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Abstract

Current measurement of sex-selective abortion is based on a comparison of the sex

ratio at birth with the natural sex ratio and provides us with the number of aborted

female foetuses. This, however, does not tell us how prevalent the phenomenon is, i.e.,

how many women abort, which will differ from the number of aborted female foetuses

when there is repeated sex-selective abortion. In this paper, we show that the number

of women that abort between two consecutive births can be inferred using the sex ratio

at birth and information on birth spacing. We use this result to study sex-selective

abortion patterns in India over time and across birth orders, sibling compositions, and

different socio-demographic/geographic groups. We find evidence of strong heterogene-

ity across samples, with the number of aborted female foetuses being up to 50% larger

than the number of women that abort. Our findings suggest possible improvements in

targeting of policies that aim at reducing sex-selective abortion.
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1 Introduction

Ever since the seminal work of Sen (1989), researchers have worked on estimating not only

the number of missing women (Anderson and Ray, 2010) but also the number of missing

female births or, equivalently, the number of aborted female foetuses (see, e.g., Bongaarts

and Guilmoto, 2015; Bhalotra and Cochrane, 2010; Chao et al., 2019; Klasen and Wink,

2003). Estimates of the latter are based on the difference between the sex ratio at birth and

the hypothesized, or otherwise estimated or calibrated, natural sex ratio.1 However, little is

known about how prevalent sex-selective abortion is, i.e., how many women, or households,

abort.2 In particular, we note that that the number of women that abort will be different

from the number of aborted female foetuses if some women abort repeatedly. While the

number of women that abort could, in theory, be computed from administrative data from

abortion clinics or self-reported survey data, these numbers are generally unreliable. As

sex-selective abortion is illegal in most countries, it is likely to be carried out at uncerti-

fied/unregistered facilities (Grimes et al., 2006), and for abortions performed in registered

abortion clinics it is generally not known whether they are performed for the purpose of sex

selection (Chandra et al., 2021). Similarly, sex-selective abortion has been shown to suffer

from severe under-reporting in survey data, arguably because of its illegality and the stigma

attached to it (Stillman et al., 2014). In this paper, we contribute to the effort of improving

the measurement of sex-selective abortion by adding a new measure: the number, or share,

of women that abort between two consecutive births. It is based on the simple empirical

observation that a large sex ratio at birth or, equivalently, a large proportion of male births

(in exceedance of the natural probability of male birth) is concurrent with differences in the

distribution of birth spacing depending on the sex of the next-born child, cf. Figure 1.3

Figure 1 shows the empirical distribution functions (edf s) of spacing by sex of the next-

born in two different samples of women in India. In panel (a), where the proportion of

male births is 0.517 and, thus, not “too far” from the natural probability of male birth,4 the

edf s of spacing for boys and girls are almost indistinguishable. In panel (b), on the other

1For example, Chao et al. (2019) thus estimate that, between 1970 and 2017, 45 million female births
were missing in the world and that China and India account for 51% and 46% of these, respectively. In
a comprehensive policy report, Guilmoto (2012) lists other countries with “distorted” sex ratios such as
Albania, Armenia, Azerbaijan, Georgia, Montenegro, Pakistan, and Vietnam.

2In this paper, we do not model the decision making process underlying sex-selective abortion and,
therefore, refer to our observational units as women or households interchangeably, without taking a stance
on who the decision maker is.

3We use the term “next-born” throughout the paper to refer to the child born after the spacing (time)
under consideration. For example, when we discuss spacing between the first and second child, the sex of
the next-born refers to the sex of the second child.

4Based on Chao et al. (2019) and Dubuc and Coleman (2007), we take it to be equal to 0.513.
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Figure 1: Empirical distribution functions of spacing by sex of the next-born

(a) Birth order 1 (b) Birth order 3 - GG

Note: Panel (a): Empirical distribution function (edf ) of spacing at birth order 1, i.e., the time between
marriage and birth of the first child, by sex of the first-born. Panel (b): edf of spacing at birth order 3,
i.e., the time between the births of the second and third child, when the first two children are girls (GG)
by sex of the third-born. Both edf s pertain to literate women during the period 1988–1995; see Section 4
for a detailed data description. In both panels, the proportion of male births (PMB) is indicated in the
bottom-right corner.

hand, where the proportion of male births is much larger with 0.568, the edf s of spacing

for boys and girls are clearly distinct. This is not accidental: differences in the distribution

of spacing by sex of the next-born arise because of sex-selective abortion. To gain intuition

for this “mechanical” implication of sex-selective abortion, first note that each sex-selective

abortion increases not only the proportion of male births but also spacing, because it takes

time to determine the sex of the foetus in utero and to get pregnant again. Next, assume

for simplicity that the natural probability of male birth equals 1/2 and that the share of

women that abort (at a given birth order) also equals 1/2. Furthermore, assume that the

women that abort do so indefinitely until they have a boy. Under these assumptions, the

proportion of male births is 3/4 (in expectation). Furthermore, all girls as well as
(

1
2

/
3
4

=
)

2/3 of the boys have “short” spacing, i.e., spacing that was not prolonged by a sex-selective

abortion. The remaining boys, however, have “longer” spacing, as they are born after one

or more sex-selective abortions. Therefore, boys are on average born later than girls, i.e.,

the distribution of spacing differs by sex of the next-born.

More generally, the difference in the distribution of spacing between boys and girls de-

pends on the share of women that sex-selectively abort and how many times they do so.
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We formalize this relationship by means of a simple statistical model.5 An immediate by-

product of our model is a simple test for the presence of (repeated) sex-selective abortion.

An attractive feature of the test is that it only uses differences in average spacing between

boys and girls and, therefore, dispenses with the need to specify the natural probability of

male birth, which is a contested topic (Chao et al., 2019). We, then, propose an estimator for

our model that does rely on the natural probability of male birth but enables us to infer the

share and, thus, the number of women that abort as well as the share of women that abort

a second time (when again pregnant with a female foetus after a first abortion)—assuming

that women abort at most twice. While we are not the first to note that sex-selective abor-

tion impacts spacing (see, e.g., Pörtner, 2022; Anukriti et al., 2022), the fact that it does so

depending on the sex of the next-born and that it can be used to measure the prevalence of

sex-selective abortion is, to the best of our knowledge, new to the literature.

We use our model to study the evolution of sex-selective abortion patterns in India over

time, using data from the five rounds of the Demographic and Health Surveys (1992–93,

1998–99, 2005–06, 2015–16, and 2019–2021) and the 2002–04 round of the District Level

Household & Facility Survey. While sex-selective abortion is practiced in several countries

(Guilmoto, 2012), India has been estimated to account for 46% of the aborted female foe-

tuses worldwide over the period 1970–2017 (Chao et al., 2019) and, thus, constitutes an

interesting case study. Our analysis is performed at several birth orders, for different sibling

compositions, and is broken down according to socio-demographic and geographic factors.

In particular, we consider literate and illiterate women, women in urban and rural areas, and

women in the north and south of India. At birth order 1, in line with the literature, we find

little to no evidence of sex-selective abortion. At birth orders 2 and 3, we find evidence of

sex-selective abortion when all previous siblings are girls. Our estimation results show that

the share of women that abort is increasing over time and that it is larger at birth order 3

than at birth order 2. We also find strong heterogeneity across socio-demographic/geographic

groups. For example, we find that literate women (women in urban areas) are more likely

to abort than illiterate women (women in rural areas). Furthermore, the aforementioned

test provides strong evidence of repeated sex-selective abortion at birth order 3, which is

also corroborated by our estimation results. In some samples, the share of aborted female

foetuses is estimated to be 50% larger than the share of women that abort, highlighting the

empirical relevance of our proposed measure.6

Beyond the intrinsic value of knowledge of the prevalence of sex-selective abortion, our

5In our model, we abstract from the fact that total fertility or abortion behavior at other birth orders
may interact with the decision to abort at any given birth order.

