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Abstract

We analyze derivative asset trading in an economy in which agents face both ag-
gregate and uninsurable idiosyncratic risks. Insurance markets are incomplete for
idiosyncratic risk and, possibly, for aggregate risk as well. However, agents can ex-
change insurance against aggregate risk through derivative assets such as options.
We present a tractable framework, which allows us to characterize the extent of risk-
sharing in this environment. We show that incomplete insurance market can explain
some properties of the volume of traded derivative assets, which are difficult to explain
in complete-market economies.
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1 Introduction

The pricing and allocation of derivative assets (such as options) have not been analyzed in
infinite-horizon incomplete market economies, although these environments could help to
explain some properties of derivative asset prices and traded volumes, which are difficult to
rationalize in complete market environments. For instance, the traded volumes of derivative
assets exhibit some correlation with aggregate risk: the greater the aggregate uncertainty,
the higher the volatility of asset prices and the larger the traded volumes of options. This
stylized fact is reported for instance in Buraschi and Jiltsov (2006) and in Lakonishok, Lee,
Pearson, and Poteshman (2007). This pattern for the volume of derivative assets cannot be
rationalized in complete-market models where derivative assets are redundant, and where
the volume of traded assets does not play any role.1 Models with incomplete insurance
markets for idiosyncratic risks are obvious candidates to explain these properties. Indeed,
agents facing different exposures to uninsurable risk may value aggregate risk differently
and thus may be willing to exchange aggregate risk, as shown by Franke, Stapleton, and
Subrahmanyam (1998) in a two-period economy

The goal of this paper is to analyze theoretically the prices and allocations of derivative
assets for the aggregate risk, in an infinite-horizon incomplete market economy. Our anal-
ysis is based on a methodological contribution that enables us to prove the existence of the
equilibrium and to characterize it in an environment featuring aggregate and idiosyncratic
risks simultaneously. The existence proof of the equilibrium existence in this environment
and with a long-lived asset is an additional result of the paper. As far as we know, Miao
(2006) proves the sole existence result in this type of economy for short-lived assets. Our
equilibrium relies on the assumption that only a small volume of assets is available for
agents to self-insure themselves. This small-trade equilibrium allows for theoretical inves-
tigation with both positive trade and aggregate shocks. It has been used to study the yield
curve in Challe, Le Grand and Ragot (2013). Here, we extend the analysis to derivative
assets by enabling agents to face different exposures to individual risks. No-trade equilib-
rium models, as in Constantinides and Duffie (1996) or in Krussel, Mukoyama, and Smith
(2011), belong to another class of incomplete market models allowing for theoretical inves-
tigation. However, these no-trade equilibrium models are not well-suited for the analysis
of option trading, as it requires a positive supply of assets.

The type of derivative assets we consider are option contracts contingent on aggregate
risk. Two reasons motivate our choice. First, Ross (1976) showed that options contribute
to complete markets for the exchange of aggregate risk and are thus efficient risk-sharing
instruments. Second, options are one of the most common insurance contracts against

1Following the seminal contributions of Black and Scholes (1973) and Merton (1973), most complete
market models rely on portfolio replications.

2



aggregate risk. Thus, the empirical properties of these securities are well-established. The
analysis could easily be extended to other derivative assets.

We characterize the price and allocation of options in this economy. We show that
derivative assets are traded because the valuation of aggregate risk differs across agents,
generating variations in the volume of traded derivative assets which are consistent with
the data. As an additional result, we prove the existence of the equilibrium with incomplete
insurance markets, aggregate risks and long-lived assets.

Our simple model allows us to identify various mechanisms that determine risk-sharing
for the aggregate risk. We consider our paper as a complement to quantitative work in more
general environments. As these environments are not tractable (since they generate a large
amount of heterogeneity across agents), they have to be simulated using computational
methods (see Krusell and Smith, 1998 among many others). They are thus less transparent
in terms of identification of the underlying mechanisms. Our paper also contributes to the
equilibrium option pricing literature. Besides market incompleteness already mentioned
above, two other reasons, which are heterogeneous preferences or heterogeneous beliefs,
can be found in the literature to justify option trading.2

The remainder of the paper is organized as follows. Section 2 presents the environment
and Section 3 describes our equilibrium. Section 4 gathers our results on prices and volumes
of derivative assets. Section 5 concludes.

2 The environment

2.1 Risks and securities

We consider a discrete-time economy populated by two types of ex-ante infinitely-lived
agents (the heterogeneity will be made clearer later). Each population i = 1, 2 is distributed
on a segment Ji of size 1 according to a non-atomic measure.3

2.1.1 Aggregate risk and asset structure

Agents can trade shares of a Lucas tree, whose mass is V . At any date t, the price of one
unit of the tree is Pt. The tree dividend payoff (yt)t≥0 is stochastic and constitutes the
single aggregate shock of the economy. This aggregate shock, which can take n different
values {y1, . . . , yn}, evolves as a time-homogeneous Markov chain. Transition probabilities
of moving from state k to state l (k, l = 1, . . . , n) are denoted by πkl.

2See for heterogeneous preferences: Bates (2008); Bhamra and Uppal (2009); Grossman and Zhou
(1996); Weinbaum (2009); Bongaerts, De Jong and Driessen (2011). See for heterogeneous beliefs: Biais
and Hillion (1994); Buraschi and Jiltsov (2006).

3This formulation is introduced to solve issues when applying the law of large numbers to a continuum
of random variables (e.g., Feldman and Gilles (1985) and Green (1994)). From now on, we assume that
the law of large numbers applies.
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In addition to shares of the Lucas tree, agents can write contracts conditional on the
realization of the aggregate shock. More specifically, agents can tradeH call options, whose
payoff depends on the (endogenous) price Pt of the risky asset.4 The option h = 1, . . . ,H

is characterized by a strike price or exercise price (in short, a strike), which depends on
the state of the economy and is denoted by Kh(yt). The option h purchased in period
t with the price Qht , pays off in period t + 1 the maximum of zero and the difference
between the asset price at t+1, Pt+1, and the strike Kh(yt), i.e.,

(
Pt+1 −Kh(yt)

)+ (where
t ∈ R 7→ t+ = max(t, 0)).

Since the strike can depend on the aggregate state, the market structure is contingent
on the state of the economy. Nevertheless, the strike is deterministic because it depends on
the aggregate state at the purchase date and not at the payoff date. The case of constant
strike for each option is a special case.

