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This technical appendix completes the paper “Asset returns, idiosyncratic and aggregate risk
exposure”. It offers a step-by-step derivation of the proof of Proposition 4 (Small positive volumes)
in Section 4.

All equations numbers refer to equations in the main text.

Proof of Proposition 4

Equity premium and bond holdings. In this setup, wages w® and §° are constant, while
securities are in (small) positive supplies. Because the dividend process is IID, the stock price is
constant and Because the dividend process is IID, the stock and bond prices are constant, as well as
the bond holdings of both types: bf = b! and b! = b®. Since the type-2 agents cannot be excluded

from bond markets due to condition (18), we deduce the Euler equations for both securities:
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We solve for the price expressions in the neighborhood of zero volume (so as to obtain closed-form
expressions). We assume that 0 < Vx < 1 and 0 < Vp < 1. Since bonds cannot be short-sold, we
also have 0 < b', b?> < 1. We begin with the stock price:!
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1The approximation sign ~ refers to a first order development with respect to security volumes.
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Using a guess-and-verify strategy, we assume that there exists two real values 7, and 7, such that
PPV 5 p2V 4 Trx‘;—i‘ + mybt, where P?V defined in equation (47) is the stock price in zero volume

and with constant wages:
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For the bond price, we obtain:
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The Euler equation for bonds of type-1 agents can be expressed as follows:
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If type-1 agents do not participate to the bond market, the previous inequality is strict and we

have b' = 0 and b? = % If type-1 agents trade bonds, the previous inequality is an equality and



noticing that b* = ‘;—E‘ - Z—fb{ we deduce using (d) and (e) the bond expressions (24) and (25).
Because of condition (18), type-2 agents cannot be credit-constrained. Otherwise, we would have
(1- al)%(% + ‘;%‘EZ[PZV +y(2)]) > k? — k! > 0, which contradicts positive volumes.

We therefore deduce the following expressions for bond and stock returns:
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Since we have PZV = = F [y(2)], we deduce that stock returns can be expressed as follows:
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From (f) and (g), we have the expression (22) of the equity premium.

Average consumptions. Since idiosyncratic and aggregate shocks are independent, ¢’V =

E[e¢PV] = ES[E?[ePV]], where E[] is the total expectation, E¢[-] the expectation with respect to
idiosyncratic risk and E[-] the expectation with respect to idiosyncratic risk. Let us start with

computing the different realizations of E*[¢F'V]. Agents of type 1 consume:

o wl—wlr+ E[y(é)}‘;—’f + (1 —QFV)b! with (unconditional) probability a'n' (i.e., pp agents);
o wl —wlr — PPV‘:]—)f — QFVb! with probability (1 — a')n! (i.e., pu agents);
o 51+ (PPV + E[y(é)})‘:]—i‘ + b with probability (1 — p')(1 —n') (i.e., up agents);

e 4! with probability p'(1 —n') (i.e., uu agents);
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straightforward to derive. By the same token, we can easily obtain the expression (28) for

type-2 agents.

Variance of consumption growth. For type 1 agents, we denote Z the current aggregate

state and z’ the future one. At the first order in asset volumes, the consumption growth rates of



type-1 agents are as follows (w.p. stands for with probability):
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We use the law of total variance to express the (total) variance V|77V

for type-1 agents: V[y1PV] = EEVEHF [3LPV] 4 VEEZZ [3LPV] where the € (resp. Z) exponent

of consumption growth

refers to idiosyncratic (resp. aggregate) moments.

We start with the expression of BV 7 [FEEV]:
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Second, we express 5% [31PV]. We have
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or after some algebra manipulation:
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We finally obtain grouping equations (j) and (1):
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where we deduce from (k) and (m) that there exists a function K! = —2ML(K}3 -
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We finally deduce from (h) and (n) that the total consumption growth of type-1 agents is:
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where the expressions of v13, v11 and v15 can be found in equations (h), (o) and (p), respectively
(and expression of E[71%4"] in (i)). Using Lemma A below, it is straightforward to deduce that

13 > 0, 11 > 0 and v15 > 0.

Lemma A (Sign of k) Let us consider two probabilities 0 < a,p < 1, two positive variables

0 < § <w, and two positive scalars p,m > 0. We have then:
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We denote X = % > 1. We start with inequality (t) and we denote I; the left hand-side. After

rearrangement, we have
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It is increasing in (1;21# < 1, so we have:
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which proves (t).
We now turn to (u) and we denote I the left hand-side. After rearrangement:
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Since X > 1 > « and noting that X —a = X — 141 — «, we obtain that (1—;% is a decreasing

function of 1 — o < 1. We thus deduce:
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Since X > 1, we further have 1 + (1 — p)X < X (2 — p) and:
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where the last inequality comes from the fact that X2 > (X — 1)2 and 1 — p > 0. We finally

conclude that I < 0, which proves (u). m

For type-2 agents, we find an expression very similar to (s) for type-1 agents, and
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where the expression of 151 is symmetric to the one of 147 in (0) —the expression of K ? is in equation

(a):
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and where vy is similar to vy in (r):
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It is indeed straightforward to deduce vo; > 0 using Lemma A.
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