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Abstract

We propose a belief-formation model where agents attempt to dis-
criminate between two theories, and where the asymmetry in strength
between confirming and disconfirming evidence tilts beliefs in favor of
theories that generate strong (and possibly rare) confirming evidence
and weak (and frequent) disconfirming evidence. In our model, lim-
itations on information processing provide incentives to censor weak
evidence, with the consequence that for some discrimination prob-
lems, evidence may become mostly one-sided. Sophisticated agents
who know the characteristics of the censored data-generating process
are not lured by this accumulation of evidence, but less sophisticated
ones end up with incorrect beliefs.

1 Introduction

Superstitions and other folk beliefs are common. These beliefs often have
the structure of a particular circumstance (C) or act increasing the chance
of an otherwise rare event (E); a sort of illusory correlation (Chapman and
Chapman (1967)) between C and E, where one overestimates the frequency
of occurence of the sequence C-E.

A common explanation for the existence of biased beliefs is that looking
for patterns in the environment has fitness value — predicting the future
or the imminence of danger is useful,1 and if the cost of holding erroneous
∗This paper revisits “Mental Processes and Decision Making”by Olivier Compte and

Andrew Postewaite.
†Paris School of Economics, 48 Bd Jourdan, 75014 Paris (e-mail: compte@enpc.fr).
1See Beck and Forstmeier 2007.
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beliefs is small compared to the potential benefits, taking the Pascalian bet
is a good option: why not drink the miraculous water or repent if this has
the slightest chance of curing illness.

In essence, the explanation is based on the idea that beliefs are inevitably
incorrect to some extent and that some errors are less costly than others.
The explanation is convincing. Still, one could be surprised that erroneous
beliefs persist even (and sometimes even more so) among people that are
repeatedly confronted with disconfirming evidence. It is not uncommon for
nurses working in maternity wards to believe in lunar effects (Abell and
Greenspan (1979)), for example the fact that a full moon would increase the
number of (unprogrammed) baby deliveries. Or at the very least, these erro-
neous beliefs seem inconsistent with Bayesian modelling, where eventually,
after being exposed to data for long enough, correct beliefs should prevail.

Outside the Bayesian sphere, one plausible explanation for some biased
beliefs is that they have instrumental value: some biases may have a direct
positive effect on well-being or performance either because they reduce anx-
iety, improve focus or give a sense of control. This includes many (personal)
superstitions such as the protection from Bad Luck conferred by charms
or amulets,2 or the powers conferred by magical thoughts and other ritual-
ized or routine behaviors.3 Holding such beliefs generates direct (first-order)
gains and, if not excessively biased —magic thoughts giving a sense of in-
vincibility are potentially harmful, only second-order losses.4

Another plausible explanation for biased beliefs is the confirmation bias:
once the seed of a belief is planted in people’s mind, this belief tends to
persist even when erroneous because evidence is then processed with a bias;
people are more likely to see/look for/process evidence that confirms the
belief, rather than disconfirm it.5

2See for example Hildburgh (1951), who suggests that amulets act an anxiety reducer,
which fosters good lactation.

3This also includes placebo effects: an inactive treatment may have positive health
effect, so long as you believe it does.

4This trade-off is for example examined in Compte and Postlewaite 2004, where biased
beliefs about chances of success positively affect performance. See Köszegi (2006) for the
case where beliefs directly affect preferences. See also Brunnermeier and Parker (2005).

5The negative consequences of the confirmation bias is clear (Rabin and Schrag (1999)).
The possible fitness value of the confirmation bias is discussed in models where agents lack
will-power (Benabou Tirole, 2002, 2004), modelled as a discrepancy between the welfare
criterion and the decision rule. Plausibly however, in the same way that some biases in
beliefs contribute to reduce anxiety, there could be some reassuring value to seeing one’s
beliefs confirmed, a reassurance that has first-order effect on welfare in the same way that
confidence does. The fitness value of the confirmation bias has also been discussed within
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Still, some beliefs seem more easily confirmed than others: if one starts
with the belief that the full moon has no effect on baby deliveries, how
strongly will that belief be reinforced by the observation of hospital tension
on a non-full moon day? Or at least, for lunar effects, providing evidence
in favor of a lunar effect seems easier than providing evidence against it. A
single coincidence of a full moon and a high number of deliveries seem to be
strong evidence in favor of the theory, which cannot be matched in strength
by a single instance of a high number of deliveries without full moon: these
kinds of bad days just happens.

This asymmetry between the strengths of confirming and disconfirming
evidence is at the heart of our argument: we shall argue that beliefs are easily
tilted in favor theories that generate strong (and possibly rare) confirming
evidence and weak (and frequent) disconfirming evidence, even when these
theories are untrue.

At a broad level, the main logic of our argument is that (i) limitations on
information processing provide incentives to censor weak evidence; (ii) the
consequence is that for some problems, evidence may become mostly one-
sided (in the direction of strong confirming evidence), independently of the
underlying state of the word; (iii) a sophisticated agent who would know the
characteristics of the censored data-generating process would not be lured
by the accumulation of these confirming evidence,6 but a less sophisticated
one ends up with incorrect beliefs.

This paper provides a simple model that articulates these arguments.
We review below the main modelling assumptions and intuitions, and next
discuss some of these assumptions.

1.1 Main modelling assumptions.

We consider a family of decision problems over two alternatives 1 and 2
where many signals are processed prior to decision making. There are two
underlying states θ = 1,2, defining which alternative is the better one, and
signals potentially permit the agent to discriminate between the two under-
lying states. Our model has four main ingredients:

(a) A coarse mental system: the individual has a limited number of

the perspective of social interactions (see Peters (2020).
6For example, even if, because of censoring, a nurse mostly processes signals suggesting

that full moon affects birth numbers, the Bayesian nurse should not fall prey to that mental
suggestion. She should understand that her mental system is biased, ignore the mental
suggestion and fear no extra work pressure upon full moon shifts.
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mental states,7 with one-step changes in mental state triggered by confirming
or disconfirming evidence. Specifically, we assume 2K + 1 mental states,
labelled s and ordered from −K to +K. The initial state is s = 0 and a
signal perceived as confirming θ = 1 (denoted θ̃ = 1) triggers a move to the
right (if the move is possible), while a signal perceived as confirming θ = 2
triggers a move to the left (if the move is possible). With K = 2, we have:

Figure 1: Mental system

(b) an option to censor weak evidence (if this enhances welfare) and thus
focus on the more informative signals: only strong enough signals trigger
changes in the mental state, with a threshold strength parameterized by a
scalar β.8

(c) limitations on how beliefs are formed: each agent is equipped with a
possibly noisy prior, denoted ρ̃, and we postulate an "all-purpose" family of
belief-formation strategies mapping priors and mental state to a posterior
belief. Specifically, expressing beliefs using likelihood of 1 vs. 2, we assume
that the agent’s posterior belief in mental state s is

ρ̃ds (P)

where d is a parameter that characterizes the degree to which the agent’s
mental state affects posterior beliefs, or the discriminatory power of the
belief-formation rule. Given this (subjective) posterior belief, the agent
takes a decision that (subjectively) maximizes welfare.

Note that the mental system and (P) are restrictions that jointly shape
how posterior beliefs are formed: given a censoring level β, posteriors beliefs

7This is in the spirit of Cover and Hellman (1970) and Wilson (2004), which we shall
laer discuss.

8Formally, we shall say that a signal x confirms (or is evidence for) θ, if signal x is
more likely under θ than under θ′ 6= θ). The strength of the evidence is then defined as
the ratio of probabilities of receiving x under θ and under θ′.
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and behavior in our model are entirely driven by d.

(d) The signal-generating process is problem-specific and unobservable.
We have in mind that both β and d are adjusted to the set of problems
that the agent might face, so as to maximize welfare on average across
problems: belief formation (d) and censoring (β) cannot be tuned to the
detailed characteristics of each signal-generating process.9

1.2 Main intuitions.

Regular and irregular problems. Given the coarse processing (a) assumed,
the relevant characteristics of the signal-generating process reduce to the
probabilities pθθ of processing evidence for state θ when the state is θ (con-
ditional on processing evidence)10 and we shall say that a problem is regular
iff

pθθ > 1/2 for each θ

Intuitively, this means that for a regular problem, the agent’s mental state
leans to the right when the underlying state is 1, and to the left when the
underlying state is 2. Discrimination between the two underlying states
is thus relatively easy. If, across all the problems faced, regular problems
are preponderant, then the individual has incentives to set the discrimina-
tory power parameter d above 1 (because indeed the mental system is truly
informative).