2.1.2 Idiosyncratic risk

In addition to the risky asset above, agents may invest in a productive technology. This
investment is however conditional on the arrival of investment opportunities, which may
randomly vanish or appear in every period, and which are specific to every agent. We
assume that this individual production (or opportunity) risk can neither be avoided nor
insured and that it therefore constitutes an idiosyncratic risk, which agents must face on
top of the previous aggregate risk. When the productive technology is available, agents are
said to be productive (class p) and are able to freely invest in it. When it is not available, the
so-called unproductive (class u) agents can only invest a fixed and suboptimal amount δ in
the production technology. This production risk can be interpreted as a labor/employment
risk or as an entrepreneurial risk.5

We assume that individual opportunity risk follows an independent first-order Markov
chain, which is different for both types. When productive and being able to invest in the
productive technology, type-i (i = 1, 2) agents face a probability αi of becoming unproduc-
tive, and thus a probability 1 − αi of remaining productive. When unproductive, type-i
agents face a probability ρi of remaining unproductive. Transition probabilities being con-
stant, the long-run fraction ηi of type-i productive agents equals: ηi = 1−ρi

1+αi−ρi . The initial
fraction of productive agents is also assumed to be ηi to avoid transitory dynamics.

Transition probabilities αi and ρi are different among the two population types. These
different severities of the idiosyncratic risk is the sole source of ex-ante heterogeneity among
agents. Ex post, agents of both types will differ according to the realization of their

4To avoid confusion, we devote the term asset to tree shares while security may designate either the
option or the asset. Derivative assets can also be named options.

5Idiosyncratic risk is modeled in a similar way in Kiyotaki and Moore (2005, 2012), Kocherlakota (2009)
and Miao and Wang (2013).
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idiosyncratic shock. Derivative trading will result from the impact of this heterogeneity
on the valuation of aggregate risk. Without loss of generality, we assume that type-1
productive agents face a higher probability of becoming unproductive and thus a higher
individual risk: α1 > α2.

2.2 Agent’s program

In each period, agents enjoy utility from consumption of a single good and suffer from the
effort invested in the productive technology. Preferences are separable over time, in both
consumption and effort and are represented by the instantaneous utility function u(c)− e,
where the consumption is denoted c and the effort e. The function u : R+ → R is twice
differentiable, increasing and concave. We follow Scheinkman and Weiss (1986) and Lagos
and Wright (2005), in assuming that agents have a linear disutility of effort. Instantaneous
preferences are discounted by a common factor of β ∈ (0, 1), representing the time decay.
We discuss below the implications of the linear disutility of effort.

The program of a type-i agent consists in maximizing his intertemporal utility under
a set of constraints by choosing consumption, investment in the productive technology (if
possible), asset and options demand, which are denoted respectively cit, eit, xit and sh,it
(h = 1, . . . ,H). The operator E0[·] is the unconditional expectation over the aggregate
and idiosyncratic shocks.

max
(cit,e

i
t,x

i
t,(s

i,h
t )h)t≥0

E0

[ ∞∑
t=0

βt
(
u(cit)− eit

)]
(1)

s.t.cit + Pt x
i
t +

H∑
h=1

Qht s
h,i
t = ξite

i
t + (1− ξit)δ + (Pt + yt)x

i
t−1 +

H∑
h=1

(Pt −Kh
t−1)

+sh,it−1 (2)

cit ≥ 0 and eit ≥ 0 (3)

Ptx
i
t +

H∑
h=1

Qht s
h,i
t ≥ 0, (4)

xit ≥ 0, (5)
l∑

h=1

Qht (sh,i,jt )+ ≤ Pt xi,jt , (6)

lim
t→∞

βtE0

[
u′(cit)x

i
t

]
= lim

t→∞
βtE0

[
u′(cit) s

h,i
t

]
(h = 1, . . . ,H), (7)

{xi−1, s
1,i
−1, . . . , s

H,i
−1 , ξ

i
0, y0} are given. (8)

Agents of type i = 1, 2 maximize their expected intertemporal utility (1), subject to a
set of constraints (2)–(7) and initial security endowments and shocks (equation (8)). In
constraint (2), total resources made up of production income (or inefficient production
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for the unproductive), asset dividends and asset-sale values are used to consume and to
purchase assets. The second condition (3) states that both consumption and effort are
positive, which will always be the case in all of the equilibria that we consider. The
borrowing constraints stating that agents are prevented from holding a negative wealth
appears in equation (4), while the one preventing them from selling the tree short is
in equation (5). Condition (6) imposes a constraint stating that only the risky asset
can be used as collateral. Indeed, with more than 2 options, an agent facing (4) and a
binding constraint on asset holding (xi,jt = 0) could still use derivative assets for leverage.
The agent could sell some options to buy other options, while respecting the constraint∑l

h=1Q
h
t s
h,i,j
t = 0. These portfolios are not relevant for our analysis because options are

not used to hedge against the risky asset. Equation (7) sets out transversality conditions.

2.3 Equilibrium definition

We begin with expressing the security market clearing conditions. On one side, the security
supply is equal to V for the asset and 0 for options. On the other side, We have to express
aggregate individual security demands to compute the total security demand. To do so, we
describe the distribution of type-i agents as a function of their security holdings and labor
status using the probability measure Λit : B(R)1+H × B(Et) → [0, 1].6 This probability
measure can be interpreted as follows: Λit(X,S

1, . . . , SH , I) (with (X,S1, . . . , SH , I) ∈
B(R)1+H × B(Et)) is the measure of agents of type i, with asset holding x ∈ X, option
positions sh ∈ Sh (h = 1, . . . ,H), and with an individual history ξ ∈ I. Using the
probability measures Λi, the market-clearing conditions becomes:

∑
i=1,2

ˆ
R1+H×Et

xΛit(dx, ds
1, . . . , dsH , dξ) = V, (9)

∑
i=1,2

ˆ
R1+H×Et

shΛit(dx, ds
1, . . . , dsH , dξ) = 0 (h = 1, . . . ,H). (10)

The Walras law guarantees that the good market clears when the security markets clear.
In this economy, a sequential competitive equilibrium can then be defined as follows:

Definition 1 (Sequential competitive equilibrium) A sequential competitive equilib-
rium is a collection of consumption and effort levels (cit, e

i
t)t≥0, of asset demand (xit)t≥0,

of derivative demands (s1,it , . . . , s
H,i
t )t≥0 for i = 1, 2 and of security prices (Pt, Qt)t≥0 such

that for an initial distribution of security holdings, and of idiosyncratic and aggregate shocks
{(xi−1, s

1,i
−1 . . . , s

H,i
−1 , ξ

i
0)i=1,2, y0}, we have:

1. Individual strategies solve the optimization program (1) when prices are given;
6For any metric space X, B(X) denotes the Borel sets of X.
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2. Security prices adjust such that security markets clear at all dates and equations (9)
and (10) hold;

3. The evolution of the probability measure Λi is consistent with individual choices.

3 Reduced heterogeneity equilibrium

In heterogeneous-agent economies featuring both aggregate and uninsurable idiosyncratic
shocks, it is usually not possible to explicitly derive the equilibrium. Indeed, it involves an
infinite distribution of agents, who all have different individual histories. The usual strategy
consists in computing approximate equilibria. In this paper, we derive an equilibrium where
the heterogeneity in insurance demand can be computed with paper and pencil.