6The results are reported in terms of shares rather than in terms of numbers for ease of comparison
between groups over time.
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proposed measure may also prove useful for policy targeting. Unbalanced sex ratios have

widely acknowledged adverse societal consequences (see Anukriti et al., 2022, for a review),

which is why governments across the globe have tried to prevent sex-selective abortion

through policies like banning pre-natal sex screening, punishing violations, and conditional

cash transfers (CCTs) “for” girls (Kumar and Sinha, 2020). However, the effectiveness of

such policies can be low; see, e.g., Kumar and Sinha (2020) and references therein for an

account on CCTs. If repeated sex-selective abortion is indicative of a higher utility of having

a boy net of costs (monetary and/or non-monetary), our estimates of the share of women

that abort a second time (when again pregnant with a female foetus after a first abortion),

which vary across samples, suggest that it maybe possible to improve the effectiveness of

CCTs through better targeting. For example, reducing sex-selective abortion in groups with

large shares of women that abort a second time, such as literate women whose first two

children are girls, may require larger cash transfers.

Our model and findings also call for more caution in the interpretation of sex ratios

at birth. The sex ratio at birth is often used as a proxy for son preference, for example,

in the literature on the origins of son preference (Alesina et al., 2018; Goli et al., 2022;

Mavisakalyan and Minasyan, 2023; Qian, 2008) or in the literature on the societal impact of

son preference (Hwang et al., 2019). These literatures implicitly make the assumption that

two, for example, geographical areas with the same sex ratio have (approximately) the same

level of son preference. As this paper shows, however, the number of women that abort may

differ across these two geographical areas.

The rest of the paper is organized as follows. Section 2 provides the contextual back-

ground for sex-selective abortion in India. Section 3 introduces our model, illustrates some of

its implications, and presents a maximum likelihood estimator. Sections 4 and 5 present the

data and our empirical findings, respectively, while Section 6 concludes. Additional material,

including proofs, can be found in the Appendix.

2 Contextual background: sex-selective abortion in In-

dia

Abortion has been legal in India since the Medical Termination of Pregnancy Act, No. 36,

Government of India (1971), which allows a pregnancy to be terminated up to 20 weeks

gestation by registered allopathic medical practitioners at certified abortion facilities. Sex-

selective abortion, however, is not legal and is controlled through the Pre-Natal Diagnostic

Techniques (Regulation and Prevention of Misuse) Act, No. 57, Government of India (1994)
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which prohibits the misuse of antenatal diagnostic tests for the purpose of sex determination.

It prohibits the advertisement of such tests, requires registration of all facilities that use them,

and prohibits revealing the sex of the foetus to the expectant parents.

Despite this law, sex-selective abortion is widely practized. Chao et al. (2019), for ex-

ample, estimate the number of missing female births in India between 1970 and 2017 to

be 20.7 millions. While the 1994 ban on sex-selective abortion seems to have slowed down

the increase in the use of sex-selective abortion for poorer households (Rastogi and Sharma,

2022), the imbalance in the sex ratio at birth has continued to increase. Saikia et al. (2021),

for example, estimate that the number of missing female births has increased by one million

every 10-year periods, from 3.5 millions between 1987 to 1996 to 5.5 millions between 2007

and 2016. Two main explanations have been brought forward to explain this increase. First,

sex determination during pregnancy has become more easily accessible and cheaper since the

mid-1990s, following increases in imports and domestic production of ultrasound machines

(Anukriti et al., 2022). Second, desired total fertility (i.e., total number of children) has

decreased (Baland et al., 2022). As the probability to have at least one son decreases with

a decrease in total fertility, households that want to have at least one son are more likely to

use sex-selective abortion. Jayachandran (2017) estimates that between one third and one

half of the increase in the child sex ratio between 1981 and 2011 can be explained by this

change in desired total fertility.7

Furthermore, there is heterogeneity in the occurrence of sex-selective abortion across

regions and demographic groups in India. Sex-selective abortion is more common in northern

India (Saikia et al., 2021) and urban areas (Pörtner, 2022) as well as among wealthier

households and more educated women (Bhalotra and Cochrane, 2010). While, according

to Diamond-Smith and Bishai (2015), differences across regions in terms of child sex ratios

have decreased between 1991 and 2001, differences between demographic groups in terms of

the number of missing female births have increased over the same period (Jha et al., 2011).

The occurrence of sex-selective abortion also depends on the birth order and the sex

composition of previous children. The consensus in the literature is that there is no sex-

selective abortion at birth order 1 (Dahl and Moretti, 2008; Milazzo, 2018; Heath and Tan,

2018), although there has been some evidence to the contrary in recent years (Saikia et

al., 2021). At higher birth orders, sex-selective abortion is more common in households

that previously only had girls, reflecting the widespread preference for having at least one

son (Bhalotra and Cochrane, 2010). While the number of missing female births used to

be highest at birth order 3, Saikia et al. (2021) find that in recent years (2007–2016) more

7Jayachandran (2017) uses the child sex ratio, i.e., the sex ratio among the 0–6 years old, as a proxy for
the sex ratio at birth.
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female births are missing at birth order 2.

3 A model for spacing in the presence of sex-selective

abortions

In this section, we first introduce our model. Then, we show that our model implies different

spacing by sex of the next-born in the presence of sex-selective abortion. Next, we present

a proposition that can be used to test for the presence of (repeated) sex-selective abortion.

Lastly, we present our maximum likelihood estimator for estimating the share of women that

abort.

3.1 The model

The time between two consecutive births, or simply spacing, is denoted by TAb (time to

birth) and depends on the unobserved, or latent, number of sex-selective abortions, A ∈
{0, 1, . . . , N0}, performed between the two births, where N0 denotes the (known) maximal

number of “possible” abortions. We sometimes suppress the dependence of TAb on A and

write Tb = TAb . Here and in what follows, we let capital letters denote random variables and

the corresponding lower case letters their (possible) realizations. We postulate the following

model

T ab = Tw +
a∑
k=1

(Ts + Tc,k) + Tp.

Here, Tw denotes the waiting time (until conception), i.e., the time that the household, after

the birth of a child, waits before trying to conceive again plus the time it takes to conceive.

Ts denotes the time to screening, i.e., the time it takes from the moment of conception until

the sex of the foetus is known.8 This is the time the household has to wait before it can

perform a sex-selective abortion (if applicable). We do not index Ts by the abortion cycle,

because we take it to be constant. Tc,k denotes the time to conception after the kth abortion,

i.e., the time it takes for the woman to get pregnant after having aborted k times. Lastly,

Tp denotes the time of pregnancy, which we take to be equal to nine months. For a = 0, i.e.,

when the household does not abort, birth spacing equals Tw + Tp.

To complete the model, we introduce its main parameters, αk ∈ [0, 1] for k ∈ {1, . . . , N0},
where αk denotes the probability that a household performs the kth sex-selective abortion

8For simplicity, we assume that every household knows the sex of the foetus. However, the implications
of the model are identical if we assume that a household that does not, or would not, sex-selectively abort
does not know the sex of the foetus.
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when pregnant with a female foetus (for the kth time). As the αs are not household specific,

we also refer to them as (population) shares, i.e., we say that α1 is the share of women that

abort (when pregnant with a female foetus), α2 is the share of women that abort a second

time (when again pregnant with a female foetus after a first abortion), etc. For what follows,

it is convenient to introduce α0 which is set equal to one and αN0+1 which is set equal to zero.

