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a b s t r a c t

We show that, in the random coefficients logit model, standard inference procedures
can suffer from asymptotic size distortions. The problem arises due to boundary issues
and is aggravated by the standard parameterization of the model, in terms of standard
deviations. For example, in case of a single random coefficient, the asymptotic size
of the nominal 95% confidence interval obtained by inverting the two-sided t-test for
the standard deviation equals 83.65%. In seeming contradiction, we also show that
standard error estimates for the estimator of the standard deviation can be unreasonably
large. This problem is alleviated if the model is reparameterized in terms of variances.
Furthermore, a numerical evaluation of a conjectured lower bound suggests that the
asymptotic size of the nominal 95% confidence interval obtained by inverting the two-
sided t-test for variances (means) is within 0.5 percentage points of the nominal level as
long as there are no more than five (four) random coefficients and as long as an optimal
weighting matrix is employed.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The random coefficients logit model (Berry et al., 1995), or simply BLP model, is widely used in applied work, most
prominently in the industrial organization and marketing literatures. The random coefficients are typically assumed to be
independently normally distributed such that the model parameters are given by a K1-dimensional vector of means, µ,
and a K2-dimensional vector of standard deviations, σ , with K2 ≤ K1. The estimation procedure proposed by Berry et al.
(1995) minimizes a Generalized Method of Moments (GMM) objective function with respect to θ = (µ′, σ ′)′ and inference
relies on an asymptotic normality result for the thus obtained estimator. The fact that estimates for σk2 (k2 ∈ {1, . . . , K2})
are often found to be small (see e.g., Nevo, 2001; Goeree, 2008), which is indicative of the true parameter being near
or at the boundary of the parameter space as σk2 cannot take on negative values, is generally ignored and statements
about whether σk2 or µk1 (k1 ∈ {1, . . . , K1}) are significantly different from zero are typically based on the (symmetric)
two-sided t-test.1

In this paper, we show that this standard inference procedure can suffer from asymptotic size distortions. For example,
the asymptotic size of the nominal 95% confidence interval (CI) obtained by inverting the two-sided t-test for σk2 is shown

✩ A previous version of this paper was circulated under the title ‘‘A Simple Solution to Invalid Inference in the Random Coefficients Logit Model.’’
I thank the associate editor and two referees for helpful comments and suggestions that have considerably improved the paper. I am grateful to
Frank Kleibergen, Adam McCloskey, Blaise Melly, and Eric Renault for helpful discussions and suggestions. I also thank Andrew Elzinga, Joachim
Freyberger, Bruno Gasperini, Daniel Pollmann, and seminar participants at Brown University for valuable feedback.

E-mail address: philipp.ketz@psemail.eu.
1 See for example Petrin (2002) and Goeree (2008); other papers, such as Berry et al. (1995) and Nevo (2001), make statements about the

significance of a parameter ‘‘at conventional significance level(s)’’ without specifying what test they rely on.
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to equal 83.65% when K2 = 1. The problem arises due to boundary effects on the asymptotic distribution of the underlying
estimator that are amplified because the Jacobian of the sample moments and, thus, of the population moments is of
reduced rank at the boundary of the parameter space, i.e., at σk2 = 0. In fact, the corresponding column of the Jacobian is
identically equal to a vector of zeros at the boundary of the parameter space. This also implies that the typically employed
estimator of – what is incorrectly referred to as – the standard error of the estimator of σk2 takes on unreasonably large
values when the latter is (approximately) equal to zero.2 ,3 We show that the problem of a reduced rank Jacobian can be
alleviated by considering a reparameterization of the model in terms of variances, σ 2, in the sense that all columns of the
Jacobian of the sample moments with respect to, say, θ∗

= (µ′, σ 2′)′ are non-trivial functions of the data (for any θ∗) and
will therefore, under appropriate conditions on the data generating process, be of full rank with probability approaching
1. Put simply, the reparameterization in terms of σ 2 alleviates the problem of unreasonably large standard error estimates
or, hereinafter, standard errors.

However, it a priori does not ensure asymptotic size control of the resulting CIs, as the asymptotic distribution of
the estimator of θ∗ is still subject to boundary effects when the true parameter vector is near or at the boundary. From
the results in Andrews and Guggenberger (2010a), it can be deduced that the nominal 95% CI obtained by inverting the
two-sided t-test for σ 2

k2
does control asymptotic size when K2 = 1. Similarly, the results in Andrews and Guggenberger

(2010b) imply that the nominal 95% CI obtained by inverting the two-sided t-test for µk1 controls asymptotic size when
K2 = 1, as long as an optimal weighting matrix is employed. The results in Ketz (2018a), however, imply that the latter
result may not hold when K2 = 10. To the best of our knowledge, no other results for K2 > 1 are available in the literature
to date. Here, we show that the results in Andrews and Guggenberger (2010b) extend to the nominal 95% CI obtained
by inverting the two-sided t-test for σ 2

k2
when K2 = 2. In order to shed light on the asymptotic size of the nominal

95% CIs obtained by inverting the two-sided t-test for σk2 , σ
2
k2
, and µk1 for other values of K2, we rely on lower bounds

that we, based on a partially corroborated conjecture, are able to numerically evaluate and that are also of independent
interest, as they apply, for example, in other random coefficients models. The lower bounds suggest that the asymptotic
size distortion of the nominal 95% CI obtained by inverting the two-sided t-test for σk2 increases with K2. Using empirical
estimation results from Reynaert and Verboven (2014), we illustrate that asymptotic size distortions are, indeed, larger for
K2 > 1. Furthermore, the lower bounds suggest that, as long as an optimal weighting matrix is employed, the asymptotic
size of the nominal 95% CI obtained by inverting the two-sided t-test for σ 2

k2
(µk1 ) is reasonably close to the nominal level

if K2 ≤ 5 (K2 ≤ 4), with the asymptotic size distortion being less than 0.5 percentage points. For the construction of CIs
that control asymptotic size regardless of the choice of the weighting matrix and regardless of the dimension of σ 2, K2,
one solution is to employ the quasi unconstrained estimator proposed in Ketz (2018a); see Section 5 for details.

The above results rely on a characterization result of asymptotic size (AsySz). The recent literature has highlighted
the importance of drifting sequences of true parameters for characterizing AsySz of tests and CIs, or, more generally,
confidence sets when the asymptotic distribution of the underlying test statistic is discontinuous in a parameter (see e.g.,
Andrews and Guggenberger, 2010b; Andrews and Cheng, 2012). In the context of the BLP model, the discontinuity arises
at the boundary of the parameter space. We use the results in Andrews (2002) to derive the asymptotic distribution of the
estimator of the transformed parameter vector, θ∗, under drifting sequences of true parameters that may drift towards
the boundary. Since the results in Andrews (2002) require the Jacobian of the population moments to be of full rank, we
cannot use them directly to obtain the asymptotic distribution of the estimator of the original parameter vector, θ . In
order to characterize AsySz of the CI for σk2 , we, therefore, express its coverage probability as a function of the estimator
of θ∗. Then, the characterization of AsySz for the different CIs is obtained by applying the results in Andrews et al. (2011)
together with the aforementioned asymptotic distribution result for the estimator of θ∗.

A reduced rank Jacobian is a ‘‘first order condition for lack of identification’’ (Sargan, 1983), i.e., it is necessary but not
sufficient for lack of identification. The BLP model, when parameterized with respect to standard deviations, constitutes
an example of a model where a reduced rank Jacobian does not imply lack of identification.4 A closely related example is
given by the random coefficients regression model (see e.g., Andrews, 1999). In the context of this model, Cox and Hinkley
(1974) (page 303) show that the score of the likelihood function with respect to the standard deviation of the random
coefficient is identically zero at the boundary of the parameter space resulting in a reduced rank Hessian, which is akin
to the problem of a reduced rank Jacobian encountered here. The authors also note that a reparameterization in terms
of variances solves the problem. However, they do not analyze the consequences of using the ‘‘wrong’’ parameterization
for inference. Rotnitzky et al. (2000) provide a general theory for the asymptotic distribution of the Maximum Likelihood
estimator and the Likelihood Ratio test for a wide class of Maximum Likelihood models which are identified but have a
Hessian matrix whose rank is one below full rank. However, they do not analyze the asymptotic behavior of the commonly

2 The term ‘‘standard error’’ is incorrect because the asymptotic distribution of the corresponding estimator is not normal when the true parameter
vector is near or at the boundary.
3 To reconcile the possibility of unreasonably large standard error estimates with the lack of asymptotic size control (at the 5% significance

level), note that they arise in different parts of the sample space. To see this, note that the two-sided t-test for testing, for example, H0 : σk2 = 0
(asymptotically) overrejects because the 0.95-quantile of the asymptotic null distribution of the underlying statistic, given by max{0, 2Z} where
Z ∼ N(0, 1) if K2 = 1—cf. equation (11), exceeds the corresponding critical value. Put differently, (over-) rejection occurs when the estimator of σk2
takes on large positive values.
4 There are numerous examples of models in the literature where a reduced rank Jacobian implies lack of identification. See e.g., Staiger and

Stock (1997) and Liu and Shao (2003) for early references.
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used t-test and do not discuss the problem of unreasonably large standard errors. In the context of GMM, Dovonon
and Renault (2013) analyze the nonstandard asymptotic distribution of the J-statistic, used for testing overidentifying
restrictions, when the model is locally identified but the Jacobian is of reduced rank. Recently, Lee and Liao (2018) have
shown how to recover standard asymptotic distribution results for the J-statistic (and the underlying estimator) in a
certain class of models, including the one considered in Dovonon and Renault (2013), where the ‘‘local identification
failure’’ is of known form but a reparameterization as performed here is not available; see Ketz (2017) for a related
discussion.

This paper is not the first to consider asymptotic theory for the BLP model. Berry et al. (2004) and Freyberger (2015)
derive the asymptotic distribution of the estimator of the original parameter vector, θ , under a large number of products
and a large number of markets, respectively.5 Their results differ from the standard asymptotic normality result for GMM
estimators through additional bias and variance terms that are due to sampling and simulation error. Our results are
complementary, as they allow for the true parameter vector to be near or at the boundary of the parameter space. While
we follow Freyberger (2015) in deriving asymptotic distribution theory under a large number of markets, the problem we
address is inherent to the parameterization of the model and, therefore, also relevant under a large number of products.
Therefore, we recommend that the reparameterization in terms of variances is also applied when asymptotic theory is
based on a large number of products.

In addition, it turns out to be advantageous to estimate the model with respect to the transformed parameter vector:
The algorithm is less prone to convergence failures and on average requires less iterations to achieve convergence. This
finding contributes to the recent literature that concerns the numerical performance of the estimator for the BLP model.
For example, Knittel and Metaxoglou (2014) illustrate the sensitivity of the estimation procedure with respect to different
starting values and highlight the importance of the choice of the optimization algorithm. Dubé et al. (2012a) show that
the practice of loosening the tolerance level of the fixed point computation required in the original formulation of the
estimation problem can lead to convergence problems such as non-convergence or convergence to local minima. They
suggest an alternative formulation of the optimization problem, referred to as Mathematical Program with Equilibrium
Constraints (MPEC), which does not require the fixed point computation and which they find to display speed advantages
over the original so-called Nested Fixed Point (NFP) algorithm implemented with a tight tolerance level. Another issue was
raised by Skrainka and Judd (2011), who find that the accuracy with which predicted market shares are computed greatly
impacts the performance of the estimator. They find that Monte Carlo integration as commonly employed in practice
performs poorly, whereas sparse grid integration is found to perform well.