However, if there are problems for which, given censoring, the probabil-
ities pθθ satisfy

p11 > 1/2 and p22 < 1/2,

the individual’s mental state will lean to the right independently of the un-
derlying state, and he will thus erroneously end up with beliefs favoring
theory 1 even in events where θ = 2 holds: in these cases, processing in-
formation moves posteriors away from the truth and possibly deteriorates
welfare. For such problems, the agent would have been better off setting
d = 1. The agent’s inability to adjust d to the characteristics pθθ of the
problem considered will be key.

Censoring. In essence, at the margin, weak evidence adds noise to the
mental system, generating moves to the right and left with almost equal

9This is the sense in which the family (P) is "all-purpose". Technically, this means that
β and d are adjusted at an ex ante stage, before the signal-generating process is selected.
10That is, conditional on processing evidence, we define pθ̃θ as the probability of process-

ing evidence in favor of θ̃ when the underlying state is θ, so p1θ + p2θ = 1.
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probability. Censoring weak evidence eliminates these noisy moves. Does
this enhance welfare?

For a Bayesian who knows the signal generating process, the answer is
positive in most cases (though not all cases), and the reason is that mental
states being a scarce resource, one is generally better off limiting the use of
mental-state changes to suffi ciently informative signals.11

For our less sophisticated agent, the answer depends on whether the
problem is regular or not. For regular problems, censoring weak evidence
induces an increase in both p11 and p22:12 the correlation between the under-
lying state and the mental state is improved and the discrimination between
underlying states is improved —and more mental states help.

For irregular problems, with beliefs pointing towards, say θ̂, irrespective
of the underlying state, the effect is opposite, reinforcing the trend towards
θ̂: the balance between evidence confirming and disconfirming θ̂ becomes
more favorable to θ̂ independently of the underlying state, and when θ̂ 6= θ,
this is potentially harmful for welfare (and even more so when there are
more mental states).

Optimal censoring of evidence trades off the two effects above, and to
the extent that regular problems are preponderant on average, the decision
maker has incentives to censor weak evidence.

Supersition-prone problems. The last piece of our argument consists in
observing that censoring weak evidence affects the type of problems that
are irregular as well as the underlying state that gets most likely confirmed:
problems for which a state mostly generate weak confirming evidence be-
come highly irregular when this weak evidence is censored. These types of
problems are thus prone to superstitious beliefs. For example, in evaluating
whether a rare circumstance C has a positive influence on the probability
that a rare event E occurs (θ = 1), or no influence (θ = 2), the only event
delivering strong evidence is C − E, and it favors θ = 1.13

Framing and pooling. Finally, we use our framework to discuss the im-
portance of framing (i.e., which alternative theories θ are compared) and
11One intuition is that given the limited number of mental states, posterior Bayesian

beliefs differ substantially from one another (across mental states). Changing state after
a poorly informative signal triggers a change in posterior that seems unjustified. In most
cases, avoiding these unjustified changes is welfare increasing. In some rare cases however,
for example when an extreme mental state is very likely under both θ, adding noise may
increase the informativeness of the mental system, as we further explain in Section 4.1.
12This is because p−∆

1−2∆
> p when p > 1/2.

13Since E is rare, C −E cannot be very informative, and when C is rare too, θ cannot
affect much the occurence of C − E.
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pooling (i.e., how information or signals are structured) in fostering biased
beliefs. For a Bayesian, neither framing nor pooling alter the direction of
learning: beliefs on average lean towards the truth. For our less sophis-
ticated agent, both framing and pooling may affect which signals remain
strong enough evidence and get processed, possibly pushing beliefs away
from the truth.14 ,15

In a similar vein, we discuss the effect of processing signals in batches
rather than sequentially as they arrive. With large enough batches, problems
become regular, so infrequent processing likely reduce biases.

In summary, while the incentives to ignore weak evidence seem unavoid-
able, we conclude that some problems are more prone to superstitions than
others because of asymmetries in strength of evidence for and against them.
This being said, people with a better understanding of the inherent biases of
the data generating process will be less prey to these biased beliefs, exerting
some form of skepticism, either by reducing the number of mental states,
or, when stakes are high, attributing less power to their mental system.

1.3 Discussion of modeling assumptions.

Our assumptions regarding belief formation depart from typical decision
models in several ways. First, we model agents who form beliefs in a world
where the data generating process is not fully observable. In many models,
the source of uncertainty is limited (for example to few underlying states)
and learning the true state is often just a by-product of the law of large
numbers. The law of large number however will not be particularly helpful
if the set of possible data-generating processes is rich, as one may not be
able to simultaneously identify the underlying state and the distribution
that generates the signals.

Second, we think of belief-formation as a strategy to emphasize that how
people form beliefs is a challenging task. Classic approaches take Bayes rule
as a benchmark. But this rule is tuned to a well-defined data generating
process. When the data generating process is unknown, how does an agent

14This includes censoring, that is, pooling some a priori informative signals with the
many instances where signals are absent. For a Bayesian, this "missing data" event would
become informative, while for our agent, it would typically be too weak to be processed.
15For example, assume that C is not rare but C − E and C − E are pooled. Then the

only potentially discriminating events are C −E and C −E. Based on these events only,
a Bayesian’s belief would lean towards the truth, while if E is rare enough,beliefs of our
agent censoring weak evidence would lean towards θ = 1 independently of the underlying
state.

7



come up with an adapted belief-formation rule? While the classic Bayesian
route remains a technically feasible modelling option,16 we choose to define
an a priori plausible family of belief-formation rules/strategies, parameter-
ized by a one dimensional parameter d, and to assume that, given the dis-
tribution over problems faced, agents manage to adjust d in a direction that
improves expected welfare.17

The particular restriction (P) chosen is made for pedagogical reasons:
first it coincides with Bayesian updating in some special cases where the data
generating process is known, second it offers a simple way to characterize
the influence of mental processing on posterior beliefs. In addition, many of
the insights presented in this paper, including the incentives to censor weak
evidence, do not depend on the particular family chosen (nor on the fact
that d is set optimally), but just on the fact that beliefs are monotone in s.

1.4 Related work.

We mentioned the instrumental value of beliefs and the confirmation bias
as two plausible explanations for the persistence of superstitions. Our ex-
planation is not inconsistent with these. We argue that some discrimination
problems are more prone to superstitions than others, which also implies
that for these problems, some instrumental or confirmation value will be
more easily derived.

Another explanation for superstitious beliefs is due to Chapman and
Chapman (1967), who coined the term "illusory correlation". Chapman and
Chapman run an experiment in which subjects are presented associations
of two words (sequentially), and then later asked about the most frequent
pairs. Subjects tend to overweight the presence of per-existing natural as-
sociations such as "lion-tiger". In other words, the presence of "natural
associations" biases the judgment about the existence of correlations in the

16This route involves simultaneous learning about the underlying state and the data-
generating process, hence it is rather cognitively demanding for the agent and the analyst.
17We do not model how this adjustment is made, though reinforcement learning or

evolution is a natural candidate. In that respect, this follows one of the classic route in
game theory which keeps unmodelled how players come up best responses. In any event,
learning within a simple family of strategies is certainly easier than if no restrictions were
put on the set of feasible belief-formation strategies. This feature of the model is inspired
from CP (2019), which is more generally concerned with modelling agents dealing with
complex environment, making sure that behavior is not too finely tuned to details of the
model that agents cannot plausibly know. The family (P) can be viewed as an attempt
to address this concern in a context where agents process and aggregate a large number
of signals prior to decision making.
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data. Kahnman and Tversky (1973) see this an example of the availability
heuristics. The "lion-tiger" pair being more natural, it is readily available
in the brain and becomes over-weighted when one tries to estimate ex post
its occurence in the data (consisting in a list of paired words).

In a similar vein, one could argue that "moon affecting deliveries" is
a natural association (the moon affects tides, why not a woman’s womb),
and that as a result these events get over-represented in people’s mind. We
provide an informativeness-based story for this over-representation: the con-
junction "full-moon and many deliveries" is more easily recorded or recalled
than other events because of an informativeness asymmetry.

From a theory perspective, our paper is related to Robert Wilson’s cri-
tique, who argues that economic theories or mechanisms build on poten-
tially fragile ground, with optimal mechanisms tuned to details of the eco-
nomic environment that the mechanism designer cannot plausibly know. A
similar critique holds for agents finely adjusting strategies to details of a
model they cannot plausibly know. We address this critique by considering
a richer-than-usual economic environment (the signal-generating process is
unknown) and by keeping the number of strategic instruments limited (β
and d are the only two instruments). As a consequence, our agent is unable
to adjust its belief formation strategy to each particular data-generating
process.