Furthermore, we let N ≤ N0 denote the maximal number of abortions in the population,

i.e., N is such that αk > 0 for k ∈ {1, . . . , N} and αN+1 = 0.

The above model makes several assumptions. First, we assume that, after an abortion, the

household tries to conceive again without any additional waiting time.9 Second, we assume

that the natural probability of male birth is equal to the probability of getting pregnant with

a male foetus. This implies that miscarriages and abortions not performed for the purpose of

sex-selection are equally likely for male and female foetuses such that any associated delay

can be thought of as being absorbed by Tw and Tc,k.
10 In what follows, we also assume

that Tc,k is i.i.d. across k, with Tc,k ∼ Tc.
11 Even if there is heterogeneity, we assume it to

be independent of the abortion decision. Lastly, we assume Tw to be independent of the

willingness to abort. While households may have a different Tw depending on whether they

would abort if pregnant with a female foeuts, we do not model it. However, we discuss some

of the implications of this assumption in Section 3.3.

3.2 Spacing by sex of the next-born

The above model implies that sex-selective abortion impacts the distribution of spacing.

Moreover, it does so differently depending on the sex of the next-born, as we illustrate in

what follows.

3.2.1 The case with at most one sex-selective abortion (N0 = 1)

If there is no sex-selective abortion, the distributions of spacing if the next-born is a boy and

if it is a girl are equal, i.e., Tb|Y = 1 ∼ Tb|Y = 0, where ∼ denotes “is distributed as” and

where Y ∈ {0, 1} denotes the sex of the next-born, with Y = 0 indicating the birth of a girl

and Y = 1 indicating the birth of a boy. But if there is sex-selective abortion, the distribution

9This assumption is based on the fact that the decision to have another child has already been made
before the abortion and that ovulation typically returns within one month after an abortion (see, e.g., the
“Abortion Care guideline” of the World Health Organization, 2022).

10Orzack et al. (2015) find that the sex ratio at conception is, in fact, balanced, but that the natural sex
ratio at birth is male-biased due to excess female mortality during pregnancy. Given the rationale of our
model, one may therefore worry that time to birth naturally differs by sex of the next-born. However, panel
(a) of Figure 1 suggests that any such difference is practically immaterial.

11This assumption is supported by Oster (2022) who finds that time to conception at birth order 1 only
explains 11% of the variation in time to conception at higher birth orders.
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of spacing will be different depending on the sex of the next-born, i.e., Tb|Y = 1 6∼ Tb|Y = 0,

where 6∼ denotes “is not distributed as”.12 To illustrate this, consider Figure 2, which plots

all possible “paths” to birth under the assumption that women abort at most once, i.e.,

A ∈ {0, 1}.13 Here and in what follows, π denotes the probability of getting pregnant with

a male foetus, which we, as mentioned above, assume to be equal to the natural probability

of male birth (such that the natural sex ratio is given by π
1−π ).

Figure 2: Paths to birth with one abortion

Birth of first child

�
�
�
��

Q
Q
Q
QQ

π

1 − π

Male

foetus

Female

foetus

Y = 1

Birth of next-born

after 0 abortions

�
�
�
��(1 − α1) Y = 0

Q
Q
Q
QQ

α1
�
�
�
��

Q
Q
Q
QQ

π

1 − π

Y = 1

Y = 0

Birth of next-born

after 1 abortion

At conception, a woman gets pregnant with a male foetus with probability π and pregnant

with a female foetus with probability 1− π. If she is pregnant with a male foetus, assuming

there is no abortion other than sex-selective, a boy is born after 9 months, i.e., Tb = T 0
b .

If she is pregnant with a female foetus, the household aborts with probability α1 and with

probability 1− α1 the household keeps the girl. If the household keeps the girl, she is born

after the same time as the boy, i.e., Tb = T 0
b . If the female foetus is aborted, then a boy or

a girl is born later, i.e., Tb = T 1
b .

Given that A ∈ {0, 1}, we can write Tb = T 1
b A+ T 0

b (1− A). In words, birth spacing is a

mixture of time to birth with one abortion, T 1
b , and time to birth with zero abortions, T 0

b .

Since T 1
b first-order stochastically dominates T 0

b , it is easy to see that Tb|Y = 1 6∼ Tb|Y = 0

if T 1
b and T 0

b have different “mixture weights” depending on the sex of the next-born, i.e., if

12Formally, two random variables, X1 and X2, have the same distribution (X1 ∼ X2) if P (X1 < x) =
P (X2 < x) for all x ∈ X , where X = X1 ∪ X2 and where Xi denotes the support of Xi with i ∈ {1, 2}.
Similarly, X1 and X2 have different distributions (X1 6∼ X2) if P (X1 < x) 6= P (X2 < x) for some x ∈ X .

13Guilmoto et al. (2020) consider a “probabilistic” model of sex-selective abortion behavior at a given
“parity” similar to ours. However, they do not analyze the implications of their model for spacing.
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P (A = 1|Y = 1) 6= P (A = 1|Y = 0).14 From Figure 2, it follows that

P (A = 1|Y = 1) =
P (A = 1, Y = 1)

P (Y = 1)
=

(1− π)α1

(1− π)α1 + 1
(1)

and

P (A = 1|Y = 0) =
P (A = 1, Y = 0)

P (Y = 0)
=

(1− π)α1

(1− π)α1 + 1− α1

. (2)

Therefore, P (A = 1|Y = 1) 6= P (A = 1|Y = 0) as long as α1 > 0 or, equivalently,

N = 1 (= N0), i.e., as long as there is sex-selective abortion. We conclude that in the

presence of sex-selective abortion spacing differs by sex of the next-born.

3.2.2 The general case (N0 ≥ 1)

More generally, our model implies that

P (A = a, Y = 1) = (1− π)a
a∏
k=0

αk (3)

and

P (A = a, Y = 0) = (1− π)a(1− αa+1)
a∏
k=0

αk. (4)

By definition, P (Y = 1) =
∑N0

a=0 P (A = a, Y = 1) and P (Y = 0) =
∑N0

a=0 P (A = a, Y = 0).

3.3 A partial test for the presence of (repeated) sex-selective abor-

tion

Next, we derive a proposition from our model that can easily be applied to the data to test for

(repeated) sex-selective abortion without imposing any further assumptions. In particular,

the proposition only exploits mean spacing by sex of the next-born and, thus, does not

require any assumptions on the natural probability of male birth, nor on the distributions

of Tw and Tc.

Proposition 1.

(i) If E(Tb|Y = 0) 6= E(Tb|Y = 1), then N > 0 or, equivalently, α1 > 0.

(ii) If E(Tb|Y = 0) < E(Tb|Y = 1), then N > 1 or, equivalently, α1, α2 > 0.

14To see this, note that

P (Tb < t|Y = y) = P (T 1
b < t)P (A = 1|Y = y) + P (T 0

b < t)(1− P (A = 1|Y = y)).
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Proposition 1(i) can be used to detect sex-selective abortion and therefore complements

the sex ratio. If mean spacing differs by sex of the next-born, then there is sex-selective

abortion.15 The advantage of using (mean) spacing as an indicator of sex-selective abortion

is that it is independent of the natural sex ratio, which is not always easily agreed upon.

Proposition 1(ii) can be used to detect repeated sex-selective abortion. If mean spacing for

girls is lower than mean spacing for boys, then there is repeated sex-selective abortion, i.e.,

a strictly positive fraction of the population aborts a second time if again pregnant again

with a female foetus. We note that Proposition 1 provides sufficient, but not necessary,

conditions. For example, it is possible that repeated sex-selective abortion is present in the

population (N > 1) but that E(Tb|Y = 0) > E(Tb|Y = 1). It is in that sense that the tests

based on Proposition 1 are only partial.