In order to establish the relevance of this paper’s findings for empirical work, we apply the suggested reparameteriza-
tion to a series of published articles that use the BLP model, including Berry et al. (1995), Berry et al. (1999) and Reynaert
and Verboven (2014). Relying on a powerful test suggested by Feldman and Cousins (1998) that can be implemented
using the quasi unconstrained estimator proposed in Ketz (2018a), we find less evidence of heterogeneity in consumer
preferences than suggested by the two-sided t-test for σk2 , illustrating that size distortions can be empirically relevant. The
problem of unreasonably large standard errors is, for example, encountered in Neilson (2013). Upon reparameterization,
the standard error is much smaller and, consequently, the conclusion that there is little heterogeneity in consumer
preferences with respect to the corresponding product characteristic has more support from the data than initially
thought.

The outline of this paper is as follows. In Section 2, we derive the asymptotic distribution of GMM estimators under
drifting sequences of true parameters that may drift towards the boundary. Section 3 introduces the BLP model and shows
that the Jacobian of the sample moments is of reduced rank at the boundary of the parameter space. In Section 4, we derive
the results concerning asymptotic size. Section 5 introduces the estimator proposed in Ketz (2018a) as well as the test
suggested by Feldman and Cousins (1998). Section 6 provides a small Monte Carlo study showing that our asymptotic
theory provides good finite-sample approximations and documenting the computational advantage of estimating the
model with respect to the transformed parameter vector. The results illustrating the relevance of our findings for empirical
work are given in Section 7.

Throughout this paper, let ‘‘≡’’ denote ‘‘equals by definition’’. Let R ≡ (−∞, ∞), R∞ ≡ R ∪ {±∞}, R+ ≡ [0, ∞), and
R+,∞ ≡ [0, ∞) ∪ {∞}. For any a ∈ R∞, let ak = (a, . . . , a)′ denote the k-dimensional vector whose entries are all equal
to a. Also, let (a, b) denote (a′, b′)′ for any two column vectors, a and b, and let ai denote the ith entry of a. For any set
A, let Ak

≡ A × · · · × A with k ∈ N copies. For any matrix A, we let Ai,j denote the entry with row index i and column
index j. For any square matrix, we also let Ai denote Ai,i and, similarly, let Ai′:i′′ (Ai;i′:i′′ ) denote the submatrix of A with all
rows and columns removed whose indices are not in i′ : i′′ ≡ {i′, i′ + 1, . . . , i′′ − 1, i′′} (i; i′ : i′′ ≡ {i} ∪ i′ : i′′). In addition,
we let λmin(A) denote the smallest eigenvalue of A. Lastly,

p
→ and

d
→ denote convergence in probability and distribution,

respectively, while all limits are taken as ‘‘T → ∞’’, unless otherwise noted.

5 Recently, Armstrong (2016) has shown that commonly employed instruments poorly identify the mean parameter of the random coefficient, µ,
when the number of products is large.
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2. Asymptotic distribution theory

In this section, we reproduce the results in Andrews (2002) concerning the asymptotic distribution of Generalized
Methods of Moments (GMM) estimators when the true parameter vector is at the boundary of the parameter space.
The results are presented under slightly modified assumptions allowing for drifting sequences of true parameters as
in Andrews and Cheng (2014a). The restrictions on the parameter space are motivated by the random coefficients logit
model, which we introduce in Section 3. In what follows, we borrow notation and terminology from Andrews and Cheng
(2012, 2014a).

The GMM objective function depends on the K -dimensional parameter vector θ . It is given by a quadratic form of the
L-dimensional vector of sample moments GT (θ ), i.e.,

QT (θ ) = GT (θ )′WT (θ )GT (θ )/2,

where WT (θ ) denotes a L× L symmetric weighting matrix. The dependence of QT (θ ) on the data {Wt : t ≤ T }, which may
be i.i.d., independent and nonidentically distributed, or temporally dependent, is suppressed for notational ease. Define
an estimator, θ̂T , as any random variable that satisfies θ̂T ∈ Θ and

QT (θ̂T ) = inf
θ∈Θ

QT (θ ) + op(1/T ), (1)

where

Θ = [−c, c]K1 × [0, c]K2

for some 0 < c < ∞ with K1 + K2 = K and K1, K2 ≥ 0, denotes the optimization parameter space. Here, the use of a
common end point c is merely for notational ease. Similarly, the normalization to 0 is without loss of generality. The true
parameter space, Θ̈ , is a strict subset of Θ . In particular, it takes the same form as Θ , but with 0 < c̈ < c. This ensures
that boundary effects only occur at 0. Let θ = (θ1, θ2) such that the elements in θ1 are ‘‘unrestricted’’ and the elements
in θ2 are ‘‘restricted below by 0’’.

In the context of GMM, the distribution of the data is in general not fully specified by θ , but depends on an additional,
commonly infinite-dimensional, parameter, say φ. The parameter γ = (θ, φ) is assumed to fully specify the distribution
of the data, say Fγ . In what follows, Pγ and Eγ denote the probability and expectation under Fγ , respectively. The true
parameter space for γ is assumed to be compact and of the following form

Γ = {γ = (θ, φ) : θ ∈ Θ̈, φ ∈ Φ̈(θ )},

where Φ̈(θ ) ⊂ Φ̈ ∀θ ∈ Θ̈ for some compact metric space Φ̈ with a metric that induces weak convergence of (Wt ,Wt+t ′ )
for all t, t ′ ≥ 1.6

In this paper, we are interested in obtaining the asymptotic size of a CI or, more generally, a confidence set (CS) that
is obtained by test inversion. Let TT (v) denote a test statistic for testing H0 : r(θ ) = v. The nominal 1 − α CS based on
TT (v) is given by

CST = {v : TT (v) ≤ cv1−α(v)},

where cv1−α(v) denotes the critical value that may depend on the null hypothesis. The coverage probability of CST for
r(θ ) is

Pγ (r(θ ) ∈ CST ) = Pγ (TT (r(θ )) ≤ cv1−α(r(θ ))).

The asymptotic size, which approximates finite-sample size, is defined as

AsySz ≡ lim inf
T→∞

inf
γ∈Γ

Pγ (TT (r(θ )) ≤ cv1−α(r(θ ))).

Asymptotic size distortion is defined as max{1−α−AsySz, 0}. We say that a CS ‘‘controls’’ asymptotic size if its asymptotic
size distortion equals zero, while a CS is said to ‘‘suffer from’’ asymptotic size distortion if the latter is positive. As
mentioned above, drifting sequences of true parameters, γT = (θT , φT ), are instrumental in characterizing AsySz. Formally,
we consider the following set of drifting sequences of true parameters

Γ (γ0) = {{γT ∈ Γ : T ≥ 1} : γT → γ0 ∈ Γ },

where γ0 = (θ0, φ0). Of particular interest in this paper is the following subset

Γ (γ0, h) = {{γT } ∈ Γ (γ0) :
√
Tθ2,T → h ∈ RK2

+,∞},

where θT = (θ1,T , θ2,T ). Throughout this paper, we use the terminology ‘‘under {γT } ∈ Γ (γ0)’’ to mean ‘‘when the true
parameters are {γT } ∈ Γ (γ0) for any γ0 ∈ Γ ’’. Similarly, we use the terminology ‘‘under {γT } ∈ Γ (γ0, h)’’ to mean ‘‘when

6 See also Section 2.1 and, in particular, footnote 21 in Andrews and Cheng (2012).
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the true parameters are {γT } ∈ Γ (γ0, h) for any γ0 ∈ Γ and any h ∈ RK2
+,∞’’. Under {γT } ∈ Γ (γ0, h) except h = ∞K2 we

say that the true parameter vector is near or at the boundary.
Next, we state the assumptions underlying the asymptotic distribution results in this paper. They are slightly modified

versions of Assumptions GMM1, GMM2, and GMM5 in Andrews and Cheng (2014a), as they do not allow for lack of
identification in part of the parameter space, but allow θ0 to be at the boundary in the spirit of Andrews (2002).

The first assumption ensures consistency of θ̂T under {γT } ∈ Γ (γ0).

Assumption 1.

(i) Under {γT } ∈ Γ (γ0), supθ∈Θ ∥GT (θ ) − G(θ; γ0)∥
p

→ 0 and supθ∈Θ ∥WT (θ ) − W(θ; γ0)∥
p

→ 0 for some nonrandom
functions G(θ; γ0) and W(θ; γ0).

(ii) G(θ; γ0) = 0 if and only if θ = θ0, ∀γ0 ∈ Γ .
(iii) Each element of G(θ; γ0) has continuous left/right (l/r) partial derivatives on Θ , ∀γ0 ∈ Γ , with the L × K matrix of

l/r partial derivatives denoted Gθ (θ; γ0).7

(iv) W(θ; γ0) is continuous in θ on Θ and nonsingular for all θ ∈ Θ , ∀γ0 ∈ Γ .

The next assumption ensures that the objective function is asymptotically well approximated by a quadratic function,
see below. Here and in what follows, ‘‘for all ϵT → 0’’ stands for ‘‘for all sequences of positive scalar constants {ϵT : T ≥ 1}
for which ϵT → 0’’.

Assumption 2. Under {γT } ∈ Γ (γ0),

sup
θ∈Θ:∥θ−θT ∥≤ϵT

√
T∥GT (θ ) − G(θ; γ0) − GT (θT ) + G(θT ; γ0)∥

1 + ∥
√
T (θ − θT )∥

= op(1)

for all ϵT → 0.

The following assumption is sufficient for Assumption 2 and can often be verified using a ULLN, see e.g., Andrews
(1992).

Assumption 2∗.

(i) Each element of GT (θ ) has continuous l/r partial derivatives on Θ ∀T ≥ 1, with the L × K matrix of l/r partial
derivatives denoted ∂

∂θ ′ GT (θ ).
(ii) Under {γT } ∈ Γ (γ0),

sup
θ∈Θ:∥θ−θT ∥≤ϵT

 ∂

∂θ ′
GT (θ ) − Gθ (θ; γ0)

 = op(1)

for all ϵT → 0.

The last assumption concerns the Jacobian of the population moments and the asymptotic behavior of the scaled
sample moments.

Assumption 3.

(i) Gθ ≡ Gθ (θ0; γ0) has full column rank, ∀γ0 ∈ Γ .
(ii) Under {γT } ∈ Γ (γ0),

√
TGT (θT )

d
→ Y ∼ N(0, Ω(γ0)) for some symmetric and positive-definite matrix Ω(γ0).

Next, we explain the intuition behind the results in Andrews (2002). Consider the following quadratic expansion of
the GMM objective function under {γT } ∈ Γ (γ0)

QT (θ ) = QT (θT ) + GT (θT )′WGθ (θ − θT ) +
1
2
(θ − θT )′G′

θWGθ (θ − θT ) + RT (θ ), (2)

where W ≡ W(θ0; γ0). Let

ZT = −J−1G′

θW
√
TGT (θT ),

where J ≡ J (γ0) ≡ G′

θWGθ . Then, Eq. (2) can be rewritten as

QT (θ ) = QT (θT ) −
1
2T

Z ′

TJZT +
1
2T

qT (
√
T (θ − θT )) + RT (θ ),

7 A function is said to have left/right partial derivatives if it has partial derivatives at each interior point, partial derivatives at each boundary
point with respect to coordinates that can be perturbed to the left and the right, and left (right) partial derivatives at each boundary point with
respect to coordinates that can be perturbed only to the left (right), see Section 3.3 in Andrews (1999).
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where

qT (λ) = (λ − ZT )′J (λ − ZT ).