Our model itself is closest to Andrea Wilson (2014)’s work (as well as
Compte and Postlewaite (2009)), with an agent choosing an action after
receiving a (random) number of signals. The issue in Wilson is the optimal
use of a limited number of states, which includes the optimal design of tran-
sition probabilities between states, conditional on the signal received. When
a long sequence of signals is available (as in Cover and Hellman (1970)), the
optimal use of signals consists in organizing moves as in Figure 1, focusing
only on the most informative signal confirming θ = 1 (for moves to the
right) or θ = 2 (for moves to the left), and dealing with the asymmetry in
strength of evidence by adjusting the probability of moving away from an
extreme state. In that model, weak evidence is thus ignored (though what
is considered weak depends on the direction of evidence), and the asymme-
try between the frequencies of moves to the right and left are corrected by
an appropriate choice of transition probabilities at extreme states. Both of
these features (i.e. contingent censoring and contingent moves at extreme
states) rely on precise knowledge of the distribution over signals, which we
do not assume.

The role played by signals of asymmetric informational strength echoes
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some insights of the mental accounting literature. In comparing two alter-
natives A and B, agents may need to process many signals related to the
benefits or drawback of taking A over B, and decision anomalies may arise
when few, say, positive gains are compared with numerous yet small losses
that each seem negligible and eventually ignored, tilting the decision in favor
of the one yielding the large positive gains.

The classification of signals into those that are informative enough to
qualify as evidence for a particular state echoes some notion representative-
ness, which we compare to Kahneman Tversky’s (1973).

Finally, we contrast our work with the literature that explain biases
through agents forming beliefs based on a misspecified (or incomplete) model
of the environment (Esponda and Pouzo 2016, Spiegler 2016, for example).

2 The model

2.1 Preferences and uncertainty

We consider a family of decision problems, each having a similar structure:
there are two possible states of the world θ = 1, 2 and after processing a
sequence of signals, the agent eventually chooses between two alternatives,
a ∈ A = {1, 2}. We assume the following payoff matrix, where g(a, θ) is the
payoff to the agent when she takes action a in state θ:

g(a, θ) 1 2

1 1− γ 0

2 0 γ

where γ ∈ [0, 1]. When γ > 1/2, taking the right decision is more important
when the state is 2 than in state 1, and the ratio Γ = γ/(1−γ) characterizes
that relative importance.

We assume that θ = 1 for a fraction π of the problems. π thus character-
izes some objective uncertainty about the true state, and we let ρ = π/(1−π)
denote the odds ratio. This objective uncertainty does not necessarily co-
incide with the agent’s initial/prior belief : we allow for some discrepancy
between the objective uncertainty π and the agent’s initial perception of it.
Formally, we denote by π̃ the agent’s initial belief that the state is 1 (or,
expressed in odds ratio, ρ̃) and assume a stochastic relationship between ρ̃
and ρ:

ρ̃ = ηρ
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where η is a positive random variable.18 When η is concentrated on 1, the
agent has correct priors.

For any belief π̂ about state 1 that the agent might hold upon taking
a decision, we assume that the agent chooses the welfare maximizing ac-
tion given this belief, i.e., choose action 1 when π̂(1 − γ) > (1 − π̂)γ, or
equivalently, denoting ρ̂ ≡ π̂/(1− π̂) the odds ratio, when

ρ̂ > Γ (1)

Thus, in the absence of any signals to be processed, the agent chooses action
1 when ρ̃ > Γ, hence on average across realizations of ρ̃, he obtains:19

W ≡ (1− γ)πPr(ρ̃ > Γ) + γ(1− π) Pr(ρ̃ < Γ)

In case the agent has correct priors, he achieves an expected welfare equal
to

W 0 ≡ max(π(1− γ), (1− π)γ) ≥W

2.2 Signals

Prior to decision making, the agent receives a sequence of signals imperfectly
correlated with θ that she may use to form a posterior belief. The sequence is
denoted X, assumed to be arbitrarily long, and conditional on the true state
θ, each signal x ∈ X is drawn independently from the same distribution with
density f(· | θ), assumed to be strictly positive and smooth on its support
[0, 1]. In addition, the odd ratio

L(x) ≡ f(x | 1)/f(x | 2)

is assumed to be strictly increasing in x. The distributions {f(· | θ)}θ are
problem specific and we think of them as objective characteristics of the
problem faced.

One aspect of our analysis will be the possibility that a signal does not
get to the agent’s attention, or that it is simply not processed, for example
because its strength is too weak, i.e., not informative enough. Another
aspect will be that even when a signal is processed, its informative value is
not perfectly assessed.

Signal characteristics. When signal x arises, there is a state θ(x) ∈
18 In simulations to come, we assume that log η is normally distributed.
19Note that whether we assume that the agent has noisy peceptions of Γ or noisy

perceptions of ρ, the consequence regarding expected welfare has a similar expression.
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{1, 2} that has highest likelihood, namely:

θ(x) = arg max
θ∈{1,2}

f(x | θ).

We say that signal x is evidence for state θ(x).20 To measure the strength
of the evidence, we define

l(x) =
f(x | θ = θ(x))

f(x | θ 6= θ(x))
= max(L(x), 1/L(x)).

Any signal x thus has an "objective" (informational) characteristics

h ≡ (θ, l).

We shall denote by H the sequence of characteristics associated with the
sequence X.

Censoring. We shall later endogenize the incentives to censor weak
evidence. For now, we define an exogenous threshold strength 1 + β above
which the signal gets to the agent’s attention, and we denote by X̃β the
subsequence of signal actually processed:

X̃β = {x ∈ X, l(x) ≥ 1 + β}

where β ≥ 0 characterizes the degree to which weak signals are censored or
go unnoticed.

We assume the agent takes a decision afterN signals have been processed,
and unless otherwise mentioned (i.e., in Section 6.1), we consider the limit
case where N is arbitrarily large.

Noisy perceptions. We allow for the possibility that the signal char-
acteristic h is not accurately or fully perceived by the agent. We assume
that the agent perceives

h̃ = (θ̃, l̃)

imperfectly correlated with h = (θ, l). We let H̃ denote the sequence of
perceived characteristics associated with sequence X̃β. Although we briefly
discuss this general case, we shall mostly focus on a coarse version of the
model where the agent only processes the perceived direction of evidence θ̃.

20Given our assumption on L, there is a unique uninformative signal x0 (i.e., L(x0) = 1):
all signals above x0 provide evidence for θ = 1, and all signals below x0 provide evidence
for θ = 2.
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In summary, to an outsider, a decision problem is characterized by γ, θ, f
and the realized sequence of signals X (induced by θ, f). The agent faces a
family of such problems, characterized by a distribution ω.21 Upon deciding,
the agent observes γ and has noisy perception (ρ̃, H̃) which he can use to
form a belief about θ and then decide which alternative he takes. We now
turn to belief formation.

2.3 Belief formation and welfare.

We are interested in how beliefs are formed and in the performance of belief-
formation strategies σ that map the perception (ρ̃, H̃) to a posterior belief
ρ̂ = σ(ρ̃, H̃), assuming that the agent eventually chooses actions according
to (1). For any fixed f and β, expected welfare is given by

W (σ, f, β) = (1− γ)πPrf,β,σ(ρ̂ > Γ) + γ(1− π) Prf,β,σ(ρ̂ < Γ) (2)

We shall be interested in the performance of σ and β on average over the
possible realizations of f , that is:

W (σ, β) = EfW (σ, f, β)

Before putting structure on the belief-formation strategies σ that we shall
consider, let us clarify how we depart from the classic approach to informa-
tion aggregation and motivate why we put structure on them.

2.4 The classic approach to information aggregation.

In the classic approach to information aggregation, signals are not censored
(β = 0), the agent has correct priors (ρ̃ = ρ) and knows f . For any sequence
X, she correctly perceives the sequence H = (θ(x), l(x))x∈X and computes

L(H) ≡
∏
x∈X

L(x) =
∏

(1,l)∈H
l /

∏
(2,l)∈H

l (3)

and form a (Bayesian) posterior

σ∗(ρ,H) = ρL(H) (4)

Next, following (1), the agent undertakes action 1 when σ∗(ρ,H) > Γ.