As mentioned before, the model and hence Proposition 1 assume that Tw is independent

of whether a household aborts if pregnant with a female foetus. In Appendix A, we show that

Proposition 1 continues to hold true when Tw is allowed to depend on whether a household

aborts, or rather would abort, if pregnant with a female foetus as long as the expected waiting

time, E(Tw), is (weakly) smaller, or “shorter”, for a household that aborts if pregnant with

a female foetus than for a household that does not. The latter condition, albeit not testable,

seems likely to hold, as households that would abort if pregnant with a female foetus may

anticipate the potentially longer spacing that an abortion implies.

3.4 Maximum likelihood estimation

In order to estimate the model and its main parameters, i.e., the different shares of women

that abort, α, we rely on the principle of maximum likelihood. We assume that Tw and

Tc are independent and gamma-distributed, with shape parameters γw and γc and scale

parameters βw and βc.
16 This distributional assumption is not only flexible but also allows

us to obtain an analytical expression for the likelihood function, avoiding computationally

expensive simulation-based estimation. In particular, the individual likelihood function is

given by

L(θ; t, y) =

N0∑
a=0

fTab (t; γw, βw, γc, βc)P (Y = y, A = a;α),

15More generally, our model implies that if P (Tb < t|Y = 0) 6= P (Tb < t|Y = 1) for at least some
t ∈ T , then N > 0. Therefore, an alternative, potentially more powerful test for the presence of sex-selective
abortion would consist in testing whether the two conditional distributions are equal. Here, we focus on the
“difference-in-means” for its simplicity.

16Recall that the time to pregnancy, Tp, is taken equal to 9 and that the time to screening, Ts, is also
taken equal to a fixed value, ts. In particular, we set ts = 5 and note that our results are robust to different
values of ts; the corresponding estimation results are available upon request.
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where θ = (α′, γw, βw, γc, βc)
′ and where

fTab (t; γw, βw, γc, βc) =

fΓ(t− 9; γw, βw) if a = 0

fΣΓ(t− 9− tsa; γw, βw, γca, βc) if a > 0

denotes the probability density function (pdf ) of T ab (for a given a). Here, fΓ(·; γ, β) and

fΣΓ(·; γ1, β1, γ2, β2) denote the pdf of a gamma-distributed random variable (with shape

parameter γ and scale parameter β) and the pdf of the sum of two independent gamma-

distributed random variables (with shape parameters γ1 and γ2 and scale parameters β1 and

β2), respectively; see Appendix B for details. Note that P (Y = y, A = a;α), where we have

made the dependence on α explicit, is given in (3) and (4) for y = 1 and y = 0, respectively.

With L(θ; t, y) thus defined, we could in principle estimate θ by maximizing the log-

likelihood function,
∑n

i=1 logL(θ; ti, yi), over the parameter space [0, 1]N0 × [0, C]4 for some

large C <∞, where i = 1, . . . , n indexes the households in the estimation sample. Here, in

order to “aid” estimation we instead calibrate γc and βc using “external” data; see Appendix

B for details. Furthermore, we impose that N0 = 2 and, with a slight abuse of notation, let

θ = (α1, α, γw, βw)′ with the understanding that L(θ; ti, yi) denotes L((θ′, γ̃c, β̃c)
′; ti, yi), where

γ̃c and β̃c denote the calibrated values of γc and βc, respectively. Formally, our “maximum

likelihood” estimator is defined as

θ̂ = arg max
θ∈Θ

n∑
i=1

logL(θ; ti, yi),

where Θ = [0, 1]2 × [0, C]2.

An important comment about our estimation problem is in order, namely that α2 is not

identified when α1 is equal to zero, in the sense that
∑n

i=1 logL(θ; ti, yi) does not depend on

α2 when α1 = 0, cf. Assumption A in Andrews and Cheng (2012) (AC hereafter). Intuitively,

we cannot know, or identify, the share of women that abort a second time if none of them

abort a first time. By continuity, we also have that α2 is weakly identified when α1 is close

to zero relative to the sample size, n. More precisely, the identification strength of α2 is

governed by
√
nα1: α2 is weakly identified if

√
nα1 → h (as n → ∞) with h < ∞, while

α2 is (semi-)strongly identified if
√
nα1 → h with h = ∞, using the terminology in AC.17

The possibility that α2 may only be weakly identified implies that “standard” standard

17α2 is semi-strongly identified if, in addition, α1 → 0 and strongly identified otherwise. Here, we implicitly
consider (drifting) sequences of true parameters whose dependence on the sample size is omitted for notational
convenience, i.e., α1 = α1,n; see, e.g., Andrews and Guggenberger (2010) for the importance of the asymptotic
behavior of estimators and test statistics under drifting sequences of true parameters for determining the
asymptotic size of a test.
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errors may not be reliable. In this paper, we use an identification-category-selection (ICS)

procedure to deal with the problem of weak identification (see, e.g., AC). In order to select

an identification category (i.e., h <∞ or h =∞), an ICS statistic is compared to a tuning

parameter, say κ, that satisfies κ → ∞ and κ/
√
n → 0 as n → ∞, a standard choice being

κ =
√

lnn. If ICS ≤ κ one concludes that identification is weak and if ICS > κ one concludes

that identification is (semi-)strong. An ICS procedure is thus consistent if the ICS statistic

is Op(1) under weak identification and diverges under (semi-)strong identification. Here,

we use the standard t-statistic for testing H0 : α1 = 0, say t1, as ICS statistic. Our ICS

procedure consists in only reporting estimates of and making inferential statements about

α2 when t1 > κ.18,19 In order to be conservative, we take κ = 6.20

4 Data description

We apply our proposition and estimate our model using data from the five rounds of the

Demographic and Health Surveys (DHS 1–5) for India (1992–93, 1998–99, 2005–06, 2015–

16, and 2019–2021)21 and the 2002–2004 round of the District Level Household & Facility

Survey (DLHS 2). The DHS and DLHS provide retrospective but precise information on the

fertility (full birth history) of each woman that is between 15 and 49 years old at the time of

the survey. We investigate the presence of sex-selective abortion between marriage and the

birth of the third child, i.e., at birth orders 1–3. As misreporting of births has been shown to

increase with the recall period (Schoumaker, 2014; Pörtner, 2022), we exclude birth intervals

that started more than 15 years before the survey date. Here, birth interval refers to the

time between the birth of the previous sibling (or marriage of the mother) and the birth in

question. To avoid sample selection issues due to censoring, we also restrict our sample to

birth intervals that started more than 5 years before the survey date. Table 1 shows the

evolution of the sample size as we successively impose the aforementioned restrictions.

In order to study the evolution of sex-selective abortion patterns over time, we divide our

18Constructing tests that are valid under weak identification (t1 ≤ κ) is beyond the scope of this paper.
19From results in Ketz (2019, 2022), it can be deduced that (the confidence interval based on) the standard

t-statistic for α2 is valid under (semi-)strong identification, in that its asymptotic size does not exceed the
nominal level.

20We do not use κ =
√

lnn because we are worried that this choice might lead us to conclude that
identification is (semi-)strong even though it is not, as even for our largest sample (cf. Table 2) we “only”
have

√
ln(232,935) ≈ 3.5. The value 6 is inspired by Elliott et al. (2015) who use this number in a related

context; see their running example. In unreported Monte Carlo simulations (that are available upon request),
we have also found that the t-test for testing hypotheses about α2 has good size properties under realistic
choices of the parameter values that are such that t1 is approximately normally distributed across simulations
and such that less than 0.5% of the simulations have t1 > 6.

