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Abstract

Indirect Inference (I-I) is a popular technique for estimating complex parametric models
whose likelihood function is intractable, however, the statistical efficiency of I-I estimation
is questionable. While the efficient method of moments, Gallant and Tauchen (1996),
promises efficiency, the price to pay for this efficiency is a loss of parsimony and thereby a
potential lack of robustness to model misspecification. This stands in contrast to simpler I-I
estimation strategies, which are known to display less sensitivity to model misspecification
precisely due to their focus on specific elements of the underlying structural model. In this
research, we propose a new simulation-based approach that maintains the parsimony of I-I
estimation, which is often critical in empirical applications, but can also deliver estimators
that are nearly as efficient as maximum likelihood. This new approach is based on using
a constrained approximation to the structural model, which ensures identification and can
deliver estimators that are nearly efficient. We demonstrate this approach through several
examples, and show that this approach can deliver estimators that are nearly as efficient
as maximum likelihood, when feasible, but can be employed in many situations where
maximum likelihood is infeasible.

Keywords : Equality Restrictions; Constrained Inference; Indirect Inference; Generalized Tobit;
Markov-Switching Multifractal Models.

1 Introduction

Indirect inference (hereafter, I-I), as proposed by Smith (1993) and Gourieroux, et al. (1993), is
a simulation-based estimation method often used when the underlying likelihood for the model
of interest is computationally challenging, or intractable. The key idea underpinning I-I is that,
regardless how complicated the structural model, it is often feasible to simulate artificial data
from this fully parametric model. As a result, statistics based on the observed data and data
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simulated from the model can be compared, with the resulting difference minimized in a given
norm to produce an estimator of the structural parameters.

The implementation of I-I is most often carried out using an auxiliary model that represents
an incorrect, but tractable version of the structural model under analysis. User-friendly estima-
tors for the parameters of this auxiliary model provide the statistics, based on the observed and
simulated data, respectively, that are used to conduct inference on the underlying structural
parameters. However, by definition the information encapsulated in the auxiliary parameter
estimates is less than the information carried in the likelihood for the structural parameters.
As such, in any implementation of I-I there is a fundamental trade-off between the statistical
efficiency of the resulting estimators and their computational feasibility.

The main contribution of this paper is to propose an alternative to I-I that produces struc-
tural parameter estimates that, albeit also simulation-based, are arguably closer to reaching the
Cramer-Rao efficiency bound for the parametric structural model. The new method proposed
herein, dubbed “Approximate Maximum Likelihood” (hereafter, AML), maintains the standard
philosophy of I-I that one can resort to a possibly biased approximation of the structural model,
insofar as matching statistics calculated from this approximation using both simulated and ob-
served data will allow us to erase the misspecification bias. In contrast to standard I-I, instead
of matching estimators of auxiliary parameters, we directly match a proxy/approximation to
the score vector of the intractable log-likelihood. These proxies are indexed by the vector of
structural parameters, for which a preliminary plug-in estimator (based on observed data) must
be used.

However, as we later demonstrate, the dependence of this approach on the preliminary plug-in
estimator differs from standard I-I estimation: as far as the asymptotic distribution of our AML
estimator is concerned, the asymptotic distribution of the preliminary estimator is immaterial,
and only its probability limit (a pseudo-true value possibly different from the true unknown
value) will impact the information conveyed by the approximate score. This is in stark contrast
to I-I estimation, where the key feature in determining the asymptotic efficiency of I-I is the
efficiency of the auxiliary parameter estimates. As such, since it is only the probability limits of
the plug-in estimators that matters, our new AML approach can not be directly placed in the
standard I-I framework.

While this new approach is based on matching types of scores, it should not be confused with
the score-based version of I-I proposed by Gallant and Tauchen (1996). As shown by Gourieroux,
Monfort and Renault (1993) (see “The Third Version of the Indirect Estimator” in their Ap-
pendix 1), Gallant and Tauchen’s (1996) estimator is actually tantamount to match estimators
of auxiliary parameters. In particular, when fishing for efficiency, Gallant and Tauchen (1996)
(see the proof of their theorem 2) ultimately import the efficiency for the estimator of auxiliary
parameters to reach the Cramer-Rao efficiency bound for the structural parameters, with this
efficiency claim ultimately requiring that the auxiliary model “smoothly embeds” the structural
model.

In short, “efficient method of moments”, Gallant and Tauchen (1996), must resort to a
semi-nonparametric score generator as an auxiliary model. Thanks to its steadily increasing
dimension, the score of this auxiliary model may asymptotically span the score of the structural
model, and thereby deliver efficient estimators of the resulting structural parameters. However,
the price to pay for this efficiency is a highly-parametrized auxiliary model that may be ill-
behaved (due to the non-parsimonious nature of the auxiliary model) when there are deviations
from the underlying model structure, i.e., when the structural model may be partly misspecified.
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This is in contrast to standard I-I estimation, which has been shown to be somewhat robust to
deviations from the underlying modelling assumptions (see, e.g., Dridi et al., 2007), precisely
because it is based on calibrating a limited number of structural parameters. Our new method
remains true to this parsimony principle since we match proxies for the actual score vector,
whose dimension is the same as the structural parameters.

In our AML approach, (approximate) efficiency of structural parameter estimates does not
rest upon high-dimensional inference or the near-efficiency of auxiliary parameter estimates, but
on the conjunction of two properties.

• First, the efficiency gap between our estimates and the MLE is tightly related to the differ-
ence between the asymptotic value of our plug-in estimator for the structural parameters
(i.e., the pseudo-true value that will asymptotically feature in our proxy/ approximation for
the true limiting score function) and the true unknown value of the structural parameters.

• Second, the fact that the Cramer-Rao efficiency bound can be (nearly) reached if the
information identity is (nearly) maintained. More precisely, the question is to assess the
difference between the curvature of the log-likelihood at the true value of the structural
parameters (as measured by the slope of the expected score vector as a function of the
structural parameters) and the slope of the score vector when the structural parameters
enter the score through data simulated at a specific parameter value. Satisfaction of the
information identity in this context requires a type of multiplicative separability of the
score vector, which we later demonstrate is satisfied for exponential models.

The motivation for our AML approach is the observation that there are many cases of interest
where the intractability of the assumed model, and its likelihood, is entirely due to a sub-vector
of structural parameters. Examples include, for instance, dynamic discrete choice models with
ARMA errors (Robinson, 1982, Gourieroux et al., 1985, Poirier and Ruud, 1988), spatial discrete
choice models (see, e.g., Pinske and Slade, 1998), and many dynamic equilibrium models. In
such models, a few well-chosen restrictions would allow us to alleviate the intractability of the
likelihood due to the presence of certain latent variables.

More generally, many complex economic models are such that imposing a (potentially false)
constraint on the structural model yields a simpler auxiliary model with a computationally
tractable likelihood. This is precisely the reason why score/LM tests are popular in econo-
metrics: estimation and testing “under the null”is feasible even in very complicated models.
Unfortunately, imposition of this constraint, and subsequent optimization of the constrained
log-likelihood, will not deliver consistent estimates of the structural parameters if the constraint
is not satisfied at the truth.

As recently pointed out by Calvet and Czellar (2015), imposing potentially false equality
constraints on a given structural model can be an attractive method for obtaining simple and
rich auxiliary models for the purposes of I-I. For instance, in the context of a long-run risk
model (Bansal and Yaron, 2004), Calvet and Czellar (2015) demonstrate that imposing specific
equality constraints on certain parameters produces a simple auxiliary model for use in I-I (with
a computationally tractable likelihood function) that closely resemble the structural model. The
fact that this resulting auxiliary model may not deliver consistent estimates of the true structural
parameters is immaterial insofar as matching a simulation-based approximation against the
observation-based version will allow us to erase the misspecification bias. The benefits of such
an approach are two-fold: one, by using constraints to define the auxiliary model, we sketch
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a systematic strategy for the choice of an auxiliary model; two, this auxiliary model closely
matches the structural model and so for issues of robustness and efficiency this auxiliary model
is very useful.

However, while highly-useful, the suggestion of Calvet and Czellar (2015) is incomplete, and
does not allow for consistent estimation of the structural parameters on its own. That is, since
we impose a number of constraints on the auxiliary model, by definition the auxiliary model
can not consistently estimate all the structural parameters, except in the unlikely case where
the constraints are satisfied at the true value of the structural parameters. To circumvent this
issue, Calvet and Czellar (2015) propose to add to the statistics obtained from the auxiliary
model additional statistics so that, when considered jointly, this new vector can jointly identify
the structural parameters when estimated by I-I.

Motivated by the above ideas and the approach to handling constraints within I-I proposed
in Calzolari et al. (2004) and Frazier and Renault (2019), we propose a novel inference ap-
proach based on constraining the structural model parameters to create a simple, but highly
informative, proxy for the score vector that can be used to estimate the structural parameters.
However, unlike the strategy put forward by Calvet and Czellar (2015), our approach provides
an automatic, and nearly-efficient, method to identify the structural parameters.

In addition, we demonstrate that this AML strategy can be based on a proxy for the score
vector which entails additional layers of approximation beyond simply plugging in a (wrongly)
constrained estimation of the structural parameters. For example, in the context of stable
probability distributions, the likelihood function is known in closed-form only at certain specific
values of the parameters; as an example, a unit shape parameter (a = 1) and a zero value of
the asymmetry parameter (b = 0) yield a Cauchy likelihood, however, even then the partial
derivatives of the likelihood function with, respect to a and b, is not available in closed-form.
In such settings, our AML strategy can be implemented by invoking an additional layer of
approximation and replacing the directions of our score vector proxy that can not be obtained
in closed-form by a finite-difference approximation. Approximating certain directions of the
score vector by finite-differences is obviously even more useful when some structural parameters
are only defined on the integers. We demonstrate our methodology in such cases using the
example of Markov-Switching multifractal (MSM) volatility processes, Calvet and Fisher (2004,
2008), which are especially well-suited to capture volatility dynamics through an unknown, but
finite, number of multiplicative components.

While we apply our AML methodology within the confines of a MSM volatility model, we
note here that the use of MSM models are not exclusive to the analysis of volatility. Indeed,
Chen, Diebold and Schorfheide (2013) propose a novel Markov-switching multifractal duration
(MSMD) model to analyze inter-trade duration data in financial markets, and demonstrate its
superiority over competing duration models. While we exemplify the AML procedure within a
MSM volatility model, we note here that AML can be equivalently applied to the MSMD model
of Chen et al. (2013) using precisely the same approach detailed in this paper.

The remainder of the paper is organized as follows. In Section 2, we give the general setup,
discuss several interesting examples where equality constraints on the structural model yield a
tractable score vector that can be used for inference through score matching, and discuss our
AML estimation strategy. We also demonstrate that, in contrast to standard I-I, the choice of
an auxiliary estimator is immaterial, beyond the pseudo-true value of structural parameters that
it defines.

In Section 3, we provide the asymptotic theory of AML. Further, we demonstrate that, in
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the case of an exponential model, a sufficient (but not necessary) condition for AML estimators
to achieve the Cramer-Rao efficiency bound is that the pseudo-true value used in AML coincides
with the true one. Section 4 provides Monte Carlo evidence on the finite-sample performance
of AML in two leading examples: one based on false equality constraints, and one where we are
required to define some of the pseudo-score components using a finite-difference approximation,
with the later example containing an empirical application to financial returns data using a
multifractal stochastic volatility model. Monte Carlo evidence on the application to stable
distribution is provided in Appendix D. Section 5 concludes with suggestions for future research
on extensions of I-I where not only the two vectors to match both depend on the observed data,
as in this paper, but even the simulator itself may depend on the observed data. Mathematical
details for the proofs of main results and developments of theoretical examples are provided in
Appendices A, B and C.

2 Approximate Maximum Likelihood vs Indirect Infer-

ence

2.1 Model Setup: Nonlinear State Space Models

Following Gourieroux, et al. (1993) (hereafter, GMR), our goal is inference on the unknown
parameters of a dynamic structural model that has a nonlinear state space representation. The
structural model is specified through a transition, or state, equation and a measurement equation.
The transition equation is of the following form

ut = ϕ (ut−1, εt, θ) ; θ ∈ Θ ⊂ Rp,

where ϕ is a known function, (ut, εt)
T
t=1 are latent processes and εt is a strong white noise process

with a known distribution; and the measurement equation satisfies

yt = r (yt−1, xt, ut, εt, θ) ; θ ∈ Θ ⊂ Rp,

where r is a known function and (xt, yt)
T
t=1 are observed processes. In the two equations, known

functions ϕ and r are indexed by a p-dimensional vector of unknown parameters θ ∈ Θ. We
assume that (xt)t≤T is a homogenous Markov process of order 1, and is independent of the
process (εt)t≤T (and (ut)t≤T ). Then the process (xt) is exogenous and the process (xt, yt)t≤T is
stationary. It is worth recalling that, by standard arguments, the fact that the Markov process
is of order 1 and the probability distribution of the white noise εt is known are not restrictive
assumptions.

Under the above conditions, assuming absolute continuity with respect to some dominating
measure, for a given initial condition z0 = (y0, u0) , it should be possible to write down the joint
conditional probability density function

l∗
{

(yt)1≤t≤T , (ut)1≤t≤T |(xt)1≤t≤T , z0; θ
}
. (1)

The density of the observed sequence (yt)t≤T , conditional on (xt)t≤T , is obtained by integrating
out the latent variables (ut)1≤t≤T from the density (1) and can generally be stated as

l
{

(yt)1≤t≤T |(xt)1≤t≤T ; θ
}

=
∏

1≤t≤T

l{yt
∣∣(yτ )1≤τ≤t−1 , xt, z0; θ

}
, (2)
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where the last equality comes from the Markovianity and exogeneity of the process (xt). This
density function allows us to construct the log-likelihood function

LT (θ) =
1

T

∑
1≤t≤T

log
(
l{yt

∣∣(yτ )1≤τ≤t−1 , xt, z0; θ
})
. (3)

A maintained assumption in this paper will be that the log-likelihood asymptotically identifies
some true unknown value, θ0, of the unknown parameters, θ, and is the unique maximizer of the
population criterion

θ0 = arg max
θ∈Θ

L∞ (θ) , where L∞ (θ) = plim
T→∞

LT (θ) .

It is important to realize that more often than not, this assumption is neither testable nor
associated to a feasible estimator of θ0. The likelihood function in equation (2) does not have
an analytically tractable form: it is constructed via the latent likelihood in (1) through an
integration step that is infeasible to carry out, integration with respect to the T variables (ut)t≤T ,
with T going to infinity.1

Even though direct inference on θ0 associated with LT (θ) may be infeasible, it is well-known
that inference can be carried out using simulation-based filtering and inference approaches.
Under the assumed model, it is possible to simulate values of y1, ..., yT , for a given initial condition
z0 = (y0, u0) and a given value θ of the parameters, conditionally on the observed path of the
exogenous variables x1, ..., xT . This is done by independently drawing simulated values ε̃1, ..., ε̃T
from the assumed distribution of the strong white noise (εt) (the simulated values are also
independent of the realized values ε1, ..., εT that underpin the observations) and by computing

ỹt (θ, z0) , for t = 0, 1, . . . , T,

with ỹ0 (θ, z0) = y0 and where

ỹt (θ, z0) = r [ỹt−1 (θ, z0) , xt, ũt (θ, u0) , ε̃t, θ]

ũt (θ, u0) = ϕ [ũt−1 (θ, u0) , ε̃t, θ] .