Given the above assumptions, the remainder, RT (θ ), is small enough such that the centered and scaled minimizer of QT (θ ),√
T (θ̂T − θT ), has the same asymptotic distribution as the minimizer of qT (λ).
The two determinants of the asymptotic distribution of the minimizer of qT (λ) are the asymptotic behavior of ZT and

limT→∞

√
T (Θ − θT ), the limit of the centered and scaled parameter space. Given the above assumptions, we have that

under {γT } ∈ Γ (γ0)

ZT
d

→ Z ≡ Z(γ0) ≡ N(0, V (γ0)), where V (γ0) ≡ J−1G′

θWΩ(γ0)WGθJ−1.

As formally stated in Proposition 1 the asymptotic distribution of
√
T (θ̂T − θT ), under {γT } ∈ Γ (γ0, h), is then given by

the distribution of

λ̂h = argmin
λ∈Λh

q(λ),

where

q(λ) = (λ − Z)′J (λ − Z) and Λh ≡ RK1
∞

× [−h1, ∞] × · · · × [−hK2 , ∞].

Proposition 1. Under {γT } ∈ Γ (γ0, h) and Assumptions 1–3,
√
T (θ̂T − θT )

d
→ λ̂h.

Proposition 1 follows from Theorem 1 in Andrews (2002), which in turn is based on Theorem 3(b) in Andrews (1999),
under suitable adjustments to accommodate drifting sequences of true parameters along the lines of Andrews and Cheng
(2012, 2014a); see Appendix C for details.

Remark 1. When h = ∞K2 , we have Λh = RK
∞

and λ̂h = Z . Note that h = ∞K2 allows for sequences of true parameters
that drift towards the boundary, i.e., θ2,T ,k → 0 for some k ∈ {1, . . . , K2}, where θ2,T = (θ2,T ,1, . . . , θ2,T ,K2 )

′, but at a rate
slow enough such that the boundary does not impact the asymptotic distribution of the estimator. Put differently, if the
true parameter vector is ‘‘far enough’’ from the boundary, then we obtain the standard asymptotic normality result for
GMM estimators. If, however, h ̸= ∞K2 , then the asymptotic distribution of

√
T (θ̂T − θT ) is subject to boundary effects

and given by the projection of Z onto Λh with respect to the norm ∥λ∥ = (λ′Jλ)1/2. The results in Section 6 of Andrews
(1999) concerning the distribution of subvectors of

√
T (θ̂T − θT ) apply here as well with slight modifications, as Λh is

a cone with (possibly) non-zero vertex. For example, if K1 = K2 = 1, there exists a simple closed form expression:
√
T (θ̂1,T − θ1,T )

d
→ Z1 +

J1,2(γ0)
J1(γ0)

min{0,Z2 + h} and
√
T (θ̂2,T − θ2,T )

d
→ max{−h,Z2}. When an optimal weighting matrix

is employed, i.e., W = Ω(γ0)−1 such that J (γ0) = V (γ0)−1, the asymptotic distribution of the GMM estimator simplifies.
In particular, for K1 = K2 = 1, the asymptotic distribution of

√
T (θ̂1,T − θ1,T ) simplifies to Z1 −

V1,2(γ0)
V2(γ0)

min{0,Z2 + h}.

3. The random coefficients logit model

In this section, we introduce the random coefficients logit or BLP model (Berry et al., 1995). We assume that there
exist T markets. In each market t (t ∈ {1, . . . , T }), there are N individuals, each of whom (i ∈ {1, . . . ,N}) chooses one
out of J products, which maximizes utility. The utility of product j (j ∈ {1, . . . , J}) in market t for individual i is assumed
to be given by

Uijt = x′

jtβi + ξjt + εijt . (3)

Here, xjt denotes a K1-dimensional vector of observed product characteristics, which in many applications includes the
price of the product. ξjt denotes an unobserved product characteristic, which may capture for example brand image. It is
assumed known to the consumer but unknown to the econometrician and takes on the role of the error term. εijt denotes
an individual specific preference term, which is also assumed to be unobserved by the econometrician. βi denotes a vector
of random coefficients, which allows individuals to have heterogeneous preferences with respect to the different product
characteristics.

It is commonly assumed that βi is independent across i and that βi ∼ N(µ, Σ), where µ is a K1-dimensional vector
and Σ is a positive-semidefinite K1 × K1 matrix. Typically, the model is further simplified by assuming that the random
coefficients are mutually independent, i.e., Σ is assumed to be a diagonal matrix. Moreover, it is often assumed that some
product characteristics (such as the constant) do not interact with a random coefficient. Put differently, some elements of
the main diagonal of Σ may a priori be known to equal zero. Let σ = (σ1, . . . , σK2 )

′ denote the vector of possibly nonzero
standard deviations, i.e., the square roots of the possibly nonzero elements of the main diagonal of Σ , which we, without
loss of generality, take to be the first K2 ≤ K1 elements. Then, the utility in (3) can be written as

Uijt = δjt +

K2∑
k=1

xjt,kσkui,k + εijt ,
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where δjt = x′

jtµ + ξjt and ui ∼ u ∼ N(0, IK2 ). If, further, we assume that εijt is extreme value type I distributed, then the
model implied market share for product j in market t is given by

sj(σ , δt , xt ) =

∫
ex

′
jtµ+ξjt+

∑K2
k=1 xjt,kσkuk

1 +
∑J

l=1 e
x′ltµ+ξlt+

∑K2
k=1 xlt,kσkuk

dFu(u), (4)

where δt = (δ1t , . . . , δJt )′, xt = (x1t , . . . , xJt )′, and where Fu(u) denotes the cdf of u. Let

s(σ , δt , xt ) = (s1(σ , δt , xt ), . . . , sJ (σ , δt , xt ))′

denote the vector of model implied market shares. Berry (1994) shows that for any vector of observed market shares, st ,
any given σ , and any xt , there exists a unique vector δ(σ , st , xt ) such that

s(σ , δ(σ , st , xt ), xt ) = st .

Furthermore, there exists an inverse function, s−1(σ , ·, xt ), such that δ(σ , st , xt ) is given by s−1(σ , st , xt ). Let

ξ (θ, st , xt ) = δ(σ , st , xt ) − x′

tµ,

where θ = (µ, σ ). In empirical applications, the existence of a J × L matrix of instruments with L ≥ K , zt , is assumed such
that Eγ z ′

tξ (θ, st , xt ) = 0 and the sample moments entering the GMM objective function are given by8

GT (θ ) =
1
T

T∑
t=1

z ′

tξ (θ, st , xt ). (5)

Inference on subvectors of θ is typically performed using Wald-type tests, such as the two-sided t-test, and is based on
an asymptotic normality result. As evident from the results in Section 2, assuming asymptotic normality will provide a
poor approximation to the finite-sample distribution of the estimator when the true parameter vector is near or at the
boundary. As it turns out, the boundary effects are aggravated under the standard parameterization of the BLP model
that uses θ = (µ, σ ). The reason is that the model suffers from lack of first-order identification (see e.g., Sargan, 1983;
Dovonon and Renault, 2013) at the boundary of the parameter space, i.e., Assumption 3(i), which is sufficient but not
necessary for local identification, is violated. In fact, as shown in Appendix A, for any k ∈ {1, . . . , K2}

∂ξ (θ, st , xt )
∂σk

⏐⏐⏐⏐
σk=0

= 0J ,

which implies that

∂GT (θ )
∂σk

⏐⏐⏐⏐
σk=0

= 0L.

Put differently, the Jacobian of the sample moments and, consequently, the Jacobian of the population moments are
of reduced rank at the boundary of the parameter space, regardless of the choice of instruments. This peculiarity can
be avoided when we consider a reparameterization of the model in terms of variances, say θ∗

= (µ, σ 2), where
σ 2

= (σ 2
1 , . . . , σ 2

K2
)′ = ((σ1)2, . . . , (σK2 )

2)′.9 With a slight abuse of notation, let

sj(σ 2, δt , xt ) =

∫
eδjt+

∑K2
k=1 xjt,k

√
σ2
k uk

1 +
∑J

l=1 e
δlt+

∑K2
k=1 xlt,k

√
σ2
k uk

dFu(u) (6)

and define δ(σ 2, st , xt ), ξ (θ∗, st , xt ), GT (θ∗) and QT (θ∗) accordingly, with the same abuse of notation. In Appendix A, it is
shown that for σ 2

k > 0 (k ∈ {1, . . . , K2})

∂ξ (θ∗, st , xt )
∂σ 2

k
=

1
2σk

∂ξ (θ, st , xt )
∂σk

. (7)

In addition, we have that

lim
σ2
k →0

∂ξ (θ∗, st , xt )
∂σ 2

k
= lim

σ2
k →0

1
2σk

∂ξ (θ, st , xt )
∂σk

= lim
σ2
k →0

1
2

∂2ξ (θ, st , xt )
∂2σk

, (8)

8 Note that the objective function based on (5) can be minimized over [−c, c]K , since (4) is well defined for negative σk (k ∈ {1, . . . , K2}).
However, the resulting estimator, which is obtained by taking the absolute value (element-by-element) of the corresponding σ̂T , is equivalent to the
estimator given in (1) and, therefore, the asymptotic theory derived in this paper also applies to this ‘‘alternative’’ estimator.
9 The fact that the model does not suffer from lack of first-order identification when parameterized with respect to σ 2 , is equivalent to saying

that the model is (or can be) second-order identified at the boundary of the parameter space when parameterized with respect to σ , cf. equation
(8). See Dovonon and Renault (2013) for a formal definition of second-order identification.
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where the second equality follows by the rule of l’Hôpital. As shown in Appendix A, ∂2ξ (θ,st ,xt )
∂2σk

is not identically equal
to 0J when evaluated at σ 2

k = 0, such that it is possible for Assumption 3(i) to be satisfied. However, it is difficult to
formulate low-level sufficient conditions (in terms of the joint distribution of st , xt , and zt ) given the nonlinear nature of
the model.10 But we expect the approximation to the optimal instruments proposed in Berry et al. (1999) and Reynaert
and Verboven (2014), which applies regardless of the parameterization of the model and which exploits the model’s
inherent nonlinearities, to perform well in practice.

In order to be able to apply the results in Section 2 with θ∗ in place of θ , i.e., with γ = (θ∗, φ), we need to define
the corresponding true parameter space, Γ . With a slight abuse of notation, we continue to let Θ̈ and Θ denote the true
and optimization parameter spaces for θ∗, respectively. For ease of exposition, we assume that {ξt , xt , zt}Tt=1 are i.i.d. with
distribution φ ∈ Φ̈ .11 Let Eφ denote the expectation under φ. Then, for any θ∗

∈ Θ̈ the true parameter space for φ is
defined as12

Φ̈(θ∗) = {φ ∈ Φ̈ : Eφz ′

tξt = 0, λmin(Eφz ′

tzt ) ≥ ϵ, λmin(Eφz ′

tξtξ
′

t zt ) ≥ ϵ,

Eγ

4∑
i=1

Mi(st , xt , zt ) ≤ C, Eγ z ′

t
∂ξ (θ̇∗, st , xt )

∂θ∗′
has full column rank ∀θ̇∗

∈ Θ̈} (9)

for some constants ϵ > 0 and C < ∞, where M1(st , xt , zt )–M4(st , xt , zt ) are defined in Appendix D. The verification of
Assumptions 1–3 for the BLP model, with θ∗ in place of θ and Φ̈(θ∗) given in (9), is equally provided in Appendix D. In
accordance with common practice, (9) covers the standard one-step estimator that uses WT ≡ WT (θ∗) =

1
T

∑T
t=1 z

′
tzt as

well as the standard two-step estimator that uses

WT (θ∗) =
1
T

T∑
t=1

z ′

tξ (θ
∗, st , xt )ξ ′(θ∗, st , xt )zt ,

evaluated at a first-step estimator (using e.g., WT =
1
T

∑T
t=1 z

′
tzt ), where, with a slight abuse of notation, zt may denote

different instruments in the first and the second step. Similarly, (9) implies that the standard ‘‘plug-in’’ estimator of V (γ0),
say V̂ , is consistent under {γT } ∈ Γ (γ0); see Appendix B for details.

