use mj ≃ m, the cumulated error he faces has a long-run variance
of the order of ϖ/m2. i will want to set mi to counterbalance this, which means at the order
of ϖ/m2. Therefore in equilibrium, m ≃ o(ϖ/m2).

We then ask whether there is too little or too much disagreement in any equilibrium relative
to the social optimum. Result 4 shows that the equilibrium values of mi are always lower than
the socially optimal values. One reason is that in setting mi optimally, player i does not take
into account the fact that lowering mi raises the cumulated error faced by j. But this is not
the only reason. A higher value of mi reduces the influence of the transmission error, but it
also reduces the weight on the opinions of others, which, especially in the long run, enables i to
aggregate signals from all over the network and therefore provides very valuable information
not contained i’s own signals. This is the tradeoff that i takes account of in equilibrium. What
he does not take into account is the fact that when mi goes up, yi reflects more the information
contained in i’s signal as against what i learnt from everyone else (which in the long run is very
close to what i’s neighbors too learnt from everyone else) and this is valuable for aggregate
welfare. Technically, raising mi diminishes the correlation between yi and others’ signals, and
this enhances others’ welfare.

We turn next to comparisons of the efficiency of information aggregation on specific simple
networks – the complete network, the directed circle and the star network). A central aspect
of our analysis is the characterization of cumulated errors that each individual faces, and how
then each player mitigates the consequence of these errors by controlling the weight pi of
her own seed xi in his or her own long-run opinion, through the choice of mi. The network
structure (through the weight matrix A) matters in two ways: it affects the variance ϖ̂i of
cumulated errors (for given m), and it affects the elasticity hi = ∂pi/∂mi. Higher variance and
higher elasticity both lead to worse information aggregation (higher elasticity hurts because
it reduces the incentive to raise mi, pushing it further away from the social optimum). We
find that the star network performs worse than the two others, essentially because the central
player propagates correlated errors to all peripheral players, thus raising cumulated errors. The
comparison between complete and directed circle networks depend on the size of the network,
small size giving an advantage to the directed circle (because of lower elasticity – due to less
pronounced echo effects), while large size giving an advantage to the full network because of
more effective averaging of the signals.

We next use our example of the star network to address the issue of polarization. The result
that mi is too low might suggests that there is always too little disagreement in equilibrium.
This is true for two-person networks, but not in general. To see this consider a network where
there are two dense clusters (modeled as stars) connected by one link (say). Such a network
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structure is not too dissimilar, for example, to the networks of Republicans and Democrats in
the US, who mostly communicate with each other (Cox et al. (2020)). In this case, we show
by example that there is a natural reason why lower mi may be associated with a high degree
of consensus within each cluster but extreme polarization across the groups, reminiscent of the
situation of the Republicans and Democrats in the US. The general point, captured by Result
5, is that social efficiency requires the dispersion of opinions within and between subgroups to
have same orders of magnitude.

Our very simple model therefore tells a useful story why disagreements are necessary, but
also about why there could be wide divisions in opinions and when such disagreements are
costly.

The rest of the paper is devoted to showing that our basic insights are robust. We first
return to rule selection in the case where there are idiosyncratic shocks in information trans-
mission in addition to permanent shocks. In this setting, the speed of updating, γi, also plays
a role. Slowing down updating by setting γi close to zero allows the agent to minimize the
changes in opinions that result from these shocks, which is an advantage because the shocks
average out over time. This is what Result 6 shows.

Since errors in transmission are central to the case we make for choosing mi > 0, in the
penultimate section of the paper we examine the robustness of our results to other ways of
modeling frictions. We start by examining the implications of agents adding a slant to the
opinions they share–in other words adding errors that are biased in some direction. Recent
results from a survey experiment suggest this is a real problem–people on social media are more
likely to pass on messages that are more concordant with their political opinions, somewhat
irrespective of the accuracy of the message (Pennycook et al. (2021). We note that biased
errors do not produce any essential changes in our analysis, though there is a further shift
towards reliance on one’s own initial signal (higher m).

We next turn to the possibility of coarse communication–say each party only reports their
current best guess about which of two actions is preferable. In this setting, the class of
potentially “natural” rules include the infection models, studied in Jackson (2008) among
(many) others, and the related class of models studied by Ellison and Fudenberg (1993, 1995),
in which agents may rely on the popularity of a particular action among neighbors. We show
that systematic errors in interpreting actions by neighbors makes the long-run outcome from a
DG-like rule entirely insensitive to the actual state of the world, but this is not true for FJ-type
rules. We use this framework to discuss the connection between the errors we introduce and
mis-specifications in Bayesian models (as in Frick et al (2020) and Bohren and Hauser (2021)
and the related (non-)robustness of long-run beliefs.

To end Section 7 we highlight some examples where our findings are qualitatively altered.
We have so far assumed that agents know the precision of everyone’s initial signals. We now
explore the possibility that uncertainty about the precision of everyone else’s signal is the
only source of friction in communication. We find that, in the absence of transmission errors,
this does not undermine the performance of DG-type rules. As a matter of fact, in a set-up
where each participant only knows the precision of their own initial signal, perfect information
aggregation can be achieved under DG, by choosing γi that is suitably scaled to the precision.
This observation delineates the key role played by transmission shocks in our analysis, as
opposed to other sources of shocks.

We next allow for the possibility that a friction comes from variations in who speaks when.
We show that under FJ rules long-run opinions are independent of the communication protocol.
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In contrast, we show by example that the outcome with DG rules is sensitive to who speaks
when. So even in the absence of noise, under protocol uncertainty, the performance of DG
rules would be impaired (though to a lesser extent than that induced by cumulated errors–
long-run opinions would not blow up, but remain weighted averages of initial opinions).

We conclude with a discussion of non-stationary rules and when and why they may not
always be appropriate.

1.1 Related Literature

Our paper contributes to the large literature on learning in social network (see the excellent
review by Golub and Sadler (2016)). We study non-Bayesian learning on general networks with
continuous choices and general networks. Within Bayesian social learning, Vives (1993,1997)
studies a setting similar to ours (with agents receiving a noisy signal) and, unlike us, obtains
long-run convergence to the truth. The reason is that with continuous choice sets Bayesian
agents are able to perfectly extract the information content of the noisy signals. When the
choice set is coarser, aggregation can fail even with Bayesian agents, as shown by Baner-
jee (1992) or Bhikchandani et al. (1992).14

In Vives (1997), like in this paper, agents underweight their private seed: in his set up a
stronger reliance on private signals in the initial phase would speed up learning and benefit
all.15 In our case, the weight cannot be altered over time: however a higher reliance on private
seeds compared to equilibrium weights improves welfare because this limits both the correlation
between information sources and cumulated errors.

Our paper is also related to and inspired by the recent upsurge of interest in the social
learning with ”almost” Bayesian agents. Sethi and Yildiz (2012, 2016, 2019) allow for het-
erogenous and unobservable priors about the state, and since players exchange beliefs (but
not priors), there can be long-run disagreement. However the divergence cannot exceed the
spread in initial biases because agents interpret correctly the reports of others based on the
known distribution of priors. In contrast, Eyster Rabin (2010), Frick and al. (2020), Bohren
and Hauser (2021) and Gentzkow et al. (2021), among others, introduce mis-specifications that
lead agents to incorrectly interpret reports or actions of others. In Eyster Rabin, the errors are
assumed to be significant enough to generate incorrect long-run beliefs for many signal realiza-
tions. By contrast, Frick and al. (2020) show that even small systematic mis-specifications can
lead to interpretation errors that accumulate over time, though a restriction to a small number
states and common priors can prevent this drift as shown in Bohren and Hauser (2021) (See
Section 7.5 for an extended discussion of the connection between these two papers and ours).
Finally, in Gentzkow et al. (2021), uncertain precision of signals and mis-specifications lead
players to overestimate the precision of signals received by others who are similarly biased,

Other papers directly modify the updating rule itself. Jadbabie et al. (2012) introduce
rules that combine Bayesian updating of own signals with a DG-like averaging over neighbors’
beliefs, while Levy and Razin (2018) consider a rule which involves cumulating log likelihood-
ratios, which they justify, like DG, on the ground that it mimics what a subjective Bayesian
(with an erroneous model of the world) would do (see also Dasaratha et al. 2020). Finally

14Mossel et al. (2015) shows that this result also depends on the network structure and that for a large class
of large networks, consensus and almost perfect learning is possible even with coarse communication.

15In the context of non-Bayesian learning, Mueller-Frank and Neri (2021) argue in related terms in favor of
non-stationary rules that aggregate information in a sufficiently dense part of the network, before other agents
get contaminated.
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Molavi et al. (2018) provides axiomatic justification(s) (motivated by imperfect recall) for DG
style linear aggregation (and averaging) of log belief-ratios.16

By contrast we take an evolutionary approach to rule selection, assuming selection within
a restricted family of plausible stationary rules. There is of course a vast literature on the
evolutionary selection of general behavioral rules, going back to Axelrod (1984). Fudenberg
and Levine (1998) provide an excellent introduction to the selection of strategies in game
theoretic settings. Our focus is on selecting rules for aggregating information in potentially
large and complex network settings.

2 Basic Model

2.1 Transmission on the network

We consider a finite network with n agents, assume noisy transmission/reception of information
and define a simple class of rules that players may use to update their opinions.

Formally, each agent i in the network has an initial opinion xi and, at date t, an opinion
yti that can both be represented as real numbers.17 Taking as given the matrix A character-
izing the weights Aij that i puts on j’s opinion, we consider the class of updating rules (FJ)
parameterized by the weights mi and γi and specified in the introduction.

When mi = 0, the rule corresponds to the well-studied DeGroot rule (DG). When mi > 0,
then in each period the rule mixes decision-maker’s own initial opinion xi with DG. This
perpetual use of the initial opinion in the updating process gives FJ a non-Bayesian flavor,
since for a Bayesian, their prior (i.e., the seed) is already integrated into yt−1

i and therefore
there is no reason to go back to it.18

To avoid technical difficulties once we give agents discretion in choosing their updating rule,
we set γ > 0 arbitrarily small and restrict attention to FJ rules where γi ≥ γ. We also assume

that the matrix A is connected in the sense that for some positive integer k, the kth power of
A only has strictly positive elements, i.e., Ak

ij > 0 for all i, j. In other words everyone is within
a finite number of steps of the rest.

Note that all the rules considered here are stationary, in the sense that the weighting
parameters mi and γi do not vary over time.19 We see these as plausible ways in which
boundedly rational agents might incorporate others’ opinions into their current opinion. We
recognize that with enough knowledge of the structure of the network and the process by which
new information gets incorporated, adjusting the weights over time may make sense and return
to this possibility in Section 7.6.

We also impose the assumption that everyone operates on the same time schedule: periods
are defined so that everyone changes their opinion once every period and everyone else get to
observe that change of opinion before they adjust their opinion in the following period. We
will discuss what happens if we relax this assumption in Section 7.2.

16Attempts to provide axiomatic foundations of the DG rule in the statistics literature go back to Genest and
Zidek (1986).

17This opinion can be interpreted as a point-belief about some underlying state, which will eventually be used
to undertake an action.

18In fact, as mentioned already, the one obvious attraction of DG is its quasi-Bayesian flavor. Note that
although formally the expression (FJ) encompasses the DG rule, we shall refer to FJ as a rule for which mi > 0.

19In this sense even DG is only quasi-Bayesian, since for Bayesian the weight on new reports goes down over
time.
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2.2 Errors in opinion sharing

The term εti is an important ingredient of our model, meant to capture some imperfection in
transmission.20 It represents a distortion in what each individual “hears” that aggregates all
the different sources of errors. Until Section 6, we assume that the error term is persistent,
realized at the start of the process and applying for the duration of the updating process.21

We shall denote by ξi this persistent error, so

εti ≡ ξi

In Section 6, we extend the model and incorporate idiosyncratic errors:

εti = ξi + νti ,

where νti are i.i.d. across time and agents.
We interpret ξi as a systematic bias that slants how opinions of others are processed by

i. Biases ξi may be drawn independently across players, but we shall also discuss cases where
they are positively correlated, such as when a group of friends share a political bias. Also note
that although errors are indexed by i, our formulation can accommodate biases that result
from both “hearing” errors and “sending” errors.22

For convenience, we assume that all error terms are unbiased (that is Eξi = 0 and Eνti =
0)23 and homogenous across players, so we let

ϖ = ϖi = var(ξi)

2.3 The objective function

There is an underlying state θ, and agents want their decision to be as close as possible to
that underlying state, where the decision is normalized to be the same as the agent’s long-run
opinion. In other words, we visualize a process where agents exchange opinions a large number
of times before the decision needs to be taken.

Given this private objective, we explore each agent’s incentives to choose his updating rule
within the class of FJ rules to maximize the above objective on average across many different
realizations of the underlying state of the world, the initial opinions and the transmission
errors. We have in mind the idea that individuals choose a single rule to apply to many
different problems. This is why we focus on their ex ante performance.24 The set of possible
updating rules is extraordinary vast, so the limitation to FJ rules is of course a restriction. Our
motivation is to examine the incentives of mildly sophisticated agents who have some limited
discretion over how they update opinions.

20There has been several recent attempts to introduce noisy or biased transmission in networks. In Jackson
et al. (2019), information is coarse (0 or 1), and noise can either induce a mutation of the signal (from 0 to
1 or 1 to 0) or a break in the chain of transmission (information does not get communicated to the network
neighbor).

21One interpretation is that each information aggregation problem is characterized by the realization of an
initial opinion vector x and persistent bias vector ξ, and that agents face a distribution over problems.

22For example, if there were both “hearing” errors labelled ξhi and “sending” errors labelled ξsi , one could
define ξi = ξhi +

∑
j Aijξ

s
j as the resulting processing error. Sending errors naturally generate correlations across

the ξi’s, and a profile of errors that depend on the network structure A. We shall discuss this in Section 7.5.
23We shall come back to the case where Eξi ̸= 0 in Section 7.
24That is, on average over states, initial opinions and transmission errors.
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Formally, we assume that the initial signals are given by

xi = θ + δi

where the θ are drawn from some distribution G(θ) with mean zero and finite variance, δi, ξi
and νit are random variables that are independent of each other for all i and t and are also
independent of θ. We assume that noise terms δi are unbiased, with variance σ2i > 0. For
convenience, except where we need to assume otherwise to make a specific point, we set σi = 1
for all i, but we do not actually need this assumption.