While simulation is the most prevalent mechanism for inference in such settings, we note
that in many cases inference could be based directly on LT (θ) if we were to instead consider
sub-models defined by restricting the parameters θ to lie in a given set Θ0 ⊂ Θ. Indeed,
it will often be that case that the sub-models could be chosen by imposing θ ∈ Θ0 so that
we obtain a convenient factorization of the probability density function, which ensures that
integration of the T latent variables, (ut)t≤T , no longer requires solving a T -dimensional integral,
and consequently inference (over the sub-models) could be based directly on the log-likelihood
function (3). However, in general the sub-models specified by this constraint will not be correctly
specified and the resulting estimates will be asymptotically biased for the parameter of interest
θ0. However, as we will later see, following the intuition of I-I, this misspecification bias can be
corrected by matching these estimators against a simulated counterpart.

The following section demonstrates that there are many interesting cases where restricting
the parameters θ to lie in some set Θ0 ⊂ Θ results in log-likelihood functions that are easily
tractable.

1Clearly, such examples are exclusive of cases where the integration, or filtering, can be performed analytically,
such as cases where the Kalman filter can be performed, as in linear Gaussian state space models, or as in certain
qualitative Markov switching models. The focus of this paper is nonlinear state space models, where the above
simplifications are not generally applicable.
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2.2 Illustrative Examples

2.2.1 Example 1: Autoregressive Discrete Choice Models

We observe the sample {yt, xt}Tt=1 generated from

yt =

{
1 if y∗t > 0
0 if y∗t ≤ 0

, y∗t = x′tθ1 + ut, ut = θ2ut−1 + νt,

where xt is a vector of explanatory variables, νt is a Gaussian white noise and the AR(1)
process (ut)t≤T is stationary ( −1 < θ2 < 1), θ = (θ′1, θ2)′ . Following the standard normalization
practice for a Probit error term, we set νt ∼ ℵ (0, 1). In what follows, panel data can easily
be accommodated at the cost of more involved notations, and so we omit this extension for
simplicity.

Unlike the standard Probit model, the autoregressive nature of ut means that the data density
can only be stated as the T -dimensional integral: Let At = [0,+∞) if yt = 1 and At = (−∞, 0)
if yt = 0,

l
{

(yt)t≤T |(xt)t≤T ; θ
}

=

∫
A1

· · ·
∫
AT

l∗
{

(y∗t )t≤T |(xt)t≤T , z0; θ
}
dy∗1 · · · dy∗T ,

l∗
{

(y∗t )t≤T |(xt)t≤T , z0; θ
}

= (2π)−T/2R(θ2)−1/2 exp

(
− 1

2R(θ2)
u2

1(θ1)

) T∏
t=2

exp

(
− [ut(θ1)− θ2ut−1(θ1)]2

2

)

where R (θ2) = 1/(1 − θ2
2) and ut(θ1) = y∗t − x′tθ1. However, note that if one were to impose

the constraint θ2 = 0 in l∗
{

(y∗t )t≤T |(xt)t≤T , z0; θ
}

, the integral that defines this density can
be factorized into a product of T univariate integrals, which ultimately yields the usual Probit
likelihood function. As such, a convenient parametric sub-model is given by

l
{

(yt)t≤T |(xt)t≤T ; θ
}

; θ ∈ Θ0 =
{
θ ∈ Θ, θ = (θ′1, 0)

′}
A similar finding to the above can also be applied, albeit with different notations, to spatially

correlated Probit models, instead of the autoregressive Probit model.

2.2.2 Example 2: GARCH-like Stochastic Volatility Model

Observed log-returns are assumed to evolve according to

rt+1 = µ+ εt+1, E[εt+1 |It] = 0,

where the error term εt+1 is a martingale difference sequence (hereafter, mds). We are interested
in the volatility dynamics of the process

σ2
t = E[ε2

t+1 |It] ,

As usual, the observed counterpart of volatility dynamics is given by the dynamics of the squared
return process. We assume that ε2

t is a weak ARMA(p, p) :

ε2
t+1 − ω −

p∑
j=1

γjε
2
t+1−j = ξt+1 −

p∑
j=1

βjξt+1−j (4)
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where ξt+1 is a weak white noise that defines the innovation process of ε2
t . In other words, the

ARMA representation (4) is causal and invertible.
It is known (see e.g. Meddahi and Renault (2004)) that εt is a (semi-strong) GARCH(p, q)

with q ≤ p if and only if ξt is a mds. Inspired by Franses et al. (2008), albeit with a different
model, we want to relax this restriction about the white noise ξt+1, so that we define of family of
stochastic volatility models, which contains the GARCH(p, q) with q ≤ p as a particular case,
but, beyond this particular case, belong to the realm of nonlinear state space models. For this
purpose, it is worth setting the focus on the difference between the innovation process ξt+1 and
the mds νt+1 = εt+1 − σ2

t .
By definition (see equation (4)), the difference

(
ξt+1 − ε2

t+1

)
is It-measurable, so that we are

allowed to introduce the notation:

ξt+1 − νt+1 = ηt = σ2
t − kt

so that
ξt+1 − ε2

t+1 = −σ2
t + ηt = −kt,

which allows us to rewrite the volatility dynamics in equation (4) as

ε2
t+1 − ω −

p∑
j=1

γjε
2
t+1−j = ε2

t+1 − kt −
p∑
j=1

βj
[
ε2
t+1−j − kt−j

]
so that

kt = ω +

p∑
j=1

αjε
2
t+1−j +

p∑
j=1

βjkt−j (5)

αj = γj − βj (6)

In other words, we see that, without any additional assumption, the ARMA(p, q) represen-
tation for ε2

t+1 in equation (4) can be characterized by a GARCH-like equation (5) with

σ2
t = kt + ηt, ηt = ξt+1 − νt+1, νt+1 = ε2

t+1 − σ2
t (7)

Note that, since since νt+1 is a mds, we deduce from (7) that

ηt = E[ηt |It] = E[ξt+1 |It]

and thus

E[ξt+1 |It] = 0⇐⇒ σ2
t = kt

⇐⇒ σ2
t = ω +

p∑
j=1

αjε
2
t+1−j +

p∑
j=1

βjσ
2
t−j.

That is, we again find that the GARCH case is tantamount to the mds property for the noise
process ξt+1, which implies that the process ηt is identically zero.

Now, beyond the GARCH case, it is worth questioning whether a non-zero process ηt is just
a white noise or encapsulates some additional dynamic features of conditional variance. It is
then natural to consider the following model for ηt:

ηt = ρηt−1 +$χt, |ρ| < 1 (8)
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where χt is i.i.d. with a known distribution with zero mean. Such a model for ηt leads to a
nonlinear state space model with the measurement equation

rt+1 = µ+

[
ω +

p∑
j=1

αjε
2
t+1−j +

p∑
j=1

βj
(
σ2
t−j − ηt−j

)
+ ηt

]1/2

ut+1

for ut+1 and χt i.i.d. with known distributions, and where the transition equation is given by
(8).

Similar to the general case treated in equation (2), the likelihood function of this model is
only expressible as a T -dimensional integral (due to the dynamics in (8)). However, as we have
already seen in the autoregressive Probit example, Example 1, imposing the constraint ρ = 0 in
this state space model means that the T -dimensional integral can be factorized into the product
of T univariate integrals. As a consequence, stable numerical procedures can be used to compute
these univariate integrals and the resulting likelihood can then be maximized. More precisely,
since

σ2
t = k [{rτ}τ≤t] + ηt

k [{rτ}τ≤t] = kt = ω +

p∑
j=1

αjε
2
t+1−j +

p∑
j=1

βjkt−j

kt can be computed recursively as a function of past observed returns {rτ}τ≤t, as is standard in
GARCH models. Therefore, when ρ = 0, the overall likelihood is the product of the increments
l[rt+1 |{rτ}τ≤t; θ], where for t ≥ 1,

l[rt+1 |{rτ}τ≤t; θ] =

∫ +∞

−∞

1

[k [{rτ}τ≤t] + ηt]
1/2
fu

[
rt+1 − µ

k [{rτ}τ≤t] + ηt

]
1

$
fχ

[ηt
$

]
dηt

and where fu(.) (resp. fχ(.)) denote the probability density function of the standardized log-
return ut+1 (resp. of the noise χt)

2.2.3 Example 3: Generalized Tobit Model

Amemiya (1985) defines the generalized Tobit Model of Type 2 by the following observation
scheme for the outcome variable yi :

yi =

{
y∗1i if y∗2i ≥ 0

missing if y∗2i < 0
, (9)

with
y∗1i = x′iθ1 + σεi, (10)

where xi is a vector of exogenous explanatory variables, (θ′1, σ)′ a vector of unknown parameters
and εi is a standardized Gaussian error εi ∼ ℵ (0, 1) . A complete specification for the likelihood
function requires specifying the conditional probability of missingness in the data:

Pr[y∗2i < 0 |y∗1i, zi, θ2, θ3] ,
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where zi is a vector of exogenous explanatory variables and (θ′2, θ
′
3)′ is a vector of unknown pa-

rameters. The parameter θ2 govern the relationship between zi and the missingness mechanism,
and the parameter θ3 characterizes the dependence between the two latent endogenous variables
y∗1i and y∗2i. Then, if I1 (resp. I0) stands for the subset of indices for which (y∗2i ≥ 0) (resp.
y∗2i < 0), the likelihood function can be written as

l
{

(yi)1≤i≤T |(xi, zi)1≤i≤T ; θ
}

=
∏
i∈I1

1

σ
ϕ

(
yi − x′iθ1

σ

)
Pr[y∗2i ≥ 0 |yi, zi, θ2, θ3]

∏
i∈I0

Pr[y∗2i < 0 |zi, θ] ,

with

Pr[y∗2i < 0 |zi, θ] =

∫
Pr[y∗2i < 0 |y∗1i, zi, θ2, θ3]

1

σ
ϕ

(
y∗1i − x′iθ1

σ

)
dy∗1i,

where the function ϕ(.) stands for the probability density function of the standard normal
distribution and

θ = (θ′1, θ
′
2, θ
′
3, σ)′ where θ1 ∈ Rp1 , θ2 ∈ Rp2 , θ3 ∈ R, σ > 0

denotes the vector of unknown structural parameters. Estimation of θ may be challenging be-
cause the likelihood function involves an integral that may be necessary to compute numerically.
However, imposing the (possibly false) equality constraint θ3 = 0 implies that y∗1i and y∗2i are
conditionally independent, given zi, and the likelihood function under the constraint θ3 = 0
becomes

l
{

(yi)1≤i≤T |(xi, zi)1≤i≤T ; θ
}

=
∏
i∈I1

1

σ
ϕ

(
yi − x′iθ1

σ

)
Pr[y∗2i ≥ 0 |zi, θ2, 0]

∏
i∈I0

Pr[y∗2i < 0 |zi, θ2, 0] .

Amemiya (1985) notes that the “special case of independence” makes the likelihood function
almost as simple as a standard Tobit when the probability distribution of y∗2i given zi is also
Gaussian. However, by reference to an empirical paper (Dudley and Montmarquette (1976)
about the foreign aid from United States to a particular country), Amemiya (1985) notes that
”it makes their model computationally advantageous. However, it seems unrealistic to assume
that the potential amount of aid, y∗1 is independent of the variable that determines whether
or not aid is given, y∗2”. More generally, Amemiya (1985) considers that the joint conditional
distribution of (y∗1i, y

∗
2i)
′ given (xi, zi) is Gaussian and θ3 stands for the correlation coefficient

between y∗1i and y∗2i.
However, an alternative, and often computationally more convenient choice, is to assume

that the conditional probability distribution of y∗2i given (y∗1i, xi, zi) is logistic, which yields

Pr[y∗2i ≥ 0 |y∗1i, zi, xi, θ2, θ3] = [1 + exp(−z′iθ2 − θ3y
∗
1i)]
−1. (11)

In this case, imposing the (potentially false) equality constraint θ3 = 0, leads to a “computa-
tionally advantageous” model with log-likelihood function, when evaluated at θ = (θ′1, θ

′
2, 0, σ)′,

with a particularly simple form

LT [(θ′1, θ
′
2, 0, σ)]

=
1

T

∑
i∈I1

{
−1

2
log
(
2πσ2

)
− 1

2σ2
(yi − x′iθ1)

2 − log
(

1 + e−z
′
iθ2
)}
− 1

T

∑
i∈I0

log
(

1 + ez
′
iθ2
)
.
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2.2.4 Example 4: Markov-Switching Multifractal (MSM) Model

Similarly to Example 2, consider that observed asset returns evolve according to

rt+1 = µ+ εt+1, E[εt+1 |It] = 0,

where the error process εt is assumed to follow

εt+1 = σtut+1, E[u2
t+1 |It] = 1

with σt denoting the volatility process. Our goal remains the analysis of the volatility process,
however, in this example we use the Binomial MSM model proposed in Calvet and Fisher (2001,
2004, 2008), and consider that the volatility process is defined as the product of several volatility
components

σ2
t = σ2

k∏
k=1

Mk,t.

The components Mk,t are unobservable (i.e., latent) variables that are often referred to as mul-
tipliers or volatility components, and the overall number of components, k, is unknown.

We will assume that the standardized return ut+1 is i.i.d with a probability density function
fu (.). The latent state variables Mk,t, k = 1, ..., k, are assumed to be stationary Markov processes
with common marginal distribution, denoted by M . Given a value Mk,t for the kth component
at time t, the next-period multiplier is assumed to evolve according to

Mk,t+1 =

{
∼M with probability γk
Mk,t with probability (1− γk)

where the notation (∼M) stands for “drawn in the distribution M” and M0 is generated from
the stationary distribution π0, where

πj0 = Pr[M0 = mj] = 1/d, ∀j = 1, ..., d,

and where d = 2k.
The switching events (with transition probabilities γk, k = 1, ..., k) and new draws from M

are assumed to be independent across k and t. To ensure a non-negative and stationary volatility
process (E (σ2

t ) = σ2), we assume
E(M) = 1, M ≥ 0

For sake of parsimony, we introduce an unknown parameter m0 ∈ (1, 2) such that:

Pr [M = m0] = Pr [M = 2−m0] =
1

2
.

Then the state vector Mt =
(
M1,t, ...,Mk,t

)′
can take d possible values mj, j = 1, ..., d, so

that at each date the squared volatility process takes d possible values

σ2g
(
mj
)
, where g

[(
M1,t, ...,Mk,t

)]
=

k∏
k=1

Mk,t.

