
Measuring sex-selective abortion:

How many women abort?∗
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Abstract

This paper demonstrates that sex-selective abortion induces a correlation between

birth interval length and the sex of the next-born child. Using a statistical model,

we show that shorter birth intervals for next-born girls indicate repeated sex-selective

abortions between consecutive births. Analyzing data from India, we find evidence of

repeated sex-selective abortions at birth order 2 when the first child is a girl, and strong

evidence at birth order 3 when the first two children are girls. To quantify the extent

of repeated abortions, we propose a maximum likelihood estimator that provides the

number of women who abort and their likelihood of performing repeated abortions.

Our estimation results reveal significant heterogeneity across birth orders, sibling com-

positions, and socio-demographic and geographic groups. Notably, literate and urban

women who first had a girl rarely abort a second time, whereas women in northern India

at birth order 3 who first had two girls show a 13% likelihood of repeated sex-selective

abortion. In this group, the estimated number of aborted female fetuses—the standard

measure of sex-selective abortion—is 50% higher than the number of women who abort.
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1 Introduction

Sex-selective abortion is an important societal issue. It results in male-biased sex ratios, lead-

ing to a series of undesirable societal consequences.1 Additionally, there are concerns about

morbidity and mortality for women, as sex-selective abortions are illegal in most countries

and are often performed under unsafe conditions (Grimes et al., 2006; Singh et al., 2018b).

Currently, the main measure of sex-selective abortion is the number of aborted female fe-

tuses (see, e.g., Bongaarts and Guilmoto, 2015; Bhalotra and Cochrane, 2010; Chao et al.,

2019; Klasen and Wink, 2003). It is based on the difference between the observed propor-

tion of male births and the natural probability of male birth.2 While this measure provides

information about the extent of sex-selective abortion, it does not address its prevalence. In

other words, it tells us how many female fetuses are aborted but not how many women are

involved. Is it 1,000 women who abort once, or one woman who aborts 1,000 times? Here,

a key observation is that women may become pregnant with a female fetus again after a

sex-selective abortion and choose to abort again. Understanding how many women abort

and how likely they are to do so repeatedly is not only interesting in its own right but also

important from a public health perspective, particularly if there are increased health risks

associated with repeated abortions.

To answer these questions, we start by pointing out that there is empirical content in

the joint distribution of birth spacing and the sex of the next-born child. Figure 1 shows

the empirical distribution functions (edf s) of birth spacing by the sex of the next-born child

in two different samples of women in India. In panel (a), where there is no evidence of

sex-selective abortion—the observed proportion of male births, 0.517, is close to the natural

probability of male birth, 0.513 (see e.g., Chao et al., 2019; Dubuc and Coleman, 2007)—the

edf s of birth spacing for next-born girls and next-born boys are almost indistinguishable. In

panel (b), however, where the proportion of male births is much higher at 0.568, indicative

of sex-selective abortion, the edf s of birth spacing for next-born girls and next-born boys are

clearly distinct. The correlation between birth interval length and the sex of the next-born

child observed in panel (b) results from the fact that sex-selective abortions not only increase

the proportion of male births but also prolong birth spacing, as it takes time to determine

the sex of the fetus in utero and to conceive again.

1For example, they lead to unbalanced marriage markets, which may result in poverty among childless
men in old age, especially in countries without a social security system (Das Gupta et al., 2010). Anukriti
et al. (2022) list additional consequences in their introduction.

2For example, Chao et al. (2019) thus estimate that, between 1970 and 2017, 45 million female births
were missing in the world and that China and India account for 51% and 46% of these, respectively. In
a comprehensive policy report, Guilmoto (2012) lists other countries with “distorted” sex ratios such as
Albania, Armenia, Azerbaijan, Georgia, Montenegro, Pakistan, and Vietnam.
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Figure 1: Empirical distribution functions of birth spacing by sex of the next-born

(a) Birth order 1 (b) Birth order 3 - GG

Note: Panel (a): Empirical distribution function (edf ) of birth spacing at birth order 1, i.e., the time
between marriage and birth of the first child, by sex of the firstborn. Panel (b): edf of spacing at birth
order 3, i.e., the time between the births of the second and third child, when the first two children are girls
(GG) by sex of the thirdborn. Both edf s pertain to literate women during the period 1988–1995; see Section
4 for a detailed data description. In both panels, the proportion of male births (PMB) is indicated in the
bottom-right corner.

In this paper, we propose a method to exploit the information contained in the differences

in birth spacing between next-born girls and next-born boys. First, we introduce a test for

the presence of (repeated) sex-selective abortion. Second, we propose two measures that

complement the number of aborted female fetuses: the number of women who abort and

the share of women at risk of multiple abortions, which measures the likelihood of women

performing repeated sex-selective abortions. Since our methodology exploits birth interval

lengths, our test and measures are only informative about (repeated) sex-selective abortion

between two consecutive births, and our populations of interest are implicitly defined by

birth order. Consequently, we cannot directly address repeated sex-selective abortion in the

population as a whole. Nevertheless, we believe that our proposed methodology provides

valuable insights that complement the information provided by the number of aborted female

fetuses.

Our method relies on a simple statistical model for birth interval length in the presence

of sex-selective abortion. The aforementioned test is an immediate by-product of our model

and has the attractive feature that it relies solely on differences in average spacing between

next-born girls and next-born boys, thus avoiding the need to specify the natural probability

of male birth—a contested topic (Chao et al., 2019). Specifically, if birth spacing differs by
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the sex of the next-born child, this provides evidence of sex-selective abortion. Additionally,

if the time to birth is shorter when the next-born is a girl, this provides evidence of repeated

sex-selective abortion.

To obtain the number of women who abort and the share of women at risk of multiple

abortions, we estimate our model using maximum likelihood. The main parameters of our

model—assuming women abort at most twice—are the share of women who abort when the

first pregnancy since the preceding birth is with a female fetus, and the share of women

who abort a second time if again pregnant with a female fetus after a first abortion. These

parameters readily provide us with the number of women who abort and the share of women

at risk of multiple abortions. While we are not the first to note that sex-selective abortion

impacts birth spacing (see, e.g., Pörtner, 2022; Anukriti et al., 2022), the observation that

this impact depends on the sex of the next-born and can be used to measure the prevalence

of sex-selective abortion is, to the best of our knowledge, new to the literature.

We use our proposed methodology to study the evolution of sex-selective abortion pat-

terns in India over time, utilizing data from five rounds of the Demographic and Health

Surveys (1992–93, 1998–99, 2005–06, 2015–16, and 2019–2021) and the 2002–04 round of

the District Level Household & Facility Survey. While sex-selective abortion is practiced

in several countries (Guilmoto, 2012), India has been estimated to account for 46% of the

aborted female fetuses worldwide over the period 1970–2017 (Chao et al., 2019), making it

an interesting case study. Our analysis is conducted at birth orders 1–3, for different sibling

compositions, and is broken down according to socio-demographic and geographic factors.

Specifically, we consider literate and illiterate women, women in urban and rural areas, and

women in the North and South of India.

At birth order 1, consistent with the literature, we find little to no evidence of sex-selective

abortion. At birth order 2, when the first child is a girl, our test provides some evidence of

repeated sex-selective abortion. Strong evidence is found at birth order 3, when the first two

children are girls. Our estimation results corroborate this, showing that the share of women

who sex-selectively abort is increasing over time and is larger at birth order 3 than at birth

order 2. We also find strong heterogeneity across socio-demographic and geographic groups

and over time. For example, literate women and those in urban areas are more likely to abort

than illiterate women and those in rural areas. Furthermore, literate and urban women do

not abort a second time at birth order 2 but have a likelihood of around 9% to repeatedly

abort at birth order 3, which appears to be stable over time (after 1995). Among women

in the North, our estimates indicate that the likelihood of women aborting repeatedly has

increased over time at both birth orders 2 and 3. At birth order 3, the likelihood is estimated

to have doubled, from approximately 6.5% to around 13%. The latter number corresponds
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to an estimated number of aborted female fetuses per 1,000 women of 99, which is around

50% larger than the estimated number of women who abort (65).

As noted our earlier, our proposed measures should prove useful from a public health

perspective. Abortions are often practiced in unsafe conditions, even in countries where

they are legal. Singh et al. (2018a), for example, estimate that 5% of all abortions in India

are practiced “outside of health facilities with methods other than medication abortion.”

Nonmedical methods, such as inserting objects or liquids into the vagina (Singh et al., 2018b),

can put the health of women at high risk. While abortion-related deaths are very rare (Yokoe

et al., 2019), post-abortion complications are more frequent and can be severe, such as a

perforated uterus or infections (Singh et al., 2018a). Given that sex-selective abortions are

illegal and more likely to be carried out in unsafe conditions, their repeated use can be

extremely detrimental to maternal health both physically and mentally. Our methodology

can help policymakers identify socio-demographic and geographic groups most at risk of

multiple abortions, which may differ from groups with the largest number of aborted female

fetuses.

Our model and findings also highlight the need for caution in interpreting sex ratios

at birth. The sex ratio at birth is often used as a proxy for son preference, as seen in the

literature on the origins of son preference (Alesina et al., 2018; Goli et al., 2022; Mavisakalyan

and Minasyan, 2023; Qian, 2008) and its societal impact (Hwang et al., 2019). These studies

typically assume that, for example, two geographical areas with the same sex ratio have

(approximately) the same level of son preference. However, as this paper shows, the number

of women who abort may very well differ across these geographical areas.

The rest of the paper is organized as follows. Section 2 provides the contextual back-

ground for sex-selective abortion in India. Section 3 introduces our model and illustrates

its implications. This section also introduces our maximum likelihood estimator and our

parameters of interest. Sections 4 and 5 present the data and our empirical findings, respec-

tively. Finally, Section 6 concludes. Additional material, including proofs, can be found in

the Appendix.

2 Sex-selective abortion in India

Abortion has been legal in India since the enactment of the Medical Termination of Preg-

nancy Act, No. 34, Government of India (1971). This act allows pregnancies to be terminated

up to 20 weeks gestation by registered medical practitioners at certified abortion facilities.

However, sex-selective abortion is illegal and regulated under the Pre-Natal Diagnostic Tech-

niques (Regulation and Prevention of Misuse) Act, No. 57, Government of India (1994). This
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act prohibits the misuse of antenatal diagnostic tests for determining the sex of the fetus.

It bans the advertisement of such tests, mandates the registration of all facilities that use

them, and forbids revealing the sex of the fetus to the expectant parents.

Despite its prohibition, sex-selective abortion is widely practiced. Chao et al. (2019), for

example, estimate the number of missing female births in India between 1970 and 2017 to

be 20.7 million. While the 1994 ban on sex-selective abortion seems to have slowed down

its increase among poorer households (Rastogi and Sharma, 2022), the imbalance in the sex

ratio at birth has continued to rise. Saikia et al. (2021) estimate that the number of missing

female births has increased by one million per decade, from 3.5 million between 1987 and

1996 to 5.5 million between 2007 and 2016.