21The marginal over θ is π, and θ and f are independently distributed.
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One may view σ∗ as an algorithm for aggregating signals —the Bayesian
algorithm. As is well-known, this Bayesian algorithm achieves the best possi-
ble expected welfare for the agent. As is also well-known, signals on average
improves welfare, and with a large enough number of signals, the agent
eventually takes the correct decision.22

While it is standard to assume that agents would form beliefs in the
way described above, the nice welfare properties of this belief-formation
algorithm rely on agents perfectly assessing h ≡ (θ, l). When perceptions of
strength are biased, for example, applying the Bayesian algorithm to (ρ̃, H̃)
may result in poor decision making.23

2.5 Putting structure on belief-formation rules.

As analysts, we often motivate the use of strategies by their welfare per-
formance — a classic reinforcement learning argument. Our view is that
the Bayesian algorithm defines a strategy for aggregating signals, and one
motivation for this rule is that it generates maximum welfare. When the
agent just has noisy perceptions ρ̃ and H̃, applying naively the Bayesian
algorithm to these perceptions may hurt welfare and an "appropriately" ad-
justed strategy σ(ρ̃, H̃) may be called for. But given the size of the strategy
space, it is not clear how one can invoke reinforcement learning arguments
to motivate the use of a welfare-maximizing strategy σ(ρ̃, H̃).

The route we propose below is to put a priori structure on the set of
belief-formation rules, hopefully making the reinforcement learning argu-
ment more compelling to justify the use of particular rules over others. This
is what we do next, first defining a coarse mental system that only exploits
the perceptions θ̃.

2.6 Coarse mental system and belief formation

We consider agents attempting to form beliefs based on the direction of the
evidence θ̃ only. This can be either because the agent has no perception of
strength, or because the agent thinks that l̃ is not reliable enough. H̃ thus
consists of a realizations of θ̃ favoring either 1 or 2, and the agent faces two

22This is because E(logL(x)|θ = 1) > 0 > E(logL(x)|θ) = 2. See Appendix.
23 If the strength of evidence is perceived with a bias (say l̃ = ηl with η > 1) for example,

if the agent forms beliefs by applying the Bayesian algorithm to (ρ̃, H̃), and if the expected
tally of evidence for 1 and against 1 is positive independently of the underlying state, the
bias η may become the preponderant force, sending beliefs towards θ = 1 even when the
state is θ = 2, hence away from the true state. In these cases, the agent would be better
off just using her priors rather than attempting to exploit signals using Bayes rule.
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issues: (i) how to aggregate these coarse signals? (ii) Given this aggregation,
what posterior belief should he hold?

To answer (i) we posit the simple mental system described in Introduc-
tion. The agent starts at s = 0, moving one step up (if possible and) if
θ̃ = 1, moving one step down (if possible and) if θ̃ = 2, where s ∈ S ≡
{−K, .., 0, ...K}.

To answer (ii), we assume that when in state s prior to decision making,
the agent uses a simple belief-formation strategy :

σd(ρ̃, s) = ρ̃ds

for some d ≥ 1. When d > 1, a positive (negative) mental state thus
moves the agent away from her prior, towards believing that θ = 1 (θ = 2).
The parameter d captures the degree to which the agent’s mental system
influences beliefs. When d = 1, the agent keeps her prior and effectively
ignores all signals received.

For the sake of exposition, we also introduce a more sophisticated updat-
ing rule in which the agent updates his initial probabilistic belief ρ̃ according
to

σd,Λ(ρ̃, s) = ρ̃Λds.

With rules of this kind, the agent has two instruments: the degree d to which
her mental system influences beliefs, and the degree to which she biases her
decision: if her mental system tends to generate higher mental states on
average, she will have an incentive to choose Λ below 1.

3 Optimal belief formation

For a given (f, β), the mental-state dynamic is entirely driven by the tran-
sition probabilities

p
θ̃θ

= Pr(θ̃ | θ, f, x ∈ X̃β), for θ ∈ {1, 2} and θ̃ ∈ {1, 2},

and since p1θ + p2θ = 1, the dynamic is actually driven by only two pa-
rameters, say p11 and p22. Welfare is thus jointly determined by σ and
p ≡ (p11, p22), and for notational convenience, we shall now write W (σ, p)
for welfare. We provide below a graphic representation of the probabilities
p
θ̃θ
for a given f , assuming β = 0 (no censoring) and correct attributions
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θ̃ = θ:24

θ = 1 θ = 2

Throughout the paper, we consider problems where observing evidence for
state θ is more likely under state θ than under state θ′ 6= θ, that is, pθθ > pθθ′ .
For a given p = (p11, p22), this condition can be written

dpθ ≡ pθθ/pθθ′ > 1 (C)

and it holds by construction when β = 0 and when the agent has correct
perceptions of evidence (θ̃ ≡ θ).25 Note that when (C) holds either p11 > 1/2
or p22 > 1/2.

3.1 p-optimal strategies

We start studying optimal belief-formation strategies for the case where
priors are correct (ρ̃ = ρ) and strategies can be tuned to p. This corresponds
to a classic Bayesian case, under the constraints imposed by censoring and
mental processing. For any p, define

dp = dp1d
p
2 and Λp =

∑
s∈S

(dp2)s/
∑
s∈S

(dp1)s

We have:

Proposition 1: Assume the agent has correct priors. For any fixed pair
p satisfying (C), the strategy σ∗p ≡ σdp,Λp achieves maximum welfare across
all possible belief-formation rules σ.

24 In each figure (θ = 1 or 2), the blue area corresponds to the probability of moving
upward (θ = 1).
25The assumption also holds mechanically when there is noise in the perception of θ

and the noise is independent of θ.
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Proof. Given p, define φpθ(s) as the long-run distribution over belief
states under θ. Let Λp(s) = φp1(s)/φp2(s). The agent’s welfare is at most
equal to

W (p) =
∑

s∈S max((1− γ)πφp1(s), γ(1− π)φp2(s))

and the rule σ∗(ρ, s) = ρΛp(s) permits to achieve this maximum.26 It is
easy to check Λp(s) = Λpd

s
p, so when ρ̃ = ρ, σ∗p coincides with σ

∗ and thus
achieves maximum possible welfare.

To assess the magnitude of these gains, we assume K = 2 (five belief
states) and compute numerically the welfare gains

∆(p) ≡W (σ∗p, p)−W

associated with σ∗p compared to only relying the prior. With correct priors,
the agent cannot be worse off using σ∗p so ∆(p) is non negative. Since
beliefs states are correlated with the underlying state, the agent may obtain
a strictly higher welfare when this correlation is strong enough. Fixing
π = 1/2, the following figures report the domain of strict welfare gains when
p11 = 0.8 (on left) and when γ = 0.6 (on right), as well as the magnitude of
these gains.

The orange line defines the boundary of the domain for which∆(p) is strictly
positive. Outside this domain, the decision maker plays the same action
irrespective of her mental state: the mental system is not informative enough
to tilt the decision away from what the prior suggests. This happens when
1 − p22 is too close to p11, as the informativeness of the mental system is

26This rule corresponds to Bayesian updating given the constraint imposed by simple
mental processing
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then small (i.e., d∗ is close to 1) or when γ lies away from 1/2, as it then
requires substantial evidence to override the prior.

Proposition 1 corroborates the standard view that processing signals
correlated with the underlying state cannot hurt decision making. With
noisy priors, σ∗p is not the welfare optimizing rule. Nevertheless, the following
figures show that comparable gains obtain in that case as well:

Intuitively, when priors are noisy, there are two effects at work: (i) relying
on priors is a worse option than before (W < W 0); (ii) for a fixed (π, γ), the
change in belief required to switch decision is modified.

(i) implies an expansion (in most directions) of the set of parameters for
which σ∗p helps compared to relying on priors only, as well as comparable
welfare gains for most parameters (ii) implies that (for a small range of
parameters), the agent may be (slightly) worse off using the mental system
than his (noisy) prior. For these parameters, the agent has the illusion that
the mental system is powerful enough to override the prior, while he would
be better off ignoring the mental system.27

3.2 When p is unknown

We now explore the case where priors are noisy and the updating strategy
cannot be tuned to p. We shall make two observations. First, the simple
updating strategy ρ̃ds works well for many problems, even when d cannot be
tuned to (p11, p22). For some problems however, the agent would be better
off ignoring signals and only trusting her prior.

We examine the welfare gain (or loss) ∆d(p) = W (σd, p) − W associ-

27When priors are noisy, σ∗p is not the welfare optimizing rule. This is why ∆(p) can be
negative.
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ated with using a given strategy σd. We first observe that for a range of
parameters p, ∆d is positive irrespective of d. Formally, let

B = {p, dp > max(
Γ

ρΛp
,
ρΛp
Γ

) (5)

Proposition: For any p ∈ B, ∆d(p) > 0 for all d > 0.