For any t, each profile of updating rules (m, γ) generates at any date t, a distribution
over date t opinions. We now define the expected loss (where the expectation is taken across
realizations of θ, δi, and ε

t
i for all i and t):

Lt
i = E(yti − θ)2

We then define the limit loss Li = limt↗∞ Lt
i.
25

2.4 Methodological assumptions

The loss Li depends on the profile of updating rules (m, γ), and our main methodological
assumptions are that (i) there is a force towards the use of higher performing rules (e.g.,
justified by evolution or reinforcement learning), and (ii) in this quest for higher performing
rules, each individual considers (and gets feedback about) only a limited set of rules (i.e., the
FJ class).

Formally, our analysis boils down to examining a rule-choice game where, given the rules
adopted by others, each agent aims at minimizing Li (using the instrumentsmi and γi available
to her): the object of interest is the Nash equilibrium of this rule choice game. Since Li is
an expectation across various realizations of initial signals and noise in transmission, we think
of the person choosing one rule, parameterized by mi and γi, to apply in many different life
situations. These parameters are meant to capture some general features of opinion formation:
specifically the persistence of initial opinions, and speed of adjustment of the current opinion.26

It is precisely this fact that rules apply across many different problems, and that a limited
set of rules are considered, that makes our third route cognitively less demanding than the
Bayesian route. While we agree that choosingmi and γi optimally is a difficult problem which in
principle requires knowledge of the structure of the model, there is no reason why the standard
justification of Nash Equilibrium as a resting point of an (un-modeled) learning/evolutionary
process would not apply here. Moreover, one of our most important results is that DG rules,
and indeed all rules that put too little weight (mi) on initial opinions, are dominated when
there is noise in transmission, suggesting a strong force away from DG even if agents find it
difficult to find the exact optimal value of mi.

In the next Section we start by exploring the long-run properties of different learning rules
within the DG and FJ class, with and without errors. Then we turn to the optimal choice of
learning rules.

25Alternatively, one could define Li = limh↘0(1− h)
∑
ht−1Lt

i, assuming that the agent makes a decision at
a random date far away in the future and that his preference over decisions is ui(ai, θ) = −(ai − θ)2.
Li is well-defined for any vector m, γ so long as m ̸= 0. As it will turn out, for m = 0, Li is infinite. Note

that each player can secure Li ≤ var(δi) = σ2
i = 1 by ignoring everyone else’s opinions (mi = 1).

26Our view is that these features probably do adjust to the broad economic environment agents face, but
for each opinion-formation problem within a certain context, the actual sequence of opinions is mechanically
generated given these features.
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3 Some properties of the long-run opinions

We start by studying the properties of long-run opinions under DG and FJ with and without
errors. In particular, we shall show that in the presence of errors there is convergence under
FJ as long as at least one person i0 has mi0 > 0, but not under DG. We then explore what
determines the variance of the limit opinion in the case where such a limit opinion exists. In
particular what part of it comes from the “signal”– the original seeds – and what part from
the noise that gets added along the way?

3.1 DG without errors.

It is well-known that in the DG case without errors (mi = 0 for all i) learning converges to
consensus and steady state values of yi for all i. Define Γ as the diagonal matrix such that
Γii = γi. In matrix form, the dynamic of the vector of opinions yt = (yti)i under DG without
noise can be expressed as

yt = B0y
t−1 where B0 = I − Γ + ΓA, (2)

implying that
yt = (B0)

tx (3)

where x is the vector of initial opinions. Let ∆n be the set of vectors of non-negative weights
p = {pi}i with

∑
pi = 1. Because the network is connected, A is a irreducible stochastic

matrix,27 so there is a (unique) strictly positive vector of weights ρ ∈ ∆n such that ρA = ρ.
When γi > 0 for all i, B0 is also an irreducible stochastic matrix, so there is a unique vector
π ∈ ∆n such that πB0 = π, and we must have28

πi
πj

≡ ρi
ρj

γj
γi

(4)

When t gets large, all rows of (B0)
t converge to π, so all opinions yti converge to the same limit

opinion π.x, i.e.,
yi = π.x for all i. (5)

So although the direct contribution of i’s initial signal to i’s opinion vanishes, it surfaces back
from the influence of neighbors’ opinions (which increasingly incorporate i’s initial signal),
settling at a limit weight equal to πi.

Using (4), one may rewrite (5) to highlight how the speed of adjustment γi affects player
i’s influence on long-run opinions. We have:

yi = πixi + (1− πi)q
i.x−i where

πi
1− πi

=
1

γi

ρi∑
j ̸=i ρj/γj

(6)

and where qi is a probability vector in ∆n−1 that does not depend γi. In other words, the
network structure determines ρ. Given ρ, player i can use γi to control her influence on the
long run opinion, πi, but she cannot control the weights qi.

27This is because Ak only has strictly positive elements for some large k.
28This is because π0 ≡ ρΓ−1 solves π0B0 = π0 − ρ+ ρ = π0. Thus, since π is unique, π must be proportional

to π0.
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3.2 DG with errors: exploding dynamics.

We show below that if all agents follow a DG rule, then for almost all realization of ξ, the
long-run opinions diverge.

Proposition 1. Assume that mi = 0 for all i. Then for almost all realizations of ξ,
lim

∣∣yti∣∣ = ∞ for all i and x.

This proposition shows, for one, that an error ξ1 in a single agent’s perception is enough
to drive everyone’s opinions arbitrarily far from the truth: if ξ1 > 0, say, the error creates a
discrepancy between 1’s opinion and that of the others, but every time the others’ opinions
catch up with him, agent 1 further raises his opinion compared to others, prompting another
round of catching up, and eventually all opinions blow up.

Proof: With errors, Equations 2 and 3 become yt = B0y
t−1 + Γξ and

yt = (B0)
tx+

∑
0≤k<t

(B0)
kΓξ

For k large enough, each row of (B0)
k is close to π, so yti diverges for all i whenever πΓξ ̸= 0.

3.3 Anchored dynamics under FJ.

Fixing again x and ξ, we now examine long-run dynamics under FJ.

Proposition 2. Assume at least one player, say i0, updates according to FJ (with mi0 >
0).Then, for any fixed x and ξ, yt converges, and the limit vector of opinions y does not depend
on γ nor on the signal xi of any individual with mi = 0.

Proposition 2 shows that to prevent all the opinions from drifting away, it is enough that
there is one player who continues to put at least a minimum amount of weight on his own
initial opinion in forming his opinion in every period. Proposition 2 also shows that when
mi = 0, the signal initially received by i has no influence on the players’ long-run opinions. A
detailed proof is in the Appendix.

The general argument for convergence runs as follows.29 For any fixed x, ξ, yt evolves
according to

yt = ΓX +Byt−1 with B = I − Γ + Γ(I −M)A

where Xi = mixi + (1 −mi)ξi, Γ and M are diagonal matrices with Γii = γi and Mii = mi.
When mi0 > 0 for some i0, proving convergence is standard.30 The limit opinion y then solves

yi = (1− γi)yi + γi(Xi + (1−mi)Aiy) for all i

which implies that it is also the solution of

y = X + (I −M)Ay. (7)

This limit is thus independent of Γ. Furthermore, letting C = (I −M)A, we obtain

y = DX where D =
∑
k≥0

Ck = (I − C)−1 (8)

29The argument follows Friedkin and Jensen (1999).
30The key to convergence is whether

∑
j Bij < 1 for all i (or whether this contraction property holds for some

power of B). This property holds when A is connected and mi0 > 0 for some i0.
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explaining why long-run opinions only involves the seeds xi of players for whom mi > 0, as for
others, Xi = ξi.

3.4 The dominance of noise under low m.

Although convergence is guaranteed when at least one player does not use DG, there is no
discontinuity at the limit where all mi get small: long-run opinions then become highly sensitive
to the persistent error ξ. We have:

Proposition 3: Let m = maxmi. Then Li ≥ ϖ
n

(1−m)2

m2 .

The detailed proof is in the Appendix. The lower bound on Li is obtained by showing that
for given x, ξ, long-run expected opinions are a weighted average of modified initial opinions,
defined, whenever mi > 0, as

x̃i = xi + (1−mi)ξi/mi.

To fix ideas, assume mi > 0 for all i.31 Then one can write (using the previous notation)
X =Mx̃ and obtain, using (7) and (8)

y =Mx̃+ (I −M)Ay = Px̃ (9)

where P ≡ DM is a probability matrix.32 Intuitively, x̃i can be thought of as the effective seed
for individual i, and long-run opinions are averages over effective seeds. Since the variance of

each x̃i is bounded below by ϖ(1−m)2

m2 , we obtain the desired lower bound.

The two-player case. The two-player case provides a useful illustration. With two players,
assuming m1 and m2 strictly positive, long-run opinions solve

yi = mix̃i + (1−mi)yj = mix̃i + (1−mi)(mj x̃j + (1−mj)yi

which further implies

yi = pix̃i + (1− pi)x̃j where pi =
mi

mi + (1−mi)mj
(10)

confirming that long-run opinions are weighted average of modified opinions. Furthermore

yi = pixi + (1− pi)(xj + ξ̂i) where ξ̂i =
ξi + ξj
mj

− ξj . (11)

The term ξ̂i can be interpreted as the cumulated error that player i faces, resulting from
each player repeatedly processing the other’s opinion with an error, while pi characterizes how
player i’s own seed influences her long-run opinion. Since pi + pj =

m1+m2
m1+m2−m1m2

> 1, it must
be that players differ in the weight they each put in the long-run on their seeds, so there is
disagreement, and the magnitude of the disagreements rises with m.

In networks, echo effects arise because players incorporate opinions that they contributed
to shape, and these echoes shape both long-run influence and cumulated errors: when mi and
mi/mj are both small, the influence of player i is large because although i puts a large weight
on yj , yj has been mostly shaped by xi; and when mj is small, a single loop of communication
generates a combined error of ξi + ξj , which is (partially – but almost entirely when mj is
small) added to all opinions and thus cumulates over time.

31The argument generalizes to the case where a subsetN0 ⊊ N of agents follows DG (mi = 0). (see Appendix).
32This means that each line of P is a probability vector. P is the limit of P t defined recursively by P t+1 =

M + (I −M)AP t and P 1 = I. By induction, each P t (and P ) is a probability matrix.
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3.5 Influence under FJ rules and cumulated errors.

Under DG rules and no errors, a player can control her influence by modifying γi. Under FJ
rules, the long-run opinions do not depend on γi–instead, as the previous two-player example
illustrates, the limit opinions depend on the vector of weights m. Here we characterize both
influence and cumulated errors for more general networks.

When at least one player i0 sets mi0 > 0, long-run opinions converge and we have

yi = mixi + (1−mi)ξi + (1−mi)ŷi with ŷi ≡
∑
k ̸=i

Aikyk (12)

Player i’s opinion thus builds on the opinion ŷi of a (fictitious) composite neighbor who aggre-

gates the opinions yk, to which the error ξi is added. Letting Ã
i
kj =

Akj

1−Aki
, we rewrite (12) to

describe how each opinion yk builds on yi:

yk = mkxk + (1−mk)ξk + (1−mk)Akiyi + (1−mk)(1−Aki)
∑
j ̸=k,i

Ãi
kjyj (13)

So in effect, in incorporating the composite opinion ŷi, player i is (partially) incorporating her
own opinion yi: the opinions that i gets from others are partially echoes of her own opinion. So
even if her per-period reliance on xi is small (i.e. mi small), her seed xi may eventually have
a large influence on long-run opinions. Another aspect in that in incorporating the composite
opinion ŷi, each player i is (partially) adding other players’ error terms to her own, and any
opinion that contributes to ŷi is itself subject to errors. Proposition 4 below characterizes both
effects: long-run influence and cumulated errors.

Let M i (resp. αi) be the diagonal N − 1 matrix for which M i
kk = mk for k ̸= i (resp.

αi
kk = Aki) and define the matrix Qi = (I − (I −M i)(I − αi)Ãi)−1 and vector Ri such that
Ri

j =
∑

k AikQ
i
kj . Also let hi ≡ 1/

∑
j ̸=iR

i
jmj . We have:

Proposition 4: Assume player i0 ̸= i has mi0 > 0. Then hi ≥ 1 and

yi = pixi + (1− pi)(x̂i + ξ̂i) where x̂i = qi.x−i, (14)

pi
1− pi

=
mihi

(1−mi)
, qij =

Ri
jmj∑

j ̸=iR
i
jmj

and

ξ̂i = hi(ξi +
∑
j ̸=i

Ri
jξj(1−mj))

Proposition 4 provides an analog of Expression 6 when at least one player uses an FJ
rule. Without errors, player i’s long-run opinion is an average between her own seed xi and
a composite seed x̂i (an average over the others’ seeds). The weight pi defines how player i’s
own seed influences her long-run opinion, and through the choice of mi player i has full control
over this weight. Player i however has no control over the composite seed x̂i, as the vector of
weights qi ∈ ∆n−1 is fully determined by A and m−i.

In the presence of errors, the weights pi and qi remain the same. The difference is that
when attempting to incorporate the composite seeds, player i faces a cumulated error term ξ̂i.
This error term can be very large when all mj are small.

Proposition 4 also confirms an insight suggested by Proposition 2: the seed xj of any
individual that sets mj = 0 has no influence on long-run opinion (either own or others).
Finally, to complete all cases, we have:
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Proposition 5: If m−i = 0 and mi > 0, then yi = xi +
1−mi
mi

(ξi +
∑

j ̸=iR
i
jξj) where R is

as defined in Proposition 4.

Consistent with Proposition 3, echo effects rise without bound when mi gets small. Propo-
sition 4 and 5 imply that if all players but i use DG, all players opinion’s will build on xi only,
however small mi is. Mueller-Franck (2017) makes a similar observation in a model without
errors (concluding to the lack of robustness of DG outcomes to small departures from DG).

Section 4 will build upon Propositions 4 and 5 to characterize the equilibrium of the rule
choice game. We conclude this Section with further comments on DG and FJ rules.

3.6 Understanding the difference between DG and FJ

(a) On anchoring, influence and consensus: DG and FJ generate a very different dynamic
of opinions. Permanently putting weight on one’s initial opinion is equivalent to putting a
weight on the opinion of an individual that never changes opinion: it anchors one’s opinion,
preventing too much drift. As a result, it also anchors the opinions of one’s neighbors, hence,
the opinions of everyone in the (connected) network.

The channel through which each player influences long-run opinions also differs substan-
tially. In the absence of noise, and for a given network structure, relative influence in DG
depends on relative speed of adjustment γ, with lower speed increasing influence (see (4)).

In contrast, under FJ , the speeds of adjustment γ have no effect on long-run opinions y.
Only the mi’s (and the structure of the network) matter. These mi’s determine player-specific
vectors of weights, but at the limit where all mi’s are very small, these vectors converge to one
another (see Appendix), with the weight pi on i’s seed proportional to miρi, that is:

pi
pk

=
miρi
mkρj

(15)

This is an analog to (4) showing that close to the limit, mi plays the same role as 1/γi does in
DG and consensus obtains. As the mi’s go up however, consensus disappears: players “agree
to disagree”.

