International Trade, Technology, and the Skill Premium

Ariel Burstein

Jonathan Vogel

UCLA and NBER

Columbia and NBER

January 4, 2013

Introduction

- What are consequences of ↓ in trade costs for skill premium?
- Two mechanisms linking Δ trade to $\Delta s/w$
 - Heckscher-Ohlin (H-O)
 - ► Skill-biased technology
- Embed into otherwise standard quantitative trade model
- Discipline key parameters: firm-level skill intensity & other facts
- No analytic gravity alternative approach to match bilateral trade
- ullet Counterfactuals: \Downarrow trade costs, China growth, skill-biased tech Δ
- Revisit previous approaches: understimate role of trade on s/w

Technologies

- Consumption in merchandise and services
- Merchandise and services each aggregator over sectors j
- Each sector aggregate of a continuum of varieties (ω, j)
- Within each variety, 2 potential producers x country, Bertrand
- Iceberg transport cost $au_{in} \geq 1$ of shipping from i to n

Firms

Production function

• Country *n* firm in (ω, j) with productivity *z* produces

$$y = A_{n}(j) \left[\alpha_{j}^{\frac{1}{\rho}} \left(z^{2\phi} h \right)^{\frac{\rho-1}{\rho}} + \left(1 - \alpha_{j} \right)^{\frac{1}{\rho}} \left(z^{2(1-\phi)} I \right)^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}$$

- $\triangleright \alpha_j$ determines relative importance of skilled labor in sector j
- $ightharpoonup A_n(j)$ Hicks-neutral sectoral TFP

$$\star A_n(j) = T_n \times T_n(j)$$

- φ determines skill bias of technology
- $ightharpoonup z = u^{-\theta}$, where $u \sim \exp(1)$

Firms

Skill bias of technology

$$\frac{h}{l} = \left(\frac{w_i}{s_i}\right)^{\rho} \frac{\alpha_j}{1 - \alpha_j} z^{\varphi}$$

- $\varphi \equiv 2(2\phi 1)(\rho 1)$ skill-bias of technology
 - if $\varphi = 0$ we say technology is Hicks neutral
 - if $\varphi > 0$ we say technology is skill biased
- Two ways reallocation affects demand for skill
 - Across firms between sectors
 - Across firms within sectors

Firms

Skill bias of technology

$$\frac{h}{l} = \left(\frac{w_i}{s_i}\right)^{\rho} \frac{\alpha_j}{1 - \alpha_j} z^{\varphi}$$

- $\varphi \equiv 2(2\phi 1)(\rho 1)$ skill-bias of technology
 - if $\varphi = 0$ we say technology is Hicks neutral
 - if $\varphi > 0$ we say technology is skill biased
- Two ways reallocation affects demand for skill
 - Across firms between sectors
 - Across firms within sectors
- In an extension, we allow H-O to be active within sectors

General equilibrium

Goods-market clearing

$$y_{i}\left(\omega,j\right) = \sum_{n} \tau_{in} q_{n}\left(\omega,j\right) \mathbb{I}_{in}\left(\omega,j\right)$$

ullet Factor-market clearing with inelastic supplies H_i and L_i

$$L_i = \sum_j \int_0^1 I_i\left(\omega,j
ight) d\omega$$
 and $H_i = \sum_j \int_0^1 h_i\left(\omega,j
ight) d\omega$

• Trade imbalances (where NX_i are net exports in i)

$$P_iQ_i = (s_iH_i + w_iL_i + \Pi_i)\left(1 - \frac{NX_i}{Output_i}\right)$$

- We treat $NX_i / Output_i$ as a parameter
- Also consider no labor mobility between merchandise & service sectors

Parameterization

Connecting model and data

- 64 countries + rest of the world ROW (aggregate of 89 countries)
 - ▶ 64 countries account for approx 93% of world GDP
- Data averaged over 2005-2007 (if possible)
- Skilled worker: completed tertiary degree (i.e. in US, college degree)
- 98 merchandise sectors = goods producing industries
- 155 services industries include construction, exclude government

Parameterization basics

- Parameters assigned directly from data
 - ▶ $H_n/(H_n + L_n) = \%$ with tertiary degree from Barro Lee
 - ightharpoonup $lpha_j=\%$ w/ tertiary degree in US, American Community Survey
- $oldsymbol{\sigma} = \eta$ median 5-digit SITC, Broda Weinstein
- ullet Choose T_n, au_{in} to match relative country size and bilateral trade
- ρ , θ , φ , t_n to target specific moments

- ullet Aggregate elasticity of substitution btw H_{US} and L_{US} in US, $\widehat{
 ho}=1.6$
 - Katz and Murphy 92 estimate elasticity = 1.4
 - ▶ Acemoglu and Autor 10 estimate elasticity \in [1.6, 1.8]
- ullet In baseline parameterization, we $\uparrow H_{US}$ by 10% and calculate

$$\widehat{
ho} = \Delta \left[\log \left(\frac{H_{US}}{L_{US}} \right) \middle/ \log \left(\frac{w_{US}}{s_{US}} \right) \right]$$

- \bullet If $\phi=0$ and only one sector $\Rightarrow \widehat{\rho}=\rho$
- ullet With arphi>0 and many sectors $\Rightarrow
 ho=1.4$