Two main explanations have been proposed for this increase. First, sex determination

during pregnancy has become more accessible and cheaper since the mid-1990s, following

increases in imports and domestic production of ultrasound machines (Anukriti et al., 2022).

Second, desired total fertility (i.e., the total number of children) has decreased (Cassan et

al., 2023). As the probability of having at least one son decreases with lower total fertility,

households that want to have at least one son are more likely to use sex-selective abortion.

Jayachandran (2017) estimates that between one-third and one-half of the increase in the

child sex ratio between 1981 and 2011 can be attributed to this change in desired total

fertility.3

Furthermore, there is heterogeneity in the occurrence of sex-selective abortion across

regions and demographic groups in India. Sex-selective abortion is more common in northern

India (Saikia et al., 2021), urban areas (Pörtner, 2022), wealthier households, and among

more educated women (Bhalotra and Cochrane, 2010). While differences across regions in

terms of child sex ratios have decreased between 1991 and 2001 (Diamond-Smith and Bishai,

2015), differences between demographic groups in terms of the number of missing female

births have increased over the same period (Jha et al., 2011).

The occurrence of sex-selective abortion also depends on birth order and the sex compo-

sition of previous children. The consensus in the literature is that there is no sex-selective

abortion at birth order 1 (Dahl and Moretti, 2008; Milazzo, 2018; Heath and Tan, 2018),

although Saikia et al. (2021) find some evidence for recent years. At higher birth orders,

sex-selective abortion is more common in households that previously only had girls, reflecting

a widespread preference for having at least one son (Bhalotra and Cochrane, 2010). While

the number of missing female births was highest at birth order 3, Saikia et al. (2021) find

that more female births have been missing at birth order 2 in recent years (2007-2016).

3Jayachandran (2017) uses the child sex ratio, i.e., the sex ratio among children aged 0-6 years, as a proxy
for the sex ratio at birth.
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3 Birth interval length in the presence of sex-selective

abortion

In the absence of sex-selective abortion, there is no correlation between birth interval length

and the sex of the next-born child. While birth interval length may depend on, and thus be

correlated with, the sexes of the preceding children, the sex of the next-born child, absent

sex-selective abortion, is random and therefore independent of birth interval length. By

contraposition, if birth interval length correlates with the sex of the next-born child, this

provides evidence of sex-selective abortion. To the best of our knowledge, this observation

is new to the literature. In what follows, we propose a simple model for birth interval length

that (i) links the sign of the correlation between birth interval length and the sex of the

next-born child to the presence of repeated sex-selective abortion, and (ii) in combination

with certain distributional assumptions, allows us to estimate parameters of interest such as

the share of women who abort when pregnant with a female fetus.

This section is organized as follows. Section 3.1 introduces our model, assuming fixed

time intervals for ease of exposition. It also presents a proposition that can be used to test for

the presence of (repeated) sex-selective abortion between two consecutive births. Section 3.2

relaxes the assumption of fixed time intervals, discussing the necessary assumptions for the

previously obtained results to hold, which also underlie our maximum likelihood estimator

introduced in Section 3.3. Finally, Section 3.4 introduces the number of aborted female

fetuses, which corresponds to the number of missing women of Sen (1990) adapted to our

setting, along with other parameters of interest.

Before introducing our model, an important comment is in order. As mentioned above,

birth interval length may depend on the sexes of the preceding children. Assuming that

households have a preference for sons, it is, for example, conceivable that households that

first have a girl (rather than a boy) have shorter birth intervals, as they may decrease their

waiting time before trying to have another child. This is consistent with evidence that girls

are breastfed for shorter periods of time (Jayachandran and Kuziemko, 2011). Because we

do not wish to model this difference in waiting times, we condition on the composition and

birth order of the siblings of the next-born child.

3.1 A simple model for birth interval length

We start by assuming that each sex-selective abortion prolongs the birth interval by a fixed

amount of time, D. We also assume that the time to birth in the absence of abortion is

fixed. Letting T a
b denote the length of the birth interval (time to birth) when a abortions
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are performed between the two births, we have T a
b = T 0

b + aD. The observed time to

birth is Tb ≡ TA
b , where A denotes the number of sex-selective abortions. Here and in

what follows, we use the notational convention that uppercase and lowercase letters denote

random variables and their possible realizations, respectively. Here, a ∈ {0, 1, . . . , N0}, where
N0 denotes the (known) maximum number of “possible” abortions. As mentioned above, we

condition our analysis on the composition and birth order of the siblings. However, we omit

this dependence for notational convenience.

When the first pregnancy since the preceding birth is with a female fetus, a household

aborts with probability α1. More generally, a household aborts with probability αk when

pregnant with a female fetus for the kth time having aborted k− 1 times since the preceding

birth.4 Here, a key observation is that a household can become pregnant again with a female

fetus after having aborted one or several female fetuses. In what follows, let Y ∈ {0, 1}
denote the sex of the next-born child, with 0 indicating the birth of a girl and 1 indicating

the birth of a boy. Letting π denote the natural probability of male birth, the probabilities

of having a girl after a abortions and a boy after a abortions are given by

P (A = a, Y = 0) = (1− π)a(1− αa+1)
a∏

k=0

αk, (1)

and

P (A = a, Y = 1) = (1− π)a
a∏

k=0

αk (2)

respectively, where α0 = 1 and αN0+1 = 0. By definition, P (Y = 0) =
∑N0

a=0 P (A = a, Y = 0)

and P (Y = 1) =
∑N0

a=0 P (A = a, Y = 1).5 The model implied by equations (1) and (2) will

be illustrated in the following sections, where we consider the cases where women abort

at most once and at most twice. We note that the above model implicitly assumes no

sex-selective abortion of male fetuses. We discuss this assumption in Section 3.2.

4One can think of the αs as average probabilities for underlying “types” that differ in their willingness to
abort (WTA). Different levels of WTA may reflect, for example, different strengths of the preference for the
next-born child to be a boy. Imagine that there are two types of households, one with low WTA and one
with high WTA. Letting pL and pH denote their respective probabilities of sex-selective abortion, we have,
for example, α1 = πHpH + (1 − πH)pL, where πH denotes the proportion of households with high WTA.
Thus, even though the decision to perform an abortion is modelled as random, our model is compatible with
non-random decisions (pL = 0 and pH = 1).

5Guilmoto et al. (2020) consider a probabilistic model of sex-selective abortion behavior at a given parity
similar to ours. However, they do not analyze the implications of their model for spacing.
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3.1.1 The case with at most one sex-selective abortion

We now show that if households abort at most once, i.e., A ∈ {0, 1}, then the expected

birth interval length is longer when the next-born child is a girl than when it is a boy, i.e.,

E(Tb|Y = 0) > E(Tb|Y = 1). This result follows from the fact that an abortion prolongs the

birth interval (recall TA
b = T 0

b +AD) and that an abortion is more likely to have taken place

when the next-born child is a girl than when it is a boy, i.e., P (A = 1|Y = 0) > P (A =

1|Y = 1).

To see this, note that the (expected) time that elapses before the birth of a child of

sex y is a weighted average of the time that elapses if no abortion takes place, T 0
b , and the

time that elapses if one abortion takes place, T 1
b = T 0

b +D, weighted by the corresponding

probabilities, which are given by P (A = 0|Y = y) and P (A = 1|Y = y), respectively. That

is,

E(Tb|Y = y) = P (A = 0|Y = y) · T 0
b + P (A = 1|Y = y) · (T 0

b +D)

= (1− P (A = 1|Y = y)) · T 0
b + P (A = 1|Y = y) · (T 0

b +D)

= T 0
b + P (A = 1|Y = y) ·D (3)

Since the time that elapses if one abortion takes place is longer than the time that elapses if

no abortion takes place, the time to birth is longer when the next-born child is a girl than

when it is a boy if the probability or weight of one abortion is higher when the next-born

child is a girl than when it is a boy. That is,

E(Tb|Y = 0) = T 0
b + P (A = 1|Y = 1) ·D > T 0

b + P (A = 1|Y = 0) ·D = E(Tb|Y = 1)

as long as P (A = 1|Y = 0) > P (A = 1|Y = 1).

In order to see that an abortion is more likely to have taken place when the next-born

child is a girl, it is useful to consider Figure 2, which plots all possible paths to birth when

there is at most one abortion. Intuitively, an abortion is more likely to have occurred when

the next-born child is a girl because almost as many girls as boys are born “after” an abortion

(cf. Figure 2 at time T 0
b + D), whereas there are fewer girls born than boys “without” an

abortion (cf. Figure 2 at time T 0
b ), precisely because some female fetuses are aborted.

To show this more formally, consider Table 1 which tabulates the probabilities in equa-

tions (1) and (2) as well as their sums across the number of abortions when there is at most

one abortion. From Table 1, it is easy to see that the probability that an abortion has
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Figure 2: Paths to birth with at most one abortion
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Note: The figure represents all possible outcomes in terms of sex and time to birth, as well as their respective
probabilities, when households abort at most once between two consecutive births.

Table 1: Probabilities of sex and # abortions with at most one abortion

y P (A = 0, Y = y) P (A = 1, Y = y) P (Y = y) =
∑1

a=0 P (A = a, Y = y)
0 (1− π)(1− α1) (1− π)α1(1− π) (1− π)[(1− α1 + (1− π)α1)]
1 π (1− π)α1π π[1 + (1− π)α1]

occurred when the next-born child is a girl and when it is a boy are given by

P (A = 1|Y = 0) =
P (A = 1, Y = 0)

P (Y = 0)
=

(1− π)α1

1− α1 + (1− π)α1

. (4)

and

P (A = 1|Y = 1) =
P (A = 1, Y = 1)

P (Y = 1)
=

(1− π)α1

1 + (1− π)α1

, (5)

respectively. Comparing equations (4) and (5), we see that that an abortion is indeed more

likely to have occurred when the next-born child is a girl, as the denominator in (4) is smaller

than the denominator in (5) while the two numerators are equal.

GRAPHICAL ILLUSTRATION:

Figure 3 graphically illustrates the joint and conditional probabilities of our model for

α1 = 0.8 and π = 0.513. Panel (a) shows the joint probabilities P (A = a, Y = y) for zero

abortions (a = 0) and one abortion (a = 1) from left to right and for girls (y = 0) and boys
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Figure 3: Joint and conditional probabilities with at most one abortion

(a) Joint probabilities (b) Conditional probabilities

Note: Panel (a) visualizes P (A = 0, Y = 0), P (A = 1, Y = 0), P (A = 0, Y = 1), and P (A = 1, Y = 1) from
left to right and from top to bottom, i.e., the areas of the squares represent probabilities that should be
thought of as summing to one. Panel (b) visualizes P (A = 0|Y = 0), P (A = 1|Y = 0), P (A = 0|Y = 1), and
P (A = 1|Y = 1) from left to right and from top to bottom, i.e., the areas of the circles represent conditional
probabilities that should be thought of as summing to one for each line. The black dots indicate E(Tb|Y = y)
for y = 0 (Girls) and y = 1 (Boys). In both panels, α1 = 0.8 and π = 0.513.