This equilibrium is based on two assumptions. The first, already introduced, is the
linearity of the disutility in effort. When productive, agents freely adjust their effort to
attain a constant marginal utility of consumption, equal to 1. All productive agents thus
consume the same amount. This assumption enables to reduce the heterogeneity across
productive agents. Our second assumption is that the supply V of the asset remains small
enough such that even after selling off their entire portfolio, unproductive agents remain
credit-constrained. The asset quantity is not sufficient for agents to overcome their credit
constraint after becoming unproductive.

3.1 Equilibrium existence

The following proposition summarizes our existence result.

Proposition 1 (Equilibrium existence) If:

1. the following condition holds:

1 < u′(δ) < 1 +
1− β
βα1

, (11)

2. the mass V of the tree is not too large,

3. the heterogeneity in idiosyncratic risk is limited (α1 close to α2),

then there exists a limited-heterogeneity equilibrium characterized by equations (14)–(17).

We prove the existence of the limited-heterogeneity equilibrium in two steps: (i) we
prove the result in an economy where both agent types face the same individual risk
and where the asset supply is null; (ii) we extend the result by continuity to small asset
supplies and not too different idiosyncratic risk. As far as we know, Miao (2006) proves the
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sole general existence result in an economy featuring asset trades, credit constraints, and
idiosyncratic and aggregate risk. We present here a “local” existence result, which allows
for long-lived assets. Our equilibrium is a generalization of the equilibrium constructed in
Challe, LeGrand and Ragot (2013) to study the term structure of interest rates. Notice
that we rule out sunspot equilibria: Contrary to Bowman and Faust (1997) or Kajii (1997),
options cannot play any role in our economy when the market is complete for the aggregate
risk before the introduction of options.

Our limited-heterogeneity equilibrium exists under four conditions. Two of them are
embedded in equation (11). The first one, u′ (δ) < 1 + 1−β

βα1 , ensures that asset prices
are well-defined. If this condition does not hold, the price will be infinite because agents
are too patient or their desire to self-insure is too high. This existence condition is less
binding when the discount factor β is low or the idiosyncratic shock is not too severe.
The second condition, 1 < u′(δ), implies that unproductive agents are worse off compared
to productive agents. The inefficient production level δ is thus not desirable. The third
condition is that the asset volume remains small enough. Agents cannot hold too large an
amount of assets to self-insure against idiosyncratic risk. The wealth constraint is binding
for all unproductive agents. The fourth condition is that the heterogeneity remains limited,
such that both agent types participate to both security markets. Intuitively, if agents face
very different idiosyncratic risks, type-1 agents may be willing to pay a high price to self-
insure against idiosyncratic risk. At such a high price, type-2 agents would like to short-sell
the asset but, since they are prevented from doing so, options would not be traded.

3.2 Equilibrium characterization

Our equilibrium presents three particular features: (i) all unproductive agents are credit
constrained and only productive agents trade assets; (ii) saving choices and asset demands
of productive agents only depend on the current aggregate state and the agent’s type;
(iii) security prices only depend on the current aggregate state.7 We therefore now use the
subscript k = 1, . . . n instead of t for equilibrium variables. The equilibrium is characterized
by a finite sequence of 3(1+H)n variables (xik, s

1,i
k , . . . , s

H,i
k , Pk, Q

1
k, . . . , Q

H
k )i=1,2

k=1,...,n instead
of continuous distributions as in standard incomplete market models.

We now characterize the equilibrium by construction. Productive agents equalize the
marginal utility of consumption to the marginal pain of effort equal to 1. As a consequence,
the consumption of any productive type-i agent, cp,i, satisfies u′(cp,i) = 1. Second, budget
constraints provide the consumption and the effort of every agent as a function of the
current and past aggregate and idiosyncratic shocks. For instance, a type-i agent who was
productive in t− 1 in state k, and is unproductive in t in state j, consumes cpu,ikj equal to

7Such equilibrium features, particularly that unproductive agents do not trade, are also present in
Kiyotaki and Moore (2005, 2012), and Miao and Wang (2013).
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the production δ plus the liquidation value of his portfolio:

cpu,ikj = δ + (Pj + yj)x
1
k +

H∑
h=1

(Pj −Kh
k )+sh,1k . (12)

By the same token, the consumption and effort of any agent can be shown to depend
on his type and on the current and past aggregate and idiosyncratic shocks. The number
of consumption levels is then finite (16 at most).

We now express the pricing kernel M i
t,t+1 = βu′(cit+1)/u

′(cit) of agents participating
in financial markets, which determines equilibrium security prices. A type-i productive
agent at t in state k, has a marginal utility of consumption equal to 1. His next period
marginal utility depends on his productive status in period t + 1. If he stays productive
(with probability 1 − αi), his marginal utility will be 1. If he becomes unproductive, his
consumption will be given by equation (12). Let j be the aggregate state at date t + 1.
Then the pricing kernel M i

kj of this type i agent is:

M i
kj = βπk,j

(
1 + αi

(
u′

(
δ + (Pj + yj)x

i
k +

H∑
h=1

(Pj −Kh
k )+sh,ik

)
− 1

))
. (13)

Two conditions ensure that unproductive agents of both types do not hold securities.
First, Ptu′(cit) > βEt[u

′(cit+1)(Pt+1 + yt+1)] ensures that they do not hold the asset while
Qht u

′(cit) > βEt[u
′(cit+1)(Pt+1 − Kh

t )+] (for any h) ensures that they will not hold any
option. These conditions simply mean that security prices are too high for unproductive
agents. They can be expressed as a function of the variables characterizing the equilibrium
(xik, s

1,i
k , . . . , s

H,i
k , Pk, Q

1
k, . . . , Q

H
k )i=1,2

k=1,...,n and are shown to hold in equilibrium.
We summarize the full equilibrium structure in the next proposition.

Proposition 2 (Equilibrium properties) The reduced-heterogeneity equilibrium char-
acterized by the set of quantities and prices (xik, s

i
k, Pk, Qk)

i=1,2
k=B,G solves the following equa-

tions (k = 1, . . . , n, h = 1, . . . ,H and i = 1, 2):

Pk = β

n∑
j=1

πk,j(1 + αi(u′(δ + (Pj + yj)x
i
k +

H∑
h=1

(Pj −Kh
k )+sh,ik )− 1))(Pj + yj) (14)

Qhk = β
n∑
j=1

πk,j(1 + αi(u′(δ + (Pj + yj)x
i
k +

H∑
l=1

(Pj −K l
k)

+sl,ik )− 1))(Pj −Kh
k )+ (15)

V = η1 x1k + η2 x2k, (16)

0 = η1 sh,1k + η2 sh,2k . (17)

The equilibrium is characterized by four sets of equations (which amount to 3(1 +H)n
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equations). The first set, (14), concerns the price of the asset. It equates the asset price
in each state of the world to the expectation of the asset payoff discounted by the pricing
kernel, (13). Equations (15) have a similar interpretation, equalizing the option price to
the expected option payoff discounted by the pricing kernel. Finally, the last two sets
of equations, (16) and (17), are the market clearing conditions for the asset and the H
options in the n states of the world. Equilibrium quantities must also verify the set of
inequalities (28) and (29) in Appendix that guarantee that unproductive agents do not
trade any financial asset.