The set B corresponds to cases where the flow of evidence remains some-
what balanced (Λp not too far from 1) and signals are suffi ciently informative
(d large enough).28

Formally, ∆d can be expressed as

∆d(p) =
∑

s ψ
p(s)Jd(s)

where

ψp(s) = (1− γ)πφp1(s)− γ(1− π)φp2(s) and

Jd(s) = Pr(µ ≥ Γ/(ρds))− Pr(µ ≥ Γ/ρ).

For d > 1, Jd(s) has the same sign as s, and by construction, for p ∈ B,
ψp(s) also has the same as s, which proves the proposition.29

For a fixed d, ∆d can be positive even if welfare gains are not positive for
each belief state: mostly matters states that are more likely to be reached,
so welfare may increase over a range much larger than B. In contrast to
the Bayesian case however, there is now a significant range of parameters for
which σd hurts welfare. The reason is that for some p, the mental system may
generate evidence towards θ̃ = 1 irrespective of the underlying state, and σd

does not correct for that. The figures below summarizes these observations
assuming d = 3 and p11 = 0.8.30

28The condition is more easily satisfied when stakes and priors are favoring too much a
given alternative.
29Note that when the number of mental states rises, Condition (5) becomes a more

stringent one. The reason is that when the number of mental states rises, being in state
0 can become quite informative if p11 and p22 differ (i.e., max(Λp, 1/Λp) becomes large).
30As before, we fix π = 1/2, p11 = 0.8, K = 5, so problems are parameterized by

(p22, γ). Priors are noisy with Logµ ∼ N (0, 0.5).
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The orange boundary defines the domain for which σd∗,Λ∗ improves decision
making. In the left figure, the blue domain indicates the set of problems
for which σd improves decision making, and the darker blue region defines
domain B. In the rest of the domain, using σd decreases welfare, and the
right figure provides the magnitude of these changes: the magnitude of the
losses can be as large as that of the gains.

In the absence of optimization tuned to (p11, p22), one expects that agents
end up with mistaken beliefs for some (irregular) problems: they will form a
posterior belief that bents towards one state of the world, mistakenly think-
ing that their mental system permits to discriminate well between states
of the world, while their belief state primarily results from the fact that
evidence on average points towards the same direction irrespective of the
underlying state.

3.3 A motive for stake-contingent skepticism.

To conclude this Section, we observe that in contrast to the classic Bayesian
formulation that separates belief formation and preferences, the issues be-
come intertwined with our less sophisticated agent: the agent has incentives
to decrease d when the stakes γ are larger.

To see why, we fix again d = 3 and compare the magnitudes of gains and
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losses for γ = 0.6 and γ = 0.75 across all possible p:

Incentives to set d depends on the distribution over problems p faced, but
it should be clear for the figure that when γ is high, losses become prepon-
derant, thus providing the agent to decrease d and give a more prominent
role to priors.

Intuitively, the agent faces two kinds of problems: some for which ev-
idence is somewhat balanced (i.e., Λp is not too far from 1) and some for
which evidence on average points in a given direction θ̂ independently of the
state θ. When the agent ends up in a high mental state, this is evidence in
favor of θ = 1 for the first set of problems, but this is evidence for θ̂ = 1 for
the second set of problems.

When Γ/ρ = 1, relying on priors gives the lowest possible welfare, so,
for the second set of problems, being erroneously influenced by the mental
state is not costly. When Γ/ρ is large however, this influence is costly: for
the second set of problems, and if θ̂ = 1, the agent is mislead into thinking
that θ = 1 while he would have been better off following priors.

In other words, for asymmetric-stake cases, the agent may benefit from
being more cautious and exert some stake-contingent skepticism, which can
be done by reducing d when stakes are higher.

4 Incentives to ignore weak evidence

Ignoring weak evidence modifies the distribution of signals processed, hence
also the transition probabilities (p11, p22) between mental states. Starting
from a situation where signals are not censored (β = 0), we study the
welfare consequence of marginally censoring weak evidence. Graphically,
we illustrate below why and how transition probabilities are affected by

21



censoring, for a small value of β:

θ = 1 θ = 2

Because of censoring, only signals for which l(x) > 1 + β are processed.
In the figure, the chance a signal is not processed is approximately 2∆.
One key observation is that when β is small, the weak evidence censored is
equally likely to favor θ = 1 or θ = 2, implying that both p11 and p21 are
reduced by ∆.31 Said differently, processing weak evidence is equivalent to
adding state-independent noise to the mental system.

This observation implies (see Appendix):

Proposition: At β = 0, (i) ∂dp
∂β > 0;(ii) ∂pkk

∂β has the same sign as

pkk − 1/2, and (iii) ∂Λp
∂β > 0 iff Λp > 1

So when weak information is censored, dp rises, which implies that from
a Bayesian perspective, the spread in posterior beliefs is larger. But it also
implies that for most problems (i.e., unless p11 = p22), Λ∗ lies further away
from 1, that is, the mental system is less balanced.

As we shall show, the consequence of the larger spread is that, in the
Bayesian case (where the agent can tune his strategy to p), censoring weak
evidence improves welfare for most values of p.32 The consequence of the
reduced balancedness of the mental system is that in the non-generate case
where the agent follows a given strategy σd (which does not correct for this
imbalance), censoring weak evidence hurt welfare for many problems.

Nevertheless, we will show that σd improves welfare for all "regular prob-

31These observations rely on our assumption that L is smooth and strictly increasing.
32For most pairs, but not for all, as we shall explain.
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lems", that is, problems for which

p11 > 1/2 and p22 > 1/2 (R)

One may thus conclude that to the extent that regular problems are prepon-
derant, incentives to censor weak evidence are present even when the agent
cannot finely tune his belief-formation strategy to p.

4.1 The Bayesian case

Since weak evidence is just adding noise to the transitions between mental
state, it would seem that from a Bayesian perspective, censoring weak ev-
idence always improves welfare. In particular, since dp rises, the spread in
posterior beliefs must increase, so the set of problem for which the mental
system helps would seem to increase as well.

Also, the intuition that one might derive from Wilson is that there is a
value to keep as much as possible past accumulated evidence, and this ought
to provide agents with incentives to prevent moves from the edges once they
are reached, rather than throwing in noise into the mental system.

It turns out however that, for a small set of problems, censoring weak ev-
idence actually hurts welfare. Technically, letting Λp = Λp(dp)

s, the reason
is that the set

D = {p, ∂Λp
∂β

< 0}

is not empty. That is, although censoring increases dp, the largest possible
shift in posterior beliefs decreases, so for these marginal problems where Γ/ρ
is below but close to Λp, censoring makes the mental system useless.

Intuitively, this happens for problems for which evidence points on av-
erage in the same direction (here θ̂ = 1), independently of the actual state
of the world. Then censoring evidence reinforces that trend, and this makes
being in the high mental state K potentially less informative: at the limit
where p11 is close to 1 and p22 is small, the player likely ends up in the
highest mental state K, irrespective of the underlying state. Being in the
high state K is thus not very informative, and even less so when weak infor-
mation is censored. In contrast, adding noise increases the informativeness
of the most likely signal s = K, and for some γ’s close to the posterior belief
at s = K, the agent is better off not censoring.33

33Said differently, the ex ante long-run distribution over mental states can be viewed
as a prior, and adding noise (or censoring) endogenously modifies the prior, making (for
some p) learning easier (or more diffi cult).
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We illustrate this by plotting the locus of problems for which censoring
help (blue) and hurts (orange) for two values of p11.

p11 = 0.8 p11 = 0.9

4.2 When p is unkown

Ignoring weak evidence may further increase the imbalance of the mental
system. This implies that for simple belief-formation strategies, which do
not correct for this imbalance, welfare may decrease as the following figures
confirm:34

The Figures show a negative effect of censoring on welfare for a signif-

34As in previous figures, on the left, we set p22 = 0.8 and π = 1/2, and examine whether
welfare increases (blue) or decreases (orange) depending on parameters p22 and γ. On the
right, we fix γ = 0.8, and examine variations in the (p11, p22) space.
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icant range of problems. Nevertheless, we show below that for all regular
problems (both pθθ above 1/2)35, and in spite of the increased imbalance
that censoring generates, welfare increases. Intuitively, the reason is that
for these problems, ignoring weak evidence always increases both p11 and
p22, so it increases the correlation between the underlying state θ = 1 (re-
spectively θ = 2) and being in a positive mental state (respectively negative
mental state).