11



Furthermore, we parametrize the transition probabilities γk, k = 1, ..., k̄, such that the first
components (small k) are the most persistent

γk = γ̄bk−k, γ̄ ∈ (0, 1], b > 1, k = 1, ..., k̄,

and where a possibly higher “volatility of volatility” can be accommodated by increasing k.
For this model, the structural parameter vector is

θ =
(
m0, γ̄, b, σ, k

)′
and the log-likelihood associated with observed returns (rt+1)t≤T is given by:

LT (θ) =
1

T

T∑
t=1

log

(
d∑
j=1

1

σ
√
g (mj)

fu

(
rt+1 − µ
σ
√
g (mj)

)
Pr[Mt = mj |rτ , τ ≤ t]

)
(12)

where the conditional probabilities πjt = Pr[Mt = mj |rτ , τ ≤ t] are computed recursively. By
Bayes’ rule, the probability πjt can be expressed as a function of the previous probabilities
πt−1 =

(
π1
t−1, ..., π

d
t−1

)
:

πjt ∝
d∑
i=1

1

σ
√
g (mi)

fu

(
rt − µ

σ
√
g (mi)

)
πit−1ai,j

ai,j = Pr[Mt = j |Mt−1 = i] =
k∏
k=1

[
(1− γk)1[mik=mjk]

+
γk
2

]
.

Hence, unlike continuous stochastic volatility models, such as in Example 2, the Markov-
switching multifractal model has a closed-form likelihood, precisely because the filtering tech-
niques a la Hamilton can be applied. However, the price to pay for a volatility process with a
discrete state space is that, for sake of goodness of fit, it often takes a state space with many
elements, which implies a large number of multipliers k. Calvet and Fisher (2004) documents
that for exchange rate data, the multifractal model “works better for larger values of k” and
choose to set the focus on the case k = 10 for all currencies.

While the log-likelihood is available in closed-form, a single evaluation requires O
(

22kT
)

computations, where O (.) denotes the order of the evaluation. Therefore, if the upper bound on
the parameter space for k is too large, estimation via maximum likelihood becomes prohibitively
expensive.

Given the potentially prohibitive computational requirements associated with a large value
of k, it is worth revisiting the likelihood function with the false equality constraint k = 2, which
is the smallest possible value of k allowing to identify all the other parameters. Under the
constraint k = 2, a single likelihood evaluation requires only 16 · T , i.e., 24T , computations.
Therefore, such a constraint could easily be imposed, and the resulting estimation procedure
implemented, to alleviate the computational burden associated with searching over the entire
parameter space for k.

2.2.5 Example 5: Stable Distribution

Consider i.i.d. observations y1, . . . , yT generated from a stable distribution with stability param-
eter a ∈ (0, 2], skewness parameter b ∈ [−1, 1], scale parameter c > 0 and location parameter

12



µ ∈ R. The structural parameter vector is given by:

θ = (a, b, c, µ)′ (13)

The practical problem for maximum likelihood inference in this context does not come from
a non-linear state space where the likelihood function would involve integrals over the state
variables. However, it is known that the log-likelihood function LT (θ) is not available in general,
except for some specific values of the parameters a and b. As such, maximum likelihood inference
can only be implemented by the time-consuming task of numerical inverting the characteristic
function, which is known in closed-form, to obtain the resulting (numerical approximation to)
the stable density.

However, for a = 1 and b = 0, the stable distribution coincides with the Cauchy distribution
which has a closed-form log-likelihood function LT (1, 0, c, µ). Moreover, the stable model also
allows to simulate sample paths, for instance with the method of Chambers, Mallows and Stuck
(1976). This will pave the way again for an AML strategy.

2.3 Pseudo-Score Vector

The common feature of all the previously discussed examples is that for all values of θ in
some subset Θ0 ⊂ Θ, obtained by imposing some (possibly false) equality constraints, the log-
likelihood function LT (θ) in (3) is available in closed form (up to the evaluation of univariate
integrals). Moreover, we can also show that for all five examples considered in Section 2.2,
considering θ ∈ Θ0 allows us to compute, in closed-form, a pseudo-score vector

∆θLT (θ); θ ∈ Θ0 (14)

that can be used as the basis for inference on the unknown θ0.
The notation ∆θLT (θ) is used since certain components of the pseudo-score vector may not

be computed as exact partial derivatives. Of course such an approximation will be required when
some components of θ are integers, such as k in the multifractal case (Example 4). Moreover,
this approximation will also be relevant in the case of stable distributions (Example 5), where
genuine partial derivatives with respect to parameters a and b cannot always be computed.

Importantly, we note that the pseudo-score vector in (14) is of the same dimension as the
unknown parameters, i.e., it is a p-dimensional vector. That is, the partial derivatives for the
pseudo-score are computed with respect to all components of θ, including those dimensions
whose values are fixed when θ ∈ Θ0. In the following, we demonstrate that, in the examples
considered above, constraining θ ∈ Θ0 allows us to compute the pseudo-score in closed-form, at
least up to the evaluation of univariate integrals.

Example 1: (Autoregressive Discrete Choice Models) The dynamic Probit model is a
striking example of the fact that, while the complete likelihood function l

{
(yt)t≤T |(xt)t≤T ; θ

}
can only be stated as a T -dimensional integral, the sub-model defined by θ2 = 0 is much simpler,
since it coincides with the usual Probit likelihood. Not only does the (possibly false) equality
constraint θ2 = 0 lead to a closed-form likelihood, but the results of Gourieroux, et al. (1985)
demonstrate that the partial derivatives of the likelihood function are also available in closed-
form.

13



Under the restriction θ2 = 0, for

ũt(θ1, 0) =
ϕ (x′tθ1)

Φ (x′tθ1) [1− Φ (x′tθ1)]
[yt − Φ (x′tθ1)] ,

where ϕ (resp. Φ ) denotes the probability density function (resp. the cumulative distribution
function) of the standard normal, the computations in Gourieroux et al. (1985) yield

∂LT (θ1, 0)

∂θ1

=
1

T

T∑
t=1

xtũt(θ1, 0),
∂LT (θ1, θ2)

∂θ2

∣∣∣∣
θ2=0

=
1

T

T∑
t=2

ũt−1(θ1, 0)ũt(θ1, 0)

The term ũt(θ1, 0) is the generalized residual under the restriction θ2 = 0. Gourieroux et al.
(1987) show that ũt(θ1, 0) can be interpreted as the conditional expectation of the error term
ut given yt when the true value of θ is (θ′1, 0)′.

Example 2: (GARCH-like Stochastic Volatility Model) In the case of an ARCH(1)-
like stochastic volatility model, observed returns are assumed to evolve according to

rt+1 = µ+ εt+1, εt+1 = σtut+1,

kt = ω + αε2
t , σ

2
t = kt + ηt,

ηt = ρηt−1 +$χt,

we now demonstrate that the derivatives of the log-likelihood are also available in closed-form.
We treat the case of an ARCH(1)-like model for the sake of expositional simplicity, and note
that the result extends to other members of this class but require more lengthy derivations.
Furthermore, we assume that standardized asset (log)return ut+1 is Gaussian white noise. For
this model, the structural parameter vector is given by:

θ = (ζ ′, ρ)′, ζ = (µ, ω, α,$)′ ,

and the likelihood function (calculated from observed returns (rt+1)t≤T ) is

l[{rt+1}Tt=1 |θ] =

∫ +∞

−∞
...

∫ +∞

−∞
l∗[{rt+1, ηt}Tt=1 |θ] dη1...dηT ,

where l∗[{rt+1, ηt}Tt=1 |θ] is the latent likelihood:

l∗[{rt+1, ηt}Tt=1 |θ] =
T∏
t=1

1√
2π

1√
ω + αε2

t + ηt
exp

−1

2

[
rt+1 − µ√
ω + αε2

t + ηt

]2
 fη[η1, ..., ηT |η0, $, ρ] ,

fη[η1, ..., ηT |η0, $, ρ] =
T∏
t=1

1

$
fχ

(
ηt − ρηt−1

$

)
.

As already announced, imposing the equality constraint ρ = 0 will greatly simplify the
computation of the observed likelihood and corresponding score vector. The main reason for
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that is the implied additive structure for the latent and observed log-likelihood functions that
can be written:

L∗T (ζ, 0) =
1

T

T∑
t=1

log (l∗[rt+1, ηt |rτ , τ ≤ t; (ζ, 0)]) ,

LT (ζ, 0) =
1

T

T∑
t=1

log (l[rt+1 |rτ , τ ≤ t; (ζ, 0)]) ,

l[rt+1 |rτ , τ ≤ t; (ζ, 0)] =

∫ +∞

−∞
l∗[rt+1, ηt |rτ , τ ≤ t; (ζ, 0)] dηt.

This additive structure is very convenient, not only for its computational advantages, but
also because it allows us to resort to a formula provided by Gourieroux et al (1987) to compute
the observed score vector from the latent score. While this formula had been established by
Gourieroux et al. (1987) (as a generalization of Louis (1982) ) for i.i.d. data, it obviously allows
us to write (the algebra for proving it is perfectly similar):

∂ log (l[rt+1 |rτ , τ ≤ t; (ζ, 0)])

∂ζ
= E

[
∂ log (l∗[rt+1, ηt |rτ , τ ≤ t; (ζ, 0)])

∂ζ

∣∣∣∣{rτ}τ≤t+1

]
. (15)

Hence, we can compute

∂LT (ζ, 0)

∂ζ
=

1

T

T∑
t=1

E

[
∂ log (l∗[rt+1, ηt |rτ , τ ≤ t; (ζ, 0)])

∂ζ

∣∣∣∣{rτ}τ≤t+1

]
. (16)

Two remarks are in order. First, and by contrast with Gourieroux et al. (1987), due to dynamic
conditional information, (16) does not give the observed score as the conditional expectation of
the latent score given the observed data. However, we will see below that it allows a recursive
extension of the concept of generalized residual. Second, it is worth keeping in mind that
formulas (15) and (16) are written by assuming that (ζ, 0) is the true unknown value of the
structural parameters that defines the probability distribution used in the computation of the
conditional expectations. Since in our case, the constraint ρ = 0 is likely to be a false equality
constraint, the application of (15) and (16) will only provide us with proxies of the true score
that we dub pseudo-scores.

Thanks to equation (15), we can compute the pseudo-score in closed-form. We summarize
this result in the following result, and place the derivation of the result in Appendix B.

Result 1 For k ∈ {−1, 1, 2}, let [1/ (σ2
t )
k
]F,t = E[1/ (σ2

t )
k |rτ , τ ≤ t] denote the filtered function

of volatility, computed under the assumed model (and under the parameter restriction ρ = 0).
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Then, a closed-form pseudo-score can be obtained with the corresponding components

∂LT (ζ, 0)

∂µ
=

1

T

T∑
t=1

[
1

σ2
t

]
F,t

(rt+1 − µ)

∂LT (ζ, 0)

∂ω
=

1

2T

T∑
t=1

[
1

σ2
t

]
F,t

− 1

2T

T∑
t=1

[
1

σ4
t

]
F,t

(rt+1 − µ)2

∂LT (ζ, 0)

∂α
=

1

2T

T∑
t=1

[
1

σ2
t

]
F,t

ε2
t −

1

2T

T∑
t=1

[
1

σ4
t

]
F,t

(rt+1 − µ)2 ε2
t

∂LT (ζ, 0)

∂$
= − 1

$
+

1

$3

1

T

T∑
t=1

[[
σ2
t

]
F,t
− ω − αε2

t

]
In addition, a pseudo-score for ρ, i.e., ∂LT (ζ, 0)/∂ρ, can be based on the approximation

1

$2

1

T

T∑
t=2

([
σ2
t

]
F,t
− ω − αε2

t

)([
σ2
t−1

]
F,t−1

− ω − αε2
t−1

)
.

�

Example 3: (Generalized Tobit Model) Recall that the log-likelihood for the generalized
Tobit model is given by

LT (θ) =
1

T

∑
i∈I1

log

[
1

σ
ϕ

(
yi − x′iθ1

σ

)
Pr[y∗2i ≥ 0 |yi, zi, θ2, θ3]

]
+

1

T

∑
i∈I0

log [Pr[y∗2i < 0 |zi, θ]]

= L1,T (θ) + L2,T (θ) ,

where

Pr[y∗2i < 0 |zi, θ] =

∫
Pr[y∗2i < 0 |y∗1i, zi, θ2, θ3]

1

σ
ϕ

(
y∗1i − x′iθ1

σ

)
dy∗1i,

Pr[y∗2i < 0 |y∗1i, zi, θ2, θ3] = [1 + exp (z′iθ2 + θ3y
∗
1i)]
−1
.

As was noted previously, under the restrictions θ3 = 0, the above log-likelihood has a simple
closed-form.

The score of this likelihood under the restriction θ3 = 0 can also be obtained in closed-form.
First, we can compute

∂L1,T (θ1, θ2, 0, σ)

∂θ1

= − 1

T

∑
i∈I1

xi

[
yi − x′iθ1

σ2

]
,
∂L1,T (θ1, θ2, 0, σ)

∂θ2

=
1

T

∑
i∈I1

zi

[
1 + ez

′
iθ2
]−1

∂L1,T (θ1, θ2, 0, σ)

∂θ3

=
1

T

∑
i∈I1

yi

[
1 + ex̃

′
iθ2
]−1

,
∂L1,T (θ1, θ2, 0, σ)

∂σ
=

1

T

∑
i∈I1

[
− 1

σ
+

(yi − x′iθ1)2

σ3

]
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While we can also check that

∂L2,T (θ1, θ2, 0, σ)

∂θ1

= 0,
∂L2,T (θ1, θ2, 0, σ)

∂σ
= 0,

∂L2,T (θ1, θ2, 0, σ)

∂θ2

= − 1

T

∑
i∈I0

zi

[
1 + e−z

′
iθ2
]−1

,

∂L2,T (θ1, θ2, 0, σ)

∂θ3

= − 1

T

∑
i∈I0

x′iθ1

[
1 + e−z

′
iθ2
]−1

.

The pseudo-score can then be the above derivatives, computed under the restriction θ3 = 0, i.e.,

∆θLT (θ) =
∂L1,T (θ1, θ2, 0, σ)

∂θ
+
∂L2,T (θ1, θ2, 0, σ)

∂θ
.

Example 4: (Markov-Switching Multifractal (MSM) Model) For this model, the
structural parameter vector is given by:

θ =
(
ζ ′, k

)′
, ζ = (m0, γ̄, b, σ)′ .

As already announced, if we consider this model under the false equality constraint

k = 2,

the log-likelihood associated with observed data {rt+1}Tt=1 is given by

LT (ζ, 2) =
1

T

T∑
t=1

log

(
4∑
j=1

1

σ
√
g (mj)

fu

(
rt+1 − µ
σ
√
g (mj)

)
Pr[Mt = mj |rτ , τ ≤ t]

)
.

We can then define a pseudo-score vector by

∆θLT (ζ, 2) =

(
∂LT (ζ, 2)

∂ζ ′
, LT (ζ, 3)− LT (ζ, 2)

)′
.

Note that filtered Pr[Mt = mj |rτ , τ ≤ t] probabilities depend on all structural parameters as
explained above through in particular two transition probabilities:

γ1 =
γ̄

b
, γ2 = γ̄.