(b) On the fragility of DG:
There is something inherently fragile about the long-run evolution of opinions under DG.

Since individuals don’t put any weight on their own initial signal after the first period, the direct
route for that signal to stay relevant is through the weight put on their own previous period’s
opinion. This source clearly has dwindling importance over time. This gets compensated by
the growing weight on the indirect route–each individual i adjusts his or her opinion based
on the opinions of their neighbors, and these are in turn influenced by i’s past opinions and
through those, by i’s initial signal. In DG without transmission errors, the second force at
least partly offsets the first one – but this is no longer true when there is any transmission
error because of the cumulative effect of noise that comes with the feedback from others.

(c) On the source of change in opinion: One way to assess the difference between DG
and FJ is to express them in terms of changes of opinions and opinion spreads. Defining the
change of opinion Y t

i = yti−y
t−1
i , the neighbors’ average opinion ŷti and the spread Dt

i = ŷti−yti
between others’ and own opinions, and setting γi = 1 for all i for the FJ process, we have the
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following expressions:

Y t
i = γi(D

t−1
i + ξi) (DG)

Y t
i = (1−mi)AiY

t−1 (FJ)

Under DG, one changes one’s opinion whenever there is a (perceived) difference between that
opinion and the opinions of one’s neighbors: any difference generates an adjustment aimed
at reducing it. In the absence of errors, this creates a force towards consensus, with Dt

i and
Y t
i eventually converging to 0. With errors however, this adjustment aimed at reducing the

(perceived) spread actually keeps opinions moving:33 errors are eventually incorporated into
the opinions of all the players, and repeated errors tend to cumulate and generate a general
drift in opinions. The force towards consensus is in this sense too strong.

By contrast, under FJ, players only incorporate changes in the opinions of others. So,
in the case where the transmission error is fixed, ξ1 will generate a one time change on 1’s
opinion, but it won’t, by itself, generate any further changes for player 1. Of course, this initial
(unwanted) change of opinion will trigger a sequence of further changes – it will be partially
incorporated in player 2’s opinion, and therefore come back to player 1 again. This is what we
call an echo effect. But, when mi > 0 for at least one player, the echo effect will be smaller
than the initial impact and will get even smaller over time, and as result, opinions won’t blow
up: all Y t

i ’s eventually converge to 0. Nevertheless, if all mi are small, the echo effects are not
dampened enough, and the consequence is a high sensitivity of the final opinion to the errors.

4 Choosing the rule

4.1 When there are no errors

We build upon Proposition 4 and 5 to characterize the equilibrium of the rule-choice game,
starting with the case of no error. We show that the equilibrium must be DG and that in equi-
librium, information aggregation must be perfect. Formally, define π∗ as the vector of weights
on seeds that achieve perfect information aggregation, i.e., π∗ = argminπ var(

∑
k πkxk), and

let v∗ = var(π∗.x). We have

Result 1: In the absence of transmission errors, the equilibrium must be DG. In addition,
in equilibrium, yi = π∗.x and Li = v∗.

In other words, as long as there is no noise, we get perfect agreement in opinions in equi-
librium and perfect information aggregation. As mentioned in the introduction, the main
difference with De Marzo et al. (2003) and Golub and Jackson (2010) is that we allow for
endogenous weights γi. For any connected network, this is enough to obtain efficiency in
equilibrium.

Intuitively, both yi and the neighbor’s composite limit opinion ŷi are weighted averages
between xi and the composite seed x̂i, with different weights when players do not use DG rules.
In equilibrium, i chooses optimally the weighting to reduce variance, so if the equilibrium is not
DG, the variance v(yi) must be strictly smaller than the variance v(ŷi), which itself is no larger
than the maximum variance maxk v(yk). Since this cannot be true for all i, the equilibrium
must be DG.

33Technically, opinions can never settle because this would require finding a vector y for which D + ξ = 0,
hence Ay − y + ξ = 0 which is not possible unless ρ.ξ = 0.
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Regarding efficiency, in a DG equilibrium, player i chooses the relative weight πi on her
own seed by modifying γi, and any departure from perfect information aggregation leads i to
choose a relative weight πi no smaller than π∗i . In a DG equilibrium, πi also characterizes the
influence of xi on the common long-run opinion (there is consensus), so the weights πi must
add up to 1. This can only happen if they coincide with the efficient weights π∗i . Therefore
there is a unique (and efficient) equilibrium outcome.

4.2 Rule choice when there is noise

We already saw that as soon as there is some noise, the outcome generated by any DG rule
drifts very far from minimizing Li. The loss grows without bound. Indeed from the point of
view of the individual decision maker it would be better to ignore everyone else than to follow
DG. In fact all strategies that put too little weight on their own seed (recall DG puts zero
weight) are dominated from the point of view of the individual decision-maker, as well as being
socially suboptimal.

Result 2: Let m = ϖ/(1 +ϖ). Any (mi, γi) with mi < m is dominated by (m, γi), from
the individual and social point of view.

Regarding the choice of the individually optimal rule, Result 2 builds on two ideas. First,
if all other players use DG, then for agent i, any mi > 0 is preferable to DG because everyone’s
opinion drifts off indefinitely if mi = 0, as we saw above. Second, if some players use FJ (with
mj > 0), then initial opinions of these players xj (plus any persistent noise in their reception
of the signal) totally determines the long run outcome and the seeds of all the players that use
DG do not get any weight – they end up as pure followers. This is not desirable for these DG
players (and for the others) for the same reason why, in the absence of noise, each one wishes
to let their own seed influence their long-run opinion. Hence the lower bound on mi.

To see why this is also true of the socially optimal rule, i.e. the rule that minimizes
∑

i Li,
we observe that when mi = 0, the only effect of information transmission by i to his neighbors
is to introduce i’s perception errors into the network. When i raises mi above 0, he raises the
quality of the information he transmits, while reducing the damaging echo effect that low mi

generates.

We now provide further characterization of the privately optimal choice of mi, and its
consequence for the loss Li. Recall from Proposition 4 that yi = pixi + (1− pi)(x̂i + ξ̂i) where
x̂i + ξ̂i is a term that only depends on the structure of the network and m−i, and which has
variance

Wi ≡ var(x̂i) + ϖ̂i where ϖ̂i = Eξ̂2i (16)

Since player i fully controls pi by adjusting mi, we obtain:

Proposition 6: For a given m−i, the optimal choice of mi satisfies
pi

1−pi
= himi

1−mi
= Wi

σ2
i
,

resulting in a loss

Li = σ2i pi =
Wi

1 +Wi/σ2i
. (17)

This Proposition implies that the best response is a continuous function (which we know
maps into a compact set [m, 1]), so existence of an equilibrium is guaranteed. It also implies
that the loss Li is fully determined by Wi.

16



In the absence of errors, efficient aggregation would obtain, resulting in the minimum
feasible loss v∗, which satisfies

v∗ = σ2i π
∗
i =

W ∗
i

1 +W ∗
i /σ

2
i

(18)

where W ∗
i = minq var(q.x−i).

34 With transmission errors, Wi must be higher than W ∗
i . Ex-

pression (16) highlights the two possible additional sources of losses that player i now faces:
(i) the fact that seeds of others may not be efficiently aggregated (i.e. var(x̂i) > W ∗

i ) and (ii)

the presence of the cumulated error term ξ̂i.
In next Section, we will see that when errors are small, the cumulated errors are the

preponderant source of inefficiency. In Section 5, we will examine how the equilibrium W ∗
i

varies with network structure.

4.3 How big is the divergence in opinions?

Result 2 has the obvious implication that full consensus is never going to be an equilibrium
when there are persistent errors–there are in fact two sources of deviation, the error itself
(which mechanically prevents consensus) and the extra weight mi on one’s initial signal (which
fuels further divergence.)

Result 3 below shows that because of cumulated errors, the optimal weight put on one’s
own seed tends to be relatively large, i.e. O(ϖ1/3) (of the order of ϖ1/3).35 As a result when ϖ
is small, the extra weight on one’s own seeds becomes the preponderant source of dispersion.
These extra weights also determine the equilibrium magnitude of ϖ̂i and Li. We have:

Result 3: For any given finite network and any ϖ > 0 small, all mi, pi − π∗i , ϖ̂i and
Li − v∗i are positive and O(ϖ1/3) in equilibrium.

Note that in addition to cumulated errors, there is another source of inefficiency in equi-
librium, the fact that seeds are not efficiently weighted. But that inefficiency is O(ϖ2/3):36

a socially optimal choice of weights mi would trade-off more inefficient weighting (larger m)
against decreasing the variance of cumulated errors.

The intuition for Result 3 runs as follows. The error terms ϖ̂ are O(ϖ/m2). These errors
terms degrade the quality of information that each i gets (raisingWi aboveW

∗
i ), which in turn

implies a weighting pi of i’s seed larger than the efficient weighing π∗i , with pi − π∗i at least
O(ϖ/m2) (by (17) and (18)). When m > 0, players end up weighing seeds differently, but
when all m are small, the spread between the weights is also small and O(m). So if pk is the
weight that k puts on xk, the weight that i puts on xk must be pk +O(m). Since the weights
that i puts on all seeds must add to 1, the pk’s must add up to at most 1 +O(m). And since
the sum

∑
k(pk−π∗k) is at least O(ϖ/m2), m must be at least O(ϖ/m2) in equilibrium, which

gives m at least O(ϖ1/3).37

34This is because v∗ = minπ π.x = minπi var(πixi + (1− πi)W
∗
i ).

35When we say that m = O(g(ϖ)), we mean that m/g(ϖ) has a finite limit when ϖ tends to 0.
36This is because for an inefficient weighting of seeds q ̸= π∗, the loss is second order in the differences qi−π∗

i :
Li − v∗ =

∑
(q2i − π∗2

i )σ2
i =

∑
(qi − π∗

i )
2σ2

i + 2
∑

(qi − π∗
i )π

∗
i σ

2
i , and the last term is 0 because

∑
(qi − π∗

i ) = 1
and at the optimum π∗

i σ
2
i = π∗

j.σ
2
j for all i, j

37The proof also shows mi cannot increase beyond O(ϖ1/3) in equilibrium for the same reason that the
equilibrium without error terms must be DG: each player sets the weighting pi of own seed xi optimally, and
this creates a force towards optimal information aggregation.
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Note that Result 3 focuses on the case where variances are small. When the mi’s rise, the
relative weights on seeds eventually diverge sufficiently from efficient weighting that this fuels
a further rise in Wi hence in mi.

4.4 Privately versus socially optimal choices

We already showed that both private and social optima must deviate from DG when there
is noise. The next result shows that there is a sense in which, in the presence of noise, the
Nash Equilibrium is closer to DG than is desirable from the point of view of social welfare
maximization.38

Result 4. At any Nash equilibrium, a marginal increase of mi by any player i would
increase aggregate social welfare.

To see why this result holds, assume mj ∈ (0, 1) and observe that player j’s opinion can be
expressed as an average between the (modified) seeds x̃−i of players other than i and player
i’s opinion

yj = (1− µji)C
jix̃−i + µjiyi (19)

where Cji is a probability vector and µji ∈ (0, 1),39 with µji and C
ji both independent of mi.

The expression above highlights that when player i chooses mi optimally (for him) to
minimize the variance of yi, there is no reason why he would be also minimizing the variance
of yj . Specifically we use use (19) to separate the loss Lj into three terms:

Lj = (1− µji)
2var(Cjix̃−i) + µjiLi + 2(1− µji)µjiCov(C

jix̃−i, yi). (20)

When mi is raised above i′s private optimum, there is no effect on the first term. There is a
second-order effect on the second term (because we start at i′s private optimum). The last
term is what creates a discrepancy between private and social incentives.

This last term depends on the covariance between seeds other than that of i (x̃−i) and the
opinion of i (yi). When mi increases, the influence of each k ̸= i on i’s opinion is reduced,
and the correlation between yi and xk (and even more so with x̃k) is also reduced. Therefore,
starting at a Nash equilibrium, Lj goes down when mi is raised.

5 Equilibrium, efficiency and polarization in simple networks.

In this section we explore the quantitative significance of our results through a set of simple
examples where, unless specified otherwise. We assume that seeds are equally informative
(σ2i = 1 for all i) and each player treats all his neighbors symmetrically (Aij = 1/|Ni|). We
are particularly interested in whether a small amount of noise can lead to large distortions
of information aggregation, how much of extra information loss comes from non-cooperative
behavior, and the connection between disagreements between individuals and polarization at
the population level.

We start with the simple two-player network and then examine two classes of symmetric
networks, the complete network and the directed circle, followed by the star network class

38The result shows that a marginal increase over equilibrium weights enhances welfare, but we do not have a
full characterization of socially efficient weights.

39This assumes mj ∈ (0, 1). Cji
j is positive because j is using her own seed.
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of asymmetric networks. Different networks lead to differences in how seeds are aggregated,
differences in how errors cumulate, as well as differences in incentives to raise m, resulting in
differences in the efficiency of information aggregation across networks, which we will try to
highlight.

5.1 Two-player case.

Social optimum. Assuming independent errors, we obtain from (10)

L1 = I(p1) + (p1)
2X (m1) + (1− p1)

2X (m2)

where I(p) = p2 + (1 − p)2 is the variance of long run opinion in the absence of transmission

noise and X (m) = ϖ (1−m)2

m2 represents the effect of cumulated noise. The total social loss is
L = L1 + L2.

It is easy to check that, given the symmetry, minimizing the social loss requires setting
identical values for m1 and m2. When both players use the same rule (m = m1 = m2),
pi =

1
2−m and the social loss is:

L = 2I(
1

2−m
)(1 + X (m))

The expression highlights a trade-off between decreasing m for information aggregation pur-
poses (I(p) is minimized at p = 1/2), and increasing m to limit the effect of cumulated com-
munication errors (when ϖ > 0 and m is small, communication errors are hugely amplified).