4. Asymptotic size

In this section, we analyze the consequences of ignoring the possible lack of asymptotic normality of the (centered
and scaled) estimators of θ and θ∗ when relying on standard Wald-type inference procedures. For expositional purposes,
we focus on the scalar case and derive the asymptotic size of the CI obtained by inverting the (symmetric) two-sided
t-test that is prevalent in applied work. Let θ̂∗

T = (µ̂T , σ̂
2
T ) denote the estimator of θ∗ and let θ̂T = (µ̂T , σ̂T ) with

σ̂T =
(
σ̂T ,1, . . . , σ̂T ,K2

)′
=

(√
σ̂ 2
T ,1, . . . ,

√
σ̂ 2
T ,K2

)′

denote the estimator of θ . Without loss of generality, we consider
inference on the first element of each parameter vector, µ1, σ1, and σ 2

1 . From Eq. (7), it follows that the t-statistic for
testing H0 : σ1 = σnull (i.e., r(θ ) = σ1) that is typically used in practice is given by

tσ ,T ≡ tσ ,T (σnull) ≡
√
T

σ̂T ,1 − σnull√
V̂K1+1

2σ̂T ,1

(with tσ ,T (σnull) ≡ 0 if σ̂T ,1 = 0); (10)

see Appendix B for details. Under γT = (θ∗

T , φT ), the coverage probability of the nominal 1 − α CI based on |tσ ,T | is
given by PγT

(
|tσ ,T (σT ,1)| < z1−α/2

)
, i.e., cv1−α(v) = z1−α/2, where z1−α/2 denotes the 1 − α/2 quantile of N(0, 1). Under

{γT } ∈ Γ (γ0, h), its asymptotic coverage probability equals

CPσ (h̃) ≡ 1 − P

⎛⎜⎝λ̂h,K1+1 >

(√
h1 +

√
h1 + 2 · z1−α/2

√
VK1+1(γ0)

)2
4

− h1

⎞⎟⎠− 1(h1 − 2 · z1−α/2
√
VK1+1(γ0) > 0)×

10 Berry et al. (2004) and Freyberger (2015), who also analyze the asymptotic distribution of the GMM estimator in the BLP model, also directly
assume the Jacobian to be of full rank, due to difficulty of formulating low-level sufficient conditions, see their Assumptions B2 and RC9, respectively.
11 The i.i.d. assumption is not innocuous here, as it implies that J , the number of products, does not vary across markets, as for example allowed
for in Freyberger (2015). While the results can easily be extended to allow for independent but not identically distributed data, we refrain from
doing so for ease of exposition.
12 The moment conditions (involving M1(st , xt , zt )–M4(st , xt , zt )) are used to apply the uniform LLN and the CLT given in Andrews and Cheng
(2014b). A sufficient condition is that Eφ∥zt∥2+ϵ

≤ C , ϵ ≤ sjt ≤ 1− ϵ for all t ∈ {1, . . . , T } and j ∈ {0, 1, . . . , J} with s0t = 1−
∑J

j=1 sjt , and that xt is
in a compact set, because, then, ξ (θ∗, st , xt ) is bounded, see Appendix C in Freyberger (2015).
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P

⎛⎜⎝
(√

h1 −

√
h1 − 2 · z1−α/2

√
VK1+1(γ0)

)2
4

− h1 < λ̂h,K1+1 <

(√
h1 +

√
h1 − 2 · z1−α/2

√
VK1+1(γ0)

)2
4

− h1

⎞⎟⎠ ,

(11)

where h̃ = (h, γ0); see Appendix D for details. Equivalently, under {γT } ∈ Γ (γ0, h), the asymptotic coverage probability
of the nominal 1 − α CI based on the absolute value of

tσ2,T ≡ tσ2,T (σ
2
null) ≡

√
T

σ̂ 2
T ,1 − σ 2

null√
V̂K1+1

⎛⎝tµ,T ≡ tµ,T (µnull) ≡
√
T

µ̂T ,1 − µnull√
V̂1

⎞⎠ , (12)

for testing H0 : σ 2
1 = σ 2

null (H0 : µ1 = µnull) with cv1−α(v) = z1−α/2 is given by

CPσ2 (h̃) ≡ P
(⏐⏐⏐λ̂h,K1+1

⏐⏐⏐ < z1−α/2
√
VK1+1(γ0)

)(
CPµ(h̃) ≡ P

(⏐⏐⏐λ̂h,1

⏐⏐⏐ < z1−α/2
√
V1(γ0)

))
. (13)

Comparing equations (10) and (12), we can interpret the practice of relying on a normal approximation for tσ ,T (σT ,1)
under {γT } ∈ Γ (γ0, h) with h1 < ∞, where σT ,1 =

√
σ 2
T ,1, as a non-permissible application of the delta method based

on a non-applicable asymptotic normality result for
√
T (σ̂ 2

T ,1 − σ 2
T ,1). Note that CPσ (h̃) = CPσ2 (h̃) when h1 = ∞, which

amounts to the delta method being applicable when the true value of σ 2
1 is ‘‘far enough’’ from the boundary, despite the

possible lack of asymptotic normality of
√
T (σ̂ 2

T ,1 − σ 2
T ,1) under {γT } ∈ Γ (γ0, h).

Let AsySzσ , AsySzσ2 , and AsySzµ denote the AsySz of the nominal 1−α CIs based on |tσ ,T |, |tσ2,T |, and |tµ,T |, respectively,
and define

H̃ ≡ {h̃ = (h, γ0) ∈ RK2
+,∞ × Γ : γT → γ0 and

√
Tσ 2

T → h for some {γT ∈ Γ : T ≥ 1}}.

Then, we have the following result.

Proposition 2. If the random coefficients logit model satisfies the conditions in (9), then AsySzσ = infh̃∈H̃ CPσ (h̃), AsySzσ2 =

infh̃∈H̃ CPσ2 (h̃), and AsySzµ = infh̃∈H̃ CPµ(h̃).

The proof of Proposition 2 is given in Appendix D and uses Corollary 2.1(b) in Andrews et al. (2011).
From Eqs. (11) and (13) and Propositions 1 and 2 it follows that AsySzσ , AsySzσ2 , and AsySzµ depend on γ0 only through

V (γ0) and J (γ0). Ideally, we would like to obtain ‘‘numbers’’ for AsySzσ , AsySzσ2 , and AsySzµ. However, the set of V (γ0)
and J (γ0) that is admissible over H̃ given the conditions in (9) is difficult to characterize due to the nonlinear nature of
the model, preventing such computations. An exception occurs when K2 = 1, since then13

√
T (σ̂ 2

T − σ 2
T )

d
→ λ̂h,K1+1 = max{−h,ZK1+1} (14)

under {γT } ∈ Γ (γ0, h). Since, in addition, VK1+1(γ0) can be normalized to 1 without loss of generality we have that AsySz1σ
and AsySz1

σ2 only depend on h, i.e., AsySz1σ = infh∈R+,∞ CPσ (h) and AsySz1
σ2 = infh∈R+,∞ CPσ2 (h), where, here and in what

follows, the superscript indicates the dimension of σ 2, K2.
Fig. 1 plots CPσ (h) and CPσ2 (h) as a function of h. Here and in what follows, α is set to 5% and all numerical evaluations

are performed using 10,000 simulations. Fig. 1 together with an extended grid search reveals that CPσ (h) and CPσ2 (h) attain
their infimum at h = 0 and h = ∞, respectively.14 Given equations (11) and (13), an exact calculation is possible, which
gives AsySz1σ = 83.65% and AsySz1

σ2 = 95%. Note that the latter finding can equally be deduced from the results in Andrews
and Guggenberger (2010a).

To shed some light on AsySzK
′
+1

σ , AsySzK
′
+1

σ2 , and AsySzK
′

µ for K ′
≥ 1, we, in what follows, restrict our attention to

efficient GMM estimators, i.e., we impose J (γ0) = V (γ0)−1, and, without loss of generality, restrict the main diagonal of
V (γ0) to a vector of 1s.15 Note that, then, AsySzK

′
+1

σ and AsySzK
′
+1

σ2 (AsySzK
′

µ ) depend on V (γ0) only through VK1+1:K (γ0)
(V1;K1+1:K (γ0)). Let VR denote the set of symmetric and positive-definite (R×R) matrices with 1s on the main diagonal. Then,
we have AsySzK

′
+1

σ ≥ AsySzK
′
+1

σ
≡ inf

(h,V )∈RK ′+1
+,∞ ×VK ′+1 CPσ (h, V ), AsySzK

′
+1

σ2 ≥ AsySzK
′
+1

σ2 ≡ inf
(h,V )∈RK ′+1

+,∞ ×VK ′+1 CPσ2 (h, V ),

13 By the Continuous Mapping Theorem, it follows that for h < ∞

T 1/4σ̂T
d

→
√
max{0,ZK1+1 + h},

which explains why some researchers have found bimodal histograms for σ̂T in Monte Carlo simulations, see for example Figure 1 in Reynaert and
Verboven (2014) and their footnote 4. See also Fig. 2.
14 The grid search was performed over h ∈ {0, 0.05, . . . , 9.95, 10, 11, . . . , 19, 20, ∞}.
15 Asymptotic size distortions are expected to be significantly larger when the restriction J (γ0) = V (γ0)−1 is not imposed.
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Fig. 1. CPσ (h) and CPσ2 (h) as a function of h - K2 = 1.

Fig. 2. Histograms of finite-sample (left) and asymptotic (right) distribution of σ̂T .

and AsySzK
′

µ ≥ AsySzK
′

µ
≡ inf(h,V )∈RK ′

+,∞×VK ′+1 CPµ(h, V ), where V takes the place of the corresponding submatrix of V (γ0)

in the definition of CP·(·).16 From Eq. (13) and Theorem 5 in Andrews (1999), it follows that AsySzK
′
+1

σ2 = AsySzK
′

µ
.

From the results in Andrews and Guggenberger (2010b), we have that AsySz1
µ

= CPµ(∞, V ) = 95% for any V ∈ V2

and we conclude that AsySz2
σ2 = AsySz1µ = 95%. The following Corollary summarizes the results obtained thus far.

Corollary 1. Suppose the random coefficients logit model satisfies the conditions in (9). Then, AsySz1σ = 83.65% < 95% and
AsySz1

σ2 = 95%. If, in addition, an optimal weighting matrix is employed, then AsySz2
σ2 = AsySz1µ = 95%.

Corollary 1 shows that the CI based on |tσ ,T | can suffer from asymptotic size distortion and that the CIs based on
|tσ2,T | and |tµ,T | can control asymptotic size, under some conditions. In what follows, we analyze in how far these results
generalize.