2.4 Pseudo-Score Matching and AML Estimation

In the previous section, we have exemplified the computation of pseudo-score vectors

∆θLT (θ) ; θ ∈ Θ0, where LT (θ) =
1

T

T∑
t=2

log
(
l{yt

∣∣(yτ )1≤τ≤t−1 , xt, z0; θ
})
,

from which we can compute estimators of the unknown θ0 ∈ Θ. While feasible, these estimators
do not in general deliver a consistent estimator of θ0. We now demonstrate how these pseudo-
scores can be used to conduct inference on θ0. Throughout the remainder, we maintain the
following assumption on the parameters and ∆θLT (θ).
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Assumption A1(False Equality Constraints): The parameter space can be partitioned as

Θ = Θ1 ×Θ2, Θ1 ⊂ Rp1 ,Θ2 ⊂ Rp2 , p = p1 + p2

Θ0 = Θ1 ×
{(
β0
j

)
p1<j≤p

}
= Θ1 ×

{
β2,0
}

and the application

β1 = (θj)1≤j≤p1 −→ ∆θLT

[
(β1′ , β2,0′)′

]
is continuously differentiable on the interior of Θ1.

We highlight that this assumption is fulfilled in the five examples considered above. We
also require the components of the derivative map in Assumption A1 to satisfy the following
regularity condition.

Assumption A2: (Hessian matrix ) Uniformly on the interior of Θ1, for some (p×p1)-dimensional
matrix K0,

plim
T→∞

∂∆θLT
[
(β1′ , β2,0′)′

]
∂β1′

= −K0
[
(β1′ , β2,0′)′

]
,

and where −K0
[
(β1′ , β2,0′)′

]
has full column-rank.

Consider the log-likelihood function computed for a simulated path {ỹ(h)
t (θ, z0)}Tt=1 (for h =

1, . . . , H) and at a value β of the structural parameters:2

L
(h)
T (θ, β) =

1

T

T∑
t=2

log
(
l
{
ỹ

(h)
t (θ)

∣∣ (ỹ(h)
τ (θ)

)
1≤τ≤t−1

, xt; β
})

. (17)

Associated to L
(h)
T (θ, β) is the simulated pseudo-score vector

∆βL
(h)
T (θ, β) ; β ∈ Θ0,

where the (pseudo) derivative ∆β is computed with respect to the vector β ∈ Θ0 of parameters

in (17), and not with respect to the set of structural parameters, θ ∈ Θ, used to simulate ỹ
(h)
t (θ).

As is standard, we require regularity on the behavior of the Hessian matrix associated with
∆βL

(h)
T (θ, β).

Assumption A3 (Cross-Derivative): For all β ∈ Θ0, the application

θ −→ ∆βL
(h)
T (θ, β)

is continuously differentiable on the interior of Θ and

plim
T→∞

∂∆βL
(h)
T (θ, β)

∂θ′
= −J0 (θ, β) ,

for J0 (θ, β) a (p× p)-dimensional matrix, with J0 (θ0; β0) non-singular.

2For the sake of notational simplicity, we have not made explicit the dependence of the likelihood function on
the initial value z0 of the simulated data. Since we are confining ourselves to standard settings, the dependence

of L
(h)
T on z0 will be immaterial asymptotically.
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Our estimation approach for θ0 will be based on matching a pseudo-score at a preliminary
estimator β̂T (β̂T ∈ Θ0) of β0. We emphasize here that β̂T is a preliminary estimator of β0,
and not θ0, since it is constrained by the possibly misspecified constraint β ∈ Θ0, meaning
that it cannot, in general, be a consistent estimator for θ0. We will only maintain that β̂T is a√
T -consistent estimator of some pseudo-true value β0:

β̂T =
(
β̂1′

T , β
2,0′
)′
, β0 = (β1,0′ , β2,0′)′.

We can now define our pseudo-score matching estimator of θ0 as follows.

Definition 1: The Approximate Maximum Likelihood (AML) estimator θ̂T,H of θ0 is defined
as the solution to the following equation:

∆βLT

(
β̂T

)
=

1

H

H∑
h=1

∆βL
(h)
T

(
θ̂T,H , β̂T

)
. (18)

The AML estimator, (18), is defined as the solution of p nonlinear equations, in p unknown
parameters, so that we may expect existence of a solution θ = θ̂T,H . However, in practice it will
be safer to minimize a squared norm of a difference between the two terms in (18). The fact that
the system (18) is just identified tells us that asymptotically, the behavior of the minimum should
not depend on the weighting matrix used in the squared norm, insofar as (18) asymptotically
defines a unique solution, which, hopefully coincides with the true unknown value θ0. This will
be the purpose of the main identification assumption (given in Section 3).

We can already state the general result.

Proposition 1: If
√
T (β̂T − β0) = OP (1), under Assumptions A1, A2, the AML estimator,

θ̂T,H , satisfies

plim
T→∞

{
√
T∆βLT

(
β0
)
− 1

H

H∑
h=1

√
T∆βL

(h)
T

(
θ̂T,H , β

0
)}

= 0.

Under Assumption A3 and other well-suited identification and regularity conditions (see sec-
tion 3 for a precise details),

√
T
(
θ̂T,H − θ0

)
→d ℵ

(
0,Ω(H)

)
,

Ω(H) =

(
1 +

1

H

)[
J0
(
θ0, β0

)]−1 [
I0
(
θ0, β0

)] [
J0
(
θ0, β0

)]−1
,

and with I0 (θ0, β0) = limT→∞Var
{√

T∆βLT (β0)− E
[√

T∆βLT (β0)
∣∣ {xt}Tt=1

]}
. �

An important message of Proposition 1 is that the probability distribution of the AML
estimator θ̂T,H depends on the choice of the estimator β̂T only through the pseudo-true value β0.
In other words, the AML estimator defined by (18) is asymptotically equivalent to the unfeasible
estimator θ̆T,H(β0) of θ0 that solves

∆βLT
(
β0
)

=
1

H

H∑
h=1

∆βL
(h)
T

(
θ, β0

)
.
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2.5 Comparison with I-I Approaches

2.5.1 Score Matching a la Gallant and Tauchen (1996)

The pseudo-score that is considered by Gallant and Tauchen (1996) (GT hereafter) is not, in
general, a proxy of the structural score where the parameter vector β is of the same dimension
as the structural parameter vector θ. On the contrary, GT consider an auxiliary model with
likelihood function

QT (β) =
1

T

∑
1≤t≤T

log
(
q{yt

∣∣(yτ )1≤τ≤t−1 , xt, z0; β
})
, β ∈ B ⊂ Rq.

The function q{yt
∣∣(yτ )1≤τ≤t−1 , xt, z0; .

}
is not, in general, the true transition density of the

process {yt}Tt=1. It is a pseudo-likelihood in the sense of Gourieroux, et al. (1984), which is
precisely the reason for using the notations q{. |.} and QT (.) instead of l{. |.} and LT (.). Then
the pseudo maximum likelihood estimator β̂T satisfies

∂QT

∂β

(
β̂T

)
= 0.

Using β̂T , GT define an I-I estimator θ̂T,H of θ0 as the solution of the following program

min
θ

∥∥∥∥∥ 1

H

H∑
h=1

∆βQ
(h)
T

(
θ, β̂T

)∥∥∥∥∥
2

WT

, (19)

for WT a positive-definite matrix, and where ‖x‖2
WT

= x′WTx. While GT only consider the case
H = ∞, the above definition is indeed the extension of GT proposed by GMR. In GMR, the
authors demonstrate that the estimator θ̂T,H described above is asymptotically equivalent to the
standard I-I estimator based on matching estimators of β, and which implicitly requires q ≥ p.

The GT estimator θ̂T,H can be equivalently viewed as the solution of

min
θ

∥∥∥∥∥∆βQT

(
β̂T

)
− 1

H

H∑
h=1

∆βQ
(h)
T

(
θ, β̂T

)∥∥∥∥∥
2

WT

.

Therefore, if the pseudo-likelihood QT (.) would coincide with the true likelihood LT (.), and β̂T
would not be subject to false equality constraints, the GT I-I estimator would exactly coincide
with our AML estimator. However, it is worth keeping in mind that our philosophy for AML
is precisely the opposite: we are explicitly concerned with cases where, by the nature of the
constraints we employ,

∆βQT

(
β̂T

)
6= 0.

A consequence of this difference in estimation philosophy is that GT underpin the accuracy
of the I-I estimator θ̂T,H by the asymptotic distribution of the auxiliary estimator β̂T . This point
of view can be seen via a Taylor expansion of the first-order conditions

∂

∂θ

[
1

H

H∑
h=1

∆βQ
(h)
T

(
θ̂T,H , β̂T

)′]
WT

√
T

H

H∑
h=1

∆βQ
(h)
T

(
θ̂T,H , β̂T

)
= 0.
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Using the notations in Assumptions A2 and A3, (and with abuse of notation as if LT = QT ),
we see that

oP (1) = J0
(
θ0, β0

)′
WT

√
T

H

H∑
h=1

∆βQ
(h)
T

(
θ0, β0

)
+J0

(
θ0, β0

)′
WTK

0
(
β0
)√

T
(
β̂T − β0

)
+ J0

(
θ0, β0

)′
WTJ

0
(
θ0, β0

)√
T
(
θ̂T,H − θ0

)
GMR (see the part of their Appendix 1 entitled “The Third Version of the Indirect Estimator”)
show that the above Taylor expansion allows us to view

√
T (θ̂T,H−θ0) as an asymptotically linear

function of the difference between β̂T and a similar estimator computed on simulated data. For
this reason, the asymptotic distribution of

√
T (θ̂T,H−θ0) is directly determined by the asymptotic

distribution of
√
T (β̂T − β0), which is in sharp contrast to the result of Proposition 1 for the

AML estimator.

2.5.2 Score Matching a la Calzolari, Fiorentini and Sentana (2004)

Consider that the false equality constraints under which AML is implemented can be written in
the implicit form

g (θ) = 0,

for some given function g : Θ→ Rdg , with dg < p. Recall that the log-likelihood function LT (θ)
is assumed to be tractable for the set of parameters satisfying this constraint. It is then possible
to estimate the parameters from the Lagrangian function

LT (β, λ) = LT (β) + g(β)′λ,

where λ ∈ Rdg is the vector of Lagrange multipliers. The estimator ζ̂T = (β̂′T , λ̂
′
T )′ can then be

defined from the first-order conditions

0 =
∂LT (β̂T , λ̂T )

∂β
= ∆βLT

(
β̂T

)
+
∂g(β̂T )′

∂β
λ̂T ,

0 = g(β̂T ).

From these conditions, Calzolari et al. (2004) argue that I-I score matching should be
corrected by the information contained in the Lagrange multipliers. In other words, they propose
that θ̂T,H solve

1

H

H∑
h=1

∆βL
(h)
T

(
θ̂T,H , β̂T

)
+
∂g(β̂T )′

∂β
λ̂T = 0, (20)

which is equivalent to solving

1

H

H∑
h=1

∆βL
(h)
T

(
θ̂T,H , β̂T

)
−∆βLT

(
β̂T

)
= 0,

and coincides with our AML estimator.3

3It is worth knowing that Calzolari et al. (2004) also contemplate the I-I estimator defined by (20) in the

case of inequality constraints on the auxiliary parameters, so that λ̂T is a vector of Kuhn-Tucker multipliers.
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Our claim is that, even when we have no such thing as Lagrange multipliers λ̂T to encapsulate
the information about the violation of constraints (information that should be added to the
information brought by the constrained estimators β̂T ), it still makes sense to imagine that the
full score vector accounts for this missing information. This will be confirmed by our general
analysis in the next subsections.

In addition, it is worth noting that even though our AML approach is similar to the I-I
estimators proposed in Calzolari et al. (2004), it stems from a completely different point of view.
We have defined an auxiliary model with parameter vector β as a version of the structural model
that has been simplified. In contrast to Calzolari et al. (2004), we never contemplate simplifying
the auxiliary model, which in their case has already chosen to be a simple approximation to the
structural model.

2.5.3 Indirect Inference a la Calvet and Czellar

The examples in Section 2.2 demonstrate that there are important cases where imposing a
simplifying constraint of the form θ = h(γ), γ ∈ Rd, d < p, results in an auxiliary model that is
a computationally feasible version of the structural model of interest. As explained in Calvet
and Czellar (2015): “Since [under the constraints] the auxiliary and structural models are then
closely related, the resulting indirect inference estimator is expected to have good accuracy
properties.”

Calvet and Czellar (2015) propose to use estimators of the auxiliary parameters based on the
observed data, say γ̂T , and the simulated data, say γ̃T (θ), to estimate the structural parameters.
However, while γ̂T and γ̃T (θ) can often be obtained relatively easily, it is important to realize
that these auxiliary parameters can not generally identify the structural parameters θ, except
in the unlikely case that the constraints {∃γ ∈ Γ, θ = h(γ)} are satisfied at θ0 (the true value of
the structural parameters).

To circumvent this identification issue, Calvet and Czellar (2015) propose to add additional
auxiliary statistics, with dimension at least as large as p − d, within the I-I procedure. Denote
these statistics based on observed data by η̂T and simulated data by η̃T (θ), then Calvet and
Czellar (2015) propose to estimate θ from the following program: for β̂T := (γ̂′T , η̂

′
T )′, β̃T (θ) :=

(γ̃T (θ)′, η̃T (θ)′)′, an estimator of θ0 can be obtained by

min
θ∈Θ

(
β̂T − β̃T (θ)

)′
W
(
β̂T − β̃T (θ)

)
, (21)

where W is a positive-definite weighting matrix of conformable dimension.
In a sense, the approach of Calvet and Czellar (2015) follows the idea of estimation under the

null that is commonly encountered in testing situations in econometrics; namely, we estimate
a simpler version of the model that is formed as a constrained version of the model we assume
has actually generated the data, and then we construct statistics about this simpler model to

In this case, the argument to consider the recentered score vector (20) instead of a score vector (19) a la Gallant
and Tauchen (1996) is not any more to correct for a misspecification bias but to hedge against possible non
asymptotic normality of estimators constrained by inequality restrictions. Then, it can be shown (see also
Frazier and Renault (2019) for a detailed asymptotic theory in case of parameters near the boundary of the
parameter space) that making the difference of the two score vectors as in (18) will restore asymptotic normality
even though each of them is not asymptotically normal, due to the fact that the inequality constrained estimator
β̂T is not asymptotically normal.
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determine whether or not the simpler model is appropriate to model the observed data. Several
remarks are in order.

First, it is important to keep in mind that for the minimization program (21), the simulated
data are obtained from the unconstrained structural model, meaning by considering possibly
any θ ∈ Θ and not only θ ∈ Θ0 = {θ ∈ Θ;∃γ ∈ Γ, θ = h(γ)}.

Second, since the Calvet and Czellar (2015) approach directly imposes the constraints in
explicit form within the structural model, they obtain what they consider as an “unconstrained”
auxiliary model. The result is that this approach will generate simple auxiliary estimators of
β. However, the downside is that since we have disregarded the impact of the constraints the
approach can not identify the entire vector of structural parameters without resorting to ad-hoc
statistics. While the addition of η̂T to the auxiliary estimators may result in a vector of statistics
that can identify θ0, the precise choice of η̂T in any given example is somewhat arbitrary and
likely sub-optimal.