Welfare is maximized for an m∗∗ that optimally trades off these two effects and the socially
efficient weight m∗∗ (which minimizes L) can be significantly different from 0 even when ϖ is
small. Specifically, for ϖ = 0.0001, m∗∗ = 0.13 and for ϖ = 0.001, m∗∗ = 0.21. Furthermore,
for ϖ small, m∗∗ ≃ (4ϖ)1/4.40

Nash Equilibrium. We now assume that individuals choose their rules non-cooperatively.
Applying Proposition 5, we obtain pi/(1− pi) = 1 + ϖ̂i, so

pi =
1 + ϖ̂i

2 + ϖ̂i
where ϖ̂i = Eξ̂2i

which gives the best response for i, as a function of mj :

mi =
mj(1 + ϖ̂i)

1 +mj(1 + ϖ̂i)

Figure 1 plots the best responses for ϖ = 0.01.
In the absence of noise, ϖ̂i = 0, and player 1 should setm1 so that p1 = 1/2 (for information

aggregation purposes), which requires m1 < m2, which explains why there is no equilibrium
with positive m (this is the force towards DG). With noise, the variance ϖ̂i explodes when mj

gets small, reflecting the cumulation of errors when mj is low. This provides i with incentives
to raise pi (hence mi) which in turn puts a lower bound equilibrium weights: in equilibrium,
m∗

1 = m∗
2 = m∗ and m∗ is a solution to

m∗ =
ϖ̂∗

1 + ϖ̂∗ with ϖ̂∗ = ϖ
1 + (1−m∗)2

m∗2 .

40This is because for ϖ small L ≃ 1+ m2/4 +ϖ/m2.

19



0.0 0.1 0.2 0.3 0.4 0.5
m20.0

0.1

0.2

0.3

0.4

0.5
m1

m2
*(m1)

m1
*(m2)

Figure 1: Best responses, ϖ = 0.01

When ϖ is small, we have m∗ ≃ (2ϖ)1/3. Since m∗∗ ≃ (4ϖ)1/4, the ratio of m∗∗ to m∗ become
arbitrarily large when ϖ is small.

5.2 Larger networks

Before focusing on specific networks of size n > 2, we make preliminary observations that
explain how one derives an equilibrium. Recall from Proposition 5 that player i’s incentives
yields

mi

1−mi
=Wi/hi (21)

where Wi = var(x̂i)+ ϖ̂i. Both hi and Wi depend only m−i and the structure of the network,
and the equilibrium values m∗

i are obtained by simultaneously solving these equations.
The terms hi and Wi differ across networks and affect relative performance. For example,

for a given Wi, the term hi characterizes the degree to which a rise in mi translates into a
rise in i’s influence on long-run opinions ( pi

1−pi
= mihi

1−mi
). For a given target pi, a higher hi

translates into a lower mi, which raises the magnitude of echo effects ϖ̂j and hurts welfare.

To facilitate network comparisons, we continue to assume seeds of identical precision (σ2i =

1), so that π∗i = 1/n and W ∗
i = 1/(n − 1).41 It will be useful to define ∆̂i ≡ Wi − W ∗

i

(which characterizes how well information is aggregated by neighbors) and ρi ≡ pi
1−pi

− 1
n−1

(which characterizes the degree to which player i use its seed above the efficient information-
aggregation level). The equilibrium condition

ρi = ∆̂i

determines mi as a function of m−i, while the socially efficient level m∗∗ is determined by the
minimization of ΣiLi where Li = p2i + (1− pi)

2(W ∗
i + ∆̂i).

In what follows, we derive explicit formula for hi, x̂i, ξ̂i for the networks we consider, a
superscript c denoting the complete network, d the directed circle and s the star network. We
also solve for equilibrium and the social optimum for each network, and discuss their relative
performance, focussing on the limit cases where ϖ is small (for a fixed n) and where for a fixed
ϖ small, n gets large.

41Given that all seeds have same precision, efficient information aggregation would require pi = 1/n hence
ρi = 0.
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5.2.1 The complete network.

In the complete network, all the players are connected to each other. We denote by x−i

(respectively ξ−i) the average seed (respectively error) of players other than i. We analyze a
situation where all players but i use the same weight m and look for a symmetric equilibrium.
We have:

Lemma 1: For the complete network, hci = 1+ 1−m
m(n−1) , x̂

c
i = x−i, and ξ̂

c
i = hciξi+ ξ−i

1−m
m .

This implies that W c
i = 1

n−1 + ϖ̂c
i , so for a given m, the losses Li are solely generated by

the cumulated error term ϖ̂c
i . When everyone uses the same m, the loss is

Li = p2 + (1− p)2(
1

n− 1
+ ϖ̂c

i ) where
p

1− p
=

1

n− 1
+

m

1−m
, (22)

and it is minimized for somem∗∗
c which optimally solves a tradeoff between optimal information

aggregation (achieved for p = 1/n) and the reduction of cumulated errors. In equilibrium, each
i takes ϖ̂c

i as given while setting pi (hence mi) optimally, which explains why the equilibrium
m∗

c is inefficiently low.

We examine below two interesting limit cases. Fixing n, we examine the limit case where
ϖ gets small. Then fixing ϖ small, we examine the case where n gets large. We have:

Proposition 7: Fix n. With independent errors, ∆̂∗
c ≃ m∗

c ≃ ϖ1/3( n
(n−1)2

)1/3, while with

perfectly correlated errors ∆̂∗
c ≃ m∗

c ≃ ϖ1/3( n
n−1)

2/3. Now fix ϖ small. For large n we have:

∆̂∗
c ≃ m∗

c ≃ (ϖn )
1/3 for independent errors, and ∆̂∗

c ≃ m∗
c ≃ ϖ1/3 for perfectly correlated errors.

In the case where the errors are independent, the complete network thus has the desirable
property of reducing the variance of the mean error that i incorporates in processing his
neighbors’ opinions (goes down to 0 when n is large). On the other hand, with correlated
errors, the efficiency loss rises quickly with ϖ even at the limit where n is large. In fact the
equilibrium and social losses under FJ are much larger, for one, than in the case where each
player just aggregates the initial opinions of others with an error ξ, where the loss would be
ϖ. For ϖ = 0.01, we find m∗

c = 0.2 and m∗∗
c = 0.29, with equilibrium and social losses

respectively 0.2 and 0.14, as if each player had perfectly aggregated only 4 (respectively 6)
additional signals.42

5.2.2 The directed circle

Consider a circle with n players where information transmission is directed and one-sided:
player i communicates to player i−1, who communicates to i−2, and so on. Player 0 is player
n. Long-run opinions satisfy

yi = mix̃i + (1−mi)yi+1.

Assuming all other players choose m, and repeatedly substituting yi+k for k = 1, ..., n− 1, we
obtain below explicit expressions for hdi , x̂

d
i and the cumulated error ξ̂di . Specifically, for any

z−i, let ψ(z−i) =
∑n−1

k=1(1 −m)k−1zi+k/
∑n−1

k=1(1 −m)k−1 be the weighted average over zi+k’s
where the weight of the k−step neighbor is diminished by a factor (1−m)k−1. We have:

42To compute exactly the equilibrium and social losses at the large limit n, we use (22) to get Li = m2
i +(1−

mi)
2ϖ/m2
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Lemma 2: For the directed circle, hdi = 1
1−(1−m)n−1 < hci and x̂di = ψ(x−i) and ξ̂di =

hdi ξi + ψ(ξ−i)
1−m
m .

There are two notable differences with the complete network: (i) the architecture of the
network itself implies a stronger incentive to raise mi (because h

d
i < hci ); (ii) A less efficient

information aggregation by neighbors (because ψ(x−i) ̸= x−i), and a less efficient averaging
of errors when errors not perfectly correlated (because then ψ(ξ−i) ̸= ξ−i).

Regarding relative performance of the network, item (i) works in favor of the directed
circle because it raises the equilibrium weights m∗ and therefore lowers cumulated errors in
equilibrium. Item (ii) works against the directed circle. Our two limit cases illustrate that
each effect may dominate the other:

Proposition 8: Fix n > 2. Let µ = n
2(n−1) < 1. Then for fixed n and small ϖ, ∆̂c

i ≃ ∆̂d
i

and in equilibrium, m∗
d ≃ µ−1/3m∗

c and ∆̂∗
d ≃ µ2/3∆̂∗

c . For a fixed small ϖ, taking the large n

limit, ∆̂d
i > ∆̂c

i and hdi ≃ hci ≃ 1, and in equilibrium, m∗
d ≃ ∆̂∗

d > m∗
c ≃ ∆̂∗

c , with ∆̂∗
d ≃ ϖ1/2

for independent errors, and ∆̂∗
d ≃ (2ϖ)1/3 for correlated errors.

Intuitively, for a fixed n and ϖ small enough, m is small and the inefficiencies (ii) are of
order 2 in m (see Appendix)43, explaining why ∆̂c

i ≃ ∆̂d
i . So the only first order effect comes

from a stronger incentive to raise m, which reduces ∆̂∗
d and L∗

d. At the other limit, incentives

to raise m given ∆̂ are identical across networks (because hdi ≃ hci ), and the complete network
dominates because of better aggregation properties.

5.2.3 The star network

We consider a network consisting of n − 1 peripheral players labelled k = 1, ...n − 1 and a
central player, labelled 0, who aggregates the opinions of the peripheral players. All players
have a seed of same precision and are subject to a processing error ξi, with same variance ϖ
for peripheral players, and variance ϖ0 ≤ ϖ for the central player.

We look for an equilibrium where all peripheral players use the same weight m∗
s and the

central player uses m∗
0. We start with the central player:

Lemma 3: In the star network, for the central player hs0 =
1
m , x̂s0 = x and ξ̂s0 = ξ0+(1−m)ξ

m .

This implies that W s
0 = 1

n−1 + ϖ̂s
0, so for a given m, the loss L0 is solely generated by the

cumulated error term. The choice of m0 is given by:

m0

(1−m0)m
=

1

n− 1
+ ϖ̂s

0 (23)

implying that for a fixed n and for small ϖ̂s
0, m0 ≃ m

n−1 . The reason is that the central
player’s opinion influences (many) peripheral players, so for information aggregation purposes,
the central player should compensate for that influence by setting a smaller m0 compared to
m. Furthermore, at the large n limit, m0 ≃ mϖ̂s

0, so when ϖ̂s
0 is small (which will be true in

equilibrium when ϖ is small), his behavior becomes close to that of a DG player.
We now consider a peripheral player i using mi while all other peripheral players use m,

deriving hi, zi and ξ̂i:

43This is because for small m, the average ψ(x−i) has close to the efficient weights.
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Lemma 4: Let ρ0 = m0
(1−m0)m

− 1
n−1 and q0 = 1/(n−1)+ρ0

1+ρ0
. In the star network, for a

peripheral player, x̂si = q0x0+(1− q0)x−i, h
s
i = 1+ 1

m(n−1)(1+ρ0)
and ξ̂si = ξi(1+

1
(n−1)(1+ρ0)

)+
1

(1+ρ0)
ξ̂0.

The Lemma tells us that when ρ0 > 0, the aggregation of seeds is distorted (i.e, v(x̂si ) >
1

n−1) and potentially, hsi < hci . However in equilibrium, the incentive condition (23) of the
central player implies ρ0 = ϖ̂s

0, so when ϖ̂s
0 is small (which again will be true in equilibrium

when ϖ is small), the distortion is negligible and hsi ≃ hci . This implies that for small ϖ,

losses essentially come from the cumulated error terms (i.e., ϖ̂s
i ≡ var(ξ̂si )) and that, for given

cumulated errors, incentives to raise mi for peripherical players are similar to that of the
complete network (because hsi ≃ hci ). Computing ϖ̂s

i for small ϖ gives us:

Proposition 9: Fix n. For small ϖ, with independent errors, m∗
s ≃ ∆̂∗

s ≃ (ϖ0 +
ϖ

n−1)
1/3

and with correlated errors, m∗
s = ∆̂∗

s ≃ (var(ξ0 + ξ))1/3. If in addition ϖ0 = ϖ, then whether
errors are independent or correlated, ∆̂∗

s > ∆̂∗
c > ∆̂d. Furthermore, for fixed small ϖ, at the

large n limit, ∆̂∗
s > ∆̂∗

d > ∆̂∗
c .

Details are in the Appendix. As explained above, for small ϖ, the main difference with the
complete network comes from the magnitude of the cumulated error term ϖ̂s

i , which is higher
for the star network because the central player’s errors contaminate all the other players in a
systematic (i.e., correlated) way, unless ϖ0 is significantly smaller than ϖ. Also observe that
even when the star network gets large (which, unlike the directed network, leads to a close-to-
efficient aggregation of seeds), the central player’s errors lead to large cumulated errors that
end up impairing performance. Unless ϖ0 is significantly smaller than ϖ, the star network
thus results in lower performance than the directed circle under both limit cases.

5.3 Implications for the divergence of opinions

In the absence of noise, and if players use DG with appropriate weights γ, long-run opinions
converge to a consensus y∗ = π∗.x which efficiently aggregates seeds. In a large network, this
opinion y∗ will essentially coincide with the underlying state θ (y∗ ≃ θ), which implies that
if we consider two such identical networks, there will be consensus within each network and
consensus across networks.

In the presence of noise, two things may happen. A divergence of long-run opinions y
away from y∗, which means a divergence of average opinions between the networks, as well as
some dispersion of opinions within networks. This section argues that there is a connection
between consensus within subgroups (low dispersion) and polarization (high divergence across
subgroups).

To fix ideas, we consider below the case of two large disconnected star networks modeled as
above.44 This description generally fits the maps of social networks in the US population with
the two stars representing Democrats and Republicans (Cox et al. 2020). We assume that in
each star network all peripheral players use the same weight m and that central players behave
as DG players, just aggregating peripheral players’ opinions.45 We are interested in the effect

44Result 5 below would also hold if the set of cross-star links were a vanishingly small proportion of the total
number of links.

45In the Appendix, we consider the case where central players benevolently choose m0 to minimize the losses
of the peripheral players, given m.
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on m on the distribution of opinions within the star and across stars. We have

yi = mxi + (1−m)(y0 + ξi)

The dispersion of opinions between two peripheral players within a given star is

d ≡ E(yi − yj)
2 = 2(m)2 + 2(1−m)2ϖ

The average opinion of peripherical players is y = mx+(1−m)(y0+ξ), and for a large network,
with independent errors, only y0 contributes to the variance of y. Across the networks, average
opinions are independent (conditional on θ) and the dispersion of opinion D between average
opinions is thus:

D = 2v(y)

The following result establishes a relationship between d and D:

Result 5: Fix ϖ0 small and assume independent errors. At the social optimum m∗∗,
D ≃ d and for any m ≤ m∗∗, D ≃ 4ϖ0

d .

Proof : When the central player is DG, y0 = y+ξ0, so for a large network and independent
errors this immediately gives y = (1−m)ξ0

m , hence D ≃ 2ϖ0
m2 ≃ 4ϖ0

d for small m. Writing

yi = (yi − y) + y, we obtain v(yi) =
1
2(d+D). Since D ≃ 4ϖ0

d , the loss v(yi) is minimized for

D ≃ d ≃ 2ϖ
1/2
0 (hence m∗∗ ≃ ϖ

1/4
0 ).■

Result 5 says that the social optimum is achieved for D ≃ d and it establishes a relationship
between consensus within each group (small d) and polarization across groups (high D): as
m decreases below m∗∗, within-group consensus goes up but so does polarization across the
groups.