21DHS 1–4 were downloaded from IPUMS DHS (Boyle et al., 2022) and DHS 5 from the DHS website.
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Table 1: Sample description

Data source Survey year # women1 # births at birth orders 1–3
Total2 5–15 years3 Spacing4 Our sample5 in%

DHS 1 1992–93 78,287 113,273 48,293 48,241 12,181 10.75
DHS 2 1998–99 79,759 192,660 76,385 68,355 62,698 32.54
DLHS 2 2002–04 500,767 609,146 293,345 292,913 292,913 48.09
DHS 3 2005–06 83,342 193,893 75,091 71,177 71,177 36.71
DHS 4 2015–16 469,881 1,022,017 377,914 369,638 369,638 36.17
DHS 5 2019–21 494,019 1,073,352 384,408 376,444 370,749 34.54
Total 1,706,055 3,204,341 1,255,436 1,226,768 1,179,356 36.80

1 We exclude women who had twins.
2 We only keep births with complete information on sex, sex of previous sibling, and spacing.
3 We only keep birth intervals that started between 5 and 15 years before the survey date.
4 We only keep birth intervals that are between 9 months and 10 years and 9 months.
5 We only keep birth intervals that started in or after 1985 to 2014.

(total) sample into three 10-year periods, 1985–1994, 1995–2004, and 2005–2014,22 where

the first period is pre-ban, with low availability of ultrasounds, and the last two periods are

post-ban, with high availability of ultrasounds; see Section 2 for more details.

5 Empirical analysis

5.1 Results based on Proposition 1

First, we take Proposition 1 to the data to explore what can be learned from differences in

average spacing about the presence of (repeated) sex-selective abortion in different groups

over time.23 To define our groups of interest, we rely on the existing literature that has

identified different sex-selective abortion patterns across education levels and geographical

locations (Bhalotra and Cochrane, 2010; Saikia et al., 2021; Pörtner, 2022). In particular,

we consider literate and illiterate women, women living in urban and rural areas, and women

living in the north and south of India.24

22The years refer to the start of the birth interval.
23Here, we use the term “average” because we are considering the estimator, or sample analogue, of the

(population) mean.
24The north of India is defined as the collection of the following States: Chandigarh, Delhi, Haryana,

Himachal Pradesh, Jammu and Kashmir, Ladakh, Punjab, Rajasthan, Uttarakhand, Uttar Pradesh, Bihar,
Jharkhand, Madhya Pradesh, West Bengal, Gujarat. The remaining states make up the south of India.
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Table 2: Proportions of male births and differences in average spacing

Pooled By education By urban-rural status By region
Illiterate Literate Rural Urban South North

Birth order 1
[1985–1994] PMB 0.513 0.509 0.517 0.511 0.518 0.509 0.517

(0.003) (0.004) (0.004) (0.004) (0.005) (0.004) (0.004)
DAS 0.10 0.13 -0.01 -0.05 0.30 0.50 -0.19

(0.23) (0.34) (0.30) (0.29) (0.37) (0.31) (0.32)
n [28,602] [14,009] [14,564] [18,673] [9,929] [13,288] [15,314]

[1995–2004] PMB 0.515 0.510 0.517 0.513 0.519 0.514 0.515
(0.002) (0.003) (0.002)* (0.002) (0.003)* (0.003) (0.002)

DAS 0.17 0.44 -0.02 0.28 -0.12 -0.33 0.52
(0.14) (0.25)* (0.16) (0.17)* (0.23) (0.20)* (0.19)***

n [75,806] [27,459] [48,170] [51,532] [24,274] [30,558] [45,248]

[2005–2014] PMB 0.519 0.519 0.520 0.517 0.526 0.517 0.521
(0.001)*** (0.002)*** (0.001)*** (0.001)*** (0.002)*** (0.002)*** (0.001)***

DAS 0.05 0.03 0.06 0.01 0.13 -0.05 0.15
(0.07) (0.14) (0.08) (0.08) (0.13) (0.10) (0.10)

n [232,935] [65,206] [167,353] [172,778] [60,157] [95,094] [137,841]

Birth order 2 - G
[1985–1994] PMB 0.527 0.519 0.535 0.523 0.534 0.520 0.531

(0.002)*** (0.002)** (0.003)*** (0.002)*** (0.003)*** (0.003)*** (0.002)***
DAS -0.41 -0.28 -0.46 -0.32 -0.54 -0.13 -0.67

(0.13)*** (0.17)* (0.20)** (0.15)** (0.25)** (0.21) (0.16)***
n [77,934] [40,349] [37,553] [53,029] [24,905] [33,157] [44,777]

[1995–2004] PMB 0.532 0.517 0.544 0.527 0.544 0.525 0.537
(0.002)*** (0.003) (0.003)*** (0.002)*** (0.004)*** (0.003)*** (0.003)***

DAS -0.36 -0.63 0.04 -0.34 -0.26 0.08 -0.73
(0.14)** (0.19)*** (0.20) (0.16)** (0.28) (0.23) (0.18)***

n [65,967] [28,854] [36,994] [46,004] [19,963] [27,072] [38,895]

[2005–2014] PMB 0.538 0.522 0.546 0.533 0.551 0.532 0.541
(0.002)*** (0.003)*** (0.002)*** (0.002)*** (0.003)*** (0.002)*** (0.002)***

DAS 0.02 0.06 0.16 0.03 0.20 0.27 -0.21
(0.12) (0.18) (0.15) (0.13) (0.26) (0.20) (0.14)

n [109,392] [37,608] [71,582] [83,369] [26,023] [43,434] [65,958]

Birth order 3 - GG
[1985–1994] PMB 0.539 0.520 0.568 0.532 0.557 0.531 0.545

(0.003)*** (0.004)* (0.004)*** (0.003)*** (0.005)*** (0.004)*** (0.004)***
DAS -1.15 -0.36 -1.89 -0.79 -1.83 -0.50 -1.63

(0.20)*** (0.23) (0.35)*** (0.22)*** (0.42)*** (0.33) (0.25)***
n [31,258] [18,525] [12,721] [22,162] [9,096] [12,410] [18,848]

[1995–2004] PMB 0.550 0.529 0.575 0.539 0.581 0.540 0.555
(0.003)*** (0.004)*** (0.005)*** (0.004)*** (0.006)*** (0.005)*** (0.004)***

DAS -1.27 -0.75 -1.42 -0.89 -1.95 -0.47 -1.78
(0.23)*** (0.29)*** (0.37)*** (0.26)*** (0.51)*** (0.40) (0.28)***

n [24,807] [13,383] [11,383] [18,266] [6,541] [9,030] [15,777]

[2005–2014] PMB 0.561 0.533 0.587 0.556 0.585 0.556 0.564
(0.003)*** (0.004)*** (0.003)*** (0.003)*** (0.006)*** (0.004)*** (0.003)***

DAS -0.98 -0.63 -0.75 -0.85 -1.10 -0.30 -1.36
(0.20)*** (0.26)** (0.29)*** (0.21)*** (0.50)** (0.35) (0.23)***

n [38,418] [17,768] [20,575] [31,040] [7,378] [12,917] [25,501]

The table shows the proportions of male births (PMB) and the differences in average spacing between boys and girls
(DAS) for different samples: G and GG denote “first child is a girl” and “first two children are girls”, respectively.
Standard errors are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 (p-values are for two-sided t-tests
for testing that the probability of male birth equals π and that the difference in mean spacing equals 0).
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Table 2 reports the proportions of male births (PMB) along with the differences in average

spacing between boys and girls (DAS) for our different groups by period, birth order, and

siblings composition.25 For birth order 1, PMB and DAS largely agree in terms of evidence

of sex-selective abortion. For most groups in the first two periods, PMB is not significantly

different from the natural probability of male birth, π, which we take equal to 0.513 (cf.