(y = 1) from top to bottom. One can see that there are more boys born than girls—the two

bottom squares are larger than the two top squares. This is difficult to see with the naked

eye for the two right squares—the bottom square is “only” 2.6% (= 0.513 − (1 − 0.513))

larger—and reflects that there are almost as many girls born as boys “after” an abortion.

Panel (b) shows the corresponding conditional probabilities P (A = 0|Y = y). Here, one

can see that one abortion has a larger weight for girls than for boys—the top-right circle is

greater than the bottom-right circle. The black dots indicate the expected time to birth for

girls in the first row and for boys in the second row, which are weighted averages of T 0
b and

T 0
b + D (see x-axis) where the weights are represented by the circles. This illustrates that

expected birth interval length is longer when the next-born child is a girl than when it is a

boy when there is at most one abortion.

Next, we show that when there are at most two abortions the expected birth interval

length may be longer or shorter when the next-born child is a girl than when it is a boy.
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3.1.2 The case with at most two sex-selective abortions

When there are at most two sex-selective abortions, i.e., A ∈ {0, 1, 2}, the (expected) time

to birth when the next-born child has sex y is a weighted average of the time that elapses if

no abortion takes place, T 0
b , the time that elapses if one abortion takes place, T 1

b = T 0
b +D,

and the time that elapses if two abortions take place, T 2
b = T 0

b + 2 · D, weighted by the

corresponding probabilities P (A = a|Y = y) with a ∈ {0, 1, 2}, respectively. That is,

E(Tb|Y = y) =
2∑

a=0

P (A = 0|Y = y) · (T 0
b + a ·D)

= T 0
b +

2∑
a=1

P (A = a|Y = y) · a ·D. (6)

Therefore, whether the expected time to birth is shorter or longer when the next-born child

is a girl depends on those probabilities or weights. When there is at most one abortion, then

one abortion is more likely to have occurred, i.e., it has a larger weight, if the next-born

child is a girl than when it is a boy. Similarly, when there are at most two abortions, then

two abortions are more likely to have occurred, i.e., they have a larger weight, when the

next-born child is a girl than when it is a boy.

Figure 4: Paths to birth with at most two abortions
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Note: The figure represents all possible outcomes in terms of sex and time to birth, as well as their respective
probabilities, when households abort at most twice between two consecutive births.

To gain some intuition for this, consider Figure 4, which plots all possible paths to birth
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when there are at most two abortions. The intuition is similar to before (when there was at

most one abortion): Whereas almost as many girls as boys are born “after” two sex-selective

abortions (cf. Figure 4 at time T 0
b +2D), no male but some female fetuses have been aborted

before that. Consequently, more boys than girls are born “without” an abortion (cf. Figure

4 at time T 0
b ) and “with” one abortion (cf. Figure 4 at time T 0

b +D).

Table 2: Probabilities of sex and # abortions with at most two abortions

y P (A = 0, Y = y) P (A = 1, Y = y) P (A = 2, Y = y) P (Y = y) =
∑2

a=0 P (A = a, Y = y)
0 (1− π)(1− α1) (1− π)2α1(1− α2) (1− π)3α1α2 (1− π)[1− α1 + (1− π)α1(1− α2) + (1− π)2α1α2]
1 π (1− π)α1π (1− π)2α1α2π π[1 + (1− π)α1 + (1− π)2α1α2]

Given Table 2, which is equivalent to Table 1 except that it considers the case with at

most two abortions, it is easy to see that the probability that two abortions have occurred

when the next-born child is a girl and when it is a boy are given by

P (A = 2|Y = 0) =
P (A = 2, Y = 0)

P (Y = 0)
=

(1− π)2α1α2

1− α1 + (1− π)(1− α2)α1 + (1− π)2α1α2

(7)

and

P (A = 2|Y = 1) =
P (A = 2, Y = 1)

P (Y = 1)
=

(1− π)2α1α2

1 + (1− π)α1 + (1− π)2α1α2

, (8)

respectively. While the numerators in equations (7) and (8) are equal, the denominator in

(7) is smaller and the conclusion follows.

Given that two abortions are more likely to have occurred when the next-born child is a

girl and that two abortions prolong the time to birth by twice the time that one abortion

does, the only way for the time to birth to be shorter when the next-born child is a girl

is for one abortion (as opposed to two abortions) to be considerably less likely when the

next-born child is a girl than when it is a boy. This occurs when a large share of female

fetuses conceived after a first sex-selective abortion are aborted, i.e., when α2 is large, as this

results in a low probability of a girl being born “with” one abortion (cf. Figure 4 and Table

2). Exact calculations, detailed in Appendix B, show that the difference in mean spacing

between girls and boys, E(Tb|Y = 0)−E(Tb|Y = 1), is negative, positive, or zero if and only

if α2 is greater than, less than, or equal to6

1− 2(1− π)α1 −
√

1− 4(1− π)α1

2α1(1− π)2
, (9)

6For α1 > 1
4(1−π) , E(Tb|Y = 0)− E(Tb|Y = 1) is strictly positive for any α2 ∈ [0, 1].
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respectively.

Figure 5: Equation (9)

Note: The black line plots equation (9) for π = 0.513.

Figure 5 plots equation (9) for π = 0.513. Values of α2 above (below) the black line

imply that time to birth is shorter (longer) when the next-born child is a girl. We see that

α2 indeed needs to be large for the time to birth to be shorter when the next-born child is

a girl. In particular, α2 needs to be greater than α1.

GRAPHICAL ILLUSTRATION:

Figure 6 graphically illustrates the conditional probabilities of our model for two different

sets of parameter values when there are at most two sex-selective abortions. In panel (a),

α1 = 0.8 and α2 = 0.1, while in panel (b), α1 = 0.25 and α2 = 0.99. In both panels, we

observe that two abortions have a larger weight for girls than for boys—the top-right circles

are larger than the bottom-right circles. In panel (a), the weight of one abortion is also

larger for girls than for boys—the top-center circle is larger than the bottom-center circle.

Consequently, the expected time to birth, represented by the black dot and obtained as a

weighted average of the times of zero, one, and two abortions (see x-axis), is shorter for

boys than for girls. In panel (b), however, the weight of one abortion is considerably larger

13



Figure 6: Conditional probabilities with at most two abortions

(a) α1 = 0.8; α2 = 0.1 (b) α1 = 0.25; α2 = 0.99

Note: In both panels, the top and bottom lines visualize P (A = a|Y = 0) and P (A = a|Y = 1) for a = 1, 2,
and 3 from left to right, respectively, i.e., the areas of the circles represent conditional probabilities that
should be thought of as summing to one for each line in each panel. The black dots indicate E(Tb|Y = y)
for y = 0 (Girls) and y = 1 (Boys). In panel (a) α1 = 0.8; α2 = 0.1 and in panel (b) α1 = 0.25; α2 = 0.99.

for boys than for girls—the top-center circle is smaller than the bottom-center circle. As a

result, the expected time to birth is shorter for girls than for boys.

3.1.3 A useful proposition

If there is no sex-selective abortion, the time to birth is equal regardless of the sex of the next-

born child. Furthermore, our model implies that if households abort at most once, the time

to birth is longer when the next-born child is a girl (cf. Section 3.1.1). By contraposition,

if the time to birth is shorter when the next-born child is a girl, this provides evidence

of repeated sex-selective abortion between two consecutive births. In other words, there

are households that repeatedly abort when repeatedly pregnant with a female fetus. The

following proposition formalizes this result as well as the observation made at the beginning

of Section 3. A proof is provided in Appendix A.

Proposition 1.

(i) If E(Tb|Y = 0) ̸= E(Tb|Y = 1), then α1 > 0, i.e., there is sex-selective abortion.

(ii) If E(Tb|Y = 0) < E(Tb|Y = 1), then α1, α2 > 0, i.e., there is repeated sex-selective

abortion.

Proposition 1(i) can be used to detect sex-selective abortion and therefore complements
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the sex ratio.7 An advantage of using mean spacing as an indicator of sex-selective abortion

is that it is independent of the natural sex ratio.8 On the other hand, it is only informative

about sex-selective abortion between two consecutive births and thus specific to a given birth

interval.

Proposition 1(ii) can be used to detect repeated sex-selective abortion between two con-

secutive births. If the mean spacing for girls is lower than the mean spacing for boys, then

there is repeated sex-selective abortion, i.e., a strictly positive fraction of the population

aborts a second time if again pregnant with a female fetus. We note that Proposition 1

provides sufficient, but not necessary, conditions. For example, it is possible that repeated

sex-selective abortion is present in the population, but that the mean spacing for girls is

greater than the mean spacing for boys as illustrated in panel (a) of Figure 6. In that sense,

tests based on Proposition 1 are only partial.

3.2 Extension of the above model to varying times

So far, we have assumed that T 0
b and D are fixed for expositional purposes. In what follows,

we model T 0
b and D as random variables, while maintaining that the probabilities P (A =

a, Y = y) are given by equations (1) and (2). This implicitly assumes that the decision

to abort is independent of T 0
b and D (and vice versa). In order to facilitate the discussion

of this assumption, we impose some structure on T 0
b and D. This structure also underlies

our estimation procedure and ensures that our previous findings, including Proposition 1,

continue to hold.

We assume that

T 0
b = Tw + Tp,

where Tw denotes the waiting time until conception, which includes the time that the house-

hold waits after the birth of a child before trying to conceive again, plus the time it takes to

conceive. Tp denotes the time of pregnancy, which we assume to be fixed and equal to nine

months. Any potential variation in Tp is assumed to be independent of the sex of the fetus

and is subsumed in Tw.

We assume that the kth abortion prolongs the birth interval by

Ts + Tc,k.

7We note that Proposition 1(i) also holds without conditioning on the sibling composition.
8More generally, our model implies that if P (Tb < t|Y = 0) ̸= P (Tb < t|Y = 1) for at least some t,

then α1 > 0. Therefore, an alternative, potentially more powerful test for the presence of sex-selective
abortion would consist in testing whether the two conditional distributions are equal. Here, we focus on the
“difference-in-means” for its simplicity.
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Here, Ts denotes the time to screening, which is the duration from conception until the sex

of the fetus is known.9 It represents the waiting period before a household may potentially

perform a sex-selective abortion. We do not index Ts by the abortion cycle because we

assume it is fixed and equal to five months. Tc,k denotes the time to conception after the kth

abortion, which is the duration until a woman conceives again after having aborted k times.

We assume Tc,k is i.i.d. across k, with Tc,k ∼ Tc.
10

Given the above assumptions, the time to birth “with” a abortions (having taken place)

is given by

T a
b = Tw +

a∑
k=1

(Ts + Tc,k) + Tp.