Formally, consider any monotone strategy σ and any realization ρ̃. Under
(σ, ρ̃), the decision maker chooses action 1 if and only if the belief state is
high enough, say s ≥ kσ,ρ̃, and the welfare is given by W (kσ,ρ̃, p) where

W (k, p) ≡ π(1− γ)Φp
1(k) + (1− π)γ(1− Φp

2(k)) (6)

where Φp
θ(k) ≡

∑
s≥k φ

p
θ(s) is the probability to end up in a mental state

s ≥ k when the underlying state is θ.36 From the definition of φpθ(s), and
recalling that dpθ = pθθ

1−pθθ , we have

Φp
1(k) = Φ(k, dp1) and Φp

2(k) = Φ(k, 1/dp2)

where

Φ(k, d) =

∑
s≥k d

s∑
s∈S d

s

We have:

Lemma: For any k > −K, with k ≤ K, Φ(k, d) strictly increases with
d.

Since for regular problems, censoring weak evidence strictly increases pθθ
for both θ = 1, 2, hence also dpθ, and we immediately conclude that Φp

1(k)
increases and Φp

2(k) decreases, so welfare increases for any realization of ρ̃,
hence it also increases on average over realizations of ρ̃.

Proposition: For any monotone belief formation strategy σ and any
regular problem, censoring weak evidence marginally increases welfare.

35The frontiers of regular problems are indicated by the dashed line in the Figures.
These problems lie within the blue (welfare improving) region.
36This means that, over realizations of ρ̃, the agent obtains an expected welfare equal

to Eρ̃W (kσ,ρ̃, p).
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5 The persistence of superstitions.

5.1 The role of asymmetries.

Our hypothesis is that it is diffi cult for agents to adjust censoring and the
belief-formation rule to each problem that one faces, that is, to unobservable
characteristics of the data generating process. We think of these kinds of
adjustment as being more plausibly made on average across problems.

Given this hypothesis, the general message conveyed by previous Sec-
tions is that, to the extent that agents face a substantial fraction of regular
problems, agents have incentives to both censor weak evidence (β > 0) and
raise the power of their mental system (d > 1).37

The adverse consequence however is that for some problems, agents
would be better off not trusting their mental process and ignoring the up-
dating that it suggests. We illustrate below the type of problems for which
this occurs.

Let us first observe the consequence of raising β on (p11, p22) for two
different distributions. The two figures below depict how one obtains the
transition probabilities qθ,2 = Pr(θ and l > 1 + β | θ = 2), which in turn
permits to compute

p22 ≡
q22

q22 + q21
.

In the left figure, whether signals provide evidence in favor of θ = 1 or
2, the strength of evidence l(x) is somewhat comparable, and p22 remains
above 1/2 (and both p11 and p22 actually rise). For the more asymmetric
distribution f(. | 1) considered on the right figure, the strength of evidence
is less evenly distributed, and a similar rise in β sends p22 to 0: all signals
processed are evidence in favor of θ = 1.

37Note that censoring weak evidence actually increases the benefits of raising d for
regular problems.
Note also that in addition, more sophisticated agents may have incentives to exert skep-

ticism with respect to their mental system whenever stakes are perceived as unbalanced
(L0 < 1 when Γ/ρ̃ > 1), but this skeptcism may be counter productive when ρ̃ is too
noisy.
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"Symmetric" distribution Asymmetric distribution

The next figure plots, for each distribution, the effect of raising β above
0 on the pair (p11, p22) (see the red curves). The figure also recalls welfare
levels as a function of (p11, p22) for γ set to 0.6.

That is, in the absence of censoring, each problem considered in regular (i.e.,
at β = 0, qθθ > 1/2 for each θ), and marginally censoring weak evidence
generates a welfare gain. The consequence of more significant censoring dif-
fers across problems: for the "symmetric" distribution, at β = 1 (indicated
by the red dot), a further increase in censoring still increases welfare; for the
more asymmetric distribution, β = 1 already sends W to the worst possible
welfare level (given γ > 1/2).

Ideally, the agent would wish to adjust censoring to each problem that
he faces. When characteristics of the whole data generating process are not
observable, performing this adjustment is diffi cult and this is a potential
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source of biases, in particular for discrimination problems that occasionally
generate strong evidence in favor of one alternative (here θ = 1), and fre-
quently generate evidence in favor of the other alternative (θ = 2) but only
weakly so.

5.2 Examples.

How does this related to superstition, superstitious beliefs, or more gener-
ally, folk beliefs? Our claim is that such beliefs typically arise for problems
of the asymmetric kind described above. Leaving aside the question of the
role of superstitions and why they arise, we wish to suggest that some theo-
ries are likely to give rise to persistent superstitions, when the asymmetry in
strength between evidence that supports it and evidence that goes against
it, combined with a general incentive to ignore weak evidence, may be re-
sponsible for beliefs in favor of these theories, independently of their actual
veracity.

We first illustrate this with a common folk belief, a theory that the (full)
moon has a positive influence over on the number of deliveries.38

Lunar effects. Consider an individual trying to discriminate between two
states of the world. Under state 1, full moon generates on average a 20%
increase in the number of deliveries, while under state 2, there is no effect.
Assume that over the year, the average number of babies is 10, with each
day a realized number n following a Poisson distribution. The hospital/staff
is calibrated to handle 12 babies, and any number n > 12 creates tension.
We call X = max(n− 12, 0) the level of tension, Y the event as to whether
there is full moon (Y = 1) or no full moon (Y = 0).39 A signal is a pair
x = (X,Y ) and for each x we can compute the pair (θ, l). The signals that
are evidence in favor of θ = 2 have the following strength:

X,Y 0,1 8,0 7,0, 6,0 5,0 4,0 3,0 2,0 1,0
l 1.31 1.22 1.20 1.17 1.15 1.13 1.10 1.08 1.06

38The absence of lunar effects and beliefs in lunar effects have both been documented.
The issue is not just anectodical, as if such an influence exists, hospitals would want to
take it into account to modify work load as a function of moon phases.
39We assume that a full moon lasts 3 days out of 30, so under state 1, so if we denote

by q1 (respectively q0) the expected number of deliveries on a full moon day (respectively
on other days), we have q1 = 1.2 q0 and q1 + 9q0 = 10q.
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and the strongest of these is (0, 1) (no tension on a full moon day). Signal
that are evidence in favor of θ = 1 have the following strength:

X,Y 0,0 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1
l 1.02 1.41 1.67 1.96 2.31 2.71 3.19 3.76 4.42

so, apart from signal (0,0), which is almost uninformative, they are strong
compared to those in favor of θ = 2. This can be also seen by plotting both
distributions:40

Under the simple mental processing considered earlier, and if β > 0.31,
evidence in favor of θ = 2 is never processed, leading the individual to
believe in a lunar effect independently of the true state. Note that a smaller
threshold would not make the problem regular: for smaller values of the
threshold β, evidence is preponderantly in favor of θ = 2, independently of
the underlying state.41

Illusory correlation and pattern identification. Superstitions and
other folk beliefs can also be interpreted as an instance of illusory correla-
tion (Chapman and Chapman) between two events, or more generally, the
illusory identification of a pattern in the environment.

Formally, one can think of a pattern as a sequence of two events P and C
where P is a premise and C a consequence. The issue is whether the premise
makes the consequence more likely. Sometimes PC is observed, but at other

40The length of an horizontal segment indicates the probability of occurence of signal
x under state θ = 2) —and for lisibility, we omit the most likely signal (0, 0) and report
distributions conditional on x 6= (0, 0).
41One can check that at β = 1.31, q22 = 0.27 and q12 = 0.07, so p22 = q22/(q22 + q21) =

0.65, and q11 = 0.14 and q21 = 0.21, so p11 = 0.39.
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times, PC or PC or PC can also be observed.42 As we explain below, when
P and C are both rare events, the only event which has significant strength
is the observation of PC and it favors the theory that an influence exists.
To see this, assume that under state θ = 1, an influence exits, while under
state 2 it does not:

Pr(C | P, θ = 1) = αPr(C | P , θ = 1) and

Pr(C | P, θ = 2) = Pr(C | P , θ = 2)

with α > 1. Denote by r = Pr(P ) and q = Pr(C). Letting q1 = Pr(C | P, θ =
1) and q1 = Pr(C | P , θ = 1), we have rq1 + (1− r)q1 = q, implying

q1 =
q

1 + (α− 1)r
< q < q1 =

αq

1 + (α− 1)r
.