Moreover, effort quantities of productive agents at the equilibrium are strictly interior.
First, they cannot be infinite, or it would otherwise imply that budget constraints are not
binding, which would be dominated by consuming up to the budget constraints. Second,
effort quantities are positive at the equilibrium, since they are determined by the budget
constraint (2) in which security holdings are small.

These equations can easily be simulated. More importantly, this equilibrium allows
us to derive theoretical insights about the exchange of insurance against aggregate risk
throughout the business cycle. Our main theoretical findings are provided in Section 4.

4 Interactions between aggregate uncertainty and heterogene-
ity

In this section, we make additional assumptions to derive theoretical results about the effect
of aggregate uncertainty and heterogeneity on risk sharing. These results characterize the
price and volume of derivative assets in the business cycle.

4.1 The simple economy

We consider an economy with two aggregate states and a single option: n = 2 and H = 1.
We denote by a subscript G (B) the good (bad) state: yG > yB. Conditions of Proposition
1 are supposed to hold and an equilibrium exists. We make three additional assumptions.

1. Aggregate states are persistent, i.e. πGG + πBB > 1.
To avoid the discussion of uninteresting cases, we assume that all eigenvalues of the
transition matrix for the aggregate risk are positive; this implies that aggregate states
are persistent and do not fluctuate too frequently.8

2. The utility function u is such that:

X 7→ −X u′′(δ +X)

u′(δ +X)− 1
is increasing for X ∈ [0, u′−1(1)− δ). (18)

8For instance, Hamilton (1994, chapter 22) finds πGG + πBB = 1.65 for quarterly US data.
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This assumption is quite general as it always holds for standard utility classes such
as CRRA, CARA, and quadratic utilities. This condition determines the direction of
risk sharing. Indeed, it describes how the difference in marginal utilities between be-
ing non-productive and being productive (i.e. u′(δ+X)−1, which can be interpreted
as the extensive cost of losing a production opportunity) vary with better insurance.
Notably, it implies that the extensive cost of losing a production opportunity dimin-
ishes when security payoffs increase.

3. The strike K of the option is such that the option exactly pays off in one state of the
world.
This condition guarantees that the option is not a trivial asset. There are two other
cases, which are uninteresting. (i) The strike is always greater than the asset price.
The option then never pays off and cannot be considered as an actual asset. (ii) The
strike is always smaller than the asset price. The option then pays off in both states
of the world and is thus redundant with the asset.
This assumption is obviously stated as an equilibrium requirement but corresponds
to implicit conditions on deep model parameters. Moreover, the condition can be
rationalized as follows. In the zero supply economy (V = 0), the option cannot be
traded and the option introduction has no impact on asset prices. It is straightforward
to pick up a proper strike. Since an increase in the asset supply continuously modifies
asset prices, it remains possible, when asset volume is positive, to choose a strike for
the option to pay off in exactly one state of the world.
With our assumption (and in particular the persistence of aggregate states), the asset
price in the good state can be shown to be larger than in the bad one. The option
therefore only pays off in the good state of the world.

Following the above assumption, the two states of the world correspond to two non-
redundant securities (the asset and the option). Markets are thus complete for the ag-
gregate risk. Equations (14) to (17) then imply that every agent type holds a security
portfolio, which is independent of the state of the world. We can therefore simplify the
equilibrium defined by equations (14) to (17). The equilibrium is characterized by eight
variables

{
x1, x2, s1, s2, PG, PB, QG, QB

}
together with the following eight equations:

α1
(
u′(δ + (PB + yB)x1)− 1

)
= α2

(
u′(δ + (PB + yB)x2)− 1

)
(19)

α1
(
u′(δ + (PG + yG)x1 + (PG −K)s1)− 1

)
= α2

(
u′(δ + (PG + yG)x2 + (PG −K)s2)− 1

)
(20)

P k = βπk,G
(
1 + α1

k

(
u′
(
δ + (PG + yG)x1 + (PG −K)s1

)
− 1
))

(PG + yG) (21)

+ βπk,B
(
1 + α1

k

(
u′
(
δ + (PB + yB)x1

)
− 1
))

(PB + yB), k = G,B

Qk = βπk,G
(
1 + α1

k

(
u′
(
δ + (PG + yG)x1 + (PG −K)s1

)
− 1
))

(PG −K), k = G,B (22)

V = η1 x1 + η2 x2 (23)

0 = η1 s1 + η2 s2 (24)
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Equations (19) and (20) stem from the market completeness for aggregate risk. These
equations guarantee that both agent types participate in both financial markets and that
they manage to equalize their expected marginal utility (expectation with respect to in-
dividual risk) across both states of the world. Equations (21) and (22) are the pricing
equations for the asset and the option in each state of the world. The pricing is made only
by type-1 agents but, thanks to (19) and (20), it is the same for type-2 agents. Finally,
equations (23) and (24) are two market clearing conditions. Propositions 3–5 gather our
main results derived from the analysis of this equilibrium.

4.2 Portfolio compositions

The next proposition characterizes equilibrium portfolios.

Proposition 3 (Agents’ portfolios) Type-1 agents, facing a greater risk of becoming
unproductive, choose to hold a greater quantity of assets than type-2 agents, i.e. x1 > x2 >

0. Further, type-1 agents sell options to type-2: s1 < 0 < s2.

Since options only pay off in the good state of the world and not in the bad, both
agent types choose the quantity of assets, x1 and x2, so as to equalize their marginal
utility in the bad sate of the world (equation (19)). Type-1 agents, who are more likely to
become unproductive, purchase a greater quantity of assets to self-insure against the risk of
losing the production opportunity in the bad state. Option holdings are determined by the
equalization of expected marginal utilities in the good state of the world (equation (20)).
In the good state, the asset is a better insurance device than in the bad state (because of
its higher sale price and higher dividend), which benefits type-1 agents more (since they
hold more assets and since condition (18) holds). As a consequence, type-1 agents sell
options in order to reduce the liquidation value of their portfolio in the good state of the
world. On the other hand, type-2 agents purchase options to improve their hedging in the
good state of the world.

From a financial point of view, type-1 agents choose a kind of “delta-hedging” strategy
in equilibrium, in the sense that they optimally hold a portfolio that is less affected by
variations in the underlying asset price than it would be without options.