There are several assumptions underlying the above structure worth discussing. First, there

is the assumption that possible variation in Tp is independent of the sex of the fetus. Possible

variation in Tp might, for example, be due to premature births, which could be more likely

for girls if women rest less when they know that they are expecting a girl. Similarly, one

may fear that miscarriages and abortions not performed for the purpose of sex-selection are

not equally likely for male and female fetuses (see e.g., Orzack et al., 2015). While such

concerns may be theoretically justified, panel (a) of Figure 1 suggests that they are not of

first-order empirical relevance: when the observed proportion of male births is close to the

natural probability of male birth, there is no difference in spacing by sex of the next-born

child. Second, we implicitly assume that, after an abortion, the household tries to conceive

again without any additional waiting time. This assumption seems plausible given that the

decision to have another child has already been made before the abortion and that ovulation

typically returns within one month after an abortion (see, e.g., the “Abortion Care guideline”

of the World Health Organization, 2022).

Given the above structure, the aforementioned independence assumption implies that

the decision to abort is independent of Tw and Tc, which constitute the random parts of

T 0
b and D, respectively. This assumption is not innocuous because Tw includes the time to

conception, and it is plausible that a household is less likely to abort a female fetus if it took

a long time to conceive.11 Similarly, the waiting time component of Tw may be correlated

with the decision to abort.

For instance, households with a son preference but low willingness to abort (WTA) may

9For simplicity, we assume that every household knows the sex of the fetus. However, the implications of
the model remain the same if we assume that a household that does not, or would not, sex-selectively abort
does not know the sex of the fetus.

10This assumption is supported by Oster (2022), who finds that time to conception at birth order 1 only
explains 11% of the variation in time to conception at higher birth orders.

11For example, a long time to conceive may increase the emotional attachment to the female fetus. It may
also impact beliefs about future times to conception, including the Tc,ks.
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follow a fertility stopping rule (see e.g., Cassan et al., 2023). These households may have

shorter waiting times in anticipation of potentially needing a larger number of children to

have at least one boy. Other dependencies through WTA are also conceivable. If abortions

impact the time to conception (contained in Tw and the Tc,ks), then a household with a higher

WTA (and thus a greater likelihood to abort) may have a differential time to conception, as

it is more likely to already have performed an abortion during a previous birth interval.

While we leave the task of relaxing the independence assumption for future research, we

estimate the parameters of our model across birth orders and sibling compositions, as well

as separately for different socio-demographic and geographic groups. This approach ensures

that the women in our estimation samples are more homogeneous in terms of waiting times

and unobserved factors.

As mentioned earlier, we implicitly assume no sex-selective abortion of male fetuses.

However, as long as female fetuses are more likely to be aborted than male fetuses, the

above model remains applicable with the understanding that the αs represent differences in

the probabilities of aborting female and male fetuses. The additional time to birth that is

due to sex-selective abortion and that is common to fetuses of both sexes can be subsumed

in Tw and Tc.

To see that our previous findings, including Proposition 1, continue to hold under varying

times, note that, given the above assumptions, we have

E(Tb|Y = y) = Tp + E(Tw) +

N0∑
a=1

P (A = a|Y = y) · a · (Ts + E(Tc,k)),

which has the same structure as equations (3) and (6) (with T 0
b = Tp + E(Tw) and D =

Ts + E(Tc,k)) that underlie the proof of Proposition 1 and the analysis in Section 3.1.2.

3.3 Maximum likelihood estimation

In order to estimate the model and its main parameters, α = (α1, . . . , αN0)
′, we rely on

the principle of maximum likelihood. We assume that Tw and Tc are independent and

gamma-distributed, with shape parameters γw and γc and scale parameters βw and βc.
12

This distributional assumption is not only flexible but also allows us to obtain an analytical

expression for the likelihood function, avoiding computationally expensive simulation-based

12The independence assumption seems plausible given that times to conception are only weakly auto-
correlated within households (see footnote 10), making them difficult to predict. This also suggests that
households cannot effectively adjust their waiting times.
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estimation. In particular, the individual likelihood function is given by

L(θ; t, y) =

N0∑
a=0

fTa
b
(t; γw, βw, γc, βc)P (Y = y, A = a;α),

where θ = (α′, γw, βw, γc, βc)
′ and where

fTa
b
(t; γw, βw, γc, βc) =

fΓ(t− tp; γw, βw) if a = 0

fΣΓ(t− tp − a · ts; γw, βw, γca, βc) if a > 0

denotes the probability density function (pdf ) of T a
b for a given a. Here, fΓ(·; γ, β) and

fΣΓ(·; γ1, β1, γ2, β2) denote the pdf of a gamma-distributed random variable (with shape

parameter γ and scale parameter β) and the pdf of the sum of two independent gamma-

distributed random variables (with shape parameters γ1 and γ2, and scale parameters β1 and

β2), respectively; see Appendix C for details. Note that P (Y = y, A = a;α), where we have

made the dependence on α explicit, is given in (1) and (2) for y = 0 and y = 1, respectively.

With L(θ; t, y) thus defined, we could, in principle, estimate θ by maximizing the log-

likelihood function,
∑n

i=1 logL(θ; ti, yi), over the parameter space [0, 1]N0 × [0, C]4 for some

large C < ∞, where i = 1, . . . , n indexes the households in the estimation sample. To

aid estimation, we instead calibrate γc and βc using auxiliary data; see Appendix C for

details. Furthermore, we impose that N0 = 2 and, with a slight abuse of notation, let

θ = (α1, α2, γw, βw)
′ with the understanding that L(θ; ti, yi) denotes L((θ′, γ̃c, β̃c)

′; ti, yi),

where γ̃c and β̃c denote the calibrated values of γc and βc, respectively. Formally, our

maximum likelihood estimator is defined as

θ̂ = argmax
θ∈Θ

n∑
i=1

logL(θ; ti, yi),

where Θ = [0, 1]2 × [0, C]2.

An important comment about our estimation problem is in order: α2 is not identified

when α1 is equal to zero, in the sense that
∑n

i=1 logL(θ; ti, yi) does not depend on α2 when

α1 = 0; cf. Assumption A in Andrews and Cheng (2012) (AC hereafter). Intuitively, we

cannot identify the share of women who abort a second time if none abort a first time. By

continuity, α2 is only weakly identified when α1 is close to zero relative to the sample size, n.

More precisely, the identification strength of α2 is governed by
√
nα1: α2 is weakly identified

if
√
nα1 → h (as n → ∞) with h < ∞, while α2 is (semi-)strongly identified if

√
nα1 → h
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with h = ∞, using the terminology in AC.13 The possibility that α2 may only be weakly

identified implies that “standard” standard errors may not be reliable.

In this paper, we use an identification-category-selection (ICS) procedure to address the

problem of weak identification (see, e.g., AC). To select an identification category (i.e., h < ∞
or h = ∞), an ICS statistic is compared to a tuning parameter, κ, that satisfies κ → ∞
and κ/

√
n → 0 as n → ∞; a standard choice is κ =

√
lnn. If ICS ≤ κ, one concludes

that identification is weak; if ICS > κ, one concludes that identification is (semi-)strong.

An ICS procedure is consistent if the ICS statistic is Op(1) under weak identification and

diverges under (semi-)strong identification. Here, we use the standard t-statistic for testing

H0 : α1 = 0, say t1, as the ICS statistic. Our ICS procedure involves only reporting estimates

of and making inferential statements about α2 when t1 > κ.14,15 In order to be conservative,

we take κ = 6.16

3.4 Parameters of interest

In this section, we introduce the number of aborted female fetuses, which corresponds to

the number of missing women of Sen (1990) adapted to our setting. We then show how α2

captures the relationship between the number of aborted female fetuses and the number of

women who abort when there are at most two sex-selective abortions between two consecutive

births. Finally, we note that the product of α1 and α2 measures how likely women are to

perform repeated sex-selective abortion between two consecutive births.

As underlined in several places in this paper, we are interested in (repeated) sex-selective

abortion between two consecutive births. A population of interest is therefore defined by birth

order (and other criteria such as sibling composition). The birth interval associated with a

given birth order refers to the interval between the preceding birth and the birth indicated

13α2 is semi-strongly identified if, in addition, α1 → 0 and strongly identified otherwise. Here, we implicitly
consider (drifting) sequences of true parameters whose dependence on the sample size is omitted for notational
convenience; see, e.g., Andrews and Guggenberger (2010) for the importance of the asymptotic behavior of
estimators and test statistics under drifting sequences of true parameters for determining the asymptotic
size of a test.

14Constructing tests that are valid under weak identification (t1 ≤ κ) is beyond the scope of this paper.
15From results in Ketz (2019, 2022), it can be deduced that (the confidence interval based on) the standard

t-statistic for α2 is valid under (semi-)strong identification, in that its asymptotic size does not exceed the
nominal level.

16We do not use κ =
√
lnn because we are concerned that this choice might lead us to concluding that

identification is (semi-)strong even when it is not. Even for our largest sample (cf. Table 4), we “only” have√
ln(232,935) ≈ 3.5. The value 6 is inspired by Elliott et al. (2015), who use this number in a related context;

see their running example. In unreported Monte Carlo simulations (available upon request), we have also
found that the t-test for testing hypotheses about α2 has good size properties under realistic choices of the
parameter values, such that t1 is approximately normally distributed across simulations, and less than 0.5%
of the simulations have t1 > 6.
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by the birth order. For example, at birth order 2, we consider the time that elapses between

the birth of the first and second child. In what follows, a “sample” should be thought of as

a random sample from a population of interest.

In a sample of n households, the expected number of pregnancies with a female fetus

(ENFF) is equal to

ENFF = n× PMB
1− π

π
,

where PMB denotes the proportion of male births observed in the sample. This number is

defined analogous to the expected number of women in Sen (1990) and the expected number

of female births in Guilmoto et al. (2020). It tells us how many female fetuses we would

expect to be conceived (but not necessarily to be born) given the observed number of male

births, n× PMB. The observed number of female births (ONFB) is given by

ONFB = n× (1− PMB)

and defined analagous to the observed number of women in Sen (1990) and the observed

number of female births in Guilmoto et al. (2020). The difference between ENFF and ONFB

gives us the (expected) number of aborted female fetuses (ENAFF), i.e.,

ENAFF = ENFF− ENAFF = n
PMB− π

π
.

We note that ENAFF, in fact, constitutes an estimator of the (expected) number of aborted

female fetuses. The corresponding population analogue is obtained by replacing the observed

proportion of male births, PMB, by the unknown probability of male births, P (Y = 1).