While it is still feasible to numerically evaluate AsySz2
σ
, it is computationally prohibitive to numerically evaluate

AsySzK
′
+1

σ
and AsySzK

′

µ
for K ′

≥ 2. We, therefore, rely on the following conjecture: AsySzK
′
+1

σ
= ConAsySzK

′
+1

σ
≡

inf(h,ρ1,ρ2)∈{0}K ′+1×P CPσ (h, ρ1, ρ2) and AsySzK
′

µ
= ConAsySzK

′

µ
≡ inf(h,ρ1,ρ2)∈{0}K ′

×P CPµ(h, ρ1, ρ2),17 where P = {(ρ1, ρ2) :

16 These lower bounds apply, for example, also in the random coefficients regression model (Andrews, 1999) when the likelihood function is
correctly specified.
17 The grid searches to compute ConAsySzK

′
+1

σ
and ConAsySzK

′

µ
for K ′

≥ 2 were performed over (ρ1, ρ2) ∈ {−0.99, −0.98, . . . , 0.98, 0.99}2 (subject
to positive-definiteness of V (ρ1, ρ2)).



P. Ketz / Journal of Econometrics 212 (2019) 413–432 423

Table 1
Conjectured lower bounds on AsySz in % for K2 ≥ 3.
K2 3 4 5 6 7 8 9 10

ConAsySzK2
σ

76.67 71.40 65.77 60.24 54.87 49.04 43.75 38.99

ConAsySzK2
σ2 94.81 94.80 94.61 93.81 92.86 91.65 90.41 88.76

Table 2
CPσ (06) in %.
Price/Inc. Hp/We. Foreign Size Height e/km

74.56 76.43 69.79 87.59 88.44 78.37

V (ρ1, ρ2) ∈ VK ′
+1

} and where

V (ρ1, ρ2) =

⎡⎢⎢⎢⎢⎢⎣
1 ρ1 ρ1 . . . ρ1
ρ1 1 ρ2 . . . ρ2

ρ1 ρ2 1
. . .

...
...

...
. . .

. . . ρ2
ρ1 ρ2 . . . ρ2 1

⎤⎥⎥⎥⎥⎥⎦ . (15)

The conjecture is based on two observations. First, boundary effects on the distribution of λ̂h,K1+1 (λ̂h,1) and, thereby, on
the asymptotic coverage probability given in Eq. (11) ((13)) are most pronounced when h = 0K ′+1 (h = 0K ′ ). Second,
the λ̂h,ks for k ∈ {2, . . . , K ′

+ 1} (k ∈ {1, . . . , K ′
}) enter CPσ (·) (CPµ(·)) ‘‘symmetrically’’. To corroborate our conjecture,

we consider the case for K ′
= 2 in more detail. A first grid search reveals that ConAsySz3

σ
= inf(h,V )∈{0}3×V3 CPσ (h, V )

and ConAsySz2
µ

= inf(h,V )∈{0}2×V3 CPµ(h, V ), with the infimum uniquely attained at V1,2 = V1,3 = 0.48 (and V2,3 =

−0.18) and V1,2 = V1,3 = 0.05 (and V2,3 = −0.63), respectively.18 A second grid search reveals that ConAsySz3
σ

=

inf(h,V )∈R3
+,∞×{V (0.48,−0.18)} CPσ (h, V ) and ConAsySz2

µ
= inf(h,V )∈R2

+,∞×{V (0.05,−0.63)} CPµ(h, V ), where the infimum is uniquely

attained at h = 03 and h = 02, respectively.19 The two grid searches combined show that ConAsySz3
σ
and ConAsySz2

µ
are,

at least, ‘‘local’’ lower bounds. The conjectured lower bounds on AsySzK2σ and AsySzK2
σ2 for K2 ≥ 3 and, thus, on AsySzK2µ

for K2 ≥ 2 are reported in Table 1.20
We already established that the nominal 95% CI based on |t̃σ | suffers from asymptotic size distortion when K2 = 1,

as AsySz1σ = 83.65% < 95%. A grid search shows that AsySz2
σ

= 80.74%, with the infimum attained at h = 02 and
V1,2 = 0.55.21 Assuming our conjecture is true, Table 1 shows that AsySzK2

σ
further decreases as K2 increases. To investigate

in how far this decline may carry over to AsySzK2σ , we rely on an empirical estimate of V (γ0). The estimate of V (γ0) is
taken from the application of the random coefficients logit model to the European car market in Reynaert and Verboven
(2014) and is part of the estimation results reported in the last two columns of their Table 6.22

Table 2 shows CPσ (06) for K2 = 6 taking the relevant submatrix of V (γ0) equal to its estimated counterpart; see
Section 7 for more information on the variables. The results in Table 2 confirm an increase in asymptotic size distortions
for K2 > 1, with the minimum in Table 2, 69.79%, being considerably lower than AsySz1σ = 83.65%.

As mentioned above, the nominal 95% CI based on |t̃σ2 | (|t̃µ|) controls asymptotic size for K2 ∈ {1, 2} (K2 = 1) as long
as an optimal weighting matrix is employed. Assuming our conjecture is true, Table 1 shows that these results can, to
some extend, be generalized. In particular, Table 1 shows that the asymptotic size distortion of the nominal 95% CI based
on |t̃σ2 | (|t̃µ|) is less than 0.5 percentage points and, thus, reasonably small as long as K2 ≤ 5 (K2 ≤ 4). For larger values
of K2, however, the CIs may suffer from (larger) asymptotic size distortions.

5. A general solution

The positive asymptotic size distortions of the CIs based on |tσ ,T |, |tσ2,T |, and |tµ,T | result from the lack of asymptotic
normality of the underlying estimators under {γT } ∈ Γ (γ0, h) except h = ∞K2 . Due to the presence of the nuisance

18 The grid searches were performed over (V1,2, V1,3, V2,3) ∈ {−0.99, −0.98, . . . , 0.98, 0.99}3 (subject to positive-definiteness of V ). Note that
CP·(h, V1,2, V1,3, V2,3) = CP·(h, V1,3, V1,2, V2,3). As this relationship can be violated in simulations, we computed the average of the two simulated
counterparts.
19 The grid searches were performed over h ∈ {0, 0.05, . . . , 9.95, 10, 11, . . . , 19, 20, ∞}

K2 with K2 = 3 and K2 = 2, respectively.
20 The ‘‘reference point’’ for the numbers in Table 1 is 94.87%, the value of the numerical evaluation of, for example, CPσ2 (∞K2 , V ) for any V ∈ VK2 ,
whose theoretical value is known to equal 95%.
21 The grid search was performed over h × V1,2 ∈ {0, 0.05, . . . , 9.95, 10, 11, . . . , 19, 20, ∞}

2
× {−0.99, −0.98, . . . , 0.98, 0.99}.

22 I thank Mathias Reynaert and Frank Verboven for sharing their estimate of the asymptotic variance matrix with me.
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parameter h, which is not consistently estimable (if ∥h∥ ̸= ∞K2 ), it is difficult to construct tests based on θ̂∗

T that control
asymptotic size regardless of the dimension of σ 2 and regardless of whether J (γ0) = V (γ0)−1. One solution is to employ
the quasi unconstrained estimator proposed in Ketz (2018a) whose asymptotic distribution does not depend on h; note
that an unconstrained estimator is not available in the random coefficients logit model as the model implied market
share(s) given in Eq. (6) cannot be evaluated at negative values of σ 2

k (k ∈ {1, . . . , K2}). The quasi unconstrained estimator
is given by the minimizer of the sample analogue of the quadratic approximation of Eq. (2), i.e.,

θ̃∗

T = θ̂∗

T −

(
Ĝ′

θ∗WT Ĝθ∗

)−1
Ĝ′

θ∗WTGT (θ̂∗

T ), (16)

where

Ĝθ∗ =
1
T

T∑
t=1

z ′

t
∂ξ (θ̂∗

T , st , xt )
∂θ∗′

. (17)

Given the conditions in (9), under which Assumptions 1–3 hold, we have
√
T (θ̃∗

T − θ∗

T )
d

→ Z under {γT } ∈ Γ (γ0); see
Appendix C for details. We note that Assumption 3(i) is essential, implying that a quasi unconstrained estimator is not
available for θ . Let

t̃σ2,T ≡ t̃σ2,T (σ
2
null) ≡

√
T

σ̃ 2
T ,1 − σ 2

null√
V̂K1+1

⎛⎝t̃µ,T ≡ t̃µ,T (µnull) ≡
√
T

µ̃T ,1 − µnull√
V̂1

⎞⎠
denote the t-statistic for testing H0 : σ 2

1 = σ 2
null (H0 : µ1 = µnull) that uses θ̃∗

T = (µ̃T , σ̃
2
T ) rather than θ̂T = (µ̂T , σ̂T ). A

natural candidate for a CI for σ 2
1 that by construction is asymptotically similar is given by the CI based on |t̃σ2,T |, i.e.,[

σ̃ 2
T ,1 − z1−α/2

√
V̂K1+1/T , σ̃ 2

T ,1 + z1−α/2

√
V̂K1+1/T

]
∩ R+.

However, since σ̃ 2
T ,1 may take on negative values,23 this CI is (asymptotically) empty or arbitrarily short with positive

probability under {γT } ∈ Γ (γ0, h) with h1 < ∞ and, thus, ‘‘unreasonable’’ using the terminology in Müller and Norets
(2016). We note that under {γT } ∈ Γ (γ0, h) with h1 < ∞, the problem of making inference about σ 2

1 using σ̃ 2
T ,1 only, as

opposed to θ̃∗

T , asymptotically reduces to the problem of making inference about the unknown mean in a scalar Gaussian
shift problem, where the mean is a priori known to be nonnegative. This inference problem is well-known and one
solution, suggested by Feldman and Cousins (1998), is to invert the test based on the (generalized) Likelihood Ratio
statistic. The finite-sample analogue of the latter is given by

LRT ≡ LRT (σ 2
null) ≡ t̃2

σ2,T (σ
2
null) − min

s∈[0,∞)
t̃2
σ2,T (s).

The corresponding test rejects H0 : σ 2
1 = σ 2

null if LRT (σ 2
null) exceeds cvLR1−α(σ

2
null/

√
V̂K1+1/T ), where

cvLR1−α(v) ≡ inf{q ∈ R : P(Z2
− min

s∈[−v,∞)
(Z − s)2 ≤ q) ≥ 1 − α}

and where Z ∼ N(0, 1). This test is appealing as it reduces to the one-sided t-test when testing H0 : σ 2
1 = σ 2

null = 0, as

long as α ≤ 0.5, while it behaves like a two-sided t-test for large values of σ 2
null or, rather, σ

2
null/

√
V̂K1+1/T , cf. Figure 10

in Feldman and Cousins (1998). Furthermore, the resulting CI is, by construction, never empty or arbitrarily short.
The test that rejects H0 : µ1 = µnull when |t̃µ,T | exceeds z1−α/2 and the above test based on LRT for testing

H0 : σ 2
1 = σ 2

null can also be obtained as special cases of the test proposed in Ketz (2018a) and it follows from Lemma
7 in Ketz (2018a) that they satisfy certain asymptotic optimality properties, as long as α ≤ 0.5 for the test based on LRT .
Similarly, Corollary 2 in Ketz (2018a) implies that the corresponding CIs are asymptotically similar under the conditions
in (9).