This result may be compared with the findings of Franke, Stapleton, and Subrah-
manyam (1998), who prove that agents with little or no uninsurable risk have a concave
sharing rule, meaning that they sell call options to high-risk agents in the good state of
the world. In our setup, we find that in fact low-risk agents buy call options and have a
convex sharing rule. The difference in results stems from the difference in the nature of
the heterogeneity in the uninsurable idiosyncratic risk. While we consider that agents face
different probabilities of losing the production opportunity and of earning the same amount
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δ, Franke, Stapleton, and Subrahmanyam suppose that agents face an idiosyncratic risk
with the same probability distributions, but of different magnitudes. In our setup, this
would imply that all agent types face the same probability α of becoming unproductive
but differ in the levels of inefficient production δi (i = 1, 2). Introducing the heterogeneity
both in δ and in α would obviously be feasible in a quantitative version of our model.

The rationale for our modeling choice is that our setup generates a risk sharing pattern
consistent with the literature. Indeed, in our model, high uninsurable idiosyncratic risk
agents choose to bear a smaller share of the aggregate insurable risk and purchase insur-
ance through options from low idiosyncratic risk agents. The standard economic theory
literature reaches similar conclusions. In the expected utility framework, agents facing an
idiosyncratic risk have been proven to adopt a “more risk adverse” behavior in the sense
that they choose a smaller exposure to risks that can be avoided or insured. This impact
of uninsurable idiosyncratic risk on risk taking behavior is also supported by many em-
pirical studies using micro-level data on both households and institutional investors. In
particular, investors facing a severe individual risk are found to hold less risky assets or to
participate less in financial markets.9

Finally, one may wonder what would be the consequences of the introduction of a
riskless asset, which seems to be a natural extension of our setup. Our results may still
hold and be compatible with the fact that low-risk agents hold less stocks. Indeed, we
would need to have three states of the world to avoid assets to be redundant. Low-risk
agents would then purchase more bonds to hedge themselves in the worst state of the world.
They may purchase less risky assets and sell options, since the riskless asset may offer them
too much insurance in the two states of the world. Obviously, given the larger number of
assets and of states of the world, other possibilities cannot be ruled out (including limited
participation to certain markets) and the final result would be a quantitative horse race.

We now explain how aggregate uncertainty may affect security holdings and prices.
This is the main theoretical result concerning the dynamic behavior of option volumes.

Proposition 4 (Aggregate uncertainty effects) An increase in aggregate uncertainty
through a mean-preserving spread in dividends in the vicinity of the riskless equilibrium
(i.e. yG = yB) has the following consequences:

1. The asset price rises in the good state and falls in the bad state, while the average
price remains unchanged;

2. The option price increases in both states, but more in the good than in the bad state;

3. The higher the volatility of dividends, the greater the volume of options traded.
9For example, see Haliassos and Bertaut (1995) for a study on U.S. households and Guiso, Jappelli and

Terlizzese (1996) for one on European households.
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We consider a mean-preserving spread in dividends, which increases aggregate uncer-
tainty while remaining close to the riskless equilibrium. While the asset payoff in the bad
state of the world, PB + yB, decreases, the asset payoff in the good state, PG + yG, in-
creases. Due to the aggregate-state persistence, the spread between asset prices in both
states therefore increases with the mean-preserving spread even though the average price
does not change (result 1). The option payoff, PG − K, increases in the good state and
still pays off 0 in the bad one. As a consequence, the price of the option increases in both
states. Moreover, since aggregate states are persistent, this increase is greater in the good
state of the world (result 2).

This mean-preserving spread in dividends also has an impact on portfolio compositions.
Due to a smaller dividend in the bad state, type-1 agents, who are more likely to be
unproductive, purchase a greater quantity of assets to obtain sufficient hedging in the bad
state of the world to equalize marginal utility with type-2 agents (equation (19)). They
consequently sell a greater quantity of options in order to reduce the portfolio liquidation
value in the good state of the world (equation (20)), while type-2 agents purchase these
options in order to increase their hedging in the good state of the world, causing the
quantity of traded options to increase (result 3). Our model is therefore able to reproduce
the stylized fact that the open interest of options, i.e. the number of open contracts, which
is similar to |s1| in our economy, rises as asset prices become more volatile. This stylized
fact has been empirically highlighted for options on the S&P500 by Buraschi and Jiltsov
(2006) or Lakonishok, Lee, Pearson, and Poteshman (2007).

The degree of market incompleteness also has consequences for portfolio composition.
These results are given in the next proposition:

Proposition 5 (Heterogeneity effects) An increase in the production opportunity risk
for type-1 agents (i.e. a higher α1) in the vicinity of the symmetric equilibrium (i.e. α1 =

α2) has the following consequences:

1. The prices of both securities increase in both states of the world, but more in the good
state than in the bad;

2. Type-1 agents purchase more assets and sell more options.

Greater heterogeneity therefore increases the volume of traded options.

We now consider an increase in the opportunity risk for type-1 agents (i.e. a higher
α1) in the vicinity of the symmetric equilibrium. Type-1 agents experience a greater
probability of becoming unproductive. They therefore express a greater demand for self-
insurance, resulting in higher prices for both securities. The price increase is greater in
the good state of the world, when both securities are a better hedge against having no
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production opportunities, due to aggregate-state persistence (result 1). The increase in
demand for insurance by type-1 agents translates into a greater demand for the asset for
insurance in the bad state of the world (equation (19)) and into a greater quantity of
options sold for insurance in the good state of the world (equation (20)), which proves the
second point of Proposition 5.

Another avenue to understanding the results of Proposition 5 consists in directly inter-
preting the probability α1 as a parameter driving the strength of the demand for securities.
Indeed, α1 drives the severity of the idiosyncratic risk and thus the demand for the self-
insurance. As stated in Proposition 5, an increase in the demand pressure through a larger
α1 means, first, a greater option trading volume and a higher option price, as well as a
higher asset price. This demand-pressure channel on option prices has been empirically
highlighted, for instance by Bollen and Walley (2004). Our model therefore provides a
possible micro-foundation for this demand-pressure effect in a general equilibrium setting.

5 Conclusion

The goal of this paper is to contribute to the theoretical understanding of incomplete mar-
ket models with aggregate risk. Using a framework that endogenously generates a limited
heterogeneity equilibrium, we show that these environments are useful for understanding
both allocations and prices of derivative assets. In particular, we show that these envi-
ronments generate more option trades in bad times than in good times. A first extension
of this work could be to quantitatively investigate the properties of a calibrated model.
A second and possibly more promising application could be to use this simple model to
estimate the degree of heterogeneity from the actual data on the volume of traded options.
We leave these quantitative investigations for future research.
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Appendix

A Proof of Proposition 1

We proceed in two steps: (i) we prove that our equilibrium exists in an economy without hetero-
geneity and with a zero mass tree and (ii) we check that the result still holds by continuity.