When there are at most two sex-selective abortions, the latter is equal to

π[1 + (1− π)α1 + (1− π)2α1α2],

see Table 2. Plugging in and dividing by the number of women who abort, n(1 − π)α1, we

obtain

1 + (1− π)α2. (10)

We have thus shown that α2 provides a direct link between the number of aborted female

fetuses—the standard measure of sex-selective abortion—and the number of women who

abort. When α2 equals zero, no woman aborts more than once, and the number of aborted

female fetuses is equal to the number of women who abort. When α2 equals one, the number

of aborted female fetuses is 2− π ≈ 1.5 times larger than the number of women who abort,

i.e., there are approximately 50% more aborted female fetuses than women who abort.
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While α1 and α2 are defined as probabilities, they can equally be thought of as shares

in the population. α1 is the share of women who abort if the first pregnancy since the

preceding birth is with a female fetus, and α2 is the share of women who abort a second

time if again pregnant with a female fetus after having performed a sex-selective abortion.

Since the women who abort a second time have necessarily aborted a first time, α1 can also

be interpreted as the share of women who abort at least once if “necessary.” For brevity,

we refer to α1 as the “share of women who abort.” Similarly, we refer to α2 as the “share of

women who abort a second time.” Additionally, α1 × α2 measures the likelihood of women

performing repeated sex-selective abortion between two consecutive births. It can be thought

of as the share of women who abort twice if “necessary.” This means they abort twice if

repeatedly pregnant with a female fetus but only once if pregnant with a male fetus after

a first sex-selective abortion, and never if the first pregnancy is with a male fetus. In what

follows, we refer to α1 × α2 as the “share of women at risk of multiple abortions.”

4 Data description

We use data from the five rounds of the Demographic and Health Surveys (DHS 1–5) for

India (1992–93, 1998–99, 2005–06, 2015–16, and 2019–2021)17 and the 2002–2004 round of

the District Level Household & Facility Survey (DLHS 2). The DHS and DLHS provide

retrospective but precise information on the fertility (full birth history) of each woman aged

between 15 and 49 years at the time of the survey.

We investigate the presence of (repeated) sex-selective abortion between marriage and

the birth of the third child, i.e., at birth orders 1–3. As misreporting of births has been

shown to increase with the recall period (Schoumaker, 2014; Pörtner, 2022), we exclude

birth intervals that started more than 15 years before the survey date. To mitigate sample

selection issues due to censoring, we further restrict our analysis to birth intervals that began

more than five years before the survey date. Table 3 illustrates how the sample size evolves

as we progressively apply these criteria.

An implicit assumption of our analysis is that the probability of observing a next-born

child is not influenced by sex-selective abortion. However, women who perform sex-selective

abortions are likely over-represented among those missing from our sample due to very

long birth intervals, as illegally performed abortions can lead to fertility issues, including a

delayed restart of ovulation, and even maternal death. Consequently, our reported estimates

of the shares of women who abort may underestimate the corresponding population shares of

interest. However, we believe these biases are relatively small. For instance, abortion-related

17DHS 1–4 were downloaded from IPUMS DHS (Boyle et al., 2022) and DHS 5 from the DHS website.
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Table 3: Sample description

Data source Survey year # women1 # births at birth orders 1–3
Total2 5–15 years3 Spacing4 Our sample5 in %

DHS 1 1992–93 78,287 113,273 48,293 48,241 12,181 10.75
DHS 2 1998–99 79,759 192,660 76,385 68,355 62,698 32.54
DLHS 2 2002–04 500,767 609,146 293,345 292,913 292,913 48.09
DHS 3 2005–06 83,342 193,893 75,091 71,177 71,177 36.71
DHS 4 2015–16 469,881 1,022,017 377,914 369,638 369,638 36.17
DHS 5 2019–21 494,019 1,073,352 384,408 376,444 370,749 34.54
Total 1,706,055 3,204,341 1,255,436 1,226,768 1,179,356 36.80

1 We exclude women who had twins.
2 We only keep births with complete information on sex, sex of previous sibling, and spacing.
3 We only keep birth intervals that started between 5 and 15 years before the survey date.
4 We only keep birth intervals that are between 9 months and 10 years and 9 months.
5 We only keep birth intervals that started after 1984 and before 2015.

mortality constitutes “only” 5% of all maternal deaths (Meh et al., 2022).

In order to study the evolution of sex-selective abortion patterns over time, we divide our

sample into three 10-year periods, 1985–1994, 1995–2004, and 2005–2014.18 The first period

is pre-ban, with low availability of ultrasounds, and the last two periods are post-ban, with

high availability of ultrasounds; see Section 2 for details.

5 Empirical analysis

5.1 Results based on Proposition 1

First, we use Proposition 1 to explore what can be learned from differences in average

spacing regarding the presence of (repeated) sex-selective abortion in various groups over

time. To define our groups of interest, we rely on existing literature that has identified

different patterns of sex-selective abortion across education levels and geographical locations

(Bhalotra and Cochrane, 2010; Saikia et al., 2021; Pörtner, 2022). Specifically, we consider

literate and illiterate women, women living in urban and rural areas, and women living in

the North and South of India.19 In the main body of the paper, we focus on “only girls”

sibling compositions, as sex-selective abortion is more likely to occur in households where no

boys have been born yet (Jayachandran, 2017). The corresponding results for other sibling

compositions are reported in Appendix D.

18The years refer to the start of the birth interval.
19The North of India is defined as the collection of the following states: Chandigarh, Delhi, Haryana,

Himachal Pradesh, Jammu and Kashmir, Ladakh, Punjab, Rajasthan, Uttarakhand, Uttar Pradesh, Bihar,
Jharkhand, Madhya Pradesh, West Bengal, and Gujarat. The remaining states make up the south of India.
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Table 4: Proportions of male births and differences in average spacing

Pooled By education By urban-rural status By region
Illiterate Literate Rural Urban South North

Birth order 1
[1985–1994] PMB 0.513 0.509 0.517 0.511 0.518 0.509 0.517

(0.003) (0.004) (0.004) (0.004) (0.005) (0.004) (0.004)
DAS 0.10 0.13 -0.01 -0.05 0.30 0.50 -0.19

(0.23) (0.34) (0.30) (0.29) (0.37) (0.31) (0.32)
n [28,602] [14,009] [14,564] [18,673] [9,929] [13,288] [15,314]

[1995–2004] PMB 0.515 0.510 0.517 0.513 0.519 0.514 0.515
(0.002) (0.003) (0.002)* (0.002) (0.003)* (0.003) (0.002)

DAS 0.17 0.44 -0.02 0.28 -0.12 -0.33 0.52
(0.14) (0.25)* (0.16) (0.17)* (0.23) (0.20)* (0.19)***

n [75,806] [27,459] [48,170] [51,532] [24,274] [30,558] [45,248]

[2005–2014] PMB 0.519 0.519 0.520 0.517 0.526 0.517 0.521
(0.001)*** (0.002)*** (0.001)*** (0.001)*** (0.002)*** (0.002)*** (0.001)***

DAS 0.05 0.03 0.06 0.01 0.13 -0.05 0.15
(0.07) (0.14) (0.08) (0.08) (0.13) (0.10) (0.10)

n [232,935] [65,206] [167,353] [172,778] [60,157] [95,094] [137,841]

Birth order 2 - G
[1985–1994] PMB 0.527 0.519 0.535 0.523 0.534 0.520 0.531

(0.002)*** (0.002)** (0.003)*** (0.002)*** (0.003)*** (0.003)*** (0.002)***
DAS -0.41 -0.28 -0.46 -0.32 -0.54 -0.13 -0.67

(0.13)*** (0.17)* (0.20)** (0.15)** (0.25)** (0.21) (0.16)***
n [77,934] [40,349] [37,553] [53,029] [24,905] [33,157] [44,777]

[1995–2004] PMB 0.532 0.517 0.544 0.527 0.544 0.525 0.537
(0.002)*** (0.003) (0.003)*** (0.002)*** (0.004)*** (0.003)*** (0.003)***

DAS -0.36 -0.63 0.04 -0.34 -0.26 0.08 -0.73
(0.14)** (0.19)*** (0.20) (0.16)** (0.28) (0.23) (0.18)***

n [65,967] [28,854] [36,994] [46,004] [19,963] [27,072] [38,895]

[2005–2014] PMB 0.538 0.522 0.546 0.533 0.551 0.532 0.541
(0.002)*** (0.003)*** (0.002)*** (0.002)*** (0.003)*** (0.002)*** (0.002)***

DAS 0.02 0.06 0.16 0.03 0.20 0.27 -0.21
(0.12) (0.18) (0.15) (0.13) (0.26) (0.20) (0.14)

n [109,392] [37,608] [71,582] [83,369] [26,023] [43,434] [65,958]

Birth order 3 - GG
[1985–1994] PMB 0.539 0.520 0.568 0.532 0.557 0.531 0.545

(0.003)*** (0.004)* (0.004)*** (0.003)*** (0.005)*** (0.004)*** (0.004)***
DAS -1.15 -0.36 -1.89 -0.79 -1.83 -0.50 -1.63

(0.20)*** (0.23) (0.35)*** (0.22)*** (0.42)*** (0.33) (0.25)***
n [31,258] [18,525] [12,721] [22,162] [9,096] [12,410] [18,848]

[1995–2004] PMB 0.550 0.529 0.575 0.539 0.581 0.540 0.555
(0.003)*** (0.004)*** (0.005)*** (0.004)*** (0.006)*** (0.005)*** (0.004)***

DAS -1.27 -0.75 -1.42 -0.89 -1.95 -0.47 -1.78
(0.23)*** (0.29)*** (0.37)*** (0.26)*** (0.51)*** (0.40) (0.28)***

n [24,807] [13,383] [11,383] [18,266] [6,541] [9,030] [15,777]

[2005–2014] PMB 0.561 0.533 0.587 0.556 0.585 0.556 0.564
(0.003)*** (0.004)*** (0.003)*** (0.003)*** (0.006)*** (0.004)*** (0.003)***

DAS -0.98 -0.63 -0.75 -0.85 -1.10 -0.30 -1.36
(0.20)*** (0.26)** (0.29)*** (0.21)*** (0.50)** (0.35) (0.23)***

n [38,418] [17,768] [20,575] [31,040] [7,378] [12,917] [25,501]

The table shows the proportions of male births (PMB) and the differences in average spacing between girls and boys
(DAS), i.e., average spacing when the next-born is a girl minus average spacing when the next-born is boy, for differ-
ent samples: G and GG denote “first child is a girl” and “first two children are girls”, respectively. Standard errors
are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 (p-values are for two-sided t-tests for testing that
the probability of male birth equals π and that the difference in mean spacing equals 0).

23



Table 4 reports the proportions of male births (PMB) along with the differences in average

spacing between girls and boys (DAS), i.e., average spacing when the next-born is a girl minus

average spacing when the next-born is boy, for our different groups by period, birth order,

and sibling composition. For birth order 1, PMB and DAS largely agree on the presence of

sex-selective abortion. For most groups in the first two periods, PMB is not significantly

different from the natural probability of male birth, π, which we take as 0.513 (cf. Chao et

al., 2019; Dubuc and Coleman, 2007), and DAS is not significantly different from zero. In the

last period, PMB suggests the presence of sex-selective abortion, consistent with the findings

in Saikia et al. (2021). However, DAS does not provide additional evidence of sex-selective

abortion during that period.