This gives us the direction and strength of evidence (θ, l) for each signal
x ∈ {PC,PC, PC, PC}:

PC PC PC PC

θ 2 2 1 1
l q

q1

1−q
1−q1

1−q1
1−q

q1
q

When P and C are both rare events (i.e., q and r small), q1 and q1 are small
as well, so 1−q

1−q1 and
1−q1
1−q are close to 1. In addition, q

q1
= 1 + (α − 1)r

remains close to 1 while q1/q = α
1+(α−1)r is comparable to α. It follows that

the strength of PC is significantly higher than that of all other signals, and it
favors theory θ = 1. Of course, a proper weighting of all evidence along with
the Bayesian aggregation rule should eventually lead individuals to avoid
erroneous beliefs. However, under simple processing and if weak evidence is
ignored, the mental system inevitably points towards high belief states (for
which individuals are inclined to think that influence exists (θ = 1).

5.3 Framing and pooling

For a Bayesian, the frequency with which updating occurs is irrelevant. Nor
does it matter whether signals are pooled or not: to the extent that the
distributions f(| θ) over signals are statistically distinguishable, a Bayesian
learns the correct state. Which alternative θ′ is the true state θ pitted
against does not matter either. So long as θ is the true state, a Bayesian

42We denote by P the absence of a premise and C the absence of the consequence.
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will learn it. Under our simple belief-formation assumption, the frequency
of updating, how signals are pooled and how the problem is framed may all
affect long-run beliefs.

Batch processing. Assume that instead of processing signals x1, .., xn, ...
sequentially (and updating the mental state after each one), signals are
processed by batches of J signals, say X1 = (x1, .., xJ), X2 = (xJ+1, .., x2J)
etc.... For any given problem, if J is suffi ciently large, then by the law
of large number, most batches generated under θ are strong evidence in
favor of θ, hence the problem becomes regular even if it was not regular
under frequent processing. Dealing with batches of signals may of course be
cognitively more demanding, but to the extent that the agent categorizes
batches correctly (i.e., θ̃ = θ) or with some errors but without introducing
systematic biases, biased beliefs can be avoided. Conversely, this illustrates
that frequent updating may contribute to biased beliefs.

Pooling signals. Another source of bias may come from the way signals
are pooled. In our lunar effect example, the no-tension event X = 0 pools
all events where the number of deliveries n is below or equal to 12. If these
events were not pooled, and if a low n were processed on a full moon, then
events (n, 1) with low n could be processed, and this would be reasonably
strong evidence if favor of the no-lunar effect hypothesis. So the way signals
are pooled affects their strength, and, under our simple belief-formation
rules, this affects long-run beliefs.

In the case of deliveries, we chose to pool all realizations n ≤ 12 into
X = 0. One justification would be that observing low n is diffi cult, as there
are always programmed deliveries that makes the number of unprogrammed
ones diffi cult to observe. But there may be other reasons. People tend to
be looking for explanations for unlikely events that they observe, and the
act of looking for explanations may be event dependent may affect which
signals are actually recorded and/or processed.

For example, imagine that we do not even wonder whether there is a full
moon (or an absence of full moon) when there is no tension (as we do not
see a priori see the full moon as a plausible cause for lack of tension). This
means that signals (X,Y ) = (0, 1) and (0, 0) are pooled into X = 0. For a
Bayesian that understands this selection process, this is not an issue, as X
remains (weakly) informative, and in the long run, she would correctly assess
that a lunar effect does not exist if there is none. For our less sophisticated
agent, one can argue that signal X = 0 has only weak informative value,
hence likely falls under the radar.43

43An alternative interpretation is that all events that seem irrelevant are pooled with
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More generally, prior views may structure the signals that agents actually
process, and differences in prior views thus shape the relative strength of
evidence in favor of each alternative, hence eventually the persistence of
erroneous beliefs, as well as the persistence of disagreement among people
holding different prior views despite the presence of common signals.

Framing. To illustrate as simply as possible the effect of framing, assume
that we draw a biased coin with a probability p0 = 0.7 of showing a Tail
(rather than a Head). Imagine that each signal is a draw and that we test
this theory (θ = 0, i.e., p0 = 0.7) against the alternative theory θ = 1 with
p1 = 0.3. Then the event T is evidence for θ = 0, while H is evidence
for θ = 1, and belief states therefore point towards the correct state. In
contrast, if the alternative theory is p1 = 0.8, the agent will more frequently
see evidence for θ = 1 than against it, and could thus erroneously conclude
that θ = 1 is the more likely state.

If a signal is a sequence of draw rather than a signal draw, the issue
persists so long as the sequence remains small enough, with a key role played
by the censoring threshold β in shaping the long-run distribution over belief
states.

6 Discussion and Extensions

6.1 Fewer signals

Our analysis has so far assumed an arbitrarily large number of signals. We
discuss below the consequence of individuals only processing a limited num-
ber of signals.

Formally, call φp,Nθ the distribution over mental states when θ is the
underlying state and N the number of signals processed, and let Φp,N

θ (s) =∑
k≥s φ

p,N
θ (k). Under (σ, ρ̃), the decision maker chooses action 1 if and only

if the belief state is above or equal to kσ,ρ̃ (as before —kσ,ρ̃ is unaffected by
N), but the welfare obtained is now given by WN (kσ,ρ̃, p) where

WN (k, p) ≡ π(1− γ)ΦN,p
1 (k) + (1− π)γ(1− ΦN,p

2 (k))

Welfare thus changes, but since ΦN,p
θ converges "quickly" to Φp

θ, the change
is limited (with enough signals). With 5 states and 10 signals for example,
the maximum difference between cumulatives ΦN,p

θ (s) and Φp
θ(s) is at most

truly irrelevant ones. Again, for a Bayesian, this makes the "irrelevant pool" not so
irrelevant, but it affects the long run belief state of agents that ignore these events.
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equal to 4% uniformly over the transition probabilities p. So this gives an
upperbound of 4% on the possible change in welfare when 10 signals are
processed, compared to the limit case where infinitely many are processed.44

For a fixed strategy σd, the direction of change however depends on p.
For regular problems, more signals help because they tend to increase the
probability to end up in an extreme state (hence opposite extreme states
when the problem is regular). For non-regular problems however, getting
more signals may increase the loss, as we now illustrate by reporting the
ratio (W −WN )/W

For these irregular problems (p11 = 0.8 and p22 < 1/2), processing more
signals tends to generate positive mental states independently of the under-
lying state: the agent’s decision is more subject to the mental system’s bias,
hence the higher losses when γ > 1/2.

Regarding the incentives to censor weak evidence, the locus of problems
for which the marginal effect of ignoring weak evidence is positive remains
similar to the large N case. We report the figure in Appendix.

6.2 More belief/mental states

With more mental states, the mental system is potentially more effi cient in
aggregating information. For example, in the Bayesian benchmark where
(dp, Lp) can be adjusted to both p and the number of mental states, the
set of problems for which the mental system helps mostly expends, with a
significant percentage gain for many problems. We illustrate this below with
a change from 5 to 7 states. We report the welfare gain ratio r = ∆W/W
as a function of p22 and γ, assuming noisy priors. The left figure is the

44When the number of mental states increases, convergence takes proportionally more
signals.
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Bayesian benchmark (with mostly gains). We keep σd fixed to 3 in the right
figure:

The right figure illustrates that increasing the number of states has mixed
consequences. The trade-off is similar to the one discussed in previous sec-
tions: a higher number of states increases welfare for (most) regular prob-
lems, but it diminishes welfare for some irregular problems.

This suggests that even in the absence of costs associated with maintain-
ing a larger number of states, there may be a cost associated with the more
complex mental system. It performs slightly better on many problems, but
significantly worse for some.

Of course, the individual could adjust d downward when he has 7 mental
states rather than 5. By reducing d down to d2/3, the spread in beliefs
remains the same whether he has 5 or 7 states: this would limit the gains in
the region of regular problems, but avoid the adverse consequence of keeping
a large d in case the problem is irregular.

Nevertheless, to the extent that d is an instrument that one finds diffi cult
to adjust, limiting the number of states can be viewed as an alternative
instrument for reducing the risk of falling prey to mental processing biases.

Thus, beyond the classic motive that mental states are scarce cognitive
resources, we suggest here an alternative motive for reducing the number
of mental states: with uncertainty about the data-generating process, too
many states may actually hurt welfare.

6.3 More complex mental systems

The previous discuss echoes the classic observation that complexity comes
with lower fitness. Following up along this line of thought, a natural exten-
sion of the simple mental process would be to allow for mental state changes
that are functions of the perceived strength of signals, for example:
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• If l̃ ∈ (d1/2, d3/2) move one step,

• if l̃ > d3/2, move two steps.

With suffi ciently acute perception of strength, this type of mental process-
ing is likely to be helpful for some problems, as the mental state transitions
are better tuned to the real informativeness of the signals being processed.
There are two caveats however:

(i) Estimating the strength of evidence seems much more demanding
than estimating the direction of evidence

(ii) Even if correct, the issue we raised remains: if the agent is unable to
perceive correctly the resulting ex ante balance between confirming and dis-
confirming evidence, the distinction between regular and irregular problems
will remain relevant.