6. Monte Carlo

In this section, we perform a simulation study to investigate the quality of the approximation provided by the
asymptotic theory derived above. For ease of reference, we use the same data generating process as Reynaert and Verboven
(2014) (RV) with only minor modifications. We consider three product characteristics, xjt,1 through xjt,3. xjt,3 can be
thought to represent price and is modelled as being endogenous. In particular, xjt,3 is generated as follows

xjt,3 = w′

jtπ1 + z ′

jtπ2 + ζjt ,

23 We, therefore, suggest to continue to report θ̂∗

T as a point estimate for θ∗ . Alternatively, as θ̂∗

T may fall outside the CIs based on |t̃µ,T | and LRT

defined below, one may report µ̃T ,k (k ∈ {1, . . . , K1}) and max{0, σ̃ 2
T ,k} (k ∈ {1, . . . , K2}) that, by construction, lie inside the CIs based on |t̃µ,T | and

LRT .
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Table 3
Monte Carlo results.

Quantiles

Estimator Average MCCP 0.05 0.25 0.5 0.75 0.95

σ̂T 0.185 0.833 0.000 0.000 0.101 0.340 0.573
σ̂ 2
T 0.079 0.977 0.000 0.000 0.010 0.115 0.328

µ̂T ,1 1.918 0.968 1.474 1.756 1.918 2.092 2.311
σ̃ 2
T 0.001 0.951 −0.353 −0.115 0.010 0.115 0.328

µ̃T ,1 2.007 0.951 1.503 1.801 2.003 2.198 2.542
SE(σ̂T ) 10,807.094 – 0.161 0.269 0.874 11,485.022 49,797.439
SE(σ̂ 2

T ) 0.202 – 0.115 0.148 0.181 0.229 0.353

where wjt = (xjt,1, xjt,2)′ is the set of exogenous product characteristics and zjt is 3-dimensional vector of cost shifters.
This reflects the case of perfect competition, where there is no markup on price. The endogeneity of xjt,3 arises, because
the error terms, ξjt and ζjt , are generated according to(

ξjt
ζjt

)
∼ N

([
0
0

]
,

[
1 0.7
0.7 1

])
.

The two exogenous product characteristics, xjt,1 and xjt,2, are given by U[1, 2] and 1, respectively, where U[a, b] denotes
a uniform random variable with support on [a, b]. zjt is generated as a vector of independent U[0, 1]. RV generate data
with σ1 = 1 and σ2 = σ3 = 0, but only estimate σ1, i.e., K2 = 1. Here, we choose σ = σ1 = 0. The rest of the parameter
values is chosen as follows: µ = (µ1, µ2, µ3)′ = (2, 2, −2)′, π1 = (0.7, 0.7)′, π2 = (3, 3, 3)′. We set T = 25 and J = 10.

We also implement the same estimator as RV, which uses (an approximation to) optimal instruments and, thus, an
optimal weighting matrix. The optimal instruments for the exogenous product characteristics, xjt,1 and xjt,2, are the
product characteristics themselves. The optimal instrument for price, xjt,3, is given by w′

jt π̂1 + z ′

jt π̂2, where π̂1 and π̂2
denote the ordinary least squares estimators from a regression of xjt,3 on wjt and zjt . We implement a one-step estimator.
We avoid the first-step of a two-step estimation procedure by evaluating the approximation to the optimal instruments
for σ1, suggested by RV, at a random guess of σ1, drawn from |N(0, 1)|, rather than at a first-step estimate. This procedure
is described in footnote 5 of RV and found to perform equally well in Monte Carlo simulations. Due to the homoskedastic
nature of the data, the usual reason for implementing a two-step estimator does not apply.

The integral in Eq. (4) is approximated by sparse grid integration. The resulting approximation error is immaterial,
because the main points of this paper remain valid as long as the distribution of u has mean zero, see Appendix A.
Furthermore, we use the same number of knots, 7, and the same weights for estimation and for generating true market
shares as to not create any sampling error. In light of recent findings, we employ the mathematical program with
equilibrium constraints (MPEC) formulation of the estimation problem as proposed by Dubé et al. (2012a).

Table 3 reports the Monte Carlo results, obtained using 1000 simulations. Column 1 reports the average of σ̂T , σ̂ 2
T , µ̂T ,1,

σ̃ 2
T , and µ̃T ,1 over the simulations. In addition, it reports the average of – what we refer to as – the standard errors of σ̂T

and σ̂ 2
T , namely

√
V̂4/T
2σ̂T

and
√
V̂4/T . Column 2 reports the ‘‘Monte Carlo Coverage Probability’’ (MCCP), i.e., the proportion of

simulated samples for which the corresponding CIs based on |tσ ,T |, |tσ2,T |, |tµ,T |, LRT , and |t̃µ,T | cover the true parameter,
at the 95% nominal level. Columns 3–7 report the 0.05, 0.25, 0.5, 0.75, and 0.95 quantiles of the 5 estimators and the
standard errors of σ̂T and σ̂ 2

T over the simulations. The motivation for looking at the quantiles of the standard errors

stems from the fact that σ̂T enters the denominator of
√

V̂4/T
2σ̂T

and that σ̂T can be at the boundary, i.e., equal to zero, such
that we expect the standard error for σ̂T to behave very irregularly. Note that in practice computing standard errors does
not cause a problem, because constrained optimization algorithms typically restrict σ̂T to be strictly greater than zero,
i.e., if σ̂T is ‘‘at the boundary’’ it differs from 0 by an algorithm specific tolerance level.

Table 3 shows that the asymptotic theory derived in this paper provides good approximations to the finite-sample
behavior of estimators and CIs. In particular, Table 3 shows that the distribution of θ̂∗

T is subject to boundary effects, cf.
Proposition 1, while θ̃∗

T is approximately normally distributed, cf. Section 5. Furthermore, the MCCPs of 83.3% and 97.7%
of the CIs based on |tσ ,T | and |tσ2,T | for σ = σ 2

= 0 are very close to the corresponding asymptotic coverage probabilities
of 83.65% and 97.5%, cf. Fig. 1 for h = 0. Similarly, the MCCPs of the CIs based on LRT and |t̃µ,T | are very close to the
nominal level of 95%. Lastly, the MCCP of the CI based on |tµ,T | is above the nominal level of 95%, which is also in line
with the results in Section 4 given the use of an optimal weighting matrix and given that K2 = 1. As expected, the standard
error for σ̂T can be huge with the 95th quantile at about 50,000, while the standard error for σ̂ 2

T does not display this
irregularity.

To further illustrate the nonstandard behavior of σ̂T apparent in Table 3, Fig. 2 plots the histograms of the finite-sample
and the asymptotic distribution of σ̂T , see also footnote 13.
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Table 4
Numerical performance.

θ θ∗

# IAC
# CF

# IAC
# CFK2 Average Median Average Median

1 6.64 6 5 4.86 4 2
2 20.35 37 7 6.77 5 2

6.1. Computational efficiency

So far, we have been quiet about how to obtain θ̂∗

T . Since θ∗ is a one-to-one function of θ , θ̂∗

T is easily obtained by
estimating the model with respect to θ and by squaring the corresponding σ̂T ,k for all k ∈ {1, . . . , K2}, which might
be tempting given that the publicly available code for estimating the random coefficients logit model uses θ . However,
since typical optimization algorithms, which use variants of the Newton–Raphson method, rely on either closed form
expressions or numerical approximations of the Jacobian and the Hessian of the objective function, which are functions
of the Jacobian of the sample moments, we expect minimization with respect to θ∗ to be more reliable.

Next, we present some Monte Carlo evidence of this computational advantage using the same data generating process
as above. Estimation is performed with respect to θ and θ∗ separately. In addition to allowing for one random coefficient
in estimation, we also perform estimation with respect to an additional variance parameter, namely on the constant.
These two cases are denoted as K2 = 1 and K2 = 2 in Table 4, which reports the average and the median number of
iterations that the optimization algorithm needs in order to achieve convergence (IAC). For each cell, the total number
of optimizations is 2000, using 2 different starting values for each of the 1000 simulated samples. In addition, Table 4
reports the number of convergence failures (CF) for the algorithm, defined as having failed to find a local minimum after
100 iterations.

Table 4 shows that on average the algorithm needs more iterations in order to achieve convergence when optimization
is performed with respect to θ , 6.64 vs. 4.86. The difference in the average number of iterations is more pronounced when
K2 = 2, 20.35 vs. 6.77. This is partly due to the high number of convergence failures that are encountered when K2 = 2.
The median, which is not influenced by such convergence failures, indeed only indicates a minor speed advantage of
the optimization with respect to θ∗. Nevertheless, the speed advantage is present and consistent across specifications,
K2 ∈ {1, 2}.

In summary, we recommend optimization with respect to θ∗, because the expected number of iterations required
to achieve convergence is lower and the algorithm is less prone to convergence failures. To facilitate implementation,
Appendix A contains all the first and second order derivatives that are required to implement a modified MPEC algorithm
and that differ from those presented in Dubé et al. (2012b).

7. Applications

In Appendix B, we show that the standard error of σ̂ 2
T ,k is obtained by multiplying the standard error of σ̂T ,k by 2 · σ̂T ,k

for all k ∈ {1, . . . , K2}; see also equations (10) and (12). Therefore, a reparameterization can be performed without direct
access to the data, as long as σ̂T and its standard error(s) are reported.

The problem of large standard errors can, for example, be observed in Neilson (2013), who reports an estimate of
the standard deviation of the random coefficient on the ‘‘Quality’’ variable in (his) Table 4 of 0.001. The corresponding
standard error is 0.7607, which is much larger than the other standard errors from the same estimation, which are in
the order of 0.01. Upon reparameterization, the estimate of the variance of the random coefficient is 0.000001 with a
standard error of 0.0015. His conclusion remains unaltered: There seems to be little or no heterogeneity with respect to
the ‘‘Quality’’ variable. But his conclusion has, in fact, more support from the data than initially thought.

Next, we investigate in how far size distortions of the CI based on |tσ ,T | may have influenced conclusions with respect
to the presence of heterogeneity in consumer preferences in previous work. In what follows, we reproduce the estimation
results of a few published articles that use the random coefficients logit model and apply the reparameterization in
terms of variances. In particular, we reproduce estimates of standard deviations, σ , and corresponding standard errors as
reported in Berry et al. (1995), Berry et al. (1999), and Reynaert and Verboven (2014). In addition, we report estimates
of σ 2 along with corresponding standard errors. We also compute the corresponding nominal 95% CIs based on |tσ ,T | and
LRT , which is possible since, in all three papers, the estimates of σ and, thus, σ 2 are in the interior of the parameter space
such that θ̃∗

T = θ̂∗

T , cf. equation (16). The reason for reporting CIs based on LRT is that the underlying test reduces to the
powerful one-sided t-test when testing H0 : σ 2

k = σ 2
null = 0 (k ∈ {1, . . . , K2}) such that our conclusions with respect to

whether previous work may have found spurious evidence of heterogeneity in consumer preferences are conservative.
We note that the analysis merely serves to illustrate the potential relevance of our findings and is not meant to question
the validity of the findings in these papers.