First step: Equilibrium existence with zero volume and no heterogeneity. We first assume
α1 = α2 and V = 0. The asset price is given by:

Pk = β
(
1 + α1 (u′(δ)− 1)

) n∑
j=1

πkj [Pj + yj ] . (25)

The first part of (11) stating that β
(
1 + α1 (u′(δ)− 1)

)
< 1 guarantees that the price Pk is well

defined in any state k. The condition of non-participation of unproductive agents is: Pku′(δ) >
β(1 + ρ(u′(δ) − 1))

∑n
j=1 πkj(Pj + yj). Indeed, the collateral constraint (6) implies that agents

cannot short-sell some options to purchase other options: in absence of assets, options cannot be
traded. Using (25), the condition becomes:

(
1 + α1 (u′(δ)− 1)

)
u′(δ) > u′(δ)−1 > 1+ρ (u′(δ)− 1),

which always holds whenever u′(δ) > 1. No trade occurs.

Second step: Positive supply economy with one type of agent. We assume α2 = α1 but
V > 0. Every (identical) productive agent holds the same asset quantity V

η1+η2 . Options are still
not traded in this economy. The asset price Pk in state k = 1, . . . , n verifies the following equation:

Pk = β

n∑
j=1

πkj

(
1 + α1

(
u′(δ + (Pj + yj)

V

η1 + η2
)− 1

))
(Pj + yj) . (26)

The condition for equilibrium existence is:

Pku
′(δ + (Pk + yk)

V

η1 + η2
) > β

n∑
k′=1

πkk′ (1 + ρ (u′(δ)− 1)) (Pk′ + yk′) . (27)

We can express (26) as G (P, V ) = 0, where P = (Pk)k=1,...,n ∈ (R+)n and G : (R+)n ×
R+ → (R+)n is continuous and differentiable in V . The Jacobian relative to P in V = 0 is
GP (P, 0) = (1k=j − βπkj(1 + α(u′ (δ)− 1)))k,j=1,...,n > 0.10 This Jacobian matrix can be written
as In − G̃, where In is the identity matrix and G̃ a matrix whose norm is strictly smaller than
one. The Jacobian GP is invertible and the implicit-function theorem implies that (26) defines
P as a continuous function of V around V = 0. As condition (27) holds for V = 0, there exists
a neighborhood W1 (0) ⊂ R+ where (27) holds. We define V ∗ ∈ W1 (0) > 0 and P ∗ (Q∗) the
corresponding asset (option) price. The quantity of assets held by each agent is x∗ = V ∗

η1+η2 > 0,
while no option is traded.

Third step: Positive supply economy with two types of agents. In the general case, equilib-
rium quantities (Pk, Q

1
k, . . . , Q

l
k, x

i
k, s

1,i
k , . . . , sl,ik )i=1,2

k=1,...,n are characterized by equations (14)–(17)
and must verify the following inequalities (k, k̂ = 1, . . . , n; h = 1, . . . , l; i = 1, 2):

Pku
′(δ + (Pk + yk)xi

k̂
+

H∑
l=1

(Pk −Kl
k̂
)+sl,i

k̂
) > β

n∑
j=1

πkj (1 + ρ (u′(δ)− 1)) (Pj + yj) , (28)

Qhku
′(δ + (Pk + yk)xi

k̂
+

H∑
l=1

(Pk −Kl
k̂
)+sl,i

k̂
) > β

n∑
j=1

πkk′ (1 + ρ (u′(δ)− 1)) (Pj + yj) . (29)

10The function 1k=j equals 1 when k = j and 0 otherwise.
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We proceed in a similar vein as above. We define X = ((yk)k, V, (α
1
k, α

2
k)k) ∈ (R+)n×1×2n as the

vector of parameters and Z = ((Pk)k, (Q
h
k)hk , (x

1
k)k, (x

2
k)k, (s

1h
k )hk , (x

2h
k )hk) ∈ (R+)n×nl×2n×2nl as the

vector of endogenous variables. We define the function F stacking pricing functions for both agent
types and the market equilibrium equations (i.e., equations (14)–(17)) such that for a given set of
parameters X, an equilibrium Z is defined as a solution of F (Z,X) = 0.
From the previous step, we know that there exists an equilibrium for X∗ = ((yk)k, V

∗) in which
the unproductive do not trade assets; this equilibrium is defined by Z∗ = (P ∗, Q∗, (x∗, . . . , x∗), 02nl).
We now show that the Jacobian ∆ =

(
∂Fi

∂zj
(Z∗, X∗)

)
i,j=1,...,3n(1+l)

is invertible.

In the vicinity of the symmetric equilibrium, ∆ has the following shape:

∆ =



In −A 0n×nl Ka 0n×n (Ka1 . . .Kal) 0n×nl
In −A 0n×nl 0n×n Ka 0n×nl (Ka1 . . .Kal)

−

 B1

...
Bl

 Inl

 Ka1

...
Kal

 0nl×n (Kgh)g,h=1,...,l 0nl×n

−

 B1

...
Bl

 Inl 0nl×n

 Ka1

...
Kal

 0nl×n (Kgh)g,h=1,...,l

0n×n 0n×nl E1 E2 0n×nl 0n×nl
0nl×n 0nl×nl 0nl×n 0nl×n E1 ⊗ Il E2 ⊗ Il


,

where:

• Ip is the p × p identity matrix, 0n×p is the n × p null matrix, 1l×1 is a column vector of
length l containing only 1 and ⊗ is the Kronecker product;

• A is an n×n matrix such that Ak,j = βπk,j(1 +α1(u′(δ+ (P ∗j + yj)x
∗)− 1 +x∗u′′(δ+ (P ∗j +

yj)x
∗)(P ∗j + yj)));

• Bh (h = 1, . . . , l) is an n× n matrix such that Bh,kj = βπk,j(1 + α1
k((u′(δ + (P ∗j + yj)x

∗)−
1)1Pj≥Kh

k
+ x∗u′′(δ + (P ∗j + yj)x

∗)(Pj −Kh
k )+));

• Ei (i = 1, 2) is an n× n diagonal matrix such that Ei,kk = ηik;

• Ka is an n×n diagonal matrix such that Ka,kk = −βα1
k

∑n
j=1 πk,ju

′′(δ+ (P ∗j + yj)x
∗)(P ∗j +

yj)
2;

• Kah is an n×n diagonal matrix such that Kah,kk = −βα1
k

∑n
j=1 πk,ju

′′(δ+(P ∗j +yj)x
∗)(P ∗j +

yj)(Pj −Kh
k )+;

• Kgh is an n×n diagonal matrix such that Kgh,kk = −βα1
k

∑n
j=1 πk,ju

′′(δ+(P ∗j +yj)x
∗)(P ∗j −

Kg
k)+(P ∗j −Kh

k )+.