Our equilibrium analysis provides one possible reason form being too low, but there may be
others. For example, imagine that for some issues, the errors ξi are correlated across network
members (calling for higher m), while for other issues, the errors are independent (calling for
lower m). If agents are unable to adjust m to the type of problem they face, the weights m
will be inefficiently low for the problems where there are correlated errors, thus fostering too
much consensus and polarization for these problems.

5.4 An alternative modeling of errors

To conclude this Section, we briefly comment on our modeling of errors. Given the way we index
errors, it is natural to interpret ξi as a persistent error that i makes in processing or hearing
others’ opinions. We discuss below an alternative model where i does not make processing
errors but makes a persistent error ζei in expressing her opinion. In this case Equation (1)
becomes

zti = Ai(y
t + ζe)

so in effect, i is subject to an error ξi ≡ Aiζ
e. Our analysis thus extends to this alternative

modelling with ξi appropriately re-defined. With perfectly correlated errors, this alternative
modeling yields ξi = ζei , so the analysis is unchanged. With independent errors, the errors

ξi (hence the cumulated errors ξ̂i) now potentially depends on the network structure. We
re-examine our three network examples in light of this alternative modeling. Specifically, we
compare the cumulated errors terms when agents are subject to processing errors (ξi = ξpi )
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(respectively expressing errors ξi = Aiζ
e), and denote by ϖ̂p

i and ϖ̂e
i the respective variances,

assuming that all errors ξpi and ζei are independent and homogenous. We let ϖ = varξpi =
varζei . We have

Proposition 11: For the directed circle, ϖ̂p
i = ϖ̂e

i . For the complete network, ϖ̂p
i =

ϖ̂e
i +

n−2
n−1ϖ. For the star network, ϖ̂p

0 = ϖ̂e
0 +

(2−m)(n−1)
mn ϖ.

The main insight of this Proposition is that although the magnitude of the one-shot error
ξi that a player faces may differ substantially depending on whether we consider processing or
expressing errors, the cumulated error terms do not differ much in the sense that terms of order
ϖ/m2 remain the same.46 The consequence is that, while processing errors generate slightly
larger cumulated errors than communication errors, the effect is negligible for small ϖ, and at
least for the specific networks considered above, equilibrium analysis is then unchanged (see
Appendix).

6 Idiosyncratic errors

We now introduce idiosyncratic errors and assume that

εti = ξi + νti

where νti are i.i.d. across individuals and time.47 We further assume Eνti = 0 and let ϖ0 =
var(νti ). We wish to characterize the (additional) loss generated by these idiosyncratic errors,
and examine the consequence regarding incentives.

In the absence of idiosyncratic elements, the speeds of adjustment γi plays no role when
mi0 > 0 for i0. The main insight of this Section is that idiosyncratic errors induce temporary
variations in opinions which are potentially costly, and players have incentives to reduce these
variations by decreasing γi. Furthermore, when all players choose an arbitrarily small γi,
long-run opinions essentially coincide with the ones obtained in the absence of idiosyncratic
errors.

Formally, for any fixed m, x and ξ, we define the expected opinion vector yt = Eyt where
the expectation is taken over all νsi for s ≤ t. We also let ηt = yt − yt and V t = var(ηt).
Furthermore, we let y0 denote the long-run opinion that would obtain in the absence of id-
iosyncratic errors, and L0

i = var(y0) the associated loss of player i computed over realizations
of x and ξ. The next Proposition (proved in Appendix B) provides the analog of Propositions
1 to 3 for the idiosyncratic noise case:

Proposition 12: If mi = 0 for all i, V t increases without bound. If mi0 > 0 for some i0,
yt and V t both have well-defined limits y and V . Besides, y = y0, V is independent of x and

ξ, and Li = L0
i + V . Furthermore, if mi ≤ m and γi ≥ γ for all i, Vi ≥ ϖ0

2n

γ2(1−m)2

m .

For given m, γ > 0, expected long-run opinions eventually coincide with y0, but long-run
opinions are subject to temporary changes resulting from idiosyncratic communication errors.
Proposition 12 shows that, for given γ, these temporary changes are significant and costly and
when all m are small.

46For example, in a star network, ξ0 = ζ
e
so varξ0 = ϖ/n for expressing errors, and varξ0 = ϖ0 = ϖ for

processing errors. Nevertheless, the cumulated errors are respectively (ζ
e
+(1−m)ζe0)/m and (ξ0+(1−m)ξ)/m.

47Implicitly, we think of νti as an error in interpreting the opinions expressed by others. Alternatively, one
could consider errors in expressing one’s opinion.
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However choosing a lower γi slows down the adjustment of one’s opinion. Result 6 below
shows that for small enough γi, long-run opinions becomes essentially unaffected by temporary
shocks in perceptions or temporary variations in others’ opinions.

Result 6: Fix m. We have:
(i)There exists c such that for any γ > 0 and m ≥ m, Vi ≤ cmax γj .
(ii) For any γ−i > 0, there exists c such that for all m ≥ m, Vi ≤ cγi.

The proof is in Appendix B. Item (i) shows that when all γi are small, all Vi are small.
Item (ii) shows that by choosing γi very small, a player can get rid of the additional variance
induced by the idiosyncratic noise.

Note that the incentive to set γi arbitrarily small obviously depends on the assumption
that players only care about long-run opinions. If players also cared about opinions at shorter
horizons, then they would have incentives to increase γi to more quickly absorb information
from the opinions of others: the trade-off is between increasing the rate of convergence (which
is desirable when the relevant horizon is shorter) and increasing the variance induced by id-
iosyncratic noise (which is not desirable).

7 Extensions and interpretations

In this section we discuss extensions of and possible variations upon our base model, with the
view to understand why different rules lead to different degrees of information aggregation in
different settings.

7.1 Biased persistent errors

We have so far assumed that the persistent error is drawn from a distribution that is mean zero.
One can however imagine settings where it is reasonable to assume that the persistent error is
biased, centered on ξ0i for player i. This could be because some individuals are systematically
biased in what they report or process (for whatever reason), or because others erroneously
believe that they are and wrongly correct for it. Another reason could be that preferences
are heterogenous, say each person cares about θi = θ + bi, observes xi = θi + δi, but has an
imprecise and potentially biased estimate of the vector of preference spreads βi = (bj − bi)j .

In either case, adding systematic biases ξ0i can only raise the terms ϖ̂i = Eξ̂i, thus providing
additional incentives to raise mi and increasing the losses Li.

7.2 Other communication protocols

We have followed the standard approach to modeling communication in this literature, with
each player communicating with all his neighbors at every date.48 We now consider an exten-
sion where each round of communication is one-sided and, at any date t, each agent i only
hears from a subset N t

i ⊂ Ni of his neighbors but there exists K such that each player hears
from all his neighbors at least once every K periods.49 Imperfect communication is modeled

48Banerjee et al. (2019) introduce the idea of a Generalized DeGroot model where not everyone starts with
a signal and therefore does not participate in the communication till they get a signal. They show that this
partially weakens the ”wisdom of crowds”.

49That is, for all t : ∪s=1,..,KN
t+s−1
i = Ni.
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as before, through the addition of an error term ξi that slants what i hears. Together these
give us

zti,j = yt−1
j + ξi if j ∈ N t

i

zti,j = zt−1
i,j if j ∈ Ni\N t

i

where zti,j is i’s current perception of j’s opinion, based on the last time he has heard from j.
Player i uses these perceptions to construct an average over neighbor’s opinions

zti = AiZ
t
i

where Zt
i = (zti,j)j is the vector of i’s perceptions and Ai = (Aij)j defines as before how i

averages others’ opinions. We continue to assume FJ updating. We have:

Proposition 13: Assume at least one player, say i0, updates according to FJ with mi0 > 0.
Then for any fixed x, ξ, yt converges and the limit vector of expected opinions y is independent
of the protocol.50

Intuitively, convergence obtains for standard reasons, and at the limit, since expected
opinions do not change, the timing with which one hears others does not matter (see Appendix).

This robustness contrasts with what happens when players use DG rules. For example,
consider two agents using DG rules and assume that agent 1 updates every period, while agent
2 updates every three other periods. At dates t where 2 updates, we have:

yt1 = (1− γ1)
3yt−3

1 + (1− (1− γ1)
3)yt−3

2

yt2 = (1− γ2)y
t−3
2 + γ2y

t−1
1

= (1− γ2)y
t−3
2 + γ2((1− γ1)

2yt−3
1 + (1− (1− γ1)

2)yt−3
2 )

= (1− γ2(1− γ1)
2)yt−3

2 + γ2(1− γ1)
2yt−3

1

So, the process evolves as if weights were γ′1 = 1 − (1 − γ1)
3 > γ1 and γ′2 = γ2(1 − γ1)

2 < γ2.
This means that with DG rules, changes in the frequencies with which players communicate
amount to changes in the values of γi (when you hear less often from others, your opinion
changes more slowly, effectively reducing γi). And even when communication is noiseless,
these changes modify long-run opinions: if γi goes down, long-run opinions get closer to i’s
opinions (see Section 3.1 Equation (4)).

Thus, even in the absence of transmission errors, variations in the communication protocol
induce additional variation in long-run opinions which can be mitigated by the use of FJ
rules by all players. That said, in the absence of transmission errors, long-run opinions under
DG remain averages over initial opinions, so the fragility is not as severe as the one already
highlighted: the variance induced by variations in the protocol remains bounded even when
mi = 0.

7.3 Uncertainty over the precision of initial signals.

We examine here another variation of the model, assuming that the precision of initial signals
is a random variable and that players are able to ajust the speed γi as a (linear) function of σ2i .

50So long as the condition in footnote 49 holds.
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We argue below that in the absence of processing errors, this type of shock does not affect
the performance of DG and therefore, unlike where there are errors, there is no incentive for
players to use the instrument mi.

Formally, assume that each the speed of adjustment γi as a linear function of the variance of
signal, that is, γi = µiσ

2
i . Then for well-suited coefficients µ∗ = (µ∗i )i information aggregation

is perfect, which further implies that this particular µ∗ is also a Nash Equilibrium of the game
where each chooses µi.

To see why, recall that under DG, the consensual long-run opinion is a weighted average
of initial opinions, with weights proportional to ρi/γi (see (4)). So if the µi’s are proportional
to ρi, the weights become proportional to ρi/γi, hence proportional to 1/σ2i , implying that
perfect aggregation obtains for each vector of realization (σ1, ..., σn).

7.4 Coarse communication

In the social learning literature, it is common to focus on choice problems where there are
two possible actions, and the information being aggregated is which of the two is being rec-
ommended by others. Coarse communication is potentially a source of herding, but when
agents have many neighbors, the fraction of players choosing a given action may become an
accurate signal of the underlying state. We explain below how our model can accommodate
an economic environment of this kind, and we use this to relate our findings to Ellison and
Fudenberg (1993,1995) and Frick et al. (2020), as well as Bohren and Hauser (2021).

Assume heterogenous preferences with θi = θ + bi characterizing i’s value from choosing 1
over 0, so the optimal action a∗i is 1 when θi > 0, 0 otherwise.51 Agent i knows bi but does
not know θ perfectly. He has an initial opinion xi = θ + δi and aggregates opinions of others
to sharpen his assessment of θ. Assume the bi’s are drawn from identical distribution g (and
cumulative denoted G) with full support on R.

We define, as before, yti as agent i’s opinion (about θ) at date t and we assume that an
agent with current opinion yti reports ati = 1 if yti + bi > 0 and ati = 0 otherwise. Each agent
i observes the fraction f ti of neighbors that choose action 0, which she can use to make an
inference ψi(f

t
i ) about θ, and update her opinion using an FJ-like rule:

yt+1
i = (1− γi)y

t
i + γi(mix

t
i + (1−mi)ψi(f

t
i ))

Long-run opinions clearly depend on the inference rule assumed, but there is a natural
candidate for ψi, the function ϕ ≡ h−1, where h(y) ≡ G(−y) = Pr(y + bi < 0) is the fraction
of agents that choose a = 0 when their opinions are all equal to y. If others have opinions that
are correct and equal to θ, a fraction f ≃ h(θ) choose a = 0 and h−1(f) is a good proxy for θ.
Of course this assumes that agents know the distribution over preferences. In the spirit of our
previous analysis, let’s assume that

ψi(f) = ϕ(f) + ξi

51Thus for i with preference parameter bi, choosing 0 when θ + bi > 0 costs θ + bi. When agents choose
between products 1 or 0, θ represents a relative quality dimension affecting all preferences, as in Ellison and
Fudenberg (1993).

28



where ξi is a persistent error in interpreting f .52,53 To fix ideas, we assume correlated errors
(ξi = ξ for all i) with variance ϖ.

Within this extension, we may ask about the fragility of long-run opinions when m is small,
as well as equilibrium and socially efficient weights (details are provided in the Appendix).

DG-like rules (m = 0) generate long-run opinions unanimously in favor of a = 1 if ξ > 0,
a = 0 if ξ < 0, independently of the underlying state and the initial signals received.

Under FJ with small m, long-run opinions remain anchored on initial opinions, but long
run opinions drift away from θ and converge to θ + (1−m)ξ

m . The trade-off is thus similar to
the one in our basic model. Raising m reduces fragility with respect to transmission noise,
dampening the echo term (1−m)ξ

m . And agents continue to diagree even in the long-run. The
consequence regarding social incentives and private incentives is as before, with m∗ and m∗∗

respectively comparable to ϖ1/3 and ϖ1/4: agents do not incorporate the damaging echo effect
that an mi set too low produces in their choice of mi .