Chao et al., 2019; Dubuc and Coleman, 2007),26 and DAS is not significantly different from

zero. In the last period, PMB suggests the presence of sex-selective abortion, in line with

the findings in Saikia et al. (2021). DAS, however, does not provide any further evidence of

sex-selective abortion in the last period. For birth orders 2 and 3 with “only girls” sibling

compositions, PMB provides evidence of sex-selective abortion for almost all periods and all

groups, being more imbalanced at birth order 3. DAS complements this picture by showing

some evidence of repeated sex-selective abortion at birth order 2, in the first two periods,

and strong evidence of repeated sex-selective abortion at birth order 3, being statistically

different from zero and negative for many periods and groups.

5.2 Estimation results

In order to obtain further insights on the prevalence of sex-selective abortion, we now estimate

our model. Estimation is performed over the samples with the largest proportions of male

births, i.e., at birth orders 2 and 3 when all previous children are girls (cf. Tables 2 and C.1

in Appendix C).

5.2.1 Share of women that abort

We first report our estimates of the shares of women that abort (when pregnant with a female

foetus), α̂1. Figure 3 reports the corresponding estimates at birth order 2 when the first-born

is a girl and Figure 4 at birth order 3 when the first two children are girls. Both figures also

show 95% confidence intervals for α1, while the t-statistics for testing H0 : α1 = 0, t1, that

serve as our ICS statistics are reported in Table C.2 in Appendix C. We note, however, that

the reported confidence intervals have to be taken with a grain of salt, particularly for small

values of t1, as they do not take into account that α2 may only be weakly identified.27

25In the interest of space, Table 2 only reports these statistics for the “only girls” sibling compositions.
The statistics for the remaining sibling compositions are reported in Table C.1 in Appendix C.

26The standard error for PMB is computed as
√

PMB(1− PMB)/n.
27The underlying standard errors are based on a numerical approximation of the second-order derivative

matrix of
∑n
i=1 logL(θ; ti, yi) evaluated at θ̂. This numerical approximation becomes unreliable or even

infeasible when α̂1 is (very) close to zero. That said, we were able to compute it for all estimation results
reported in Figures 3 and 4 (using the DERIVESTsuite package for Matlab).
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Figure 3: Shares of women that abort at birth order 2 when the first-born is a girl

(a) Pooled (b) By education

(c) By urban-rural status (d) By region

Note: Each panel shows the estimated shares of women that abort when pregnant with a female foetus, α̂1,
together with 95% confidence intervals for the three time periods.

Panel (a) of Figure 3 shows that the share of women that abort at birth order 2 slowly

increases over time from ∼5% in the first period to ∼8% in the last period. Panels (b)–(d)

show that these estimates hide stark heterogeneity across socio-demographic/geographical

groups. In particular, the decomposition reveals that literate women and women in urban

areas are much more likely to abort than illiterate women and women in rural areas, re-

spectively. While the share of women that abort among illiterate women remains small and

relatively constant over time, there is a small increase in the share of women that abort

among rural women, which reaches ∼6% in the last period compared to ∼16% among urban

women. While women in the north are estimated to be more likely to abort than women in

the south, the estimates are relatively close.

At birth order 3, the picture is qualitatively similar, but with higher shares of women
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Figure 4: Shares of women that abort at birth order 3 when the first two children are girls

(a) Pooled (b) By education

(c) By urban-rural status (d) By region

Note: Each panel shows the estimated shares of women that abort when pregnant with a female foetus, α̂1,
together with 95% confidence intervals for the three time periods.

that abort, cf. Figure 4. Similar to above, there is an increase in the share of women that

abort over time, from ∼7% in the first period to ∼14% in the last period, which may in

part be due to the increased availability of ultrasounds. Again, the decomposition by socio-

demographic/geographical groups uncovers large heterogeneity. Literate women and women

in urban areas are more likely to abort and, in both groups, the share of women that abort

has increased by more than 9 percentage points from the first to the last period, from ∼0.14%

(∼0.12%) to ∼0.23% (0.25%) for literate women (women in urban areas). As above, there

is little difference in the share of women that abort between women in the north and women

in the south.
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5.2.2 Share of women that abort a second time

Next, we report our estimates of the shares of women that abort a second time (when again

pregnant with a female foetus after a first abortion), α̂2. As discussed in Section 3.4, we

only consider samples for which t1 > 6. In particular, we focus on literate women, woman

in urban areas, and women in the north in the last two periods, for which t1 > 6 at birth

orders 2 and 3, cf. Table C.2. The results are graphically depicted in Figure 5; Table C.3 in

Appendix C provides a tabulated version of the results that includes standard errors.

Figure 5: Shares of aborted female foetuses, shares of women that abort, and shares of
women that abort a second time for selected samples

Note: The figure shows the estimated shares of aborted female foetuses, the estimated shares of women that
abort, α̂1, and the estimated shares of women that abort a second time, α̂2, for selected samples (with “only
girls” sibling compositions). “Significance” is only indicated for α̂2: * p < 0.1, ** p < 0.05, *** p < 0.01
(p-values are for the one-sided t-test, i.e., H0 : α2 = 0 vs. H1 : α2 > 0).

For each sample, Figure 5 shows three quantities: the estimated shares of aborted female
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foetuses (black bar),28 the estimated shares of women that abort, α̂1, already reported in

Figures 3 and 4 (gray bar), and the estimated shares of women that abort a second time,

α̂2 (white bar). The first striking result is that at birth order 2, women in some groups do

not abort a second time or, put differently, there is no repeated sex-selective abortion, i.e.,

α̂2 ≈ 0. This is the case for literate women and women in urban areas and provides evidence

against the assumption, sometimes made in the literature, that women abort indefinitely

until they have a boy (see, e.g., Guilmoto et al., 2020). We note that whenever α̂2 ≈ 0, the

estimated share of aborted female foetuses is (essentially) equal to the estimated share of

women that abort. This is in line with the model: If women abort at most once, then the

share of women that abort when pregnant with a female foetus must be equal to the share of

aborted female foetuses. Second, we find strong evidence of repeated sex-selective abortion

at birth order 3 for all groups, i.e., literate women, urban women, and women in the north.

For both periods, the estimated shares of women that abort a second time are large and

significantly different from zero at the 10% significance level. While the estimates suggest

that the shares of women that abort a second time have been stable over time for literate

and urban women, there seems to be an increase for women in the north. Finally, we note

that a positive share of women that abort a second time implies that the share of women

that abort is less than the share of aborted female foetuses. As before, this is in line with

the model. In case of large estimates of α2, as in the last period for women in the north,

the difference can be quite important, with the share (number) of aborted female foetuses

being 50% larger than the share (number) of women that abort.29 This result underlines the

relevance of measuring the number of women that abort, on top of the number of aborted

female foetuses.

6 Conclusion

Measuring how many women sex-selectively abort and whether they do so repeatedly is not

feasible using administrative or self-reported survey data. We propose an innovative method-

ology that exploits information in spacing to measure the share of women that abort, and

the share of women that abort repeatedly, between two consecutive births. In an application

using Indian data, we find important heterogeneity across socio-demographic/geographic

28The estimated share of aborted female foetuses or, equivalently, the estimated share of missing female

births is given by PMB−π
(1−π)π and equals the number of missing female births (n × PMB 1−π

π − n(1 − PMB)),

according to “Sen’s orignal method”, divided by the number of expected female births (n(1−π)) (cf. equations
(2) and (3) in Guilmoto et al., 2020, where OMB = n× PMB, ESRB = π

1−π , and OFB = n(1− PMB)).
29We can use the terms “share” and “number” interchangeably here, because the two “shares” have the

same denominator, n(1− π), such they cancel out when we take the ratio.
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groups, birth orders, and siblings composition. In some samples, such as women in the north

at birth order 3 whose first two children are girls, the share of aborted female foetuses is

estimated to be 50% larger than the share of women that abort. This highlights that our

proposed measure of the prevalence of sex-selective abortion is empirically relevant.