We now prove that ∆ is invertible. Let X = (X1, . . . , X6) ∈ (R)
n+nl+2n+2nl. X ∈ ker ∆ implies

the following set of equalities:11

0n×1 = (In −A)X1 +KaX3 + (Ka1 . . .Kal)X5

0n×1 = (In −A)X1 +KaX4 + (Ka1 . . .Kal)X6

0nl×1 = −(B1 . . . Bl)
>X1 +X2 + (Ka1 . . .Kal)

>X3 + (Kgh)X5

0nl×1 = −(B1 . . . Bl)
>X1 +X2 + (Ka1 . . .Kal)

>X4 + (Kgh)X6

0n×1 = E1X3 + E2X4

0nl×1 = E1 ⊗ IlX5 + E2 ⊗ IlX6

. (30)

11M> denotes the transpose of the matrix M .
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Using the two first equations with the two last ones (together with the fact that any two diagonal
matrices commute), we obtain X1 = 0. By the same token, using the second and third equations
with the two last ones, we obtain X2 = 0. The system (30) simplifies to:

0n×1 = KaX3 + (Ka1 . . .Kal)X5

0n×1 = KaX4 + (Ka1 . . .Kal)X6

0nl×1 = (B1 . . . Bl)
>X3 + (Kgh)X5

0nl×1 = (B1 . . . Bl)
>X4 + (Kgh)X6

0n×1 = E1X3 + E2X4

0nl×1 = E1 ⊗ IlX5 + E2 ⊗ IlX6

. (31)

Since Ka is invertible, we obtain 0nl×1 = (

 Ka1

...
Kal

 (K−1a Ka1 . . .K
−1
a Kal) − (Kgh))X5, which

implies X5 = 0nl×1. To see this, we express X5 = (X51, . . . , X5l) ∈ (Rn)l and get that for any
g = 1, . . . , l, we have:

l∑
h=1

(KagKah −KaKgh)X5h = 0. (32)

We introduce the bilinear form (·|·)k: ∀U, V ∈ (Rn)2, (U |V )k = −βα1
∑n
j=1 πk,ju

′′
k,jUjVj and it is

easy to check that it is an inner product. Multiplying (32) by X5g and summing for g = 1, . . . , l, we
obtain using (·|·)k: (

∑l
h=1 Πk

hX5hk|Πa)2k − (Πa|Πa)k(
∑l
h=1 Πk

hX5hk|
∑l
h=1 Πk

hX5hk)k = 0, where
Πa = (P ∗j + yj)j=1,...,n and Πh

h = (P ∗j − Kh
k )+j=1,...,n. The Cauchy-Schwarz inequality implies

then that for all k, λkΠa =
∑l
h=1 Πk

hX5hk, which means that λk = 0 and X5h = 0n×1, since by
assumption option payoffs do not replicate asset payoffs. From the first equation in (31), we deduce
X3 = 0n×1. By the same token, we obtain X6 = 0nl×1 and X4 = 0n×1.
We conclude that ker ∆ = {0} and the Jacobian ∆ in (X∗, Z∗) is invertible. The implicit-function

theorem proves that there exists a continuously differentiable function F̃ such that Z = F̃ (X) for
X close to X∗. In consequence, our equilibrium exists in the vicinity of (X∗, Z∗).

B Proof of Proposition 2

From Section 3.2, it is straightforward to deduce the price expressions (14) and (15). Market
clearing conditions (16) and (17) are easily deduced from equilibrium properties (only productive
agents trade securities) and from the general market clearing conditions (9) and (10).
As explained in Section 3.2, two conditions have to hold for preventing unproductive agents to

trade any securities. These conditions are Ptu′(cit) > βEt[u
′(cit+1)(Pt+1 + yt+1)] and Qht u′(cit) >

βEt[u
′(cit+1)(Pt+1 −Kh

t )+] for all unproductive agents. Plugging price expressions, we obtain the
equations (28) and (29) above.

C Proof of Proposition 3

Since α1 > α2, (19) implies that u′
(
δ + (PB + yB)x1

)
< u′

(
δ + (PB + yB)x2

)
and therefore

that x1 > x2, since u′ is decreasing. Moreover, s1 < 0 if α1(u′
(
δ + (PG + yG)x1

)
− 1) <

α2(u′
(
δ + (PG + yG)x2

)
− 1) or if

u′(δ+(PG+yG) x1)−1
u′(δ+(PG+yG) x2)−1 <

u′(δ+(PB+yB) x1)−1
u′(δ+(PB+yB) x2)−1 . This holds if π 7→

u′(δ+πx1)−1
u′(δ+πx2)−1 is decreasing, which is guaranteed by condition 18.
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D Proof of Proposition 4

We introduce as a benchmark the equilibrium without aggregate risk in which yG = yB = y. The
asset (option) price is P f (Qf ). Options are not traded (sf,i = 0) and the asset holdings of type-i
agents are denoted xf,i, i = 1, 2:

P f

P f + y
= β

(
1 + αi

(
u′
(
δ + (P f + y)xf,i

)
− 1
))

=
Qf

P f −K
, (33)

with: α1
(
u′(δ + (P f + y)x,f,1)− 1

)
= α2

(
u′(δ + (P f + y)xf,2)− 1

)
; η1xf,1 + η2xf,2 = V.

(34)

Since α1 > α2, we deduce that xf,1 > xf,2; in the absence of aggregate risk, the agent facing the
larger risk holds more assets. We also introduce the following constant κ:

κ =
−xf,1 u′′(δ+(P f+y) xf,1)

u′(δ+(P f+y) xf,1)−1 + xf,2
u′′(δ+(P f+y) xf,2)
u′(δ+(P f+y) xf,2)−1

− 1
η1

u′′(δ+(P f+y) xf,1)
u′(δ+(P f+y) xf,1)−1 −

1
η2

u′′(δ+(P f+y) xf,2)
u′(δ+(P f+y) xf,2)−1

> 0. (35)

Condition 18 guarantees that κ > 0. Before going further, we prove the following lemma:

Lemma 1 Let Φ be a real continuously differentiable function of yG and yB. We denote by V [y]
(E[y]) the variance (mean) of the process y. A mean-preserving spread of y implies:

∂Φ

∂V [y]

∣∣∣∣
E[y]=constant

=
1

2(yG − yB)

[
2− πGG − πBB

1− πBB
∂Φ

∂yG
− 2− πGG − πBB

1− πGG
∂Φ

∂yB

]
. (36)

Proof:
Defining q = 1−πBB

2−πGG−πBB
, we have yG = E[y]+(1−q)

√
V [y]
q(1−q) and yB = E[y]−q

√
V [y]
q(1−q) . Using

basic differential calculus, it is straightforward to derive (36).

D.1 Quantities

Deriving (19) and (20) relative to yl in the vicinity of the riskless equilibrium yields:

α1u′′
(
δ + (P f + y)xf,1

)(
xf,1(

∂PB
∂yl

+ 1l=B) + (P f + y)
∂x1

∂yl

)
= α2u′′

(
δ + (P f + y)xf,2

)(
xf,2(

∂PB
∂yl

+ 1l=B) + (P f + y)
∂x2

∂yl

)
,

α1u′′
(
δ + (P f + y)xf,1

)(
xf,1(

∂PG
∂yl

+ 1l=G) + (P f + y)
∂x1

∂yl
+ (P f −K)

∂s1

∂yl

)
= α2u′′

(
δ + (P f + y)xf,2

)(
xf,2(

∂PG
∂yl

+ 1l=G) + (P f + y)
∂x2

∂yl
+ (P f −K)

∂s2

∂yl

)
.