7.5 A connection to misspecified Bayesian models.

How does the results in the previous sub-section relate to the results from Bayesian models
where agents have misspecified priors (and in particular Frick et al. (2020) and Bohren and
Hauser (2021))? Consider a social learning environment related to these Bayesian models
where players move in sequence and observe all previous choices. Preferences and signals are
as defined above. Assume the true state is θ0. Under Bayesian learning, if beliefs get highly
concentrated on some θ, then private signals do not affect decisions much and the fraction f of
people that choose a = 0 are approximately those for which θ+ b < 0 so f ≃ G(−θ). If agents
have an erroneous prior about the distribution of b’s and believe its cumulative is shifted by ξ
(say, Ĝ(b) ≡ G(b−ξ)) then agents are expecting a fraction close to f̂ = Ĝ(−θ) = G(−θ−ξ), so
if ξ > 0, f̂ < f . When the subjective prior over states has full support, this should inevitably
lead agents to believe that the state is lower than θ (to justify the higher-than-expected f
observed) and so on...which explains the fragility result obtained in Frick and al. (2020)

Let us now introduce, as in Bohren and Hauser, a fraction q of autarkic players that only
base their choice on their private signal xi (thus ignoring the social information). Define G0(θ)
as the fraction of autarkic types that choose a = 0 when the state is θ, and to fix ideas, further
assume that non-autarkic types have correct priors about G0. When beliefs of non-autarkic
types are concentrated on θ and the true state is θ0, the fraction f becomes

f = qG0(−θ0) + (1− q)G(−θ)

while a fraction
f̂ = qG0(−θ) + (1− q)G(−θ − ξ)

52As in Frick et al. (2020), ξi could arise from an erroneous prior gi ̸= g, with agents using the inference
function ψi = h−1

i where hi(θ) = Gi(−θ). The difference ξi(f) ≡ ψ(f)− ϕ(f) is an error in making inferences.
With preferences centered on b, and agent having an erroneously translated prior centered on bi, the error is
independent of f and equal to ξi ≡ bi − b.

53Ellisson and Fudenberg (1993, Section 1) examines social learning assuming bi = 0 for all and ψi(f) = f−1/2:
choices are tilted in favor of the more popular one. EF find that small enough ms generate perfect learning
in the long-run. A key aspect of the inference rule ψi(f) is that it correctly maps the sign of f − 1/2 to the
sign of θ, which, given homogeneity, is the only thing that agents care about. (Note that in EF, agents receive
many signals xi about the state, but, given their assumptions, their model is equivalent to the one proposed
here where agents just receive one signal at the start).
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would be expected. The observed f will meet expectations when

G0(−θ)−G0(−θ0) =
1− q

q
(G(−θ)−G(−θ − ξ))

which implies a discrepancy ∆ = θ0− θ comparable to ξ
q , which thus blows up when q is small.

To relate this to our paper, observe that a measure q of autarkic types generates an overall
inefficiency comparable to q (because they are not using information so each experiences a loss
comparable to 1), while when ξ is a random variable with variance ϖ, the loss induced by the
discrepancy ∆ is quadratic in ∆, so comparable to ϖ

q2
, which in turn implies that to implement

the social optimum (to minimize the overall loss), q should be comparable to ϖ1/3.
Autarkic types thus play a role similar to our weights mi, helping the anchoring the beliefs

of social types.54 In our setup, the analog of social and autarkic types would be to assume
that agents are either DG (mi = 0) or use mi = 1. In contrast, we have assumed that some
intermediate mi is feasible for each agent.

Another difference is that we focus on the optimal choices of mi from the social or pri-
vate points of view. In looking for a Nash equilibrium, we decentralize the choice of mi and
endogenize the weight each puts on social versus private information.55

The lesson we draw from this discussion is that both DG and Bayesian updating are
sensitive to transmission or specification errors for a similar reason: they both incorporate
a force towards consensus, but consensus is not feasible (given the errors), and beliefs are thus
pushed to the boundaries of the feasible set of states. FJ-like rules, to the extent that they
allow for sufficiently diverse opinions or beliefs, end up being more robust.

7.6 Non-stationary weights.

The updating processes that we consider have stationary weights. Agents do not attempt to
exploit the possibility that early reports possibly reveal more information than later reports:
later reports from neighbors may incorporate information that one has oneself transmitted to
the network, and therefore should have lesser impact on own opinion.

As a matter of fact, with two players, one could imagine a process in which (i) player 1
combines the first report he gets with own opinion, yielding y1 = m1x1 + (1 − m1)(x2 + ε),
and then ignores any further reports from player 2; and (ii) player 2 follows DG. With m1 set
appropriately, such a process would permit player 1 to almost perfectly aggregate information
and player 2 to benefit from that information aggregation performed by player 1.

There are however important issues with such time-dependent processes. In particular, it is
not obvious how one extends these to larger networks since they require that each person knows
his or her role in the network. They are also sensitive to the timing with which information
gets transmitted or heard. With some randomness in the process of transmission, it could for
example be that the first report y2 that player 1 hears already incorporates player 1’s own
signal (because after a while y2 starts being a mixture between x2 and x1), and as a result,

54Note that unlike Bohren and Hauser, we find here that the fraction q needs to be large enough. This is
because, unlike BH who assume few states and correct priors over states, we assumed here that subjective priors
on θ have full support.

55A similar decentralization exercise (endogenizing q) could be done in the BH environment with agents
choosing ex ante whether to be autarkic or social, with the consequence that in equilibrium, they would have
to be indifferent between the two roles, hence incur a significant loss (equal to that of the autarkic type).
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player 1 should put more weight on the opinions of others. But of course, in events where
y2 = x2, this increase in weight makes information aggregation worse.

To illustrate this strategic difficulty in a simple model with noisy transmission, assume that
time is continuous, communication is one-sided (either 1->2 or 2->1), with each player getting
opportunities to communicate at random dates. The processes generating such opportunities
are assumed to be two independent Poisson process with (identical) parameter λ. Also assume
that a report, once sent, gets to the other with probability p. Consider the time-dependent
rule where each person communicates own current opinion, and their current opinion coincides
with their initial opinion if one has not received any report (yi = xi), and otherwise coincides

with yi = mixi + (1 − mi)z
f
i where zfi is the perception of the first report received. Even

if perceptions are almost correct (i.e. perceptions almost coincide with the other’s current
opinion), the noise induced by the communication channel generates uncertainty about who
updates first, contributing to variance in the final opinion for all mi. For example, in events
where player 1 already sent a report and receives one from player 2, it matters whether player
2 received the report that 1 sent and incorporated it into her opinion, or whether player 2
failed to receive the report, in which case what player 1 gets is player 2’s initial opinion.

In contrast, the time-independent FJ is not sensitive to that noise and achieves reasonably
good information aggregation for many values of m = m1 = m2. FJ rules conveniently address
a key issue in networks: whether what I hear already incorporates some of what I said.

8 Concluding remarks

We end the paper with a discussion of issues that we have not dealt with, and which may
provide fruitful directions for future research.

One premise of our model is that everyone has a well-defined initial signal. However the
analysis here would be essentially unchanged if some players did not have an initial opinion to
feed the network and were thus setting mi = 0 for the entire process. FJ would aggregate the
initial opinions of those who have one.

In real life many of our opinions come from others and in ways that we are not necessarily
aware of, and the existence of a well-defined ”initial opinion” could be legitimately challenged.
In other words, people may have a choice over the particular opinion they want to hold on to
and refer back to (in other words, the one that gets the weight mi).

To see why this might matter, consider a variation of our model where some players (Ndg)
have initial opinions but use DG rule (or set mi very low), while other agents (Nfj) have no
initial opinions (or very unreliable ones). In this environment, there is a risk that the initial
opinions of the DG players eventually disappear from the system, and soon are overwhelmed
by noise in transmission. The other (non-DG) players could provide the system with the
necessary memory, using the initial communication phase to gradually build up an ”initial
opinion” based on the reports of their more knowledgeable DG neighbors, and then seed in
perpetually that ”initial opinion” into the network. In other words, in an environment where
information is heterogeneous and weights mi are set sub-optimally by some, there could be a
value for some agent in adopting a more sophisticated strategy in which the ”initial opinion”
is updated for some period of time before it becomes anchored. In other words, it may be
optimal for some of the less informed to listen and not speak for a while as they build up their
own “initial opinions” before joining the public conversation.
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Another important assumption of our model is that the underlying state θ is fixed. In
particular, there would be no reason to keep on seeding in the initial opinions if the underlying
state drifts. However it may still be useful to use a FJ-type rule where the private seed
is periodically updated by each player to reflect the private signals about θ that each one
accumulates.

Finally, our approach evaluates rules based on their fitness value. With a continuum of
states and opinions modeled as point-beliefs, averaging opinions naturally has some fitness
value. When there are few states and opinions take the form of probabilistic beliefs, averaging
beliefs or log-beliefs will generally have poor (if not negative) fitness value (see for example
Sobel (2014)). In this context, a promising FJ-like rule would consist in linearly aggregating
the initial change in one’s own log-belief (induced by one’s initial signal) with the perceived
change in a composite neighbor’s log-beliefs: such a rule accommodates the intuition that belief
changes potentially reveal information, and through appropriate weighting of one’s own versus
other’s changes, it enables each player to deal with situations where initial belief updates are
driven by interpretation errors (one then needs to filter out interpretation errors and averaging
is good in these cases) and situations where independent information needs to be aggregated
(adding changes in log-beliefs across all players would be called for). Furthermore, as in this
paper, it allows beliefs to differ and the anchoring on one’s own initial information (i.e., the
initial change in one’s own log-belief) can limit the damaging effects of cumulated processing
errors.
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Appendix A
Notations. DefineM and Γ as the N×N diagonal matrices whereMii = mi and Γii = γi.

For any fixed vectors of signals x and systematic bias ξ, we let

X =Mx+ (I −M)ξ

and, whenever mi > 0, we let x̃i = xi + ξi(1−mi)/mi denote the modified initial opinion, and
x̃ = (x̃i)i the vector. Next define the matrix B = I − Γ + Γ(I −M)A.

We shall say that P is a probability matrix if and only if
∑

j Pij = 1 for all i. Note that A

is a probability matrix and throughout, we assume that the power matrix Ak only has strictly
positive elements for some k. Finally, we refer to v(y) as the variance of y.

In the main text, we show that when mi > 0 for all i, long-run opinions are weighted
averages of modified opinions x̃. Lemma 5 below (proved in Appendix B) generalizes this
observation. Define N0 ⊊ N as the set of n0 agents following DG (mi = 0). Denote by ξ0 the
vector of errors of these players. We have:

Lemma 5. Assume n0 < n. Then y = Px̃ + Qξ0 where P is a (n, n − n0)-probability
matrix.

Proposition 3 is then obtained as an immediate corrolary of Lemma 5.

Proof of Proposition 3: From Lemma 5, Li = var(y) ≥ 1
n min var(x̃i) ≥ (1−m)2ϖ

n m2 .■

We now turn to the proof of our main Propositions.
Proof of Proposition 4: Assume m >> 0 so x̃j is well-defined for all j.56 For j ̸= i let

Xj = mj x̃j + (1−mj)Ajiyi and c
i
j = mj + (1−mj)Aji. (13) can be written in matrix form to

obtain, by definition of Qi, y−i = QiX. Note that if x̃j = 1 for all j and yi = 1, then yk = 1
for all k, so

∑
j ̸=iQ

i
kjc

i
j = 1 for all k, which implies∑

j ̸=i

Qi
kj(1−mj)Aji = 1−

∑
j ̸=i

Qi
kjmj , (24)

and, since Qi is a positive matrix,57
∑

j ̸=iQ
i
kjmj ≤ 1, so

∑
j ̸=iR

i
jmj ≤ 1. (24) further implies

yk =
∑
j ̸=i

Qi
kjmj x̃j + (1−

∑
j ̸=i

Qi
kjmj)yi, (25)

thus characterizing the influence of yi on k’s opinion. In particular, the smaller
∑

j ̸=iQ
i
kjmj

the larger the influence of i on k. Averaging over all neighbors of i, and taking into account
the weight Aik that i puts on k, we obtain:

yi = mix̃i + (1−mi)(
∑
j ̸=i

Ri
jmj x̃j + yi(1−

∑
j ̸=i

Ri
jmj) (26)

which, since mj x̃j = mjxj + (1−mi)ξj and hi = 1/
∑

j ̸=iR
i
jmj , gives the desired Expressions

(14) for yi, x̂i, pi and ξ̂i.■

56Cases where some or all mj are 0 can be derived by taking limits as Qi remains well-defined.
57Qi =

∑
n≥0((I−M

i)(I−αi)Ãi)n so Qi is non-negative. If in addition, m−i << 1, and since A is connected,

then Qi >> 0.

35



Proof of Proposition 5: Assume mi > 0 and apply Proposition 4, taking the limit where
all mj tend to 0. For A given, Qi and Ri are uniformly bounded (with a well-defined limit
when all mj tends to 0), and (1− pi)x̂i tends to 0, which concludes the proof.■

Proof of Result 1: There are two parts in this proof. We first prove that the m′
is

cannot be positive. Next we show that the equilibrium outcome must be efficient. Recall
π∗ = argminπ v(

∑
k πkxk) is the efficient weighting of seeds and v∗ ≡ v(π∗.x). Also let

ri = 1/hi.
Assume by contradiction that mj > 0. Then (14) implies that mi > 0 for all i, so m >> 0.

Next, from (26), and letting ri = 1/hi, we obtain ŷi = rix̂i + (1− ri)yi, hence substituting yi,

ŷi = (1− ri)pixi + (1− (1− ri)pi)x̂i. (27)

So both ŷi and yi are weighted average between xi and x̂i, and since m >> 0, ri ∈ (0, 1), the
weights are different. Since i optimally weighs xi and x̂i (using pi on xi), the weight (1− ri)pi
is suboptimal so

v(yi) < v(ŷi) ≤ max
j ̸=i

v(yj), (28)

where the second inequality follows from ŷi being an average of the yj ’s. Since (28) cannot be
true for all i, we get a contradiction. The equilibrium must thus be DG.

Consider now a DG equilibrium. Call π = (πi)i the weights on seeds induced by γ and A,
π̂i the relative weights on k ̸= i, and x̂i = π̂i.x−i. We have yi = πixi+(1−πi)x̂i, and modifying
γi allows the agent to modify πi without affecting x̂i (player i increases πi by decreasing γi).
Therefore the optimal choice πi satisfies

πi
1− πi

=
v(x̂i)

σ2i

Let W ∗
i = minq v(q.x−i). Since optimal weighting of all seeds requires optimal weighting on

seeds other than i, we have:
π∗i

1− π∗i
=
W ∗

i

σ2i

which implies

πi = π∗i +
(1− pi)(1− π∗i )

σ2i
(v(x̂i)−W ∗

i ) (29)

Since all πi (and π∗i ) add up to one, one must have v(x̂i) − W ∗
i ≤ 0, hence information

aggregation is perfect.■

Before showing Result 2, we start with two Lemma that we also use to prove Result 3:

Lemma 6: For each j ̸= i, there exists µji and a probability vector Cji ∈ ∆N−1, each
independent of mi, such that

yj = (1− µji)C
jix̃−i + µjiyi (30)

Proof: This immediately follows from Expression (24) in the proof of Proposition 4.■

Lemma 7: if ∂Li
∂mi

≤ 0, then
∂Lj

∂mi
< 0 for all j.
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Proof: Since µji and C
ji are independent of mi, we obtain:

∂Lj

∂mi
= (µji)

2 ∂Li

∂mi
+ µji(1− µji)

∑
k ̸=i

Cji
k

∂Cov(x̃kyi)

∂mi

We substitute yi = pixi + (1 − pi)(x̂i + ξ̂i) (see (14)). Since x̃k and xi are independent, and
since x̂i, x̃k and ξ̂i do not depend on mi, we get

∂Lj

∂mi
= (µji)

2 ∂Li

∂mi
− µji(1− µji)

∂pi
∂mi

∑
k ̸=i

Cji
k Cov(xkx̂i + x̃kξ̂i)

The terms ∂pi
∂mi

and Cov(xkx̂i) are positive, and so are the terms Cov(x̃kξ̂i) when persistent
errors are independent or positively correlated. The sum on the right side is thus positive (and
the effect is amplified with errors), which proves Lemma 7.■

Proof of Result 2: Let m = ϖ/(1 + ϖ). We show that DG and all strategies mi < m
are dominated by m.