Our proposed measure should also be useful for policy makers. If repeated sex-selective

abortion is indicative of a higher utility of having a boy net of costs, our methodology can

be used to identify populations with different net utilities. This, in turn, can be useful

for targeting. For example, a population with a higher net utility of having a boy may

require larger incentives, e.g., larger cash transfers, to refrain from performing sex-selective

abortions.

Our methodology only requires information on women’s birth histories (i.e., sex and

dates of birth of the children), which can be an advantage or disadvantage. This information

is largely available in low and middle-income countries, where large household surveys are

regularly conducted. Therefore, our methodology should prove useful for studying sex-

selective abortion patterns in such countries. However, our methodology cannot be applied in

countries where such information is not available. Another disadvantage of our methodology

is that it requires large sample sizes (to overcome possible weak identification issues; see

Sections 3.4 and 5.2.2), such that it may not be suitable for the study of sex-selective abortion

patterns in countries with small populations.

Lastly, this paper makes several assumptions that could be restrictive. For example, we

currently assume that there is no correlation between how long women, or households, wait

before trying to conceive and their willingness to abort if pregnant with a female foetus.

Relaxing this kind of assumption is left for further research.
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A Proof and “extension” of Proposition 1

Proof of Proposition 1. To prove (i), note that Tb = T 0
b if N = 0. Therefore, if N = 0, Tb is

independent of Y such that E(Tb|Y = 0) = E(Tb) = E(Tb|Y = 1) and the results follows.

To prove (ii), note that E(Tb|Y = 0) > E(Tb|Y = 1) if N = 1. This together with (i)

yields the desired result. To see that E(Tb|Y = 0) > E(Tb|Y = 1) if N = 1, note that

E(Tb|Y = y) = E(T 1
b )P (A = 1|Y = y) + E(T 0

b )(1− P (A = 1|Y = y))

for y ∈ {0, 1}. The result then follows by noting that E(T 1
b ) > E(T 0

b ), since Ts > 0 and

Tc ≥ 0, and P (A = 1|Y = 0) > P (A = 1|Y = 1), cf. equations (1) and (2).

Next, we show that Proposition 1(ii) continues to hold, under the condition stated in the

main text, when we allow Tw to depend on whether a household aborts (or would abort) if

pregnant with a female foetus (for the first time between two births). Let W ∈ {0, 1} denote

whether a household aborts if pregnant with a female foetus (W = 1) or not (W = 0). With

this extension of the model, we have P (A = 1,W = 1|Y = y) = P (A = 1|Y = y) (as

A = 1 ⇒ W = 1), P (A = 1,W = 0|Y = y) = 0 (as W = 0 ⇒ A = 0), P (A = 0,W =

0|Y = 0) = P (A = 0|Y = 0) = 1 − P (A = 1|Y = 0) (as {A = 0} ∩ {Y = 0} ⇒ W = 0),

P (A = 0,W = 1|Y = 1) = α1

(1−p)α1+1
, and P (A = 0,W = 0|Y = 1) = 1−α1

(1−p)α1+1
for y ∈ {0, 1}.

In order to allow Tw to depend on W , let Tw = TWw = WT 1
w + (1 −W )T 0

w, where T 1
w (T 0

w)

denotes the waiting time for a household that aborts (does not abort) if pregnant with a

female foetus. Let

Tb ≡ TA,Wb = TWw + Tc + A(Tc + Ts) + Tp

for A,W ∈ {0, 1}. Then, the desired result follows as

E(Tb|Y = 1) = E(T 1,1
b )P (A = 1|Y = 1) + E(T 0,1

b )P (A = 0,W = 1|Y = 1)

+ E(T 0,0
b )P (A = 0,W = 0|Y = 1)

≤ E(T 1,1
b )P (A = 1|Y = 1) + E(T 0,0

b )(1− P (A = 1|Y = 1))

< E(T 1,1
b )P (A = 1|Y = 0) + E(T 0,0

b )(1− P (A = 1|Y = 0)) = E(Tb|Y = 0),
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where the first (weak) inequality holds by assumption, namely E(T 1
w) ≤ E(T 0

w) and the

second inequality by the same argument used in proving part (ii) of Proposition 1, with T 1,1
b

(T 0,0
b ) replacing T 1

b (T 0
b ).

B Estimation details

B.1 Definition of fT ab (·)

First, we define fΓ(·) for sake of completeness. In particular,

fΓ(t; γ, β) =

 tγ−1e
t
β

βγΓ(γ)
if t > 0

0 otherwise
,

where Γ(·) denotes the gamma function. Next, we define fΣΓ(·). To that end, assume without

loss of generality that β1 < β2. Then,

fΣΓ(t; γ1, β1, γ2, β2) =

C
∑∞

k=0 δk
tγ1+γ2+k−1e

− y
β1

β
γ1+γ2+k
1 Γ(γ1+γ2+k)

if t > 0

0 otherwise,

where C =
(
β1

β2

)γ2

and where δk is defined recursively by

δk+1 =
γ2

k + 1

k+1∑
i=1

(
1− β1

β2

)i
δk+1−i

for k = 0, 1, 2, . . . with δ0 = 1; see Moschopoulos (1985) for more details. To numerically

evaluate the infinite series in fΣΓ(·), we rely on a finite series approximation. In particular,

we truncate the series at 30 terms. The resulting approximation error is immaterial.

Lastly, we note that fTab (·) uses the fact that the sum of two independent gamma-

distributed random variables with the same scale parameter, say β, but (possibly) different

shape parameters, say γ1 and γ2, is gamma-distributed with shape parameter γ1 + γ2 and

scale parameter β.

B.2 Calibration of γc and βc

The calibration of γc and βc is performed by means of maximum likelihood, fitting a gamma

distribution to the time between marriage and first birth (minus 9); it is performed for each
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of our three time periods separately.30 The underlying assumptions are that households try

to conceive immediately after marriage, such that the time between marriage and first birth

(minus 9) is a good proxy for the time it takes to conceive, and that there is no sex-selective

abortion before the birth of the first child. The second assumption is largely corroborated

by the numbers in Table 2 and widely accepted in the literature (see, e.g., Dahl and Moretti,

2008; Milazzo, 2018; Heath and Tan, 2018).