All three papers analyze the demand for cars. Berry et al. (1995, 1999) analyze the US car market from 1971 to 1990,
while Reynaert and Verboven (2014) analyze the car market of nine European countries from 1998 to 2010. The product
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Table 5
Berry et al. (1995) — Table 4 (left panel).
Variable σ SE CI - |tσ ,T | σ 2 SE CI - LRT

Constant 3.612 1.485 0.701 6.523 13.047 10.728 0 34.063
HP/Weight 4.628 1.885 0.933 8.323 21.418 17.448 0 55.600
Air 1.818 1.695 0 5.140 3.305 6.163 0 15.379
MP$ 1.050 0.272 0.517 1.583 1.103 0.571 0.163 2.222
Size 2.056 0.585 0.909 3.203 4.227 2.406 0.270 8.940

Table 6
Berry et al. (1999) — Table 5.
Variable σ SE CI - |tσ ,T | σ 2 SE CI - LRT

Constant 1.112 1.171 0 3.407 1.237 2.604 0 6.339
HP/Weight 0.167 4.652 0 9.285 0.028 1.554 0 3.072
Size 1.392 0.707 0.006 2.778 1.938 1.968 0 5.794
Air 0.377 0.886 0 2.114 0.142 0.668 0 1.451
MP$ 0.416 0.132 0.157 0.675 0.173 0.110 0 0.388

Table 7
Reynaert and Verboven (2014) - Table 6 Optimal instruments (ii).
Variable σ SE CI - |tσ ,T | σ 2 SE CI - LRT

Price/Inc. 0.524 0.168 0.195 0.853 0.274 0.176 0 0.619
Hp/We. 3.202 0.679 1.872 4.532 10.252 4.346 2.856 18.767
Foreign 0.718 0.513 0 1.723 0.515 0.736 0 1.957
Size 0.239 0.394 0 1.011 0.057 0.188 0 0.427
Height 0.104 0.030 0.044 0.163 0.011 0.006 0 0.023
e/km 2.103 4.715 0 11.345 4.424 19.835 0 43.282

characteristics in Berry et al. (1995, 1999), which are interacted with a random coefficient in estimation, are horse power
per weight (HP/Weight), a dummy for whether the car has air conditioning (Air), miles per gallon (MP$) and size (Size). The
corresponding product characteristics in Reynaert and Verboven (2014) are price divided by income (Price/Inc.), both in
local currency, horse power divided by weight (Hp/We.), a dummy variable to indicate if the car make is foreign (Foreign),
size (Size), height (Height) and a measure of fuel efficiency (e/km).

Table 5 reproduces part of the left panel of Table 4 in Berry et al. (1995). The CIs based on |tσ ,T | suggest the presence
of heterogeneity (in consumer preferences) with respect to four out of five product characteristics, while the CIs based
on LRT only provide evidence for heterogeneity with respect to MP$ and Size.

Table 6 reproduces part of Table 5 in Berry et al. (1999). The CIs based on |tσ ,T | are indicative of heterogeneity
with respect to Size and MP$. The CIs based on LRT , on the other hand, all include 0 and, thus, provide no evidence
of heterogeneity.

Table 7 reproduces part of Table 6 in Reynaert and Verboven (2014). Here, the CIs based on |tσ ,T | provide evidence
for heterogeneity with respect to three out of six product characteristics, namely Price/Inc., Hp/We., and Height. The CIs
based on LRT , however, include 0 for all but one product characteristic, namely Hp/We.

Appendix A. Derivatives of sample moments

First, we provide the derivative of GT (θ ) with respect to θ . Then, we provide the derivative of GT (θ∗) with respect to
θ∗. The latter can be used to modify the code of Dubé et al. (2012a) in order to estimate the model with respect to θ∗.

A.1. Derivative of GT (θ ) with respect to θ

Define

Sjt (σ , u) ≡
eδjt+

∑K2
k=1 xjt,kσkuk

1 +
∑J

l=1 e
δlt+

∑K2
k=1 xlt,kσkuk

.

With slight abuse of notation, let δjt , ξjt , and sjt denote the jth entry of δt ≡ δ(σ , st , xt ), ξt ≡ ξ (θ, st , xt ), and st ≡

sj(σ 2, δt , xt ), respectively. Then, we have for k ∈ {1, . . . , K1}

∂ξjt

∂µk
= −xjt,k

and for i, i′ ≥ 1 and k, k′
∈ {1, . . . , K1}

∂ i+i′ξjt

∂ i′µk′∂ iµk
= 0.
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Also for i, i′ ≥ 1, k ∈ {1, . . . , K1}, and k′
∈ {1, . . . , K2}(

∂ i+i′

∂ iµk∂ i′σk′
ξjt =

)
∂ i+i′

∂ i′σk′∂ iµk
ξjt = 0.

Furthermore, we have for k ∈ {1, . . . , K2} (by the implicit function theorem)

∂ξt

∂σk
=

∂δt

∂σk
= −

(
∂st
∂δ′

t

)−1
∂st
∂σk

,

where ∂st
∂δ′

t
has typical elements (j′ ̸= j)

∂sjt
∂δjt

=

∫
Sjt (σ , u)

(
1 − Sjt (σ , u)

)
dFu(u) and

∂sjt
∂δj′t

= −

∫
Sjt (σ , u)Sj′t (σ , u)dFu(u)

and ∂st
∂σk

has typical element

∂sjt
∂σk

=

∫
Sjt (σ , u)

(
xjt,k −

∑
m

Smt (σ , u)xmt,k

)
uk dFu(u).

Note that Sjt (σ , u) does not depend on uk when σk = 0 and, therefore, can be written as Sjt (σ , u−k) when σk = 0, where
u−k denotes u without uk. Thus, evaluated at σk = 0, the typical element of ∂st

∂σk
equals

∂sjt
∂σk

⏐⏐⏐⏐
σk=0

=

∫
Sjt (σ , u−k)

(
xjt,k −

∑
m

Smt (σ , u−k)xmt,k

)
dFu−k (u−k)

∫
uk dFuk (uk) = 0, (18)

since uk has mean zero. Evaluated at σk = 0, we therefore have

∂ξt

∂σk

⏐⏐⏐⏐
σk=0

= 0J .

Thus, ∂
∂σk

GT (θ ) = 0L for every T ∈ N and, consequently, ∂
∂σk

G(θ, γ0)|θ=θ0= 0L for all γ0 = (θ∗

0 , φ0) ∈ Γ with

σ0,k =

√
σ 2
0,k = 0 such that Assumption 3(i) cannot hold when the model is parameterized with respect to θ = (µ, σ ).

Furthermore, for k, k′
∈ {1, . . . , K2}

∂2ξt

∂σk′∂σk
=

∂

∂σk′

∂ξt

∂σk
=

(
∂st
∂δ′

t

)−1
∂2st

∂σk′∂δ′
t

(
∂st
∂δ′

t

)−1
∂st
∂σk

−

(
∂st
∂δ′

t

)−1
∂2st

∂σk′∂σk
.

Next to ∂st
∂δ′

t
and ∂st

∂σk
, we have ∂2st

∂σk′ ∂δ′
t
and ∂2st

∂σk′ ∂σk
. ∂2st

∂σk′ ∂δ′
t
has typical elements (j′ ̸= j)

∂2sjt
∂σk′∂δjt

=

∫
Sjt (σ , u)(1 − 2Sjt (σ , u))

(
xjt,k′ −

∑
m

Smt (σ , u)xmt,k′

)
uk′ dFu(u) and

∂2sjt
∂σk′∂δj′t

= −

∫
Sjt (σ , u)Sj′t (σ , u)

(
xjt,k′ + xj′t,k′ − 2

∑
m

Smt (σ , u)xmt,k′

)
uk′ dFu(u).

For k′
= k, ∂2sjt

∂σk′ ∂σk
is given by

∂2sjt
∂2σk

=

∫
Sjt (σ , u)

(
xjt,k −

∑
m

Smt,k(σ , u)xmt,k

)2

u2
k dFu(u)

+

∫
Sjt (σ , u)

(
−

∑
m

{ Smt (σ , u)

[
xmt,k −

∑
n

Snt (σ , u)xnt,k

]
uk } xmt,k

)
uk dFu(u)

=

∫
Sjt (σ , u)

(
xjt,k −

∑
m

Smt (σ , u)xmt,k

)2

u2
k dFu(u)

−

∫
Sjt (σ , u)

(∑
m

Smt (σ , u)

[
xmt,k −

∑
n

Snt (σ , u)xnt,k

]
xmt,k

)
u2
k dFu(u),
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which evaluated at σk = 0 does not equal zero. The expression factorizes as in (18) above, but
∫
u2
k dFuk (uk) = 1 ̸= 0. For

k′
̸= k, ∂2sj

∂σk′ ∂σk
is given by

∂2sjt
∂σk′∂σk

=

∫
Sjt (σ , u)

(
xjt,k −

∑
m

Smt,k(σ , u)xmt,k

)
uk

(
xjt,k′ −

∑
m

Smt,k′ (σ , u)xmt,k′

)
uk′ dFu(u)

−

∫
Sjt (σ , u)

(∑
m

{ Smt (σ , u)

[
xmt,k′ −

∑
n

Snt (σ , u)xnt,k′

]
uk′ } xmt,k

)
uk dFu(u),

which evaluated at σk = 0 equals zero, again by the same argument as in (18).

A.2. Derivative of GT (θ∗) with respect to θ∗

In what follows, we only present derivatives that differ from those above and those given in Section 1.2.1 of Dubé
et al. (2012b). Let

Sjt (σ 2, u) ≡
eδjt+

∑K2
k=1 xjt,k

√
σ2
k uk

1 +
∑J

l=1 e
δlt+

∑K2
k=1 xlt,k

√
σ2
k uk

,

such that with a slight abuse of notation Sjt (σ 2, u) = Sjt (σ , u). ∂st
∂σ2

k
(k ∈ {1, . . . , K2}) has typical element

∂sjt
∂σ 2

k
=

1

2
√

σ 2
k

∫
Sjt (σ 2, u)

(
xjt,k −

∑
m

Smt (σ 2, u)xmt,k

)
uk dFu(u).

Therefore, ∂sjt
∂σ2

k
=

1
2σk

∂sjt
∂σk

, where σk =

√
σ 2
k . The elements of ∂2st

∂σ2
k′

∂δ′
t
are given by (j′ ̸= j and k ∈ {1, . . . , K2})

∂2sjt
∂σ 2

k ∂δjt
=

1

2
√

σ 2
k

∫
Sjt (σ 2, u)(1 − 2Sjt (σ 2, u))

(
xjt,k −

∑
m

Smt (σ 2, u)xmt,k

)
uk dFu(u) and

∂2sjt
∂σ 2

k ∂δj′t
= −

1

2
√

σ 2
k

∫
Sjt (σ 2, u)Sj′t (σ 2, u)

(
xjt,k + xj′t,k − 2

∑
m

Smt (σ 2, u)xmt,k

)
uk dFu(u).

Thus, ∂2sjt
∂σ2

k ∂δjt
=

1
2σk

∂2sjt
∂σk∂δjt

and ∂2sjt
∂σ2

k ∂δj′t
=

1
2σk

∂2sjt
∂σk∂δj′t

. For k′
= k (k, k′

∈ {1, . . . , K2}),
∂2sjt

∂σ2
k′

∂σ2
k
is given by

∂2sjt
∂2σ 2

k
=

1
4σ 2

k

∫
Sjt (σ 2, u)

(
xjt,k −

∑
m

Smt,k(σ 2, u)xmt,k

)2

u2
k dFu(u)

−
1

4σ 2
k

∫
Sjt (σ 2, u)

(∑
m

Smt (σ 2, u)

[
xmt,k −

∑
n

Snt (σ 2, u)xnt,k

]
xmt,k

)
u2
k dFu(u)

−
1

4(σ 2
k )

3
2

∫
Sjt (σ 2, u)

(
xjt,k −

∑
m

Smt (σ 2, u)xmt,k

)
uk dFu(u).