Third, for sake of efficient inference, one should realize that, by definition, the estimator of
the simplified structural model (indexed by a lower dimensional parameter), while convenient,
overlooks relevant information. In the following section, we demonstrate that AML can, in
a sense, account for this information loss, and, thus, get close to the efficiency of maximum
likelihood estimation without giving up the convenient simplification of our structural model.

3 Asymptotic Distribution of AML Estimators

In this section, we describe the asymptotic distribution of the AML estimator θ̂T,H , which is the
solution, in θ, to

∆βLT (β̂T ) =
1

H

H∑
h=1

∆βL
(h)
T (θ, β̂T ),

where β̂T is a consistent estimator of a pseudo-true value β0 ∈ Θ0 ⊂ Θ. The asymptotic theory
of this estimator is not completely standard since, for each h = 1, ..., H, L

(h)
T (θ, β̂T ) is a sample

mean of T terms, each of them depending on β̂T , hence it is a double array. As explained in
Section 2, in particular the result of Proposition 1, we set the focus on situations where the
asymptotic distribution of the AML estimator θ̂T,H depends on the estimator β̂T , only through
its probability limit β0.

Therefore, to simplify the exposition, we first set the focus on the unfeasible AML (hereafter,
UAML) estimator θ̆T,H(β0), defined as the solution, in θ, to

∆βLT
(
β0
)

=
1

H

H∑
h=1

∆βL
(h)
T

(
θ, β0

)
.

Since ∆βLT (β0) is a pseudo-score, and may include components that can not be represented as

partial derivatives of LT (·), we follow van der Vaart (1998) (Chapter 5) and refer to θ̆T,H(β0) as
a Z-estimator of θ0. Moreover, it is worth recalling that we do not accommodate here the case
where one component of the structural parameter vector is an integer. The discussion of this
case could be achieved by extending the range of the integer parameter to the complete set of
non-negative real numbers, which is feasible by a piecewise linear extension.
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3.1 Consistency

For a given pseudo-true value β0, consistency of θ̆T,H(β0), for θ0, follows by applying Theorem
5.9 in van der Vaart (1998), which requires the following regularity condition.

Assumption B1 (Identification given β0): For any h = 1, ..., H, ∆βL
(h)
T (θ, β0) converges

in probability (as T → ∞), uniformly on θ ∈ Θ, towards a function M (θ, β0) such that, for
every ε > 0,

inf
θ∈Θ:d(θ,θ0)≥ε

∥∥M (
θ, β0

)
−M

(
θ0, β0

)∥∥ > 0.

From the i.i.d. nature of the simulation, and the definition of the simulated log-likelihood
L

(h)
T (θ, β0) in (17), it is not restrictive to assume that M (θ, β0) does not depend on h. Similarly,

∆βLT (β0) converges towards M (θ0, β0). Under Assumption B1, we can state the following
result.

Proposition 2: Under Assumption B1, the UAML estimator θ̆T,H(β0) is a consistent esti-

mator of the true unknown value θ0: plimT→∞ θ̆T,H(β0) = θ0. �

We now illustrate the identification condition Assumption B1 in two examples, and demon-
strate that this condition is similar to the identification condition required by ML. For the
purpose of these illustrations, we only consider that Assumption B1 enforces

M
(
θ, β0

)
−M

(
θ0, β0

)
6= 0,∀θ 6= θ0.

That is, we temporarily overlook the fact that the well-separated minimum of ‖M (θ, β0)−M (θ0, β0)‖
generally requires additional regularity, e.g., continuity of the function M(., β0) and compactness
of Θ.

Example: Well-specified Models

Assume that ∆βL
(h)
T (θ, β) is the score vector of a well-specified parametric model for which

β0 = θ0 is the true unknown value of the parameters, i.e.,

∆βL
(h)
T (θ, β) =

1

T

T∑
t=1

∂ log
[
l{ỹ(h)

t (θ)|{ỹ(h)
τ (θ)}1≤τ≤t−1, xt; β}

]
∂β

.

Under standard regularity conditions

M(θ, β) = Eθ

{
∂ log [l{yt|{yτ}1≤τ≤t−1, xt; β}]

∂β

}
,

where Eθ denotes expectation computed under the probability distribution of the process {yt}Tt=1

at the parameter value θ. The standard identification condition for maximum likelihood is then

M(θ, β) = 0⇐⇒ θ = β.

In particular,
M
(
θ, β0

)
−M

(
θ0, β0

)
6= 0, ∀θ 6= θ0 = β0.

In other words, the identification condition in Assumption B1 for the UAML is tantamount
to the identification condition for maximum likelihood. �

24



Example: Exponential Models

Assume that conditionally on {xt}Tt=1, the variables yt are independent, for t = 1, ..., T , and the
conditional distribution of yt only depends on the exogenous variable xt with the same index.
Further, assume that this distribution has a density l{yt |xt; θ} that is of the exponential form

l{yt |xt; θ} = exp [c (xt, θ) + h(yt, xt) + a(xt, θ)
′T (yt)] ,

where c(., .) and h(., .) are given functions and a(xt, θ) and T (yt) are r-dimensional random vec-
tors, all known up to the unknown θ0. The extension to dynamic models, in which conditioning
values would also include lagged values of the process yt, can also be considered at the cost of
additional notations. From

∂ log [l{yt |xt; θ}]
∂θ

=
∂c (xt, θ)

∂θ
+
∂a (xt, θ)

′

∂θ
T (yt)

since the conditional score vector has, by definition, a zero conditional expectation, we deduce
that

∂LT (θ)

∂θ
=

1

T

T∑
t=1

∂a′ (xt, θ)

∂θ
{T (yt)− Eθ[T (yt) |xt]} .

Following Theorem 1 in Gourieroux et al. (1987),

Eθ[T (yt) |xt] = m (xt, θ) , V arθ[T (yt) |xt] = Ω (xt, θ) ,

which implies that
∂a (xt, θ)

′

∂θ
=
∂m′ (xt, θ)

∂θ
Ω−1 (xt, θ) .

Therefore, the maximum likelihood estimator θ̂T is defined as the solution to

∂LT (θ)

∂θ
=

1

T

T∑
t=1

∂m′ (xt, θ)

∂θ
Ω−1 (xt, θ) {T (yt)−m (xt, θ)} = 0. (22)

The first-order conditions (22) show that maximum likelihood is the GMM estimator with op-
timal instruments for the conditional moment restrictions

Eθ[T (yt)−m (xt, θ) |xt] = 0.

Under the assumptions for standard asymptotic theory of efficient GMM (Hansen, 1982), i.e.,
for all θ ∈ Θ, the conditional variance Ω (xt, θ) of the moment conditions is non-singular and the
Jacobian matrix E[∂m′ (xt, θ) /∂θ |xt] is full row rank, the identification condition for consistency
of maximum likelihood is that

E

{
∂m′ (xt, θ)

∂θ
Ω−1 (xt, θ) {T (yt)−m (xt, θ)}

}
= 0 =⇒ θ = θ0.

We summarize the relationship between the ML identification above and the corresponding
version for UAML in the following result, the details of which can be found in Appendix C.
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Result 2 In the exponential model, the identification condition in Assumption B1 can be
restated as

E

{
∂m′ (xt, β

0)

∂θ
Ω−1

(
xt, β

0
) {
m (xt, θ)−m

(
xt, θ

0
)}}

=⇒ θ = θ0. (23)

Two cases are of primary interest to demonstrate that the identification condition for UAML is
tantamount to the ML identification condition.

Case 1: The model is a linear regression. For some known multivariate function κ(xt) of xt,

m (xt, θ) = κ (xt)
′ θ.

The identification condition (23) is then equivalent to

E
[
κ(xt)Ω

−1
(
xt, β

0
)
κ(xt)

′] (θ − θ0) = 0 =⇒ θ = θ0.

Moreover, if E [κ(xt)Ω
−1 (xt, β

0)κ(xt)
′] is full rank at β0 = θ0, it is full rank for any β0 ∈ Θ0.

Case 2: The model is unconditional. In this case, a necessary identification condition is given
by

Eθ[T (y1)] = Eθ0 [T (y1)] ⇐⇒ θ = θ0.

In this case, the AML identification condition (23) can be equivalently stated as

∂m′ (β0)

∂θ
Ω−1

(
β0
)
{Eθ [T (y1)]− Eθ0 [T (y1)]} =⇒ θ = θ0.

The matrix ∂m (β0)
′
/∂θ is full row rank, irrespective of the value of β0, so that if Ω(β0) is

non-singular for any β0 ∈ Θ0, the above identification condition is implied by the identification
condition Eθ[T (y1)] = Eθ0 [T (y1)] ⇐⇒ θ = θ0.

It is also possible to extend the above analysis to the case of latent exponential models. For the
sake of brevity, the details of this extension are given in Appendix C.2. �

We now return to the general case and address consistency of AML based on a first-step
consistent estimator of β0. For this purpose, we must slightly reinforce Assumption B1.

Assumption B1′: The estimator β̂T satisfies
√
T (β̂T − β0) = OP (1). Assumption B1 is

fulfilled, and, for any h = 1, ..., H and any real number γ > 0,

sup
θ∈Θ

sup
‖β̂T−β0‖≤ γ√

T

∥∥∥∆βL
(h)
T (θ, β̂T )−M

(
θ, β0

)∥∥∥ = oP (1).

Proposition 3: Under Assumption B1′:, the AML estimator θ̂T,H is a consistent estimator

of the true unknown value θ0: plimT→∞ θ̂T,H = θ0. �
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3.2 Asymptotic Normality and Efficiency

Asymptotic normality has already been demonstrated in Proposition 1; see Section 2.4. En-
suring the argument is rigorous only requires slightly reinforcing Assumption A3.

Assumption B2: For any h = 1, ..., H and any real number γ > 0,

sup
θ∈Θ

sup
‖β̂T−β0‖≤ γ√

T

∥∥∥∥∥∂∆βL
(h)
T (θ, β)

∂θ′
+ J0 (θ, β)

∥∥∥∥∥ = oP (1).

Proposition 4: Under Assumptions A1, A2, A3 and Assumptions B1′, B2, the AML
estimator θ̂T,H and the UAML estimator θ̆T,H(β0) are asymptotically normal with zero mean
and asymptotic variance

Ω(H) =

(
1 +

1

H

)[
J0
(
θ0, β0

)]−1 [
I0
(
θ0, β0

)] [
J0
(
θ0, β0

)]−1
.

�
A natural question to ask is how close is the asymptotic variance matrix Ω = limH→∞Ω(H)

to the Cramer-Rao efficiency bound. It is important to realize that efficiency loss can only occur
if β0 6= θ0 or if the pseudo score vector ∆βLT (θ0) is not the true score vector. More precisely,
we prove the following result in Appendix A.

Proposition 5: Under the assumptions of Proposition 4, if

∆βLT
(
θ0
)

=
1

T

T∑
t=2

∂ log
(
l{yt

∣∣(yτ )1≤τ≤t−1 , xt, z0, θ
0
})

∂θ
=

1

T

T∑
t=2

S{yt
∣∣(yτ )1≤τ≤t−1 , xt, z0, θ

0
}
,

and if H → ∞, then asymptotic variance of the UAML estimator, θ̆T,H(β0), (and that of the

AML estimator θ̂T,H) achieves the Cramer-Rao efficiency bound. �

However, it is important to note that even if ∆βLT (β0) =
∑T

t=2 S{yt
∣∣(yτ )1≤τ≤t−1 , xt, z0, β

0
}
/T ,

i.e., ∆βLT (β0) is accurately computed at the pseudo-true value β0, the matrix

I0
(
θ0, β0

)
= lim

T→∞
V ar

{√
T∆βLT

(
β0
)
− E

[√
T∆βLT

(
β0
) ∣∣ {xt}Tt=1

]}
will coincide with the Fisher Information Matrix only if

lim
T→∞

V ar
{
E
[√

T∆βLT
(
β0
) ∣∣∣{xt}Tt=1

)]}
= 0.

This property is unlikely to be fulfilled in the case of a conditional model when β0 6= θ0.
However, it is automatically fulfilled in a model that is not conditional. Moreover, it is possible
to analytically calculate the proximity between the asymptotic variances of AML and genuine
maximum likelihood in the, previously considered, case of exponential models.
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Example: Exponential Models, Continued

From the first-order conditions (22), the simulated pseudo-score can be stated as

∆βL
(h)
T (θ, β) =

1

T

T∑
t=1

∂m′ (xt, β)

∂θ
Ω−1 (xt, β)

{
T
[
ỹ

(h)
t (θ)

]
−m (xt, β)

}
.

Recalling the definition of the UAML estimator, we see that θ̆T (β0) := limH→∞ θ̆T,H(β0) is
defined as the solution, in θ, to

1

T

T∑
t=1

∂m′ (xt, β
0)

∂θ
Ω−1

(
xt, β

0
)
{T (yt)−m (xt, θ)} = 0,

where we recall that Eθ[T (yt)|xt] = m(xt, θ) = limH→∞
∑H

h=1 T [ỹ
(h)
t (θ)]/H.

Comparing the above equation with (22), the only reason why UAML may be less efficient
than ML is that the evaluation of the “optimal instruments” is carried out at a pseudo-true
value of the structural parameters (i.e., β0 6= θ0). It is worth revisiting the implications of this
in the two cases considered in Result 2.

Case 1: The model is a linear regression. For some known multivariate function κ(xt) of xt,

m (xt, θ) = κ (xt)
′ θ.

The equation defining the UAML estimator is then

1

T

T∑
t=1

κ (xt) Ω−1
(
xt, β

0
) {
T (yt)− κ (xt)

′ θ
}

= 0.

From the above, we see that the presence of conditional heteroskedasticity or cross-correlation,
of a parametric nature, can result in a loss of efficiency for UAML. However, if Ω (xt, β

0) = σ2Id,
UAML is asymptotically equivalent to maximum likelihood.

Case 2: The model is unconditional. The equation defining the UAML estimator is then given
by

∂m′ (β0)

∂θ
Ω−1

(
β0
) 1

T

T∑
t=1

{T (yt)−m (θ)} = 0.

In this case, the only possible loss of efficiency will occur if the moment conditions that identify

θ are overidentified, i.e., when r = dim(T ) ≥ p, so that the selection matrix
∂m′(β0)

∂θ
Ω−1 (β0) is

optimal only at β0 = θ0. An efficiency loss will then occur if, when evaluated at β0 6= θ0, the
vector space spanned by the rows of the selection matrix do not coincide with the space spanned
by the rows when β0 = θ0.