For birth orders 2 and 3 with “only girls” sibling compositions, PMB provides evidence

of sex-selective abortion for almost all periods and all groups, with a greater imbalance at

birth order 3. DAS complements this picture by showing some evidence of repeated sex-

selective abortion at birth order 2 in the first two periods, and strong evidence of repeated

sex-selective abortion at birth order 3, being statistically different from zero and negative

for many periods and groups.

Table D.1 in Appendix D presents the corresponding results for sibling compositions that

include boys. Both PMB and DAS suggest some evidence of sex-selective abortion at birth

order 2 in the first period when the firstborn is a boy. At birth order 3, PMB suggests

some evidence of sex-selective abortion for sibling compositions that include one girl and one

boy. However, the values of PMB are generally smaller than those in Table 4 for the “only

girls” sibling compositions, and DAS shows very little evidence of (repeated) sex-selective

abortion.

For the “only boys” sibling compositions at birth order 3, PMB is significantly smaller

than π = 0.513 for many groups. Since in most cases DAS is not significantly different from

zero, a potential explanation could be that the natural probability of female births increases

with the age of the parents, consistent with findings in the literature (Jacobsen et al., 1999;

Mathews and Hamilton, 2005; Matsuo et al., 2009; Nicolich et al., 2000). Given that our

estimation procedure uses π = 0.513 regardless of the parents’ age, the subsequent results

may therefore potentially underestimate the incidence of sex-selective abortion at higher

birth orders.

5.2 Estimation results

To gain further insights into the prevalence of sex-selective abortion, we apply our maximum

likelihood estimator. Estimation is conducted on the samples with the highest proportions
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of male births, specifically at birth orders 2 and 3 when all previous children are girls (see

Tables 4 and D.1 in Appendix D).

5.2.1 Shares of women who abort

We first present our estimates of the shares of women who abort, α̂1. Figure 7 shows the

estimates at birth order 2 when the firstborn is a girl, and Figure 8 shows the estimates

at birth order 3 when the first two children are girls. Both figures include 95% confidence

intervals for α1. The corresponding t-statistics for testing H0 : α1 = 0, t1, which serve as

our ICS statistics, are provided in Table D.2 in Appendix D. We note that the confidence

intervals in Figures 7 and 8 should be interpreted with caution, especially for small values

of t1, as they do not account for the possibility that α2 may be weakly identified.20

Panel (a) of Figure 7 shows that the share of women who abort at birth order 2 grad-

ually increases over time from approximately 5% in the first period to around 8% in the

last period. Panels (b) to (d) reveal significant heterogeneity across socio-demographic and

geographical groups. Specifically, literate women and those in urban areas are much more

likely to abort than illiterate women and those in rural areas. The share of women who

abort among illiterate women remains small and relatively constant over time, while there

is a slight increase among rural women, reaching about 6% in the last period compared to

approximately 16% among urban women. Lastly, women in the North are estimated to be

more likely to abort than women in the south, though the estimates are relatively close.

At birth order 3, the picture is qualitatively similar but with higher shares of women

who abort (see Figure 8). There is an increase in the share of women who abort over time,

from approximately 7% in the first period to about 14% in the last period, which may be

partly due to the increased availability of ultrasounds. Again, the decomposition by socio-

demographic and geographical groups reveals significant heterogeneity. Literate women and

those in urban areas are more likely to abort, and in both groups, the share of women who

abort has increased by more than 9 percentage points from the first to the last period, rising

from around 14% (12%) to approximately 23% (25%) for literate women (urban women).

As before, there is little difference in the share of women who abort between the North and

the South.

20The underlying standard errors are based on a numerical approximation of the second-order derivative
matrix of

∑n
i=1 logL(θ; ti, yi) evaluated at θ̂. This numerical approximation becomes unreliable or even

infeasible when α̂1 is very close to zero. Nonetheless, we were able to compute it for all estimation results
reported in Figures 7 and 8 using the DERIVESTsuite package for Matlab.
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Figure 7: Shares of women who abort at birth order 2 when the firstborn is a girl

(a) Pooled (b) By education

(c) By urban-rural status (d) By region

Note: Each panel shows the estimated shares of women who abort, α̂1, together with 95% confidence
intervals for the three time periods.

5.2.2 Shares of women who abort a second time and shares of women at risk

of multiple abortions

Next, we present our estimates of the shares of women who abort a second time, α̂2, and

the shares of women at risk of multiple abortions, α̂1 × α̂2. As discussed in Section 3.3, we

only consider samples for which t1 > 6. Specifically, we focus on literate women, women in

urban areas, and women in the North during the last two periods, at birth orders 2 and 3

(see Table D.2). The results are graphically depicted in Figure 9, with a tabulated version,

including standard errors, provided in Table D.3 in Appendix D.

For each sample, Figure 9 shows three quantities: the estimated shares of women who

abort (α̂1, gray bar), already reported in Figures 7 and 8; the estimated shares of women
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Figure 8: Shares of women who abort at birth order 3 when the first two children are girls

(a) Pooled (b) By education

(c) By urban-rural status (d) By region

Note: Each panel shows the estimated shares of women who abort, α̂1, together with 95% confidence
intervals for the three time periods.

who abort a second time (α̂2, white bar); and the estimated shares of women at risk of

multiple abortions (α̂1 × α̂2, black bar). The first striking result is that at birth order 2,

women in some groups do not abort a second time (α̂2 ≈ 0). In other words, there is no

repeated sex-selective abortion. This is the case for literate women and those in urban areas,

providing evidence against the assumption, sometimes made in the literature, that women

abort indefinitely until they have a boy (see, e.g., Guilmoto et al., 2020).

Second, we find strong evidence of repeated sex-selective abortion at birth order 2 for

women in the North and at birth order 3 for all groups, i.e., literate women, urban women,

and women in the North. In both periods, the estimated shares of women who abort a second

time are large and significantly different from zero at the 10% significance level. While the

estimates suggest that the shares of women who abort a second time have been stable over

27



Figure 9: Shares of women at risk of multiple abortions, shares of women who abort, and
shares of women who abort a second time for selected samples

Note: The figure shows the estimated shares of women at risk of multiple abortions, α̂1 × α̂2, the estimated
shares of women who abort, α̂1, and the estimated shares of women who abort a second time, α̂2, for selected
samples.

time for literate and urban women, there appears to be an increase for women in the North

at birth orders 2 and 3.

Relatedly, we observe that the estimated shares of women at risk of multiple abortions

have remained stable over time for literate and urban women at birth order 3, at approxi-

mately 9%. Among women in the North, our estimates indicate that the shares of women

at risk of multiple abortions have increased over time both at birth orders 2 and 3. At birth

order 3, the share is even estimated to have doubled, from approximately 6.5% to around

13%.

Taken together, these estimates show considerable variation across groups in the shares

of women who abort, as well as in the shares of women who abort a second time and those
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at risk of multiple abortions. Moreover, the estimates are relevant from a public health

perspective. For example, if there are increased health risks associated with repeated sex-

selective abortions, women in the North are at a higher risk than than literate and urban

women. While the latter groups have larger estimated shares of women who abort, women

in the North have a larger estimated share at risk of multiple abortions, notably in the last

period, both at birth orders 2 and 3.

Table 5: Numbers of aborted female fetuses and numbers of women who abort

Birth # aborted # women Ratio
order Period female fetuses (I) who abort (II) (I)/(II)

Literate
2

1995–2004 61 60 1.02
2005–2014 64 59 1.08

3
1995–2004 121 92 1.32**
2005–2014 143 115 1.24***

Urban
2

1995–2004 61 62 0.98
2005–2014 75 76 0.99

3
1995–2004 132 108 1.22*
2005–2014 141 120 1.18*

North
2

1995–2004 47 38 1.24*
2005–2014 55 45 1.22***

3
1995–2004 83 62 1.34**
2005–2014 99 65 1.52***

The table shows the estimated numbers of aborted female fetuses, (I), and the estimated numbers of women
who abort, (II), per 1,000 women for selected samples. It also reports the ratio of the two, (I)/(II). *
p < 0.1, ** p < 0.05, *** p < 0.01 (p-values are for the one-sided t-test of H0 : α2 = 0 vs. H1 : α2 > 0.
Given equation (10), this test also tests the null hypothesis that the ratio, (I)/(II), is equal to 1.)

As shown in equation (10), α2 captures the difference between the number of aborted

female fetuses and the number of women who abort. To provide a sense of the magnitudes

of these numbers, Table 5 reports the corresponding estimates per 1,000 women for the same

samples considered in Figure 9. These estimates are obtained as ENAFF (see Section 3.4)

and n(1 − π)α̂1 with n = 1, 000, respectively. The table also reports the ratio of the two

estimates.

The estimated numbers of aborted female fetuses vary between 47 and 143, while the

estimated numbers of women who abort range from 38 to 120. For some groups, such as lit-

erate women or urban women at birth order 2, the estimates are not statistically significantly

different from each other. However, for other groups, the number of aborted female fetuses

is found to be statistically significantly greater than the number of women who abort. This

is the case, for example, for women in the North at birth order 3, for whom we obtain the

largest ratio. In the last period, the estimated number of aborted female fetuses is equal to
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99, approximately 50% larger than the estimated number of women who abort (65).

This showcases that there can be significant and sizeable differences between the number

of aborted female fetuses—the standard measure of sex-selective abortion—and the number

of women who abort.

6 Conclusion

In this paper, we observe that sex-selective abortion introduces a correlation between birth

interval length and the sex of the next-born child. Using a simple statistical model, we

establish a link between the sign of this correlation and the presence of repeated sex-selective

abortion between two consecutive births. Specifically, our model suggests that if the time

to birth is shorter when the next-born is a girl rather than a boy, this provides evidence of

repeated sex-selective abortion.

Using Indian data, we thus find some evidence of repeated sex-selective abortion at birth

order 2 when the first child is a girl, and strong evidence of repeated sex-selective abortion

at birth order 3 when the first two children are girls. However, this analysis does not address

how many women sex-selectively abort or how likely they are to do so repeatedly.

To answer these questions, we make distributional assumptions that allow us to estimate

our model using maximum likelihood. Our estimation results reveal significant heterogeneity

across socio-demographic and geographic groups, birth orders, and sibling compositions.

For instance, some groups of women exhibit high abortion levels but do not abort a

second time, such as literate and urban women at birth order 2 who first had a girl. In

contrast, in other groups, the likelihood of repeated abortions is estimated to be as high

as 13%, observed among women in the North at birth order 3 whose first two children are

girls. In this group, the estimated number of aborted female fetuses is approximately 50%

larger than the number of women who abort. This underscores the empirical relevance of

our proposed methodology for assessing the prevalence of sex-selective abortion.