Assume first that all other players useDG. Then by Proposition 5, Li decreases strictly with
mi. Now assume that at least one player j chooses mj > 0. Then Li = p2i +(1− pi)2v(x̂i+ ξ̂i).
Whether persistent errors are independent or fully correlated, the variance of ξ̂i is at least
equal to h2iϖ, which implies that Li strictly decreases with pi when

pi
1−pi

< h2iϖ, hence also
with mi when

mi
1−mi

< hiϖ, and from Lemma 7, we conclude that Lj increases as well (on this
range of mi).■

Proof of Proposition 6. Player i optimally sets pi such that pi
1−pi

= v(x̂i+ξ̂i)
v(xi)

= Wi

σ2
i
.

Substituting pi, we get the desired expression for Li.■

Proof of Result 3:
Step 1: lowerbounds on mi ≡ maxj ̸=imj .
With transmission errors, optimal weighting of xi and x̂i implies

pi
1− pi

=
v(x̂i) + v(ξ̂i)

σ2i
(31)

and (29) becomes

pi = π∗i +
(1− pi)(1− π∗i )

σ2i
(v(x̂i)− v∗i + v(ξ̂i)) (32)

The weight pi is thus necessarily above the efficient level π∗i , and there are now two motives

for doing that: inefficient aggregation by others, and the cumulated error term ξ̂i.
While (32) implies a lower bound on pi, as (29) did, there is a major difference here with

the no noise case where DG is used by all: pi is the weight that i puts on own seed, but since
there is no consensus, the sum

∑
i pi is not constrained to be below 1. Nevertheless, when

all m are small,
∑

i pi = 1 + O(m) is close to 1, and this allows us to bound v(ξ̂i) (and the
difference v(x̂i)− v∗i ), as we now explain.

From Proposition 4, each opinion yi may be written as yi = P ix+ (1− P i
i )ξ̂i, where P

i is
a weighting vector (such that P i

i = pi). (25) implies that when all m are small, the vectors P i

must be close to one another: seeds must be weighted in almost the same way, and differences
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in opinions are mostly driven by the terms ξ̂i. Specifically, let mi = maxj ̸=imj . (25) implies
that for all k ̸= i,

pk = P k
k ≤ P i

k + cmi

for some constant c independent of m and k. Since Pkk = pk ≥ π∗k, adding these inequalities
yield

1− pi =
∑
k ̸=i

P i
k ≥

∑
k ̸=i

pk −Kcmi ≥ 1− π∗i −Kcmi (33)

which, combined with (32) yields, for some constant d,

mi ≥ d(v(x̂i)− v∗i +
ϖ

(mi)2
). (34)

Since var(x̂i)−v∗i ≥ 0, this implies mi ≥ (dϖ)1/3, which further implies that the variance v(ξ̂i)
is at most comparable to ϖ1/3.

Step 2: upperbounds on mi. Let ri =
∑

j ̸=iRjmj and ŷi =
∑

k ̸=iAikyk. With trans-
mission errors, we obtain:

ŷi = (1− ri)pixi + (1− (1− ri)pi)(x̂i + ξ̂i) + ξi

where ξi = −pξi + (1− pi)
∑

j ̸=iRj(1−mj)ξj . Since pi is set optimally by i, we have:

v(ŷi)− v(yi) ≥ (ripi)
2(σ2i + v(x̂i) + v(ξ̂i))− Eξi − (1− pi)Eξiξ̂i ≥ cr2i −

dϖ

ri

for some constant c and d (independent of ϖ and m). Since v(ŷi) ≤ max v(yk), the right-hand
side cannot be positive for all i, so ri0 ≤ (dϖ/c)1/3 for some i0. From step 1, we conclude that
mi0 and all mj with j ̸= i0 are O(ϖ1/3), and that mi0 is thus at least O(ϖ1/3).

It only remains to check that mi0 cannot be large. From (33), pi0 ≤ π∗i0 + O(ϖ1/3), and

since pi0 ≥ 1
1+ri0/mi0

, we conclude that all mi (and thus mi) are O(ϖ1/3), which further implies

that all variances v(ξ̂i) are O(ϖ1/3).
These variances imply that Ey2i −v∗ is at least O(ϖ1/3). Ey2i also rises because of inefficient

weighting of seeds, but the loss is of the order of (pi − π∗i )
2, that is, O(ϖ2/3), a significantly

lower loss.■

Proof of Result 4: this follows from Lemma 7 since at equilibrium ∂Li
∂mi

= 0. ■

We turn to network comparisons.
Proof of Lemma 1 to 4: For each network, we write the equations determining long-run

opinions. Through appropriate subsitutions, we derive these opinions as a function of seeds
and errors.

For the complete network, to determine hci , x̂i and ξ̂
c
i we use

yi = mix̃i + (1−mi)y−i and

y−i = mx̃−i + (1−m)(
1

n− 1
yi +

n− 2

n− 1
y−i)

where x̃−i (and y−i) refer to the mean modified seed (and opinion) of all players but i. Note
x̃−i = x−i +

1−m
m ξ−i.
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For the directed circle, we use y1 = m1x̃1 + (1 − m1)y2 and repeatedly substitute yi =
mx̃i + (1−mi)yi+1 to obtain:

y1 = m1x̃1 + (1−m1)(
N−2∑
k=0

(1−m)kmx̃k+2 + (1−m)N−1y1

To prove that hdi < hci for all m ∈ (0, 1), observe that the inequality holds for m close to 0 and

that for any m ∈ (0, 1) that would satisfy hdi (m) = hci (m), we would have
∂hc

i
∂m (m) >

∂hd
i

∂m (m),
in contradiction with hdi < hci for m close to 0.

For the star network, we first determine h0, x̂0, and ξ̂0 using

y0 = m0x̃0 + (1−m0)y and y = mx̃+ (1−m)y0

where x̃ (and y) refer to the mean modified seed (and opinion) of peripherical players. Next,
to determine hi, x̂i, and ξ̂i, we use

y0 = m0x̃0 + (1−m0)(
1

n− 1
yi + (1− 1

n− 1
)y−i)

yi = mix̃i + (1−mi)y0

y−i = mx̃−i + (1−m)y0

where x̃−i (and y−i) refer to the mean modified seed (and opinion) of all peripherical players
but i.■

Before turning to the proof of the Propositions, we prove:

Lemma 8: For a fixed n and small m, and for i.i.d random variables, v(ψ(x−i)) =

v(xi)(
1

n−1 + cm2) where c = n(n−2)
12(n−1) . At the large n limit, v(ψ(x−i)) = v(xi)

m
2 .

Lemma 9: For fixed n, small m, and mi = m, hci
m

1−m = 1
n−1 +m and hdi

m
1−m = 1

n−1 +µm
where µ = n

2(n−1)

Lemma 8 implies that for fixed n, suboptimal weighing of independent seeds and errors in
the directed circle are O(m2), while at the large n limit, the inefficiency is O(m). Since µ < 1
when n > 2, Lemma 9 will imply that in equilibrium, incentives to raise m are stronger in the
directed circle.

Proof of Lemma 8 and 9: Let r = 1− (1−m)n−1. We have:

v(ψ(x−i))/v(xi) =

∑n−2
k=0(1−m)2k

(
∑n−2

k=0(1−m)k)2
=

(1− (1−m)2(n−1))m2

m(2−m)r2
=

(2− r)m

r(2−m)

At the large n limit, r = 1, hence the desired result. For fixed n, compute ∆ = v(ψ(x−i))/v(xi)−
1

n−1 considering terms of order up to 2 in m. We have r = (n − 1)m(1 − ℓm) where

l = n−2
2 (1− (n−3)

3 m), from which we obtain

(n− 1)∆ ≃
1− r

2

(1− m
2 )(1− ℓm)

− 1 ≃ (ℓ+
1

2
)m− ℓm2

2
− r

2
≃ m2n(n− 2)

12

Regarding Lemma 9, the first statement is immediate. Regarding the directed circle, hdi = 1/r,
so we have

(n− 1)hdi
m

1−m
− 1 ≃ 1

(1− ℓm)(1−m)
− 1 ≃ (1 + ℓ)m ≃ n

2
m■
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Proof of Propositions 7 to 9.
(i) For the complete network, at mi = m, pi

1−pi
− 1

n−1 = m
1−m , so the equilibrium condition

gives, omitting terms of higher order in m, m = v(ξ̂ci ). For independent errors, v(ξ̂ci ) ≃
1
m2 (

1
(n−1)2

+ 1
n−1), while for correlated errors, v(ξ̂ci ) =

1
m2 (

1
n−1+1)2, from which the expressions

for m∗
c follow, as well as for the large n limit.

(ii) For the directed network, the equilibrium condition now gives, by Lemma 8 and 9,
µm ≃ v(ξ̂di ) for fixed n, and m ≃ m

2 + v(ξ̂di ) for the large n limit (because hdi = 1 and

v(ψ(x−i)) =
m
2 ). For fixed n, v(ξ̂

d
i ) ≃ v(ξ̂ci ) (by Lemma 8 for independent errors, and because

ψ(ξ−i)) = ξ−i for correlated errors). It follows that m∗
d = µ−1/3m∗

c and ∆∗
d = µm∗

d = µ2/3∆∗
c

in both cases. At the large n limit, Lemma 8 implies v(ψ(ξ−i)) =
m
2 ϖ for independent errors,

so m∗
d ≃ ∆∗

d ≃ ϖ1/2. For correlated errors, v(ξ̂di ) = v(ξ̂ci ), so the equilibrium condition gives

m∗
d ≃ 2v(ξ̂∗d) ≃ (2ϖ)1/3 and L∗

d =
m∗

d
2 + v(ξ̂∗d) ≃ m∗

d ≃ 21/3m∗
c .

Note that at the large n limit, in contrast to full network where inefficiencies are solely
driven by cumulated errors, the cumulated errors and the poor averaging of seeds equally
contribute to the overall loss.

(iii) For the star network, the equilibrium condition for the central player gives ρ0 = ϖ̂s
0,

and for a peripheral player it gives, for small m,

hsim

1−m
− 1

n− 1
≃ v(x̂si )−

1

n− 1
+ v(ξ̂si ) (35)

Omitting terms of order 2 in ρ0 or m, we have
hs
im

1−m − 1
n−1 ≃ m+ m−ρ0

n−1 , v(x̂si )− 1
n−1 ≃ 0, and

v(ξ̂si ) ≃ v(ξ̂s0) = ρ0, so (35) implies
m ≃ ρ0 = ϖ̂s

0. (36)

For low ϖ, we thus have m ≃ O(ϖ1/3), justifying the omission of terms of higher order.
(36) also implies that incentives are approximately the same as in the complete network. So the
inefficiency is entirely driven by cumulated errors: for independent errors, ϖ̂s

0 ≃ (ϖ0+
ϖ

n−1)/m
2,

which yields m∗
s ≃ (ϖ0 +

ϖ
n−1)

1/3 ≃ ϖ̂∗
s , and for correlated errors, m∗

s ≃ (ϖ0 +ϖ)1/3 ≃ ϖ̂∗
s . ■

Proof of Expression (15). Call pij the weight that i puts on j and Ri the limit of Ri when

m−i tends to 0. It follows from Proposition 4 when all m are small, (pij/mj)/(pi/mi) ≃ Rij .

To compute Rij , consider the case where mi = m for all i. Then y = mx̃ + (1 − m)Ax̃ =∑
m(1 −m)kAkx̃. Since all lines of Ak are close to ρ when k is large enough, yi ≃ ρx̃ for all

i, so Rij = ρj/ρi.

Proof of (generalized) Result 5: Rather than assuming that the central player is
DG, we consider here a central player who uses her seed x0 optimally to minimize the loss
v(y), given m. We have y = (1 − m)y0 and y0 = m0x0 + (1 − m0)(y + ξ0). This gives
y = (1 − m)(p0x0 + (1 − p0)

ξ0
m ) where the central player controls p0. The variance v(y) is

minimized for p0
1−p0

= ϖ0
m2 , and we get v(y) = (1 − m)2 ϖ0/m2

1+ϖ0/m2 . So long as m >> (ϖ0)
1/2,

we obtain D ≃ 4ϖ0
d as for the DG case. Note that when m ≤ O(ϖ0)

1/2, cumulated errors are
potentially huge and the (benevolent) central player mitigates them by choosing a large m0:
since she is benevolent, the loss cannot exceed 1 (the variance of her own seed).■
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Appendix B (for on-line publication)

We first prove that the matrix H ≡
∑

k≥0B
k is well-defined (Lemma 1 and 2), and obtain

Proposition 2 as a Corollary.

Lemma B1: Consider any non-negative matrix C = (cij)ij such that µ = mini(1 −∑
j cij) > 0. Then I − C has an inverse H ≡

∑
k≥0C

k, and for any X0 and Y 0, Y t =

X0 + CY t−1 converges to HX0.

Lemma B2: If mi0 > 0, then for K large enough, C = BK satisfies the condition of
Lemma 1, and I −B has an inverse.

Proof of Proposition 2: We just need to check that yt converges. We iteratively substi-
tute in (39) to get:

yt = X0 + Cyt−K

where X0 = DΓX with D ≡ I+B+ ...+BK−1, and C = BK . By Lemma 2, Lemma 1 applies
to C, so convergence of yt is ensured.■

Proof of Lemma B1: Consider the matrixHt = (htij)ij defined recursively byH0 = I and

Ht = I+CHt−1. Let zt = maxij |htij−h
t−1
ij |. We have zt ≤ (1−µ)zt−1, implying that Ht has a

well-defined limitH, which satisfiesH ≡
∑

k≥0C
k. By construction, (I−C)H = H(I−C) = I,

so H = (I −C)−1. Similarly, defining zt = maxi
∣∣Y t

i − Y t−1
i

∣∣, we obtain that Y t has a limit Y
which satisfies (I − C)Y = X0, implying Y = HX0.■

Before turning to the proof of Lemma B2, we define sequences, paths and probabilities over
paths associated with a probability matrix A = (Aij)ij . For any sequence q = (i1, ..., iK),

we let πA(q) ≡
∏K−1

k=1 Aik,ik+1
, and for any set of sequences Q, we abuse notations and let

πA(Q) =
∑

q∈Q π
A(q). We define a path as a sequence q for which πA(q) > 0.

