Professor Ariell Reshef
University of Virginia
Summer 2011

Final Exam

Please write your answers on the answer sheet, in the spaces provided. Continue on the back of the page if needed, but mark "Continued on Back" clearly.

- You have 3 hours.

Question 1 (10 points)

1. Solve the following differential equation

$$
\dot{y}+a y=b
$$

with $y(0)=y_{0}$, a constant.
2. Solve the following differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=3
$$

by using the sum of a particular solution and the solution to the homogenous equation (setting the right hand side to zero), with $y(0)=4$ and $y^{\prime}(0)=2$. Is the system stable? If so, show that it converges to the particular solution that you found.

Question 2 (30 points)

The cost function of a firm, $C\left(q, w_{1}, w_{2}\right)$, is defined as the minimal cost of optimally producing q units of output, given prices $w_{1}, w_{2}>0$. Suppose that the production function is

$$
q=x_{1}^{\alpha} x_{2}^{1-\alpha}
$$

where $\alpha \in(0,1)$.

1. Find the cost function. To do this, follow these steps:
(a) Find the demands x_{1}^{*} and x_{2}^{*} given $\left(q, w_{1}, w_{2}\right)$ and then
(b) Plug those demands into the objective function to get the value of the problem.
2. What conditions must hold for this to be a meaningful question? I.e., what are the conditions for $C\left(q, w_{1}, w_{2}\right)$ to be a function?
3. Verify Shephard's Lemma. I.e. show that given the cost function that you found above,

$$
\frac{\partial C\left(q, w_{1}, w_{2}\right)}{\partial w_{i}}=x_{1}^{*}
$$

where x_{1}^{*} is what you computed above in 1 (a).

Question 3 (10 points)

A Pareto random variable X has the following distribution function: $\operatorname{Pr}[X \leq x]=F(x)=1-(b / x)^{p}$, where $x \geq b>0$ and $F(x)=0$ for $x<b$. The term of art is that the support of X is $[b, \infty)$. To prevent any confusion: x is defined only for values greater or equal to b and b is strictly positive. Answer the following questions:

1. Derive the density function of the Pareto, i.e. $f(x)=d F(x) / d x$, and show that it is indeed a density function. I.e. prove that

$$
\int_{b}^{\infty} f(x) d x=1
$$

2. When is the expected value of X finite? I.e. compute

$$
\mu=\int_{b}^{\infty} x f(x) d x
$$

and give a condition under which this integral is convergent.

Question 4 (20 points)

Consider the Pareto random variable from the previous question. In this question I want you to show that if X is distributed Pareto, then $Y=\ln (X)$ is an exponential random variable. An exponential random variable Y has the following distribution function: $\operatorname{Pr}[Y \leq y]=G(y)=1-k e^{-\lambda y}$ for some k and some λ. I want you to find k and λ in terms of b and p (usually $k=1$ and $Y \geq 0$, but now I want you to do something more general). To do so, follow these steps:

1. Given $X \in[b, \infty)$, what values does Y take, i.e. what is the support of Y ?
2. Since $Y=\ln (X)$, it follows that $X=e^{Y}$. Plug this into $F(x)$ to derive $G(y)$.
3. You proved above that for the Pareto $\int_{b}^{\infty} f(x) d x=1$, where $f(x)=d F(x) / d x$. Use the change of variables formula to show that

$$
\int_{m}^{\infty} g(y) d y=1
$$

for some m, which you need to find, and where $g(y)=d G(y) / d y$. The change of variables formula: for some $u=u(z)$ we have

$$
\int_{c}^{d} f(u) \frac{d u}{d z} d z=\int_{c}^{d} f(u) u^{\prime} d z=\int_{u(c)}^{u(d)} f(u) d u
$$

4. Express the expected value of Y

$$
E(Y)=\int_{m}^{\infty} y g(y) d y
$$

in terms of b and p. You may need to use integration by parts:

$$
\int U(x) v(x) d x=U(x) V(x)-\int V(x) u(x) d x
$$

(FYI: we are relying on the fact that $y=\ln (x)$ is a continuous monotone transformation for $x \geq b>0$).

Question 5 (10 points)

1. Suppose that $x^{*} \in \mathbb{R}$ maximizes $f(x, \theta)$ without constraints. Prove the Envelope Theorem, i.e.

$$
\frac{d f\left(x^{*}, \theta\right)}{d \theta}=\frac{\partial f\left(x^{*}, \theta\right)}{\partial \theta}
$$

2. Explain the meaning of the last result.
3. Suppose that if $x^{*} \in \mathbb{R}$ maximizes $f(x, \theta)$ under the constraint $g(x, \theta) \leq c$. Prove the Envelope Theorem for constrained optimization, i.e.

$$
\frac{d f\left(x^{*}, \theta\right)}{d \theta}=\frac{\partial f\left(x^{*}, \theta\right)}{\partial \theta}-\lambda \frac{\partial g\left(x^{*}, \theta\right)}{\partial \theta}
$$

where λ is a Lagrange multiplier.
4. Explain the meaning of the last result if $f(x)$ does not depend on θ, asuming that the constraint $g(x, \theta)=c$ binds.

Question 6 (10 points)

Consider $X_{2}>X_{1}>0$. Define the percent difference between X_{2} and X_{1} as x :

$$
x=\frac{X_{2}-X_{1}}{X_{1}}
$$

1. Use a first order Taylor expansion to show that $\ln \left(X_{2}\right)-\ln \left(X_{1}\right)$ is an approximation for x.
2. Show that this approximation is a good one only for small x. I.e., show that this approximation underestimates the true x, as x increases. You may use a graph to help explain this, but you will also need an analytical proof.

Question 7 (10 points)

Let v_{1}, v_{2} and v_{3} be three (column) vectors in \mathbb{R}^{3}. Define the matrix V as $\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$. Show that if V is nonsingular, then $\left(v_{1}, v_{2}, v_{3}\right)$ are a base for \mathbb{R}^{3}.