Our proposed methodology should prove valuable for policymakers, particularly in identi-

fying populations at high risk of multiple abortions. Since sex-selective abortions often occur

under unsafe conditions, our methodology can aid in identifying women likely to experience

health complications due to multiple abortions.

Our methodology only requires information on women’s birth histories (i.e., the sexes

and dates of birth of their children), which can be an advantage or a disadvantage. This

information is widely available in low and middle-income countries, where large household

surveys are regularly conducted. Therefore, our methodology should prove useful for study-

ing sex-selective abortion patterns in such countries. However, our methodology cannot be
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applied in countries where such information is not available. Additionally, our methodol-

ogy measures (repeated) sex-selective abortion between two consecutive births and is thus

specific to a particular birth order. Consequently, it does not directly provide information

on (repeated) sex-selective abortion in the population as a whole. Another disadvantage of

our methodology is that it requires large sample sizes, which may limit its suitability for

studying sex-selective abortion patterns in countries with small populations.

Lastly, this paper makes several assumptions that could be restrictive. For example, we

assume there is no correlation between the length of time women or households wait before

trying to conceive and their willingness to abort if pregnant with a female fetus. Relaxing

this assumption is left for further research.

References

Alesina, Alberto, Paola Giuliano, and Nathan Nunn, “Traditional agricultural prac-

tices and the sex ratio today,” PloS one, 2018, 13 (1), e0190510.

Andrews, Donald W. K. and Patrik Guggenberger, “Asymptotic Size and a Problem

With Subsampling and With the m out of n Bootstrap,” Econometric Theory, 2010, 26

(2), 426–468.

and Xu Cheng, “Estimation and Inference With Weak, Semi-Strong, and Strong Iden-

tification,” Econometrica, 2012, 80 (5), 2153–2211.

Anukriti, Sharma, Sonia Bhalotra, and Eddy H. F. Tam, “On the quantity and

quality of girls: Fertility, parental investments and mortality,” The Economic Journal,

2022, 132 (641), 1–36.

Bhalotra, Sonia R. and Tom Cochrane, “Where have all the young girls gone? Identi-

fication of sex selection in India,” IZA Discussion Paper, 2010.

Bongaarts, John and Christophe Z. Guilmoto, “How Many More Missing Women?

Excess Female Mortality and Prenatal Sex Selection, 1970–2050,” Population and Devel-

opment Review, 2015, 41 (2), 241–269.

Boyle, Elizabeth Heger, Miriam King, and Matthew Sobek, “IPUMS-Demographic

and Health Surveys: Version 9 [dataset],” IPUMS and ICF, 2022.

Cassan, Guilhem, Jean-Marie Baland, and Francois Woitrin, “Sex-Selective Abor-

tions and Instrumental Births as the two faces of the Stopping Rule. New measures and

world evidence,” CEPR Discussion Papers 18014, 2023.

31



Chao, Fengqing, Patrick Gerland, Alex R. Cook, and Leontine Alkema, “Sys-

tematic assessment of the sex ratio at birth for all countries and estimation of national

imbalances and regional reference levels,” Proceedings of the National Academy of Sciences,

2019, 116 (19), 9303–9311.

Dahl, Gordon B. and Enrico Moretti, “The Demand for Sons,” The Review of Economic

Studies, 2008, 75 (4), 1085–1120.

Das Gupta, Monica, Avraham Y. Ebenstein, and Ethan Jennings Sharygin,

“China’s marriage market and upcoming challenges for elderly men,” World Bank Policy

Research Working Paper Series, Vol, 2010.

Diamond-Smith, Nadia and David Bishai, “Evidence of self-correction of child sex

ratios in India: a district-level analysis of child sex ratios from 1981 to 2011,” Demography,

2015, 52 (2), 641–666.

Dubuc, Sylvie and David Coleman, “An increase in the sex ratio of births to India-

born mothers in England and Wales: evidence for sex-selective abortion,” Population and

Development Review, 2007, 33 (2), 383–400.

Elliott, Graham, Ulrich K. Müller, and Mark W. Watson, “Nearly Optimal Tests

When a Nuisance Parameter Is Present under the Null Hypothesis,” Econometrica, 2015,

83, 771–811.

Goli, Srinivas, Astghik Mavisakalyan, Anu Rammohan, and Loan Vu, “Conflicts

and son preference: Micro-level evidence from 58 countries,” Economics & Human Biology,

2022, 46, 101146.

Grimes, David A., Janie Benson, Susheela Singh, Mariana Romero, Bela Gana-

tra, Friday E. Okonofua, and Iqbal H. Shah, “Unsafe abortion: the preventable

pandemic,” Lancet (London, England), November 2006, 368 (9550), 1908–1919.

Guilmoto, Christophe Z., “Sex Imbalances at Birth: Current trends, consequences and

policy implications,” UNFPA Asia and Pacific Regional Office, 2012.

, Fengqing Chao, and Purushottam M. Kulkarni, “On the estimation of female

births missing due to prenatal sex selection,” Population Studies, 2020, 74 (2), 283–289.

PMID: 32489140.

Heath, Rachel and Xu Tan, “Worth fighting for: Daughters improve their mothers’

autonomy in South Asia,” Journal of Development Economics, 2018, 135, 255–271.

32



Hwang, Jisoo, Chulhee Lee, and Esther Lee, “Gender norms and housework time

allocation among dual-earner couples,” Labour Economics, 2019, 57, 102–116.

Jacobsen, R., H. Mller, and A. Mouritsen, “Natural variation in the human sex ratio,”

Human Reproduction, 12 1999, 14 (12), 3120–3125.

Jayachandran, Seema, “Fertility decline and missing women,” American Economic Jour-

nal: Applied Economics, 2017, 9 (1), 118–39.

and Ilyana Kuziemko, “Why do mothers breastfeed girls less than boys? Evidence

and implications for child health in India,” The Quarterly Journal of Economics, 2011,

126 (3), 1485–1538.

Jha, Prabhat, Maya A. Kesler, Rajesh Kumar, Faujdar Ram, Usha Ram, Lukasz

Aleksandrowicz, Diego G. Bassani, Shailaja Chandra, and Jayant K. Banthia,

“Trends in selective abortions of girls in India: analysis of nationally representative birth

histories from 1990 to 2005 and census data from 1991 to 2011,” The Lancet, 2011, 377

(9781), 1921–1928.

Ketz, Philipp, “On asymptotic size distortions in the random coefficients logit model,”

Journal of Econometrics, 2019, 212 (2), 413–432.

, “Allowing for weak identification when testing GARCH-X type models,” 2022.

arXiv:2210.11398.

Klasen, Stephan and Claudia Wink, ““Missing women”: Revisiting the debate,” Fem-

inist Economics, 2003, 9 (2–3), 263–299.

Mathews, T.J. and Brady E. Hamilton, “Trend analysis of the sex ratio at birth in the

United States,” National vital statistics reports, 2005, 53 (20), 1–17.

Matsuo, Koji, Norichika Ushioda, and Laurence C. Udoff, “Parental aging syner-

gistically decreases offspring sex ratio,” Journal of Obstetrics and Gynaecology Research,

2009, 35 (1), 164–168.

Mavisakalyan, Astghik and Anna Minasyan, “The role of conflict in sex discrimination:

The case of missing girls,” Economic development and cultural change, 2023, 71 (2), 443–

484.

Meh, C., A. Sharma, U. Ram, S. Fadel, N. Correa, J.W. Snelgrove, P. Shah,

R. Begum, M. Shah, and T. Hana, “Trends in maternal mortality in India over

33



two decades in nationally representative surveys,” BJOG: An International Journal of

Obstetrics & Gynaecology, 2022, 129 (4), 550–561.

Milazzo, Annamaria, “Why are adult women missing? Son preference and maternal

survival in India,” Journal of Development Economics, 2018, 134, 467–484.

Moschopoulos, Peter G., “The distribution of the sum of independent gamma random

variables,” Annals of the Institute of Statistical Mathematics, 1985, 37 (3), 541–544.

Nicolich, Mark J., Wendy W. Huebner, and A. Robert Schnatter, “Influence of

parental and biological factors on the male birth fraction in the United States: an analysis

of birth certificate data from 1964 through 1988,” Fertility and sterility, 2000, 73 (3),

487–492.

Orzack, Steven H., J. William Stubblefield, Viatcheslav R. Akmaev, Pere Colls,
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A Proof of Proposition 1

Proof of Proposition 1. We first prove (i). Note that Tb = T 0
b in the absence of sex-selective

abortion (i.e., α1 = α2 = · · · = αN0 = 0). Therefore, without sex-selective abortion, Tb is

constant and, thus, independent of Y . In particular, E(Tb|Y = 0) = Tb = E(Tb|Y = 1), and

the results follows by contraposition.

Next, we prove (ii). In Section 3.1.1, we have shown that E(Tb|Y = 0) > E(Tb|Y = 1)

if there is at most one sex-selective abortion (i.e., α1 > 0 and α2 = α3 = · · · = αN0 = 0).

Combining this with the proof of (i), we have E(Tb|Y = 0) ≥ E(Tb|Y = 1) if no woman

aborts a second time (i.e., α2 = α3 = · · · = αN0 = 0). Again, the desired results follows by

contraposition.

B Details for Section 3.1.2

Using Tb = T 0
b + AD, we have

E(Tb|Y = 0) = T 0
b + (1− π)α1

(1− α2) + 2(1− π)α2

1− πα1 − π(1− π)α1α2

D.
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and

E(Tb|Y = 1) = T 0
b + (1− p)α1

1 + 2(1− π)α2

1 + (1− π)α1 + (1− π)2α1α2

D.

when N0 = 2. Subtracting E(Tb|Y = 1) from E(Tb|Y = 0), we obtain

E(Tb|Y = 0)− E(Tb|Y = 1) =
(1− π)α1D

(1 + (1− π)α1 + (1− π)2α1α2)(1− πα1 − π(1− π)α1α2)

×
(
(1− π)2α1α

2
2 + (2(1− π)α1 − 1)α2 + α1

)
.

As the first factor is strictly positive, the sign of E(Tb|Y = 0)− E(Tb|Y = 1) only depends

on the second factor, which is a polynomial of degree 2 with respect to α2.

For α1 >
1

4(1−π)
no real root exists and the sign of E(Tb|Y = 0)−E(Tb|Y = 1) is strictly

positive for any value of α2. For α1 ≤ 1
4(1−π)

the two real roots are

1− 2(1− π)α1 ±
√

1− 4(1− π)α1

2α1(1− π)2
.

However, for α1 ≤ 1
4(1−π)

, we have that

1− 2(1− π)α1 +
√

1− 4(1− π)α1

2α1(1− π)2
≥ 1− 2(1− π)α1

2α1(1− π)2
≥ 1

1− π
> 1

for any π ∈ (0, 1) such that we only need to consider the first root. Denoting the first root by

αsign
2 (α1) the conclusion in the main text concerning the sign of E(Tb|Y = 0)−E(Tb|Y = 1)

follows.