Denote by QK
i,j the set of paths of length K from i to j, and QK

i the set of paths of length

K that start from i. QK
i = ∪jQ

K
i,j and by construction, for any i, j

AK
ij ≡ πA(QK

i,j) and
∑
j∈N

AK
ij = πA(QK

i ) = 1 (37)

where AK is the Kth power of matrix A.

Proof of Lemma B2: We consider A connected, that is, such that Ak
ij > 0 for all i, j,

and consider K ≥ 2k. Call QK,i0
i ⊂ QK

i the set of paths of length K that start from i (to some
j) and go through i0. For any such path, πB(q) ≤ (1− γmi0)π

A(q). This implies∑
j

Cij ≡ πB(QK
i ) ≤ (1− γmi0)π

A(QK,i0
i ) + πA(QK

i \QK,i0
i ) < 1

where the last inequality follows from (37) and QK,i0
i non empty for K ≥ 2k. This implies that

C satisfies the condition of Lemma 1, hence I −C has an inverse. Let D ≡ I +B+ ...+BK−1

and H = (I − C)−1D. We have ∑
k≥0

Bk =
∑
k≥0

CkD = H,
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so H(I −B) = (I −B)H = I and I −B also has an inverse.

Proof of Lemma 5: Using the recursive equation y = X + (I −M)Ay, and Xi = mix̃i
for i /∈ N0 and Xi = ξ0i for i ∈ N0, we define recursively the (n, n − n0) and (n, n0) matrices
P t and Qt as follows: for i /∈ N0, we let P t

i = mi + (1−mi)AiP
t−1 and Qt

i = (1−mi)AiQ
t−1,

and for i ∈ N0, P t
i = AiP

t−1 and Qt
i = I + AiQ

t−1. Also we let P 1
ii = 1 for i /∈ N0, and all

other P 1
ij and all Q1

ij equal to 0. By construction, y = Px̃+Qξ0 where P and Q are the limit
of P t and Qt respectively. Besides, by induction on t, each P t is a probability matrix, hence
so is the limit P.

Proof of Proposition 11: Lemma 1 to 4 provide cumulated error terms for processing
errors. We use these Lemma to derive the cumulated error terms for expressing errors, using
ξi ≡ Aiζ

e. For the directed circle, ξi = ζei+1, so we immediately obtain ϖ̂p
i = ϖ̂e

i . For the full

network, ξi = ζ
e
−i, so ξ−i =

1
n−1ζ

e
i +ζ

e
−i(1− 1

n−1), which further implies ξ̂ei = 1−m
m(n−1)ζ

e
i +

1
mζ

e
−i,

hence the desired comparison. For the star network, ξi = ζe0 and ξ0 = ζ
e
, so ξ̂e0 = 1−m

m ζe0+
1
mζ

e
,

hence the desired comparison. Note that, for the cumulated errors faced by peripherical players,
one can compute ϖ̂p

i and ϖ̂e
i for fixed ρ0. In equilibrium, for small ϖ, omitting terms of higher

orders, one can check that in equilibrium, ϖ̂p−ϖ̂e ≃ (1− 1
n2 )ϖ/m

∗ withm∗ ≃ ((1+1/n)ϖ)1/3.

The case with noise.
For any fixed (x, ξ), we define the expected opinion at t, yti = Eyti and the vector of expected

opinions yt = (yti)i. We further define ηt = yt − yt, wt
ij = Eηtiη

t
j and the vector of covariances

wt = (wt
ij)ij .

We define the N2 vector Λ with Λij = 0 if i ̸= j, Λii = (γi(1−mi))
2ϖ0 and B the (N2×N2)

matrix where Bij is the row vector (Bij,hk)hk with Bij,hk = BihBjk.
For any fixed (x, ξ), we define the expected opinion at t, yti = Eyti and the vector of expected

opinions yt = (yti)i. We further define ηt = yt − yt, wt
ij = Eηtiη

t
j and the vector of covariances

wt = (wt
ij)ij .

The evolution of opinions and expected opinions (given x, ξ) follows

yt = Γ(X + (I −M)νt) +Byt−1 (38)

yt = ΓX +Byt−1, (39)

from which we obtain:
ηt = Γ(I −M)νt +Bηt−1

Since the νti are independent random variables, the evolution of the vector of covariances
follows:

wt = Λ+Bwt−1 (40)

The evolution of yt coincides with the case where there is no noise. Lemma B3 below

extends Lemma B2, showing that H ≡
∑

k≥0B
k
(or the inverse (I − B)−1) are well-defined,

which implies that wt has a well-defined limit

w = HΛ, (41)

Lemma B3: For K large enough, B
K

satisfies the condition of Lemma 1.
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Proof of Lemma B3. We extend the notion of sequences and paths to pairs ij ∈ N2

(rather than individuals). For any sequence of pairs q = (i1j1, ..., iKjK) (or equivalently, any
pair of sequences q = (q1, q2) = ((i1, ..., iK), (j1, ..., jK))) and any matrix A = (Aij)ij , and we
let πA(q) = πA(q1)πA(q2). We define a path q as a sequence such that πA(q) > 0.

We apply the argument of Lemma B2 to paths q of pairs rather than paths q of individuals.

Let C = B
K
. Call Q

K
ij the set of paths q = (q1, q2) of length K that start from ij (to some

hk), Q
K,i0
i those for which q1 goes through i0. We have∑

hk

Cij,hk ≡ πB(Q
K
ij ) ≤ (1− γmi0)π

A(Q
K,i0
i ) + πA(Q

K
i \QK,i0

i ) < 1

hence C satisfies the condition of Lemma 1, I − C has an inverse, and so does I −B.■

Proof of Proposition 12.

(i) Let C = B
K

and D = I +B + ...+B
K−1

. Repeated substitutions in (40) yield

wt = Λ0 + Cwt−K

where Λ0 = DΛ. By Lemma 2b, Lemma 1 applies to C, so convergence of wt to w is ensured.

(ii) We bound the loss Vi induced by the idiosyncratic errors. Recall

ηti = γi(1−mi)ν
t
i + (1− γi)η

t−1
i + γi(1−mi)Aiη

t−1

This implies that for any p ∈ ∆n, there exists q ∈ ∆n such that:

p.ηt = q.ηt−1 +
∑
i

γi(1−mi)piν
t
i and

∑
i

qi ≥ 1−m (42)

Define V t = minp∈∆n var(p.η
t). Note that V t

i ≥ V t. Since var(q.ηt−1) ≥ (1 − m)2V t−1,
Equality (42) implies V t ≥ (1 − m)2V t−1 + 1

nγ
2(1 − m)2ϖ0, which yields the desired lower

bound at the limit.

(iii) We now re-examine Result 2. We consider the effect of mi on the vector of covariances
w where wjk = limE(ytj − ytj)(ytk − ytk). Recall w = Λ+Bw. Since Λ and B are non-increasing
inmi and Λii is strictly decreasing inmi, wii strictly decreases withmi, and w is non-increasing
in mi. Combining all steps, over the range mi < m, Li = Li + wii strictly decreases with mi,
and

∑
k Lk also strictly decreases with mi.■

Proof of Result 6. In addition to item (i) and (ii), we shall prove the following statement:
(iii) If the lower bound γ on the choice set is sufficiently low and γi = γ, Vi ≤ 1/ | log γ | for
all m ≥ m and γ within the choice set.

Let γ = max γi and recall:

wij =
∑
h,k

BihBjkwhk + Λij (43)

where Λij = 0 if i ̸= j and Λii = (1−mi)
2(γi)

2ϖ0, and Bii = 1− γi, Bij = γiAij(1−mi).
The proof starts by proving item (i), that is, computing a uniform upper bound on all wij

of the form (see step 1)
wij ≤ cγ (44)
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To prove (ii), we define ŵ = (wij)j as the vector of covariances involving i, and show that there
exists a matrix C for which

∑
k Cjk ≤ 1 for all j and such that

ŵ ≤ (1−m)Cŵ + Γ (45)

where Γj ≤ dpij for some d, with pij = γi/(γi + γj). This in turn implies that maxj wij ≤
maxj Γi/m, which will prove (ii) (see step 3).

Finally, to prove (iii), we consider two cases. Either γ is “small” and (44) applies, or we
can separate individuals into a subgroup J where all have a small γj , and the rest of them
with significantly larger γj . In the latter case, we redefine ŵ = (wjk)j∈J,k as the vector of
covariances involving some j ∈ J , and obtain inequality (45) with Γjk ≤ dpjk for k /∈ J and
Γjk ≤ dγj for k ∈ J , for some d. By definition of J , all γj and pjk are small, and all Γjk are
thus small, which will prove (iii). Details are below.

Step 1 (item (i)) wij ≤ cγ with c = ϖ0/m.

Let V = maxiwii and w = maxi,j ̸=iwij and w = maxwi. For all j ̸= i, wij is a weighted
average between all wh,k and 0, so wij < max(w, V ), hence w < max(w, V ), which thus implies
w ≤ V . Consider i that achieves V . Since

∑
h,k BihBik = (1− γimi)

2, we have:

V = wii ≤ (1− γimi)
2V + γ2i (1−mi)

2ϖ0 hence

V ≤ γi(1−mi)
2

mi
ϖ0 ≤ ϖ0γ

m

Step 2. Let pij = γi/(γi + γj) and v = 2(cγ + ω0). We have:

wii ≤ γipiiv + (1−m)
∑
k

Aikwik (46)

wij ≤ γjpijv + (1−m)(pij
∑
k

Aikwkj + pji
∑
k

Ajkwik) (47)

These inequalities are obtained by solving for wij in equation (43), that is, we write

(1−BiiBjj)wij = Γij +
∑
k ̸=i

BiiBjkwik +
∑
k ̸=i

BjjBikwkj +
∑

k ̸=i,h ̸=j

BjkBihwkj .

Observing that 2BiiBik/(1 − BiiBjj) ≤ (1 −mi)Ajk, BiiBjk/(1 − BiiBjj) ≤ (1 −mj)pjiAjk,
and BjkBih/(1−BiiBjj) ≤ 2γjpijAjkAih and Γii/(1−BiiBjj) ≤ γiω

0 yields (46-47).

Step 3 (item (ii)). It is immediate from (46-47) that (45) holds with Cjk ≡ Ajk and
Γj = pijγjv + pijcγ ≤ pijγ(v + c) ≤ dγi for all j, for some d, which permits to conclude that
ŵ ≤ dγi/m.

Step 4 (item (iii)). Let ε = 1
K|Logγ| with K = 5ϖ0/m2 and set γi = γ. Let us reorder

individuals by increasing order of γj . Consider first the case where γj+1 ≤ γj/ε for all j =
1, ..., N − 1. Then γ < γ/εN−1, and for γ small enough, γ/εN−1 < ε, so Vi ≤ cε < 1/ | Logγ |.

Otherwise, there exists j0 such that γj ≤ γ/εj0−1 for all j ∈ J , and γk > γj/ε for all k /∈ J
and j ∈ J . It is immediate from (46-47) that (45) holds with Γ such that, for any j ∈ J ,

Γjk = γjv if k ∈ J and

Γjk = γjv + pjk
∑
h/∈J

Ajhwhk if k /∈ J
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By definition of J , for all j ∈ J , γj ≤ γ/εN−1 < ε and for all k /∈ J , pjk ≤ ε, which further
that all Γjk are bounded by ε(v + c) ≤ m/ | Logγ |, which concludes the proof.■

Proof of Proposition 13:
For fixed x, ξ, let Y t

i = (yt−k
i )k=0,..,K denote the column vector of i’s past recent opinions,

and Y t = (Y t
i )i. One can write Y t = X +BY t−1. Y t converges for standard reasons, to some

uniquely defined Y . Consider now the vector y solution to

yi = mixi + (1−mi)Ai(y + ξi)

and let Yi = (yi, ..., yi) and Y = (Yi)i. By construction, under this profile of opinions, it does
not matter when i heard from j because opinions do not change. Y thus solves Y = X +BY
and it coincides with Y . The limit expected opinion vector under FJ is thus independent of
the communication protocol.

Coarse communication:
Recall f is the fraction of agents choosing a = 0, and call y = ϕ(f) the associated ”popu-

lation opinion”. We now consider two cases:
Case 1: m = 0. Set ξ > 0 and assume f > 0. Each makes an inference zi at least equal to

y + ξ regarding neighbors’ opinions, so eventually, under DG, each player of type bi may only
report 0 if bi + y + ξ < 0. Under the large number approximation, a fraction at most equal to
f ′ = h(y + ξ) < f reports 0, hence the fraction of agents reporting 0 eventually vanishes.

Case 2: m small. Whenm > 0, agents with signal xi believe the state ismxi+(1−m)(y+ξ),
which generates, under the large number approximation, a fraction f = Eh(mxi+(1−m)(y+ξ))
choosing a = 0. The long-run opinion y thus solves

y = h−1(Eh(m(θ + δi) + (1−m)(y + ξ)))

Call ξ̂ = y − θ the resulting population estimation error. When m is small, h is locally linear,
so, since Eδi = 0, y ≃ h−1h(m(θ + 1−m

m ξ) + (1−m)y), which implies ξ̂ ≃ 1−m
m ξ.

Assume now that player chooses mi while others choose m. For player i, the estimation
error is ∆i ≡ miδi + (1 −mi)(ξ̂ + ξ) ≃ miδi + (1 −mi)

ξ
m . Assuming that θ is drawn from a

flat distribution with large support, the expected loss Li(∆) from estimating θ with an error
∆i is quadratic in ∆i and independent of bi,

58 so L(∆) is proportional to the variance of the
error that i makes. To minimize the variance of ∆i, player i sets mi =

ϖ
m2 , so in equilibrium

m∗ = ϖ1/3.
Regarding the social optimum, when all choose m, the estimation error is mδi+(1−m) ξ

m .

For ϖ small, the variance of this error is minimized for m ≃ (2ϖ1/4).

58When ∆i > 0, L(∆i) =
∫ −bi
−∆i−bi

−(θ + bi)dθ = ∆2

2
.
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