C Additional tables

30Here, we only use DHS 4 because it is the only round that differentiates between date of marriage and
date of marriage contract.
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Table C.1: Proportions of male births and differences in average
spacing for remaining sibling compositions

Pooled By education By urban-rural status By region
Illiterate Literate Rural Urban South North

Birth order 2 - B
[1985–1994] PMB 0.520 0.525 0.515 0.522 0.517 0.519 0.522

(0.002)*** (0.002)*** (0.003) (0.002)*** (0.003) (0.003)** (0.002)***
DAS 0.37 0.58 0.08 0.39 0.30 0.42 0.33

(0.13)*** (0.17)*** (0.20) (0.15)*** (0.25) (0.20)** (0.16)**
n [82,748] [43,361] [39,354] [56,480] [26,268] [35,163] [47,585]

[1995–2004] PMB 0.508 0.510 0.507 0.510 0.504 0.507 0.509
(0.002)** (0.003) (0.003)** (0.002) (0.003)** (0.003)* (0.002)

DAS 0.19 0.25 0.12 0.31 -0.12 0.23 0.16
(0.14) (0.20) (0.20) (0.16)* (0.28) (0.23) (0.18)

n [68,287] [30,125] [38,053] [47,656] [20,631] [27,809] [40,478]

[2005–2014] PMB 0.501 0.509 0.497 0.502 0.500 0.498 0.503
(0.001)*** (0.003)* (0.002)*** (0.002)*** (0.003)*** (0.002)*** (0.002)***

DAS 0.20 0.46 -0.02 0.24 0.07 -0.13 0.39
(0.12)* (0.17)*** (0.15) (0.13)* (0.26) (0.19) (0.14)***

n [111,423] [39,591] [71,636] [84,601] [26,822] [44,676] [66,747]

Birth order 3 - GB
[1985–1994] PMB 0.527 0.532 0.520 0.528 0.527 0.519 0.532

(0.003)*** (0.004)*** (0.005) (0.003)*** (0.006)** (0.005) (0.004)***
DAS 0.52 0.62 0.28 0.76 -0.10 0.51 0.50

(0.20)** (0.24)** (0.36) (0.23)*** (0.42) (0.35) (0.25)**
n [29,363] [18,409] [10,940] [21,349] [8,014] [10,962] [18,401]

[1995–2004] PMB 0.526 0.519 0.535 0.527 0.522 0.526 0.525
(0.003)*** (0.004) (0.005)*** (0.004)*** (0.007) (0.006)** (0.004)***

DAS 0.41 0.45 0.47 0.38 0.46 0.39 0.42
(0.24)* (0.29) (0.40) (0.27) (0.51) (0.43) (0.28)

n [21,593] [12,771] [8,779] [16,336] [5,257] [7,248] [14,345]

[2005–2014] PMB 0.526 0.528 0.524 0.526 0.528 0.518 0.530
(0.003)*** (0.004)*** (0.004)** (0.003)*** (0.007)** (0.005) (0.004)***

DAS 0.41 0.56 0.18 0.46 0.16 0.39 0.37
(0.22)* (0.29)** (0.34) (0.24)* (0.58) (0.41) (0.26)

n [28,402] [15,228] [13,118] [23,212] [5,190] [9,267] [19,135]

Birth order 3 - BG
[1985–1994] PMB 0.516 0.512 0.523 0.512 0.527 0.505 0.523

(0.003) (0.004) (0.005)** (0.003) (0.006)** (0.005)* (0.004)***
DAS -0.51 -0.40 -0.65 -0.62 -0.16 -0.41 -0.64

(0.20)** (0.24)* (0.36)* (0.23)*** (0.42) (0.35) (0.25)**
n [28,882] [18,046] [10,826] [20,877] [8,005] [10,959] [17,923]

[1995–2004] PMB 0.521 0.519 0.524 0.520 0.522 0.515 0.524
(0.003)** (0.004) (0.005)** (0.004)* (0.007) (0.006) (0.004)**

DAS -0.68 -0.86 -0.43 -0.70 -0.62 -0.64 -0.73
(0.24)*** (0.29)*** (0.40) (0.27)*** (0.52) (0.43) (0.28)***

n [21,540] [12,886] [8,613] [16,250] [5,290] [7,399] [14,141]

[2005–2014] PMB 0.515 0.510 0.521 0.514 0.523 0.502 0.522
(0.003) (0.004) (0.004)* (0.003) (0.007) (0.005)** (0.004)**

DAS -0.09 -0.36 0.34 0.04 -0.59 0.41 -0.45
(0.22) (0.28) (0.35) (0.24) (0.57) (0.41) (0.26)*

n [27,717] [14,979] [12,691] [22,632] [5,085] [9,152] [18,565]

Birth order 3 - BB
[1985–1994] PMB 0.505 0.511 0.495 0.506 0.505 0.495 0.512

(0.003)** (0.004) (0.005)*** (0.003)** (0.006) (0.005)*** (0.004)
DAS 0.30 -0.03 0.82 0.28 0.33 0.43 0.18

(0.20) (0.24) (0.38)** (0.23) (0.42) (0.34) (0.26)
n [28,949] [18,832] [10,106] [20,952] [7,997] [11,415] [17,534]

[1995–2004] PMB 0.500 0.503 0.496 0.505 0.487 0.495 0.503
(0.004)*** (0.004)** (0.006)*** (0.004)** (0.007)*** (0.006)*** (0.004)**

DAS 0.30 0.31 0.23 0.26 0.33 0.19 0.33
(0.25) (0.30) (0.42) (0.28) (0.51) (0.43) (0.30)

n [20,228] [12,356] [7,838] [15,124] [5,104] [7,356] [12,872]

[2005–2014] PMB 0.491 0.501 0.478 0.491 0.488 0.482 0.495
(0.003)*** (0.004)*** (0.005)*** (0.004)*** (0.007)*** (0.005)*** (0.004)***

DAS 0.40 0.23 0.41 0.13 1.52 0.36 0.35
(0.24)* (0.30) (0.38) (0.26) (0.59)** (0.43) (0.29)

n [25,105] [13,845] [11,213] [20,292] [4,813] [8,947] [16,158]

The table shows the proportions of male births (PMB) and the differences in average spacing between
boys and girls (DAS) for different samples: B denotes “first child is a boy” and GB, BG, and BB de-
note “first two children are a girl and a boy, a boy and a girl, and two boys”, respectively. Standard
errors are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 (p-values are for two-sided
t-tests for testing that the probability of male birth equals π and that the difference in mean spacing
equals 0).
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Table C.2: t-statistics for testing H0 : α1 = 0 vs. H1 : α1 > 0

Birth order Period Illiterate Literate Rural Urban South North

2
1985–1994 1.55 6.15 3.26 4.92 1.74 5.78
1995–2004 0.64 9.09 3.57 6.82 2.91 6.07
2005–2014 1.94 12.57 6.60 9.54 5.48 9.37

3
1985–1994 1.16 6.27 3.96 4.30 2.44 4.56
1995–2004 2.58 7.77 5.02 6.88 3.68 6.24
2005–2014 2.86 13.67 8.70 8.26 6.95 8.50

Table C.3: Shares of aborted female foetuses, shares of women that abort, and
shares of women that abort a second time for selected samples with standard
errors

Group
Birth

Period
Share of aborted Share of women Share of women that

order female foetuses that abort abort a second time

Literate

2
1995–2004

0.125 0.124 0.003
(0.010) (0.014) (0.166)

2005–2014
0.130 0.122 0.113

(0.007) (0.010) (0.131)

3
1995–2004

0.249 0.189 0.536
(0.019) (0.024) (0.253)

2005–2014
0.295 0.237 0.458

(0.014) (0.017) (0.147)

Urban

2
1995–2004

0.125 0.128 0.001
(0.014) (0.019) (0.217)

2005–2014
0.154 0.157 0.000

(0.012) (0.016) (0.168)

3
1995–2004

0.271 0.221 0.394
(0.024) (0.032) (0.281)

2005–2014
0.289 0.246 0.339

(0.023) (0.030) (0.242)

North

2
1995–2004

0.097 0.078 0.380
(0.010) (0.013) (0.267)

2005–2014
0.114 0.091 0.468

(0.008) (0.010) (0.185)

3
1995–2004

0.170 0.127 0.503
(0.016) (0.020) (0.284)

2005–2014
0.204 0.133 0.977

(0.012) (0.016) (0.266)

The table shows the estimated shares of aborted female foetuses, the estimated shares of women
that abort, α̂1, and the estimated shares of women that abort a second time, α̂2, for selected
samples (with “only girls” sibling compositions). Standard errors are reported in parentheses.
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