C Estimation details

C.1 Definition of fT a
b
(·)

First, we define fΓ(·) for sake of completeness. In particular,

fΓ(t; γ, β) =

 tγ−1e
t
β

βγΓ(γ)
if t > 0

0 otherwise
,

36



where Γ(·) denotes the gamma function. Next, we define fΣΓ(·). To that end, assume without

loss of generality that β1 < β2. Then,

fΣΓ(t; γ1, β1, γ2, β2) =

C
∑∞

k=0 δk
tγ1+γ2+k−1e

− y
β1

β
γ1+γ2+k
1 Γ(γ1+γ2+k)

if t > 0

0 otherwise,

where C =
(

β1

β2

)γ2
and where δk is defined recursively by

δk+1 =
γ2

k + 1

k+1∑
i=1

(
1− β1

β2

)i

δk+1−i

for k = 0, 1, 2, . . . with δ0 = 1; see Moschopoulos (1985) for more details. To numerically

evaluate the infinite series in fΣΓ(·), we rely on a finite series approximation. In particular,

we truncate the series at 30 terms. The resulting approximation error is immaterial.

Lastly, we note that fTa
b
(·) uses the fact that the sum of two independent gamma-

distributed random variables with the same scale parameter, say β, but (possibly) different

shape parameters, say γ1 and γ2, is gamma-distributed with shape parameter γ1 + γ2 and

scale parameter β.

C.2 Calibration of γc and βc

The calibration of γc and βc is performed by means of maximum likelihood, fitting a gamma

distribution to the time between marriage and first birth (minus 9); it is performed for each

of our three time periods separately.21 The underlying assumptions are that households try

to conceive immediately after marriage, such that the time between marriage and first birth

(minus 9) is a good proxy for the time it takes to conceive, and that there is no sex-selective

abortion before the birth of the first child. The second assumption is largely corroborated

by the numbers in Table 4 and widely accepted in the literature (see, e.g., Dahl and Moretti,

2008; Milazzo, 2018; Heath and Tan, 2018).

D Additional tables

21Here, we only use DHS 4 because it is the only round that differentiates between date of marriage and
date of marriage contract.
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Table D.1: Proportions of male births and differences in average
spacing for remaining sibling compositions

Pooled By education By urban-rural status By region
Illiterate Literate Rural Urban South North

Birth order 2 - B
[1985–1994] PMB 0.520 0.525 0.515 0.522 0.517 0.519 0.522

(0.002)*** (0.002)*** (0.003) (0.002)*** (0.003) (0.003)** (0.002)***
DAS 0.37 0.58 0.08 0.39 0.30 0.42 0.33

(0.13)*** (0.17)*** (0.20) (0.15)*** (0.25) (0.20)** (0.16)**
n [82,748] [43,361] [39,354] [56,480] [26,268] [35,163] [47,585]

[1995–2004] PMB 0.508 0.510 0.507 0.510 0.504 0.507 0.509
(0.002)** (0.003) (0.003)** (0.002) (0.003)** (0.003)* (0.002)

DAS 0.19 0.25 0.12 0.31 -0.12 0.23 0.16
(0.14) (0.20) (0.20) (0.16)* (0.28) (0.23) (0.18)

n [68,287] [30,125] [38,053] [47,656] [20,631] [27,809] [40,478]

[2005–2014] PMB 0.501 0.509 0.497 0.502 0.500 0.498 0.503
(0.001)*** (0.003)* (0.002)*** (0.002)*** (0.003)*** (0.002)*** (0.002)***

DAS 0.20 0.46 -0.02 0.24 0.07 -0.13 0.39
(0.12)* (0.17)*** (0.15) (0.13)* (0.26) (0.19) (0.14)***

n [111,423] [39,591] [71,636] [84,601] [26,822] [44,676] [66,747]

Birth order 3 - GB
[1985–1994] PMB 0.527 0.532 0.520 0.528 0.527 0.519 0.532

(0.003)*** (0.004)*** (0.005) (0.003)*** (0.006)** (0.005) (0.004)***
DAS 0.52 0.62 0.28 0.76 -0.10 0.51 0.50

(0.20)** (0.24)** (0.36) (0.23)*** (0.42) (0.35) (0.25)**
n [29,363] [18,409] [10,940] [21,349] [8,014] [10,962] [18,401]

[1995–2004] PMB 0.526 0.519 0.535 0.527 0.522 0.526 0.525
(0.003)*** (0.004) (0.005)*** (0.004)*** (0.007) (0.006)** (0.004)***

DAS 0.41 0.45 0.47 0.38 0.46 0.39 0.42
(0.24)* (0.29) (0.40) (0.27) (0.51) (0.43) (0.28)

n [21,593] [12,771] [8,779] [16,336] [5,257] [7,248] [14,345]

[2005–2014] PMB 0.526 0.528 0.524 0.526 0.528 0.518 0.530
(0.003)*** (0.004)*** (0.004)** (0.003)*** (0.007)** (0.005) (0.004)***

DAS 0.41 0.56 0.18 0.46 0.16 0.39 0.37
(0.22)* (0.29)** (0.34) (0.24)* (0.58) (0.41) (0.26)

n [28,402] [15,228] [13,118] [23,212] [5,190] [9,267] [19,135]

Birth order 3 - BG
[1985–1994] PMB 0.516 0.512 0.523 0.512 0.527 0.505 0.523

(0.003) (0.004) (0.005)** (0.003) (0.006)** (0.005)* (0.004)***
DAS -0.51 -0.40 -0.65 -0.62 -0.16 -0.41 -0.64

(0.20)** (0.24)* (0.36)* (0.23)*** (0.42) (0.35) (0.25)**
n [28,882] [18,046] [10,826] [20,877] [8,005] [10,959] [17,923]

[1995–2004] PMB 0.521 0.519 0.524 0.520 0.522 0.515 0.524
(0.003)** (0.004) (0.005)** (0.004)* (0.007) (0.006) (0.004)**

DAS -0.68 -0.86 -0.43 -0.70 -0.62 -0.64 -0.73
(0.24)*** (0.29)*** (0.40) (0.27)*** (0.52) (0.43) (0.28)***

n [21,540] [12,886] [8,613] [16,250] [5,290] [7,399] [14,141]

[2005–2014] PMB 0.515 0.510 0.521 0.514 0.523 0.502 0.522
(0.003) (0.004) (0.004)* (0.003) (0.007) (0.005)** (0.004)**

DAS -0.09 -0.36 0.34 0.04 -0.59 0.41 -0.45
(0.22) (0.28) (0.35) (0.24) (0.57) (0.41) (0.26)*

n [27,717] [14,979] [12,691] [22,632] [5,085] [9,152] [18,565]

Birth order 3 - BB
[1985–1994] PMB 0.505 0.511 0.495 0.506 0.505 0.495 0.512

(0.003)** (0.004) (0.005)*** (0.003)** (0.006) (0.005)*** (0.004)
DAS 0.30 -0.03 0.82 0.28 0.33 0.43 0.18

(0.20) (0.24) (0.38)** (0.23) (0.42) (0.34) (0.26)
n [28,949] [18,832] [10,106] [20,952] [7,997] [11,415] [17,534]

[1995–2004] PMB 0.500 0.503 0.496 0.505 0.487 0.495 0.503
(0.004)*** (0.004)** (0.006)*** (0.004)** (0.007)*** (0.006)*** (0.004)**

DAS 0.30 0.31 0.23 0.26 0.33 0.19 0.33
(0.25) (0.30) (0.42) (0.28) (0.51) (0.43) (0.30)

n [20,228] [12,356] [7,838] [15,124] [5,104] [7,356] [12,872]

[2005–2014] PMB 0.491 0.501 0.478 0.491 0.488 0.482 0.495
(0.003)*** (0.004)*** (0.005)*** (0.004)*** (0.007)*** (0.005)*** (0.004)***

DAS 0.40 0.23 0.41 0.13 1.52 0.36 0.35
(0.24)* (0.30) (0.38) (0.26) (0.59)** (0.43) (0.29)

n [25,105] [13,845] [11,213] [20,292] [4,813] [8,947] [16,158]

The table shows the proportions of male births (PMB) and the differences in average spacing between
boys and girls (DAS) for different samples: B denotes “first child is a boy” and GB, BG, and BB de-
note “first two children are a girl and a boy, a boy and a girl, and two boys”, respectively. Standard
errors are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 (p-values are for two-sided
t-tests for testing that the probability of male birth equals π and that the difference in mean spacing
equals 0).
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Table D.2: t-statistics for testing H0 : α1 = 0 vs. H1 : α1 > 0

Birth order Period Illiterate Literate Rural Urban South North

2
1985–1994 1.55 6.15 3.26 4.92 1.74 5.78
1995–2004 0.64 9.09 3.57 6.82 2.91 6.07
2005–2014 1.94 12.57 6.60 9.54 5.48 9.37

3
1985–1994 1.16 6.27 3.96 4.30 2.44 4.56
1995–2004 2.58 7.77 5.02 6.88 3.68 6.24
2005–2014 2.86 13.67 8.70 8.26 6.95 8.50

The table shows the t-statistics for testing H0 : α1 = 0 vs. H1 : α1 > 0 for samples
with “only girls” sibling compositions.

Table D.3: Shares of women at risk of multiple abortions, shares of women who abort,
and shares of women who abort a second time for selected samples with standard errors

Group
Birth

Period
Share of women at risk Share of women Share of women who

order of multiple abortion who abort abort a second time

Literate

2
1995–2004

0.000 0.124 0.003
(0.021) (0.014) (0.166)

2005–2014
0.014 0.122 0.113
(0.015) (0.010) (0.131)

3
1995–2004

0.101 0.189 0.536
(0.038) (0.024) (0.253)

2005–2014
0.109 0.237 0.458
(0.029) (0.017) (0.147)

Urban

2
1995–2004

0.000 0.128 0.001
(0.028) (0.019) (0.217)

2005–2014
0.000 0.157 0.000
(0.026) (0.016) (0.168)

3
1995–2004

0.087 0.221 0.394
(0.053) (0.032) (0.281)

2005–2014
0.084 0.246 0.339
(0.052) (0.030) (0.242)

North

2
1995–2004

0.030 0.078 0.380
(0.017) (0.013) (0.267)

2005–2014
0.043 0.091 0.468
(0.014) (0.010) (0.185)

3
1995–2004

0.064 0.127 0.503
(0.028) (0.020) (0.284)

2005–2014
0.129 0.133 0.977
(0.024) (0.016) (0.266)

The table shows the estimated shares of aborted female fetuses, the estimated shares of women who
abort, α̂1, and the estimated shares of women who abort a second time, α̂2, for selected samples (with
“only girls” sibling compositions). Standard errors are reported in parentheses.
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