Note that the derivation of (23) and (24) wrt to yl, l = B,G, implies that ∂x
1

∂yl
= −∂x

2

∂yl
and ∂s1

∂yl
=

−∂s
2

∂yl
. Dividing both equations by α1

(
u′
(
δ + (P f + y)x,f,1

)
− 1
)

= α2
(
u′
(
δ + (P f + y)xf,2

)
− 1
)

and after some algebra, we deduce using the definition (35) of κ that:

η1 (P f + y)
∂x1

∂yl
= −η2(P f + y)

∂x2

∂yl
=−κ(

∂PB
∂yl

+ 1l=B), (37)

η1(P f + y)
∂x1

∂yl
+η1(P f −K)

∂s1

∂yl
= −η2(P f + y)

∂x2

∂yl
− η2(P f −K)

∂s2

∂yl
=−κ(

∂PG
∂yl

+ 1l=G). (38)
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D.2 Prices

Differentiating (14) with respect to yl in the vicinity of the riskless equilibrium yields:

∂Pk
∂yl

= β M̂
∑
j=B,G

πk,j

(
∂Pj
∂yl

+ 1j=l

)
,

with: M̂ = 1 + α1(u′(δ + (P f + y)xf,1)− 1) (39)

× (1− V

η1η2
u′′
(
δ + (P f + y)xf,1

)
u′ (δ + (P f + y)xf,1)− 1

u′′
(
δ + (P f + y)xf,2

)
u′ (δ + (P f + y)xf,2)− 1

),

Denoting M̃ = βM̂

(1−βM̂)(1−(πGG+πBB−1)βM̂)
, we obtain that:[

∂PG

∂yl
∂PB

∂yl

]
= M̃

 (
πGG − βM̂(πGG + πBB − 1)

)
1l=G + (1− πGG) 1l=B

(1− πBB) 1l=G +
(
πBB − βM̂(πGG + πBB − 1)

)
1l=B

 > 0. (40)

Differentiating equation (22) with respect to yl finally yields:
∂Qk
∂yl

= βM̂(
∂PG
∂yl

+ 1l=G). (41)

D.3 Back to Proposition 4

Using (37) and (38) with Lemma 1, we deduce the impact of a mean preserving spread of dividends
on security quantities (recall that V [y] (E[y]) is the variance (mean) of the dividend process):

η1(P f + y)
∂x1

∂V [y]

∣∣∣∣
E[y] cst

= κ
2− πGG − πBB

2(yG − yB)(1− πGG)

1

1− (πGG + πBB − 1)βM̂
> 0,

η1(P f −K)
∂s1

∂V [y]

∣∣∣∣
E[y] cst

= −κ2− πGG − πBB
2(yG − yB)

1

1− (πGG + πBB − 1)βM̂

2− πBB − πGG
(1− πBB)(1− πGG)

< 0.

The derivatives of the asset price in (21) relative to V [y] can be expressed as (l = B,G):

2(yG − yB)

2− πGG − πBB
∂Pl
∂V [y]

∣∣∣∣
E[y] cst

= (1l=G − 1l=B)
1

1− πll
(πGG + πBB − 1)βM̂

1− (πGG + πBB − 1)βM̂

We deduce ∂QG

∂V [y]

∣∣∣
E[y]

> ∂QB

∂V [y]

∣∣∣
E[y]

since we have from (41): ∂Qk

∂V [y]

∣∣∣
E[y]

=πk,G
2−πGG−πBB

2(yG−yB)(1−πBB)M̃ > 0.

E Proof of Proposition 5

We consider the evolution of prices and quantities around the symmetric equilibrium α1 = α2 = α,
where the asset prices are P sG and P sB and those of the options are, respectively, QsG and QsB :

P sk = β
∑
j=B,G

πk,j

(
1 + α

(
u′
(
δ + (P sj + yj)

V

η1 + η2

)
− 1

))
(P sj + yj),

Qsk = βπk,G

(
1 + α

(
u′
(
δ + (P sG + yG)

V

η1 + η2

)
− 1

))
(P sG −K).
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E.1 Quantities

Differentiating (19) and (20) wrt αi (αi = 1, 2) yields (close to the symmetric equilibrium):

η1(PB + yB)
∂x1

∂αi
= (1i=2 − 1i=1)

η1 η2

η1 + η2

u′
(
δ + (P sB + yB) V

η1+η2

)
− 1

αu′′
(
δ + (P sB + yB) V

η1+η2

) ,

η1(PG + yG)
∂x1

∂αi
+ η1(PG −K)

∂s1

∂αi
= (1i=2 − 1i=1)

η1 η2

η1 + η2

u′
(
δ + (P sG + yG) V

η1+η2

)
− 1

αu′′
(
δ + (P sG + yG) V

η1+η2

) .

We deduce that ∂x1

∂α1 > 0 and ∂s1

∂α1 < 0 whenever condition (18) holds.

E.2 Prices

We differentiate the expressions of both asset and option prices with respect to αi (i = 1, 2) in the
neighborhood of the symmetric equilibrium:

∂Pk
∂αi

= β
η1 1i=1 + η2 1i=2

η1 + η2

∑
j=B,G

πk,j∆j + β
∑
j=B,G

πk,jMj
∂Pj
∂αi

,

with: Mj = 1 + α

(
u′
(
δ + (P sj + yj)

V

η1 + η2

)
− 1

)1 +
(P sj + yj)V

η1 + η2

u′′(δ + (P sj + yj)
V

η1+η2 )

u′(δ +
(P s

j +yj)V

η1+η2 )− 1


∆j =

(
u′
(
δ + (P sj + yj)

V

η1 + η2

)
− 1

)
(P sj + yj).

Using matrix notation, we obtain after denoting M̃GB = 1 − βπGGMG − βπBBMB + β2(πGG +
πBB − 1)MGMB :

M̃GB

[
∂PG

∂αi

∂PB

∂αi

]
= β

η11i=1 + η21i=2

η1 + η2

[
(πGG − βMB(πGG + πBB − 1))∆G + (1− πGG)∆B

(πBB − βMG(πGG + πBB − 1))∆B + (1− πBB)∆G

]
> 0.

Analogously for the option price, we have:

∂Qk
∂αi

= βπk,GM̂G
∂PG
∂αi

+ β
η11i=1 + η21i=2

η1 + η2
πk,G

(
u′(δ + (P sG + yG)

V

η1 + η2
)− 1

)
(P sG −K).

with: M̂G = 1 + α

(
u′(δ +

(P sG + yG)V

η1 + η2
)− 1

)(
1 +

(P sG −K) V
η1+η2u

′′(δ + (P sG + yG) V
η1+η2 )

u′(δ + (P sG + yG) V
η1+η2 )− 1

)
.

We easily deduce that ∂QG

∂αi > ∂QB

∂αi > 0, which proves the last result in Proposition 4.
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