4 Examples

In this section, we apply AML to two of the examples considered in Section 2.2. First, we analyze
the repeated sampling behavior of AML in the confines of the generalized Tobit model, with a
pseudo-score computed under the false inequality constraint discussed in Section 2.2.3. Next,
we evaluate the performance of AML relative to ML in the MSM model, described in Section
2.2.4, and use AML to estimate the MSM model on daily S&P500 returns. The empirical results
suggest a large value of k for this data, which ensures ML can not be feasibly implemented.
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4.1 Example 1: Generalized Tobit Model

We illustrate the performance of AML in the generalized Tobit-type model via a Monte Carlo
study. We generate 1,000 replications from the structural model in equations (9)-(10) (jointly
with the logistic distribution specification for y∗2i, as in equation (11)) for two different samples
sizes T = 1000 and T = 10, 000. We fix the true parameter values at θ1 = (0.1, 0.2)′ = θ2 =
(0.1, 0.2)′, and θ3 = 1, and the scale parameter for the model is σ = 0.5. The explanatory
variables are given by xi = x̃i = (1, x1i)

′ with x1i generated i.i.d. from the uniform distribution
on [0, 1]. For AML, we take H = 10 simulated samples.

For each Monte Carlo replication, we calculate the constrained auxiliary estimators and the
AML estimator. We compare the resulting estimates graphically in Figures 1 and 2. For each of
the parameters, the left figure represents the auxiliary estimator over the replications, and the
right figure the AML estimator. The true parameter values are reported as horizontal lines.

The results demonstrate that while the restricted model is easy to estimate, it ultimately
provides biased estimators of the resulting parameters for θ1, θ2 and σ (as well as θ3, which is
fixed at a value of zero). In contrast, AML delivers point estimators that are well-centred over
the true values.

Table 1 compares the AML and auxiliary estimators across the two samples sizes in terms
of bias (Bias), mean squared error (MSE), and Monte Carlo coverage (COV).4 The results
demonstrate that AML delivers estimators with relatively small biases, and good Monte Carlo
coverage.

4Monte Carlo coverage is calculated as the average number of times, across the Monte Carlo trials, that θ0j ,

i.e., the true value of the j-th parameter, is contained in the univariate confidence interval θ̂ij ± σ̂j1.96, where σ̂j

is the standard deviation for the j-th parameter over the Monte Carlo replications and θ̂ij is the estimator of the
j-th parameter in the i-th Monte Carlo trial.
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Figure 1: Each boxplot reports the auxiliary (left boxplots) and AML (right boxplots) parameter
estimates for the generalized Tobit model at T = 1, 000 across the Monte Carlo replications.
The true parameter values are θ11 = 0.1, θ12 = 0.2, θ21 = 0.1, θ22 = 0.2, θ3 = 1, σ = 0.5 and are
reported as horizontal lines.
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Figure 2: Each boxplot reports the auxiliary (left boxplots) and AML (right boxplots) parameter
estimates for the generalized Tobit model at T = 10, 000 across the Monte Carlo replications.
The true parameter values are θ11 = 0.1, θ12 = 0.2, θ21 = 0.1, θ22 = 0.2, θ3 = 1, σ = 0.5 and are
reported as horizontal lines.
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θ11 θ12 θ21 θ22 θ3 σ

T = 1, 000

Auxiliary
Bias 0.1049 -0.0198 0.0946 0.1747 - -0.0139

MSE 0.0125 0.0046 0.0249 0.0815 - 0.0004
COV 0.2250 0.9380 0.8930 0.8810 - 0.8390

AML
Bias -0.0038 0.0010 0.0267 -0.0084 0.0218 0.0026

MSE 0.0039 0.0048 0.0218 0.0643 0.1945 0.0004
COV 0.9420 0.9500 0.9390 0.9480 0.9380 0.9490

T = 10, 000

Auxiliary
Bias 0.1062 -0.0206 0.0906 0.1740 - -0.0133

MSE 0.0114 0.0008 0.0099 0.0356 - 0.0002
COV 0.0000 0.8200 0.3850 0.3400 - 0.1630

AML
Bias 0.0008 -0.0003 0.0125 -0.0031 -0.0123 0.0012

MSE 0.0015 0.0005 0.0028 0.0097 0.1222 0.0001
COV 0.9450 0.9580 0.9450 0.9400 0.9330 0.9490

Table 1: Accuracy measures for auxiliary and AML parameter estimates of the generalized Tobit
model, across the sample sizes T = 1, 000 and T = 10, 000, and across the 1,000 Monte Carlo
replications. The true parameter values are θ11 = 0.1, θ12 = 0.2, θ21 = 0.1, θ22 = 0.2, θ3 = 1,
σ = 0.5.

4.2 Example 4: Markov-Switching Multifractal Model

In this sub-section, we explore the behavior of AML and, when feasible, compare AML and
ML. As discussed in Section 2.2.4, the structural parameters in the MSM model are θ = (ζ ′, k)′,
where the parameter ζ = (m0, γ̄, b, σ)′ govern the behavior of the individual volatility processes,
and where k denotes the (unknown) number of volatility components. The likelihood of the
MSM model, LT (ζ, k), is given in equation (12), and can be optimized so long as small values of
k are considered. Indeed, for fixed ζ, computation of the likelihood is only feasible for values of
k that are not too large: a single evaluation of the log-likelihood for a sample of size T requires
O(22kT ) computations, and ML estimation becomes infeasible if the true value of k is large.

However, under the constraint k = 2, the likelihood LT (ζ, k) requires only O(24T ) computa-
tions. This suggest the following constrained estimator for the purpose of AML:5

β̂T = arg max
β∈Θ

LT (ζ, k), s.t k = 2. (24)

The likelihood LT (ζ, k) is not differentiable in k, since k ∈ {1, 2, . . . , }, and so for the k compo-
nent of the AML pseudo-score we use the difference approximation LT (ζ, 3) − LT (ζ, 2), which
yields

∆βLT (ζ, 2) =

(
∂LT (ζ, 2)

∂ζ ′
, LT (ζ, 3)− LT (ζ, 2)

)′
. (25)

5The more computationally convenient constraint k = 1 can not be readily used as the parameter b vanishes
from the log-likelihood function when k = 1.
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where we note that ∂LT (ζ, 2)/∂ζ ′ can be reliably obtained using numerical differentiation.
To implement AML in this example, we consider H i.i.d. simulated samples, from the MSM

model. From these simulated samples, the AML estimator is obtained by minimizing, in the Eu-
clidean norm, the difference between the average simulated pseudo-score

∑H
h=1 ∆βL

(h)
T (θ, β̂T )/H

and ∆βLT (β̂T ).

Monte Carlo

We first consider data generated from the MSM model with µ = 0 and a relatively small value of
k so that ML is computationally feasible. This allows us to compare AML and ML, and directly
assess the efficiency loss of AML relative to ML. To this end, we generate 1,000 synthetic data
sets from the MSM model in Section 2.2.4 with T = 5, 000 observations, and where the parameter
values are set as follows: m0 = 1.5, γ = 0.2, b = 4, σ = 0.01 and k = 4.

Numerical implementation of AML and ML require optimization over the integer parameter
space for k, while optimization for the ζ components can proceed via standard approaches.
For both approaches, optimization over the ζ components is carried out using a quasi-Newton
approach, with finite-differences used to estimate the derivatives. For the k components, the
likelihood is optimized across the grid {1, . . . , 7}, while AML considers a much larger grid of
values.6

The ability of AML to consider large values for k is possible because the computational cost
required to evaluate the AML criterion function does not increase with k, and requires O(HT )
computations for any value of k. In this Monte Carlo exercise, AML is implemented using
H = 100 pseudo-samples, as the large value of H smooths the criterion function and increases
the accuracy of numerical differentiation methods.7

Figure 3 displays the results of this Monte Carlo experiment. For each sub-figure, the left
plot contains the ML estimator and the right plot contains the associated AML estimator. The
true parameter values are reported as horizontal lines. AML provides estimators that are well-
centred over the true value of the structural parameters with, as expected, a larger variance than
the ML estimator in some cases.

Table 2 compares the bias (Bias), mean squared error (MSE) and Monte Carlo coverage
(COV) of the estimators. In addition, for each replication we calculate the efficiency loss of AML
with respect to ML via the average relative standard error, denoted by SE(ML)/SE(AML) in
Table 2. Using this measure, numbers below unity suggest that, on average, the ML estimator is
more efficient than the AML estimator. The results in Table 2 suggest that the two estimators
are comparable in terms of bias and MSE for m0, γ̄ and b, with ML yielding more accurate
estimators for k and σ. Analyzing the efficiency of the two estimators, we see that, according
to the SE(ML)/SE(AML) measure, AML is nearly as efficient as ML for m0, γ̄ and b, but less
so for σ and k. The later is not entirely unexpected as imposing the invalid restriction k = 2
within the pseudo-score should lead to some efficiency loss (with respect to ML). However, this
example also demonstrates that imposing this restriction only leads to a minor loss in accuracy
for estimating m0, γ̄ and b.

6Technically, we implement AML by extending the grid of values over which k is optimized to the entire real
line. This is done by considering a piecewise linear extension of the pseudo-score for the k component, and by
taking the closest integer to the resulting optimized value.

7An alternative to the finite-differences considered herein would be to use the simulation-based differentiation
approach in Frazier et al. (2019).
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m0 γ b σ k

ML
Bias -0.0014244 0.0134517 0.1367587 0.0000088 -0.0120000

MSE 0.0004834 0.0121796 1.0688123 0.0000003 0.0900000
COV 0.9380000 0.9520000 0.9560000 0.9490000 0.9130000

AML
Bias -0.0036913 0.0280103 0.0653309 0.0002228 -0.0878051

MSE 0.0005691 0.0142423 0.9924541 0.0000009 0.1727888
COV 0.9510000 0.9430000 0.9440000 0.9310000 0.9150000

SE(ML)/SE(AML) 0.9309007 0.9442337 1.0308558 0.5860551 0.7377811

Table 2: Accuracy measures for ML and AML parameter estimates of the MSM for T = 5, 000,
and across the 1,000 Monte Carlo replications. The true parameter values are m0 = 1.5, γ = 0.4,
b = 5, σ = 0.01 and k = 4. In ML estimation, k only takes values in {1, . . . , 7}.
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Figure 3: Each boxplot reports the ML (left boxplots) and AML (right boxplots) parameter
estimates for the MSM model with sample size T = 5, 000 across the Monte Carlo replications.
The true parameter values are m0 = 1.5, γ = 0.4, b = 5, σ = 0.01 and k = 4 and are reported
as horizontal lines.

While ML has an edge in terms of accuracy, due to computational cost, ML is infeasible if the
true value of k is large. To illustrate this point, we compare the time, in log10 seconds, required
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to evaluate the log-likelihood function and the AML criterion function for various values of k
and for a sample size of T = 5, 000. Programs were implemented in C and computation was
performed on an Intel(R) Xeon(R) CPU E7-4830 v3 @ 2.10GHz. For each k = 6, 7, . . . , 21,
we evaluate twenty Monte Carlo replications and report the mean computation time for the
AML criterion function based on H = 100 simulated samples. We repeat the same exercises
for the log-likelihood function and for k = 6, 7, . . . , 14, with linear extrapolation used for values
of k ≥ 15. Figure 4 compares the mean computation times. For k small, evaluation of the
likelihood is faster than the AML criterion, given the large number of simulated paths used in
the AML criterion. However, when k becomes even moderately large, AML is clearly superior
in terms of computational cost. For values of k > 9, AML is particularly attractive in terms of
computation time. At a value of k = 21, a single evaluation of the log-likelihood would require
5459.2 days (approximately 15 years), whereas an evaluation of the AML criterion only requires
1.45 seconds.

Figure 4: Computation times, in log10 seconds, of the likelihood function (continuous line) and
AML criterion function (dash-dotted line) using H = 100. The averages presented are taken
over twenty data sets simulated from the MSM model with T = 5, 000, m0 = 1.5, γ = 0.2, b = 4,
σ = 0.01 and k = 6, 7, . . . , 21. Small dotted line indicates extrapolated computation time for
ML estimation for k ≥ 15.

We now assess the performance of AML for a large value of k. We choose k = 18 and
other parameter values that resulted from the empirical example conducted later (see Table 4
in the following subsection). Figure 5 displays the estimation results over 1,000 Monte Carlo
replications from the DGP associated with T = 23, 202 (as in the empirical dataset in the
following subsection), and where the parameter values are m0 = 1.2708, γ = 0.1215, b =
1.5663, σ = 0.0149 and k = 18. For each sample, we calculate the constrained estimator and
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AML estimator using H = 100 pseudo-samples. For each sub-figure, the left plot contains the
constrained auxiliary estimates and the right plot contains the associated AML estimator. The
true parameter values are reported with horizontal lines. While the restricted model is easy to
estimate, it provides estimators that are significantly biased for all parameters except σ. AML
corrects the resulting bias for all structural parameters and delivers estimators that are, on
average, centred over the true values. Analyzing the other accuracy measures given in Table 3,
we see that AML generally yields estimators with low bias and Monte Carlo coverage close to
the nominal level.

Figure 5: Each boxplot reports the auxiliary (left boxplots) and AML (right boxplots) parameter
estimates for the MSM model with sample size T = 23, 202 across the Monte Carlo replications.
The true parameter values are m0 = 1.2708, γ = 0.1215, b = 1.5663, σ = 0.0149 and k = 18 and
reported with horizontal lines.
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m0 γ b σ k

Auxiliary
Bias 0.363348 -0.061777 12.002244 0.000943 -

MSE 0.133257 0.003867 174.209123 0.000014 -
COV 0.000000 0.000000 0.480000 0.939000 -

AML
Bias -0.001502 0.012439 0.025719 0.000033 -1.558178

MSE 0.000303 0.002176 0.022416 0.000009 11.391885
COV 0.936000 0.955000 0.937000 0.945000 0.897000

Table 3: Accuracy measures for auxiliary and AML estimator parameter estimates of the MSM
model with T = 23, 202, and across the 1,000 Monte Carlo replications. True parameter values
are m0 = 1.2708, γ = 0.1215, b = 1.5663, σ = 0.0149 and k = 18.

Application: S&P500 Returns

We now estimate the Binomial MSM model (with µ = 0) on demeaned daily S&P500 (simple)
returns between January 3, 1928 and May 15, 20208. The sample size is T = 23, 202. The
data are plotted in Figure 6. Using this data, Table 4 compares the AML estimators with those
obtained from maximum likelihood for fixed values of k ranging from k = 1 up to k = 10. The
estimated value of k obtained by AML is far larger than the feasible value associated with ML.
Moreover, except for m0, the remaining estimated parameters are also significantly different,
with the estimated values of γ̄ and b being markedly different across the two approaches. The
standard errors for ML are calculated using the asymptotic formula, while those for AML are
calculated using a parametric bootstrap based and 1,000 simulated data sets from the assumed
DGP.

In order to compare the goodness-of-fit of the eleven models enumerated in Table 4, for each
model we provide one-day-ahead forecasts at each in-sample date t = 1, . . . , T using a particle
filter of size N = 106. For a given model, at each date t, the particle filter provides N simulated
values from the approximate distribution of rt|{r1, . . . , rt−1}:

r
(1)
t , . . . , r

(N)
t .

At each date t = 1, . . . , T , we calculate the α = 1% and α = 5% value-at-risk forecasts defined
by

VaRα,t = −qα(r
(1)
t , . . . , r

(N)
t ) ,

where qα(·) indicates the α-th sample quantile, and report the failure rate of VaRα,t:

pα =
1

T

T∑
t=1

1rt<(−VaRα,t) .

