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Consider the following model

y1 = xβ1 + u1 (1)

y∗j = zγj + ηj , j = 1 . . .M

where the disturbance u1 is not parametrically specified and verifies E(u1|x, z) =
0 and V (u1|x, z) = σ2. j is a categorical variable that describes the choice of
an economic agent among M alternatives based on ”utilities” y∗j . The vector
z represents the maximum set of explanatory variables for all alternatives and
the vector x contains all determinants of the variable of interest. We assume
that the model is non-parametrically identified from exclusion of some of the
variables in z from the variables in x. Without loss of generality, the outcome
variable y1 is observed if and only if category 1 is chosen, which happens when:

y∗1 > max
j 6=1

(y∗j ) (2)

Define:

ε1 = max
j 6=1

(y∗j − y∗1) (3)

= max
j 6=1

(zγj + ηj − zγ1 − η1)

Under definition (3), condition (2) is equivalent to:

ε1 < 0

Assume that the (ηj)’s are independent and identically Gumbel distributed
(the so-called IIA hypothesis). Their cumulative and density functions are re-
spectively G(η) = exp(−e−η) and g(η) = exp(−η − e−η). As shown by McFad-
den (1973), this specification leads to the multinomial logit model with:

P (ε1 < 0|z) = exp(zγ1)P
j exp(zγj)
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Based on this expression, consistent maximum likelihood estimates of the (γj)’s
can be easily obtained.
The problem is to estimate the parameter vector β1 while taking into ac-

count that the disturbance term u1 may not be independent of all (ηj)’s. This
would introduce some correlation between the explanatory variables and the
disturbance term in the outcome equation of model (1). Because of this, least
squares estimates of β1 would not be consistent.

1 Lee’s model
Following Lee (1983), call Fε1(.|Γ) the cumulative distribution function of ε1.
The cumulative Jε1(.|Γ), defined by the following transform:

Jε1(.|Γ) = Φ−1(Fε1(.|Γ))

where Φ is the standard normal cumulative, has a standard normal distribu-
tion. Assume that u1 and Jε1(ε1|Γ) are jointly distributed under the following
hypothesis with E(u1|ε1,Γ) = σρ1.Jε1(ε1|Γ)) The expected value of the dis-
turbance term u1, conditional on category 1 being chosen, can now be written
as:

E(u1|ε1 < 0,Γ) = −σρ1
φ(Jε1(0|Γ))
Fε1(0|Γ)

with φ the standard normal density. Under this hypothesis, a consistent esti-
mator of β1 is obtained by running least squares on the following equation:

y1 = x1β1 − σρ1
φ(Jε1(0|Γ))
Fε1(0|Γ) + w1 (4)

Two-step estimation of (4) is thus implemented by first estimating the (γj)
0s

in order to form φ(Jε1(0|bΓ))/Fε1(0|bΓ) and then by including that variable in
equation (4) to estimate consistently β1 and (σρ1) by least squares. σ can then
be recoverred.

2 Dubin and Mc Fadden’s model
Dubin andMc Fadden (1984) use the following linearity assumption: E(u1|η1 . . . ηM ) =
σ
√
6
π

P
j=1...M

rj(ηj −E(ηj)), where rj is a correlation coefficient between u1 and

ηj . With the multinomial logit model:

E(η1 −E(η1)|y∗1 > max
s6=1

(y∗s),Γ) = − ln(P1),

E(ηj −E(ηj)|y∗1 > max
s6=1

(y∗s),Γ) =
Pj ln(Pj)

1− Pj
, ∀j > 1
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Model (1) can thus be estimated by least squares based on:

y1 = x1β1 + σ

√
6

π

X
j=2...M

rj

µ
Pj ln(Pj)

1− Pj

¶
− r1 ln(P1) + w1 (5)

This is dmf(1) option in the program.
dmf(0) option uses the following retriction:

P
j=1...M

rj = 0. The model then

becomes:

y1 = x1β1 + σ

√
6

π

X
j=2...M

rj

µ
Pj ln(Pj)

1− Pj
+ ln(P1)

¶
+ w1 (6)

To implement dmf(2) option, define the following standard normal variables:

η∗j = J(ηj) = Φ
−1(G(ηj)), j = 1 . . .M

For every j, assume that the expected values of u1 and η∗j are linearly related.
This holds in particular under the classical assumption that u1 is normal and
(u1, η

∗
j ) is bivariate normal for any category j. If r∗j is the correlation be-

tween u1 and η∗j , u1 may be expressed as the following linear combination:
E(u1|η1 . . . ηM ) = σ

P
j=1...M

r∗j η
∗
j . In this setup, conditional expectations are

more involved. Note for convenience:

m(Pj) =

Z
J(v − logPj)g(v)dv, ∀j

The following results can be derived:

E(η∗1|y∗1 > max
s6=1

(y∗s),Γ) = m(P1)

E(η∗j |y∗1 > max
s6=1

(y∗s),Γ) = m(Pj)
Pj

Pj − 1 , ∀j > 1

The outcome equation in (1) conditional on choosing j = 1 is now:

y1 = x1β1 + σ

⎡⎣r∗1m(P1) + X
j=2...M

r∗jm(Pj)
Pj

(Pj − 1)

⎤⎦+ w1 (7)

The integralsm(Pj) have no closed form, but they can be computed numerically
after the multinomial logit estimation. This is not a source of computational
complexity, however, as it must be done only once for each observation.

3 Dahl’s model
Following Dahl (2002) we consider a selectivity correction term of the general
form µ(P1, . . . , PM ).
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The estimated equation becomes:

y1 = x1β1 + µ(P1, . . . , PM ) + w1 (8)

The function µ takes the form of a polynomial in P1, . . . , PM with the or-
der provided in the command. With dhl(# all), all P1, . . . , PM are included.
Otherwise, with dhl(#), only a polynomial (of order #) in P1 is used.
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