Note that ∂2sjt
∂2σ2

k
=

1
4σ2

k

∂2sjt
∂2σk

−
1

4σ3
k

∂sjt
∂σk

. For k′
̸= k, ∂2sjt

∂σ2
k′

∂σ2
k
is given by

∂2sjt
∂σ 2

k′∂σ 2
k

=
1

4
√

σ 2
k

√
σ 2
k′

∫
Sjt (σ 2, u)

(
xjt,k −

∑
m

Smt,k(σ 2, u)xmt,k

)
uk

(
xjt,k′ −

∑
m

Smt,k′ (σ 2, u)xmt,k′

)
uk′ dFu(u)

−
1

4
√

σ 2
k

√
σ 2
k′

∫
Sjt (σ 2, u)

(∑
m

{ Smt (σ 2, u)

[
xmt,k′ −

∑
n

Snt (σ 2, u)xnt,k′

]
uk′ } xmt,k

)
uk dFu(u).

It follows that ∂2sjt
∂σ2

k′
∂σ2

k
=

1
4σkσk′

∂2sjt
∂σk′ ∂σk

.
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Appendix B. Asymptotic variance estimator

In this section, we define the standard ‘‘plug-in’’ estimator of V (γ0), the asymptotic variance of the normal random
vector that underlies the asymptotic distribution result for

√
T (θ̂∗

T − θ∗

T ), cf. Proposition 1. Furthermore, we establish
the relationship with the standard ‘‘plug-in’’ estimator that is used in the construction of test statistics based on θ̂T , cf.
equation (10). For the sake of brevity, we only consider the standard one-step GMM estimator that uses WT ≡

1
T

∑T
t=1 z

′
tzt

and assume that W ̸= c · Ω(γ0)−1 for any 0 < c < ∞. Then, we have

V (γ0) = (G′

θ∗WGθ∗ )−1G′

θ∗WΩ(γ0)WGθ∗ (G′

θ∗WGθ∗ )−1.

Let

Ω̂ =
1
T

T∑
t=1

z ′

tξ (θ̂
∗

T , st , xt )ξ ′(θ̂∗

T , st , xt )zt .

Then, under {γT } ∈ Γ (γ0), we have WT
p

→ W = Eφ0z
′
tzt , Ω̂

p
→ Ω(γ0), Ĝθ∗

p
→ Gθ∗ (with Ĝθ∗ defined in Eq. (17)), and

V̂ ≡ (Ĝ′

θ∗WT Ĝθ∗ )−1Ĝ′

θ∗WT Ω̂WT Ĝθ∗ (Ĝ′

θ∗WT Ĝθ∗ )−1 p
→ V (γ0).

This follows from (repeated application of) Lemma 12.2 in Andrews and Cheng (2014b) given the conditions in (9),
together with Slutsky’s Theorem and the Continuous Mapping Theorem. Let – recall the abuse of notation in defining
ξ (θ∗

T , st , xt ) and ξ (θT , st , xt ) –

Ĝθ =
1
T

T∑
t=1

z ′

t
∂

∂θ ′
ξ (θ̂T , st , xt ).

Since constrained optimizers typically stay strictly within their bounds, we have (up to a small, predefined numerical
error)

Ĝθ∗ = Ĝθ

[
IK1 0
0 S(σ̂ 2

T )

]
, where S(σ 2) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2
√

σ2
1

0 . . . 0

0 1

2
√

σ2
2

. . .
...

...
. . .

. . . 0
0 . . . 0 1

2
√

σ2
K2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It follows that

V̂ =

[
IK1 0
0 S(σ̂ 2

T )
−1

]
(Ĝ′

θWT Ĝθ )−1Ĝ′

θWT Ω̂WT Ĝθ (Ĝ′

θWT Ĝθ )−1
[

IK1 0
0 S(σ̂ 2

T )
−1

]
,

where the term in the middle corresponds to the standard ‘‘asymptotic variance’’ estimator used in practice, cf. equation
(10).

Appendix C. Verification of assumptions in Ketz (2018a,b)

We first provide the proof of Proposition 1 and then details about the asymptotic normality result for
√
T (θ̃∗

T − θ∗

T ),
referred to in Section 5.

Proof of Proposition 1. Proposition 1 in Ketz (2018b) obtains the same asymptotic distribution result as Proposition 1,
but under general high-level assumptions as in Andrews (1999) suitably adapted to accommodate drifting sequences of
true parameters, namely Assumptions 2 and 3 in Ketz (2018a) and Assumptions 6 and 7 in Ketz (2018b). Therefore, the
proof proceeds by verifying these Assumptions. As mentioned above, Assumptions 1–3 correspond to slightly modified
versions of Assumptions GMM1, GMM2, and GMM5 in Andrews and Cheng (2014a). Similarly, Assumptions 2 and 3 in Ketz
(2018a) and Assumption 7 in Ketz (2018b) correspond to slightly modified versions of Assumptions D1–D3 in Andrews and
Cheng (2012). By Lemma 10.3 in Andrews and Cheng (2014b), Assumptions GMM1, GMM2, and GMM5 in Andrews and
Cheng (2014a) imply Assumptions D1–D3 in Andrews and Cheng (2012).24 Furthermore, by Lemma 10.1(b) in Andrews
and Cheng (2014b) and Lemma 3.1(b) in Andrews and Cheng (2012), Assumption GMM1 in Andrews and Cheng (2014a)
implies Assumption 6 in Ketz (2018b). Therefore, Assumptions 1–3 imply Assumptions 2 and 3 in Ketz (2018a) and
Assumptions 6 and 7 in Ketz (2018b) with DQn(θ ) = G′

θ∗WGT (θ∗) and D2Qn(θ ) = J (γ0) = G′

θ∗WGθ∗ . □

24 Note that the proof of Lemma 10.3 in Andrews and Cheng (2014b) goes through when continuous differentiability is replaced by l/r continuous
differentiability.



P. Ketz / Journal of Econometrics 212 (2019) 413–432 431

The aforementioned asymptotic normality result,
√
T (θ̃∗

T −θ∗

T )
d

→ Z under {γT } ∈ Γ (γ0), follows from Theorem 1 in Ketz
(2018a), which applies under Assumptions 1–4 in Ketz (2018a). The proof of Proposition 1 shows that Assumptions 1–3,
which hold given the conditions in (9), imply Assumptions 2 and 3 in Ketz (2018a). Furthermore, Proposition 1 implies
Assumption 1 in Ketz (2018a). It remains to show that Assumption 4 in Ketz (2018a) holds. By Assumptions 1 and 2
and Slutsky’s Theorem, we have Ĝ′

θ∗WT Ĝθ∗ = G′

θ∗WGθ∗ + op(1) under {γT } ∈ Γ (γ0) such that Assumption 4(ii) in Ketz
(2018a) is satisfied. Similarly, we have Ĝ′

θ∗WT = G′

θ∗W + op(1) under {γT } ∈ Γ (γ0). Given Assumption 1 in Ketz (2018a),
it, therefore, suffices to show that under {γT } ∈ Γ (γ0)

sup
θ∗∈Θ:∥

√
T (θ∗−θ∗

T )∥≤ϵ

∥GT (θ∗) − GT (θ∗

T ) − Gθ∗ (θ∗
− θ∗

T )∥ = op(1/
√
T )

for all 0 < ϵ < ∞, which holds by Assumption 2 together with ∥Gθ∗ (θ∗

T ; γ0) − Gθ∗ (θ∗

0 ; γ0)∥ = o(1) and

G(θ∗
; γ0) = G(θ∗

T ; γ0) + Gθ∗ (θ∗

T ; γ0)(θ∗
− θ∗

T ) + o(∥θ∗
− θ∗

T ∥),

which holds by Theorem 6 in Andrews (1999) and Assumption 1(iii).

Appendix D. Details for Section 4

Before verifying Assumptions 1–3 for the random coefficients logit model under the conditions in (9), we define
M1(st , xt , zt )–M4(st , xt , zt ):

M1(st , xt , zt ) = sup
θ∗∈Θ̈

∥z ′

tξ (θ
∗, st , xt )∥2+ϵ,M2(st , xt , zt ) = sup

θ∗∈Θ̈

z ′

t
∂ξ (θ∗, st , xt )

∂θ∗′

1+ϵ

,

M3(st , xt , zt )= sup
θ∗∈Θ̈

 ∂

∂θ∗′
vec

(
z ′

t
∂ξ (θ∗, st , xt )

∂θ∗′

) , and M4(st , xt , zt ) = sup
θ∗∈Θ̈

 ∂

∂θ∗′
vec

(
z ′

tξ (θ
∗, st , xt )ξ ′(θ∗, st , xt )zt

) .

Instead of verifying Assumption 2, we verify Assumption 2∗. Assumption 2∗(i) follows from Appendix A. Assumption
2∗(ii) and Assumption 1(i), (iii), and (iv) hold by Lemma 12.2 in Andrews and Cheng (2014b) given the conditions in
(9). Assumption 1(ii) follows from a mean value expansion together with the conditions in (9). Assumption 3(i) follows
immediately from the conditions in (9). Lastly, Assumption 3(ii) follows by Lemma 12.3 in Andrews and Cheng (2014b),
which applies under the conditions in (9).

Next, we derive equation (11). Under γT = (θ∗

T , φT ), the test based on |tσ ,T | rejects H0 : σ1 = σT ,1 if

√
T

σ̂T ,1 − σT ,1√
V̂
σ2
1

2σ̂T ,1

< −z1−α/2 or
√
T

σ̂T ,1 − σT ,1√
V̂
σ2
1

2σ̂T ,1

> z1−α/2.

It never rejects if σ̂T ,1 = 0. For σ̂T ,1 > 0, we can solve the resulting quadratic equations, σ̂ 2
T ,1 − σT ,1σ̂T ,1±

1
2 z1−α/2

√
V̂σ2

1
/T ≶

0, for the ‘‘unknown’’ σ̂T ,1. The first rejection region is ‘‘active’’ only if σ 2
T ,1 − 2 · z1−α/2

√
V̂σ2

1
/T > 0 and is given by√

σ 2
T ,1 −

√
σ 2
T ,1 − 2 · z1−α/2

√
V̂σ2

1
/T

2
< σ̂T ,1 <

√
σ 2
T ,1 +

√
σ 2
T ,1 − 2 · z1−α/2

√
V̂σ2

1
/T

2
.

The second rejection region is given by

σ̂T ,1 >

√
σ 2
T ,1 +

√
σ 2
T ,1 + 2 · z1−α/2

√
V̂σ2

1
/T

2
,

as we never reject for σ̂T ,1 < 0. Multiplying through by T 1/4, squaring and subtracting
√
Tσ 2

T ,1 gives equation (11) under
{γT } ∈ Γ (γ0, h).

Proof of Proposition 2. As mentioned above, the proof of Proposition 2 relies on Corollary 2.1(b) in Andrews et al. (2011),
which uses Assumptions B1, B2∗, C1, and C2 in Andrews et al. (2011). Assumptions B1, C1, and C2 are satisfied by CPσ (h̃),
CPσ2 (h̃), and CPµ(h̃) (where CP−

·
(h̃) = CP+

·
(h̃) = CP·(h̃) using their notation), while Assumption B2∗ is satisfied given the

definition of Γ (with hn(γ ) = (
√
nσ 2, γ ) using their notation). Therefore, Corollary 2.1(b) in Andrews et al. (2011) implies

AsySz· = infh̃∈H̃ CP·(h̃) for all three subscripts, σ , σ 2, and µ. □
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