The closer pα is to α, the better the forecasts. The left panel of Table 6 reports pα for α = 0.01
and α = 0.05 for each model specification along with asymptotic standard errors in parentheses.
AML provides the only model specification for which both failure rates are not significantly

8Downloaded from finance.yahoo.com on May 15, 2020.
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different from their nominal levels. In addition, we also assess the accuracy of the α = 5%
expected shortfall forecasts:

ESα,t =
N∑
i=1

r
(i)
t 1

r
(i)
t <(−VaRtα)

/ N∑
i=1

1
r
(i)
t <(−VaRtα)

.

To this end, we collect the empirical returns satisfying rt|rt < −Var
(k=10)
0.05,t , under the model with

k = 10, and for each value of k in Table 4, we regress these returns on ESα,t, calculated under
the corresponding value of k in Table 4. Regression intercepts, slopes, R2 values and p-values of
the Wald test associated with the joint hypothesis (intercept, slope)′ = (0, 1) are reported in the
right panel of Table 6. The k = 18 specification provides the best expected shortfall forecasts,
as measured by the magnitude of the corresponding p-values.

Figure 6: Daily S&P500 returns between January 3, 1928 and May 15, 2020.
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k m0 γ b σ Log-like.

ML

1 1.8168
(0.0040)

0.0269
(0.0062)

- 0.0164
(0.0002)

75476.07

2 1.6654
(0.0040)

0.0593
(0.0062)

14.6239
(1.1063)

0.0157
(0.0002)

76409.45

3 1.5890
(0.0040)

0.0922
(0.0062)

9.0988
(1.1063)

0.0161
(0.0002)

76779.51

4 1.5199
(0.0052)

0.1149
(0.0861)

5.3760
(0.3414)

0.0151
(0.0003)

76874.11

5 1.4745
(0.0052)

0.1461
(0.0861)

4.6768
(0.3414)

0.0161
(0.0003)

76940.79

6 1.4517
(0.0052)

0.9441
(0.0861)

6.5357
(0.3414)

0.0152
(0.0003)

76978.39

7 1.4291
(0.0055)

0.9999
(0.0929)

5.5954
(0.2772)

0.0132
(0.0002)

76994.82

8 1.3882
(0.0060)

1.0000
(0.1093)

3.9099
(0.1854)

0.0128
(0.0003)

77001.80

9 1.3568
(0.0062)

1.0000
(0.1224)

3.1657
(0.1427)

0.0137
(0.0005)

77006.94

10 1.3383
(0.0067)

1.0000
(0.1305)

2.8090
(0.1328)

0.0130
(0.0006)

77009.94

AML 18
(2.9955)

1.2708
(0.0173)

0.1215
(0.0450)

1.5663
(0.1476)

0.0149
(0.0030)

-

Table 4: The table reports the ML estimator (ML) and AML estimator (AML) of the demeaned
empirical S&P500 returns (left panel). Asymptotic standard errors for the ML estimator are
reported in parentheses below each value. The AML standard errors are obtained using a
parametric bootstrap based on 1,000 simulated samples (of length T = 23, 202) generated from
the MSM model at the AML point estimates.

39



Table 5: Goodness-of-fit comparisons of AML and ML with various k.

VaR failure rates ES0.05 regressions

k p0.05 p0.01 Intercept Slope R2 Wald

ML

1 0.0427
(0.0013)

0.0081
(0.0006)

0.0007
(0.0008)

0.9112
(0.0277)

0.4771 3 · 10−19

2 0.0463
(0.0014)

0.0082
(0.0006)

0.0024
(0.0007)

1.0322
(0.0244)

0.6015 5 · 10−7

3 0.0463
(0.0014)

0.0082
(0.0006)

0.0009
(0.0006)

0.9947
(0.0220)

0.6331 0.0013

4 0.0486
(0.0014)

0.0082
(0.0006)

0.0005
(0.0006)

0.9975
(0.0216)

0.6420 0.1256

5 0.0479
(0.0014)

0.0085
(0.0006)

−0.0003
(0.0006)

0.9622
(0.0209)

0.6420 0.0151

6 0.0461
(0.0014)

0.0075
(0.0006)

0.0004
(0.0006)

0.9666
(0.0222)

0.6149 7 · 10−5

7 0.0477
(0.0014)

0.0078
(0.0006)

0.0006
(0.0006)

0.9873
(0.0228)

0.6127 0.0115

8 0.0489
(0.0014)

0.0080
(0.0006)

0.0008
(0.0006)

1.0071
(0.0228)

0.6215 0.0741

9 0.0486
(0.0014)

0.0081
(0.0006)

0.0005
(0.0006)

0.9944
(0.0224)

0.6236 0.0725

10 0.0488
(0.0014)

0.0082
(0.0006)

0.0006
(0.0006)

1.0054
(0.0225)

0.6271 0.1981

AML 18 0.0522
(0.0015)

0.0106
(0.0007)

−0.0005
(0.0006)

1.0010
(0.0217)

0.6412 0.2022

Table 6: The table reports accuracies of the 1% and 5% value-at-risk (left panel) and 5% expected
shortfall forecasts (right panel) using a particle filter with 106 particles. In the left panel, failure
rates of the 1% and 5% value-at-risk are reported with asymptotic standard errors in parentheses.

In the right panel, for each k, the empirical returns satisfying {rt|rt < −VaR
(k=10)
0.05,t } are regressed

on {ESk0.05,t|rt < −VaR
(k)
0.05,t}, where VaR

(k)
0.05,t corresponds to the 5% value-at-risk at date t

forecasted with k and ES
(k)
0.05,t corresponds to the 5% expected shortfall at date t forecasted with

k. For each regression, the intercepts and slopes are reported with standard errors in parentheses
along with the R2 values and the p-values of the Wald test H0 : (intercept, slope) = (0, 1).

5 Conclusion

In this paper, we provide an alternative to indirect inference (hereafter, I-I) estimation that
simultaneously allows us to circumvent the intractability of maximum likelihood estimation (as
with standard I-I), but which, in contrast to naive I-I, respects the goal of obtaining asymptot-
ically efficient inference in the context of a fully parametric model. Although close in spirit to
I-I, the approximate maximum likelihood (hereafter, AML) method developed in this paper does
not belong to the realm of I-I for two reasons: First, the asymptotic distribution of the AML
estimator only depends on the probability limit of the estimated auxiliary parameters and not
on its asymptotic distribution. Second, while the AML estimator is obtained by matching two
sample moments, one computed on observed data, and one computed on simulated data, both
sample moments depend on the observed data through the value of the preliminary estimator
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of the auxiliary parameters. Interestingly, the sampling uncertainty carried by this preliminary
estimator has no impact on the asymptotic distribution of the AML estimator because it is
erased through the matching procedure.

The message of our paper is threefold. First, we demonstrate that the idea of matching
proxies of the score for the structural model seems productive to reach near efficiency for inference
on the structural parameters. We show theoretically that, at least for exponential models or
transformation of them, the efficiency loss should be manageable since it is mainly due to the
effect of a misspecification bias created by our simplification of the structural model.

Second, there are many non-linear time series models, which are popular in financial econo-
metrics and dynamic/nonlinear microeconometrics, where a natural simplification of the struc-
tural model yields a convenient proxy for the score of the structural model. Since the misspec-
ification bias created by this simplification is only due to imposing some possible false equality
constraints, or to numerical approximations for certain elements of the gradient vector, one may
reasonably hope that the resulting efficiency loss is minimal. While our general results (and theo-
retical examples) suggest that this finding is valid in many examples, including dynamic discrete
choice and stochastic volatility models, we provide numerical evidence in three specific examples:
generalized Tobit, Markov-switching multifractal models and stable distributions. The numer-
ical results largely confirm our intuitions. Our method can alleviate the computational cost of
maximum likelihood associated with complex models, at the cost of a limited loss in efficiency.
Moreover, we confirm that even in finite-samples, the Wald confidence intervals associated to
AML estimators display excellent coverage, since, thanks to matching the misspecification bias,
the preliminary estimators have no impact on the central tendency of the AML estimator.

A third and even more general message is that the matching principle put forward by I-I
estimation can be extended to situations where the two empirical moments to match, one based
on observed data, one based on simulated data may both depend on the observed data through a
convenient summary of them. While we have used this idea to aim for (nearly) efficient inference,
Gospodinov, et al., (2017) employ a similar approach to hedge against misspecification bias due
to the use of a misspecified simulator. Even though they have not derived the asymptotic
distribution theory in their case, the two methods are essentially similar and could be nested
within a general asymptotic theory where both the moments to match and the simulator depend
on observed data.
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A Proofs of Main Results

A.1 Proof of Proposition 1

With standard abuse of notation, a Taylor expansion gives:

√
T∆βLT

(
β̂T

)
=
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β0
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where β̃T and β̃
(h)
T (θ), h = 1, ..., H are all in the interval

[
β0, β̂T

]
.Hence:
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]
with, thanks to assumptions A1 and A2, and the fact that√
T
[
β̂T − β0

]
= OP (1) implies that our AML estimator is such that:
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Under assumption A3, an additional Taylor expansion gives
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where θ̃

(h)
T , h = 1, ..., H are all in the interval

[
θ0, θ̂T

]
.Hence:
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We know from Gourieroux, Monfort and Renault (1993) (see their proposition 3 and its
proof) that:{
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which completes the proof of Proposition 1. �

A.2 Proof of Proposition 5

By virtue of Proposition 4, we only need to prove that the asymptotic variance Ω(H) of the

UAML estimator θ̆T,H(θ0) coincides with the Cramer-Rao efficiency bound when H →∞. When

H →∞, this estimator, denoted θ̆T , can be seen as the solution in θ of the system of equations:

∆βLT
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θ0
)

= Eθ[∆βLT
(
θ0
)
| {xt}Tt=1].

If we define
mT (β, θ) = ∆βLT (β)− Eθ[∆βLT (β)

∣∣ {xt}Tt=1],

we have, by definition,
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Recall the definition of ∆βLT (θ0),
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and note that, by virtue of (26),
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converges in distribution to a ℵ (0, I0) random variable, where I0 = I0 (θ0, θ0) is the Fisher
information matrix.

Moreover,
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and we have
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where ν denotes some dominating measure. Thus,
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B GARCH-like Stochastic Volatility Models: Pseudo-

Score

In this section, we give the necessary details required to obtain Result 1 in Section 2.3.
To this end, we first compute the latent score, and then use this to interpret the score in

terms of generalized residuals, it is worth computing the latent score. We first decompose the
latent log-likelihood as follows:

L∗T (ζ, 0) = L∗1,T (µ, ω, α) + L∗2,T ($) ,
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)
.

Computations very similar to the case of Gaussian QMLE of ARCH models give:
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where f ′χ is the derivative of the probability density function fχ. Note that for sake of non-
negativity of variance, we expect the probability distribution of χt to have a lower bounded
support, like for instance a demeaned log-normal distribution. However, it is a reasonable
hypothesis to see χt as a Gaussian variable if we consider that the correction term is small
enough such that a Gaussian approximation is accurate enough. We would then get a proxy of
the latent score by:
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The message from (16) is that we will go from latent score vector to observable one by
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replacing all functions of latent volatility by its optimal filter. Let us define these filters:[
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We recall that we denote these pseudo-score components with notation L̃ to stress that
they are only approximations. They have been computed with filtering formulas (27) that
are only approximations since doing as if ρ = 0. The filtered values (27) allow us to compute
”generalized residuals” similar to the one computed in the dynamic Probit example. However,
by contrast with this example, we do not have in general closed form formulas for these filters.
Any filtering strategy may be worth applying in this context. At least, a very simple one is to
use the ARCH(1) approximation as a convenient filter, meaning that we replace in all filtering
formulas , the latent quantity σ2

t by the observed one σ̂2
t (erasing then the conditional expectation

operator) that comes from fitting an ARCH(1) model to our data set {rt+1}Tt=1.
We now address the computation of the partial derivative ∂L̃T (ζ, 0) /∂ρ of the observed

log-likelihood with respect to the parameter ρ.
Using the definition of the latent likelihood, see Section 2.2.2, we can write:
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Then,
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With an innovation process χt that is a standard Gaussian, this leads (by computing the deriva-
tive of the product as a sum of products with one term differentiated in each) to:

lT (ζ, 0)
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(28)
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where γη,T is the sample autocovariance of order 1 of the latent process

γη,T =
1
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T∑
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ηtηt−1.

We note that
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so that (28) gives
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]
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Again, the computation of the observed score component is germane to the computation of
generalized residuals. However, it is worth noting that (29) is a smoothing formula instead of a
filtering formula. The pseudo-score ∂L̃T (ζ, 0) /∂ρ can then be based on the approximation

1

$2

1

T

T∑
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(
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t
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)
.

C Details for Examples in Section 3

In this section, we give the details required to obtain Result 2 in Section 3. In addition, we also
extend this example to consider latent exponential models.

C.1 Example: Exponential Models

For the sake of exposition, we assume that conditionally on {xt}Tt=1, the variables yt, t = 1, ..., T
are independent and the conditional distribution of yt only depends on the exogenous variable xt
with the same index. This distribution has a density l{yt |xt; θ} that is assumed to be exponential:

l{yt |xt; θ} = exp [c (xt, θ) + h(yt, xt) + a′(xt, θ)T (yt)]

where c(., .) and h(., .) are given numerical functions and a(xt, θ) and T (yt) are r-dimensional
random vectors. Note that the extension to dynamic models in which conditioning values would
also include some lagged values of the process yt would be easy to devise. From:

∂ log [l{yt |xt; θ}]
∂θ

=
∂c (xt, θ)

∂θ
+
∂a′ (xt, θ)

∂θ
T (yt)
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we deduce, since the conditional score vector has by definition a zero conditional expectation,
that:

∂LT (θ)

∂θ
=

1

T

T∑
t=1

∂a′ (xt, θ)

∂θ
{T (yt)− Eθ[T (yt) |xt]}

Following Theorem 1 in Gourieroux et al. (1987),

Eθ[T (yt) |xt] = m (xt, θ) , V arθ[T (yt) |xt] = Ω (xt, θ)
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∂θ
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Therefore, the maximum likelihood estimator θ̂T is defined as solution of:
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∂θ
Ω−1 (xt, θ) {T (yt)−m (xt, θ)} = 0 (30)

We actually generalize the remark of van der Vaart (1998), Section 4.2., noting that ”the
maximum likelihood estimators are moment estimators” based on the (conditional) expectation
of the sufficient statistic T (y). The first-order conditions (30) show that maximum likelihood is
the GMM estimator with optimal instruments for the conditional moment restrictions:

Eθ[T (yt)−m (xt, θ) |xt] = 0.

Note that we implicitly maintain the assumptions for standard asymptotic theory of efficient
GMM (Hansen, 1982): for all θ ∈ Θ, the conditional variance Ω (xt, θ) of the moment conditions
is non-singular and the Jacobian matrix E[∂m′ (xt, θ) /∂θ |xt] is full row rank.