(ii) With suffi ciently noisy perception of strength, the process gives rise
to random moves of 0, 1 or 2 steps, and this more complex mental processing
may actually deteriorate welfare compared to the simple mental processing
we discussed (See Compte and Postlewaite (2009) for an example along those
lines).

6.4 More states of world

We have considered an agent attempting to discriminate between only two
states. What if the agent attempts to discriminate between more than two
states, say three? This is a challenging task as in principle a sophisticated
agent would want to keep track of all relative likelihoods, and any signal
could in principle modify all these relative likelihoods.45 It is also a challeng-
ing modelling task to come up with an intuitive and simple belief formation
process. We provide a suggestion below with two purposes in mind: to show
that a one-dimensional belief formation rule remains feasible and would per-
form well under some conditions; to highlight that even if weak information
is not ignored, a bias towards theories that generate strong evidence to likely
to arise.

Regarding the processing of signals, to each signal x we associate a di-
rection and strength of evidence, with θ defined as before and l = f(x |
θ)/maxθ 6=θ f(x | θ). Regarding the mental system, we assume 3K+1 mental
states, with states labelled as 0 or (i, k) with i ∈ {1, 2, 3} and k ∈ {1, ..,K}.
45A Bayesian needs to keep track of the likelihood of each θ against each θ′, which

means keeping track of L12 and L13 for example. For a less sophisticated agent, keeping
track of the relative likehihoods against all alternatives theories might be diffi cult, hence
our suggestion.
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We interpret a mental state s = (i, k) as indicating overall evidence point-
ing towards state θ = i, to a degree k. Accordingly, starting from s = 0,
we assume that when the agent processes a signal in favor of θ = i, his
state moves up one step on the i-ladder if s = 0 or (i, k) with k < K, and
otherwise (i.e., if on a j-ladder with j 6= i) moves down one step (possibly
reverting to s = 0).

Regarding how beliefs are formed, let ρij = Pr(i)/Pr(j) denote the prior
likelihood. We assume that when in state (i, k), the posterior likelihood of
i against j is:

ρijd
k

In other words, the mental state can reinforce a belief in one particular state,
but it cannot modify the relative probabilities of low probability states.

Let again pθθ = Pr(θ | θ). It should be clear that if pkk > 1/2 for all
k, then the mental system, however limited, improves welfare as it creates
a positive correlation between the underlying state θ and the set of mental
states {(θ, k)}k≥1. But it is also easy to come up with problems for which ev-
idence for some theory is always inexistent, independently of the underlying
state.

For example, consider an agent receiving a sequence x = (x1, ..., x5) of
6 draws of 1’s and 0’s possibly autocorrelated. Let ρ = Pr(xm+1 = xm)
and assuming that possible values of ρ are 2/3 (θ = 1), 1/3 (θ = 2) and
0.5 (θ = 3). The following table gathers the pairs (θ, l) for each sequence
received as a function of the number n of reversals (i.e., xm+1 6= xm).

n 0 1 2 3 4 5

θ 1 1 1 2 2 2
l 4.2 2.1 1.05 1.05 2.1 4.2

Pr (x | θ = 3) 0.03 0.16 0.31 0.31 0.16 0.03

With sequences of 6 draws, there is no sequence that provides clear evi-
dence in favor of independence, and the agent is lead to believe either in
positive or negative autocorrelation even when there is no autocorrelation.
With sequences of limited length, there is no sequence that is an obvious
representative of an independent sequence of draws.

As the number of elements in a sequence increases, evidence in favor of
independence surfaces for some draws and become frequent, but even for
sequence of 10 draws, the evidence tends to be weak compared to evidence
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in favor of other states. When x consists of a sequence of 10 draws, we have:

n 0 1 2 3 4 5 6 7 8 9
θ 1 1 1 1 3 3 2 2 2 2
l 13 6.7 3.3 1.7 1.2 1.2 1.7 3.3 6.7 13

Pr (x | θ = 3) 0.002 0.02 0.07 0.16 0.25 0.25 0.16 0.07 0.02 0.002

When θ = 3, evidence in favor of 3 is frequent, but never quite striking,
unlike evidence for other states of the world. Evidence in favor of more
extreme states is more striking.

6.5 Further discussion

6.5.1 Classifocation and representativeness.

We defined θ̃ ∈ {1, 2} as indicating whether a given signal x was perceived as
evidence for θ = 1 or θ = 2. One interpretation is that the agent categorizes
processed signals as being representative of either state 1 or state 2 and that
signals that are not suffi ciently representative of either state (because they
are too poorly informative) are not processed.

So one can think of our agent repeatedly using a representativeness
heuristic to classify signals, and raising β means that the agent is cate-
gorizing signals only when they are suffi ciently representative of a particular
state. By endogenizing β, we are thus endogenizing the categorization made,
and also what is meant by being representative: a signal is representative of
θ if it is suffi ciently informative of theory θ (as opposed to θ′). This classifi-
cation of signals (and thus this notion of representativeness) is not attached
to θ, but to the discrimination problem (θ versus θ′) considered, which is
why framing matters.46

With batch processing in mind (with x being a sequence of signals),
another interpretation is that the agent is using a law of small numbers
to categorize signals (with a smaller number suffi cient when β is smaller).
When many signals are processed, the agent repeatedly this law of small
number, and this improves welfare so long as problems are regular (that is,
so long as evidence is balanced), but it generally deteriorates welfare when
problems are not regular.

46Note that this notion of representativeness differs from Kahneman and Tsversky’s
(1973), who argue that a signal x may be considered as being more representative of θ
than another signal x′ (hence also more "likely") even though f(x|θ) < f(x′|θ).
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6.5.2 Misspecified models.

Let us contrast our work with the literature that explain biases through
agents forming beliefs based on a misspecified (or incomplete) model of the
environment (See Spiegler (2020) for a review). In our work, agents do not
have a mispecified model in the sense that the true state of the world θ may
lie within the set of alternatives compared. Or from a broader perspective,
if one think of all (θ, f) as "extended" states of the world, all these extended
states are considered possible by the agent.

Rather, it is the agent’s assumed inability to adjust belief formation (and
in particular the bias Λ) to each realization of f that creates biased beliefs
for some problems. This issue is thus related to the classic heuristics and
bias debate:

- from a close look, the heuristic that the agents use is not adapted to
the particular data-generating process that they are contronted to: they
behave as if their mental system was not biased, that is, as if they had a
special (and thus mispecified view) of f , one where the ex ante tally between
confirming and disconfirming evidence is balanced (i.e., as if Λp = 1), and
this misspecification is a source of biased beliefs.

- from a broader perspective, and since agents are not observing directly
f nor the consequence of censoring on the data-generating processing, they
are doing the best they can with what they see, within a reasonable family
of belief formation rules, and on average, there is no reason to introduce a
bias Λ 6= 1 in decision rules.

6.5.3 Conclusion.

We have modelled agents whose behavior is governed by two heuristics, one
that governs the classification of signals (through censoring β), and one
that governs caution in decision making (through the discrimination power
d that the agent assigns to the mental system), having in mind that these
two heuristics adjust on average over the various discrimination problems
that the agent faces, without being able to adjust these two instruments to
the specific data-generating process associated with each one of them. The
optimal heuristic can only be good on average, and our analysis highlights
the type of discrimination problems for which biases are generated, as well
as how pooling and framing can be used to distort one’s belief. A more
systematic study of this last phenomenon deserves further research.
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8 Appendix

Proof of Lemma: Relabelling mental states from n = 0 to N = 2K, we
have n = k +K and let f(n, d) ≡ ∂Ψ(n−K,d)

∂d . We have f(n, d) = 1− dn−1
dN+1−1

and so ∂f
∂d has the same sign as g(d) = (N+1−n)dN+1−(N+1)dN+1−n+n.

Since g(1) = 0 and g′(d) = (N + 1)(N + 1− n)dN−n)(dn − 1) > 0 for d > 1,
so g(d) > 0 for all d > 1, so f ′(d) is positive for all d > 11 and n ∈ {1, N}
which concludes the proof.

Proof of E[lnL|θ = 1] > 0 > E[lnL|θ = 2]: We have E[lnL|θ = 1] =
E[L lnL|θ = 2], which is strictly positive because L− > L lnL is a convex
function. Similarly, E[lnL|θ = 2] = −E[ 1

L ln 1/L|θ = 2] < 0.
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