The identification condition for consistency of maximum likelihood is then that:

E

{
∂m′ (xt, θ)

∂θ
Ω−1 (xt, θ) {T (yt)−m (xt, θ)}

}
= 0 =⇒ θ = θ0.

In terms of GMM, it means that optimal instruments are assumed to identify the true
unknown value θ0 of the parameter vector θ, by contrast with cases put forward by Dominguez
and Lobato (2004). By the Law of Iterated Expectations, this can be rewritten:
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or equivalently (by symmetry):
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By extension of (30), we have:
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Hence:
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By the Law of Iterated Expectations:
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,

so that the identification Assumption B1 amounts to:

E

{
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m (xt, θ)−m

(
xt, θ

0
)}}

=⇒ θ = θ0. (33)

When β0 = θ0, we are back to the well-specified example and (33) is obviously identical to
the identification condition (31) for consistency of maximum likelihood.

Moreover, the identification assumption (33) for consistency of the UAML estimator θ̆T,H(β0)
is clearly likely implied by the standard condition (31) for consistency of maximum likelihood,
at least in two particular cases:

1st case: The model is a linear regression model w.r.t. some known multivariate function
κ(xt) of xt:

m (xt, θ) = κ′ (xt) θ.

In this case, the identification condition (33) is akin to:

E
[
κ(xt)Ω

−1
(
xt, β

0
)
κ′(xt)

]
(θ − θ0) = 0 =⇒ θ = θ0.

Obviously, when the matrix:

E
[
κ(xt)Ω

−1
(
xt, β

0
)
κ′(xt)

]
is positive definite for β0 = θ0, it is positive definite for any possible value of β0.

2nd case: The model is not conditional. In this case, a necessary condition for identification
condition is:

Eθ {T (y1)} = Eθ0 {T (y1)} ⇐⇒ θ = θ0. (34)

This is basically the case considered by van der Vaart (1998) when noting that ”the max-
imum likelihood estimators are moment estimators” based on the expectation of the sufficient
statistic T (y). This identification condition should be maintained when picking p linear indepen-
dent equations out of possibly overidentified equations (34). More precisely, the identification
condition for UAML, written as:

∂m′ (β0)

∂θ
Ω−1

(
β0
)
{Eθ {T (y1)} − Eθ0 {T (y1)}} =⇒ θ = θ0

should generically be implied by (34), since, irrespective of the value of β0, the matrix
∂m′ (β0) /∂θ is full row rank.

More generally, one may expect that the identification condition (33), when fulfilled for
β0 = θ0, should be more often than not fulfilled for any value of β0.
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C.2 Example: Latent Exponential Model

We now extend the exponential model example to incorporate a sequence of latent variables
{y∗t }

T
t=1, such that, conditionally on {xt}Tt=1, the variables y∗t are independent, for all t = 1, . . . , T ,

and the conditional distribution of y∗t only depends on the exogenous variable xt with the same
index. This distribution has a density l{y∗t |xt; θ}, with respect to the dominating measure
ν(dy∗t ), that is assumed to be exponential:

l{y∗t |xt; θ} = exp [c (xt, θ) + h(y∗t , xt) + a′(xt, θ)T (y∗t )]

Let g be a known vector function that defines the observed endogenous variable yt as:

yt = g (y∗t , xt) .

Then, conditionally on {xt}Tt=1, the variables yt, t = 1, ..., T are independent and the conditional
distribution of yt only depends on the exogenous variables xt with the same index. This con-
ditional distribution has a density l{yt |xt; θ}, with respect to the measure νg(dy), which is the
transformation of the original measure ν(dy∗t ) by g, and where we recall that ν(dy∗t ) was the
dominating measure used to define the latent density l{y∗t |xt; θ}. The observable log-likelihood
can then be stated as

LT (θ) =
1

T

T∑
t=1

log [l{yt |xt; θ}] .

In general, the observable density is not of an exponential form, see Gourieroux et al. (1987)
for the particular case where yt = g (y∗t ) and for examples of Probit, bivariate Probit, Tobit,
generalized Tobit, disequilibrium and Gompit models. As already mentioned in Section 2.3,
Gourieroux et al. (1987), extending a result of Louis (1982), give a method to compute the
observable score as a conditional expectation of the latent score

∂LT (θ)

∂θ
=

1

T

T∑
t=1

Eθ

[
∂ log [l{y∗t |xt; θ}]

∂θ
|yt, xt]

]
.

Then, by applying (30) we get

∂LT (θ)

∂θ
=

1

T

T∑
t=1

∂m′ (xt, θ)

∂θ
Ω−1 (xt, θ) {Eθ[T (y∗t ) |yt, xt]−m (xt, θ)} . (35)

As exemplified by Gourieroux et al. (1987) for many limited dependent variable models, we
can define and compute a generalized error as:

u (yt, xt, θ) = T̃ (yt, xt, θ)−m (xt, θ)

T̃ (yt, xt, θ) = Eθ[T (y∗t ) |yt, xt] .

Then, the maximum likelihood estimator θ̂T is defined as solution of

∂LT (θ)

∂θ
=

1

T

T∑
t=1

∂m′ (xt, θ)

∂θ
Ω−1 (xt, θ)u (yt, xt, θ) = 0. (36)
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Hence, the identification condition for consistency of maximum likelihood can be written:

E

[
∂m′ (xt, θ)

∂θ
Ω−1 (xt, θ)u (yt, xt, θ)

]
= 0⇐⇒ θ = θ0. (37)

We also note that MLE is not any more a moment estimator with optimal instruments
(confirming that the model is not exponential any more) since:

V ar[u
(
yt, xt, θ

0
)
|xt] = V ar [Eθ0 [T (y∗t ) |yt, xt] |xt]] 6= Ω

(
xt, θ

0
)

= V ar[T (y∗t ) |xt] .

More generally, by extension of (36) we have:

∆βL
(h)
T (θ, β) =

1

T

T∑
t=1

∂m′ (xt, β)

∂θ
Ω−1 (xt, β)u

[
ỹ

(h)
t (θ) , xt, β

]
.

Hence,

M
(
θ, β0

)
= E

{
∂m′ (xt, β

0)

∂θ
Ω−1

(
xt, β

0
)
u
[
ỹ

(h)
t (θ) , xt, β

0
]}

.

so that

M
(
θ, β0

)
−M

(
θ0, β0

)
= E

{
∂m′ (xt, β

0)

∂θ
Ω−1

(
xt, β

0
) [
u
[
ỹ

(h)
t (θ) , xt, β

0
]
− u

[
ỹ

(h)
t

(
θ0
)
, xt, β

0
]]
.

}
When β0 = θ0, we are back to the well-specified example and we note that by definition:

E{u
[
ỹ

(h)
t

(
θ0
)
, xt, θ

0
]
|xt} = 0 =⇒ ∀h

E
{
h(xt)u

[
ỹ

(h)
t

(
θ0
)
, xt, θ

0
]}

= 0 =⇒

M
(
θ, β0

)
−M

(
θ0, β0

)
= E

{
∂m′ (xt, θ

0)

∂θ
Ω−1

(
xt, θ

0
)
u
[
ỹ

(h)
t (θ) , xt, θ

0
]}

= 0.

so that the identification condition

M
(
θ, β0

)
−M

(
θ0, β0

)
⇐⇒ θ = θ0,

can be written

E

{
∂m′ (xt, θ

0)

∂θ
Ω−1

(
xt, θ

0
)
u
[
ỹ

(h)
t (θ) , xt, θ

0
]}

= 0⇐⇒ θ = θ0. (38)

By commuting the roles of θ and θ0, this is clearly tantamount to the identification condition
(37) for maximum likelihood. In the general case, the identification condition B1(β0) for UAML
can be written:

E

{
∂m′ (xt, β

0)

∂θ
Ω−1

(
xt, β

0
) [
u
[
ỹ

(h)
t (θ) , xt, β

0
]
− u

[
ỹ

(h)
t

(
θ0
)
, xt, β

0
]]}

= 0⇐⇒ θ = θ0.
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Note that by the Law of Iterated Expectations, this can be written:

E

{
∂m′ (xt, β

0)

∂θ
Ω−1

(
xt, β

0
) [
m̃(xt, θ, β

0)− m̃(xt, θ
0, β0)

]}
= 0⇐⇒ θ = θ0,

where
m̃(xt, θ, β

0) = E[u
(
ỹ

(h)
t (θ) , xt, β

0
)
|xt] .

By comparison with (38), we see that while both generalized errors u
[
ỹ

(h)
t (θ) , xt, β

0
]

and

u
[
ỹ

(h)
t (θ0) , xt, β

0
]

will in general have a non-zero conditional expectation given xt (when β0 /∈
{θ, θ0}), identification means that when θ 6= θ0, their difference cannot be orthogonal to the p
specific functions of xt that define the rows of the selection matrix:

∂m′ (xt, β
0)

∂θ
Ω−1

(
xt, β

0
)
.

This condition is similar to the condition (33) of identification for UAML in the exponential
model example, except that, due to the transformation yt = g (y∗t , xt), the conditional expecta-
tion given xt along simulated paths still depend on β0. In the particular case of a latent model
defined by a univariate linear and homoskedastic regression equation:

m (xt, θ) = x′tθ,Ω (xt, θ) = σ2,

the identification condition in Assumption B1 for UAML becomes:

E
{
xt
[
m̃(xt, θ, β

0)− m̃(xt, θ
0, β0)

]}
= 0⇐⇒ θ = θ0.

For instance, in the case of a Probit model (σ2 = 1):

E

{
xt

ϕ(x′tβ
0)

Φ(x′tβ
0) [1− Φ(x′tβ

0)]

[
Φ(x′tθ)− Φ(x′tθ

0)
]}

= 0⇐⇒ θ = θ0,

which we can compare to the standard identification condition for a Probit model

E

{
xt

ϕ(x′tθ)

Φ(x′tθ) [1− Φ(x′tθ)]

[
Φ(x′tθ)− Φ(x′tθ

0)
]}

= 0⇐⇒ θ = θ0.

These conditions appear to be quite reasonable.

D Example 5: (Stable Distribution)

Consider i.i.d. observations y1, . . . , yT generated from a stable distribution with stability param-
eter a ∈ (0, 2], skewness parameter b ∈ [−1, 1], scale parameter c > 0 and location parameter
µ ∈ R. The structural parameter vector is given by

θ = (a, b, ζ ′)
′
, ζ = (c, µ)′ .

We consider this model under the false equality constraint:

(a, b)′ = (1, 0)′
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corresponding to a Cauchy distribution with location µ and scale c, which gives the log-likelihood:

LT (1, 0, ζ) = − log [πc]− 1

T

T∑
t=1

log

[
1 +

(
yt − µ
c

)2
]

We can define the pseudo-score vector as:

∆θLT (1, 0, ζ) =

(
∂LT (1, 0, ζ)

∂ζ ′
, LT (2, 0, ζ)− LT (1, 0, ζ) , L̃T (1, 1, ζ)− LT (1, 0, ζ)

)′
.

Note that, the finite difference [LT (2, 0, ζ)− LT (1, 0, ζ)] is a convenient approximation of the
partial derivative ∂LT (1, 0, ζ) /∂a since the log-likelihood function LT (2, 0, ζ) is computed as the
likelihood for i.i.d. draws in a Normal distribution with mean µ and variance 2c2. Second, the
finite difference [LT (1, 1, ζ)− LT (1, 0, ζ)] is a convenient approximation of the partial derivative
∂LT (1, 0, ζ) /∂b since the log-likelihood function LT (1, 1, ζ) could be computed as the likelihood
for i.i.d. draws in a Landau distribution with location parameter µ and scale parameter c

LT (1, 1, ζ) =
T∑
t=1

log(f(yt)), where f(y) =
1

πc

∫ ∞
0

e−x cos

[
x

(
y − µ
e

)
+

2x

π
log
(x
c

)]
dx.

To speed up the computation, we use the following approximation to f(y) given by Behrens and
Melissinos (1981).9

f(y) u
1√
2πc

exp {−(y − µ)/(2c)− exp [− ({y − µ}/c)] /2} .

D.1 Monte Carlo

We now compare the behavior of AML using the above pseudo-score, and H = 10 simulations,
against two alternative approaches: one based on sample quantiles, due to McCullough (1986),
and one based on an auxiliary regression model, due to Koutrouvelis (1981). To this end,
we generate 1,000 synthetic datasets from the alpha stable models, each with T = 10, 000
observations, and under θ = (1.8,−0.1, 1, 0)′.

We display the resulting estimators across the replications in Figure 7.10 Analyzing the
results, we see that the three procedures perform similarly for σ, but display different behavior
for α, β, δ, although all estimators seem quite reliable, and are well-centred over the true values.

Table 7 records the Monte Carlo bias (Bias), root mean squared error (RMSE), and Monte
Carlo coverage (COV), based on individual 95% Wald interval, across the replications. The
results demonstrate that the methods all yield accurate estimators of the corresponding true
values. However, we note that the simpler methods do outperform AML in terms of bias and
RMSE, but display worse coverage than AML in almost all cases.

9Similar results were obtained whether or not the approximation was employed. Given the similarity of the
results, and the drastic speed difference, the approximation approach is more reasonable to apply in practice.

10We remark that while ML estimation is feasible in the α-stable model for small numbers of observations,
given the sample size considered herein, obtaining the MLE proved to be computationally infeasible.
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Figure 7: Boxplots of estimators across 1000 Monte Carlo replications from the stable distribu-
tion. The true values used to generate the data are θ = (a, b, c, µ) = (1.8,−0.1, 0.1, 0)′. AML-
approximate maximum likelihood estimator, Kout- Koutrouvelis (1981) regression approach,
McC- McCullough (1986) quantile approach.
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Table 7: Summary accuracy measures for stable example. Acronyms are as described in Figure
7, while Aux refers to the auxiliary estimator estimated under the restriction (a, b) = (1, 0). To
aid readability of the table, the reported bias has been multiplied by 1000, and reported RMSE
has been multiplied by 100.

a b
AML Aux Kout McC AML Aux Kout McC

Mean 1.8190 1.0000 1.7994 1.8031 Mean -0.0948 0.0000 -0.0966 -0.1039
Bias 19.0315 -800.0000 -0.6072 3.1120 Bias 5.1846 100.0000 3.4381 -3.8520
RMSE 9.6607 80.0000 1.4561 2.9785 RMSE 13.6959 10.0000 6.5433 7.9542
COV 0.9600 0.0000 0.9410 0.9540 COV 0.9650 0.0000 0.9540 0.9440

c µ
AML Aux Kout McC AML Aux Kout McC

Mean 0.1002 0.0881 0.1000 0.1000 Mean 0.0007 0.0025 0.0032 0.0031
Bias 0.1636 -11.8524 0.0016 -0.0074 Bias 0.6945 2.4720 3.2351 3.1469
RMSE 0.1488 1.1884 0.0978 0.1251 RMSE 0.6313 0.2986 0.3737 0.3781
COV 0.9480 0.0000 0.9480 0.9510 COV 0.9810 0.6650 0.6030 0.6640
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