- ullet Elasticity of trade with respect to variable trade cost, $\widehat{\epsilon}=5$
 - Eaton and Kortum 2002 preferred estimate 8.28
 - Donaldson 2010 preferred estimate 4
 - ► Simonovska and Waugh 2011 estimate [2.47, 5.51]
 - Eaton, Kortum, and Kramarz 2011 preferred estimate 5
 - Costinot, Donaldson, and Komunjer 2012 preferred estimate 6.53
- Run a gravity equation on data generated by our model

$$\log\left(\textit{Exp}_{\textit{in}}\right) = \textit{Importer}_{\textit{n}}\textit{FE} + \textit{Exporter}_{\textit{i}}\textit{FE} - \widehat{\epsilon}\ln{ au_{\textit{in}}}$$

- If $\varphi = 0 \Rightarrow \theta = 1/\widehat{\varepsilon}$
- With $\varphi > 0 \Rightarrow \theta = 0.25$

$$\log\left[\frac{h_i}{h_i + l_i}\right] = \beta_0 + \beta_1 \log sales_i + IndustryFE_i + \varepsilon_i$$

- ullet In Mexico, $eta_1=0.136$; unreported result from Verhoogen (2008)
 - ▶ 1998 Encuesta Industrial Anual (EIA) w/ large manufacturing plants
- ullet In the model: $arphi=0\Rightarroweta_1=0$
 - β_1 is increasing in ϕ

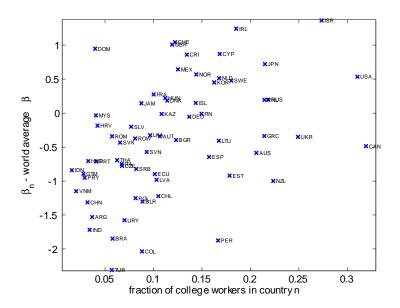
φ	0	0.08	0.24	0.4 ($\phi = 0.75$)	0.64	0.72
Elasticity	0	0.05	0.085	0.139	0.213	0.23

• Note: If $\varphi=0$ and αs vary within sector, then elasticity in skill-scarce countries is negative

Between sector trade patterns

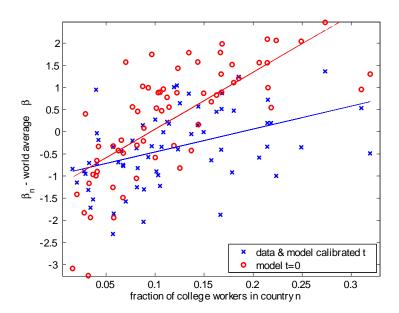
• For each n = 1, ..., 64, regress

$$\frac{\text{Net exports}_{n}\left(j\right)}{\text{Exports}_{n}\left(j\right) \ + \text{Imports}_{n}\left(j\right)} = \beta_{0i} + \beta_{n} \frac{H_{US}\left(j\right)}{H_{US}\left(j\right) + L_{US}\left(j\right)} + \varepsilon_{n}\left(j\right)$$


Between sector trade patterns

• For each n = 1, ..., 64, regress

$$\frac{\text{Net exports}_{n}\left(j\right)}{\text{Exports}_{n}\left(j\right) \ + \ \text{Imports}_{n}\left(j\right)} = \beta_{0i} + \beta_{n} \frac{H_{US}\left(j\right)}{H_{US}\left(j\right) + L_{US}\left(j\right)} + \varepsilon_{n}\left(j\right)$$


- Comparative advantage determined by H_n/L_n and relative t_n 's in $T_n\left(j\right)=1+\left(lpha_j-arlpha\right)t_n$
- Alternative 1: Choose t_n to match $\beta_n \sum_i w_i^{out} \beta_i$
- Alternative 2: Choose $t_n = 0$ (Morrow 2010)

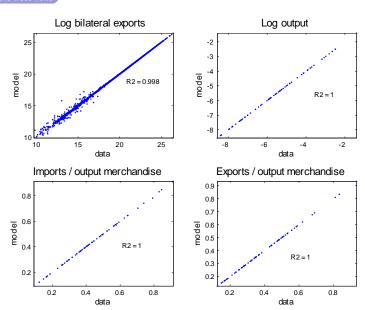
Between sector trade patterns in the data and matched in the model

Target moment 4

Between sector trade pattern if we do and if we do not target moment 4

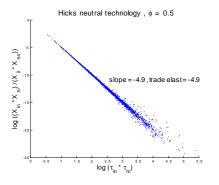
Solution Algorithm

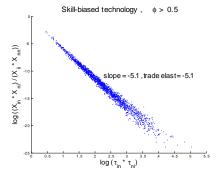
Solution Algorithm


Overview of three loops

- Outer loop: iterate over φ , θ , ρ
- Middle loop: iterate over τ_{in} , T_n , t_n
 - ▶ Match Exports_{in} / (Out_i + Out_n) , Out_n / World Out, and target moment 4
 - lacktriangle Update au_{in} using excess bilateral exports data model
 - ▶ Update T_n using excess output_n data model
 - ▶ Update t_n using excess β_n data model
- Inner loop: iterate over w_n , s_n , π_n
 - Extends Alvarez and Lucas
 - \star no analytic gravity, 2 factors, $\Pi_n \neq 0$, & trade imbalances
 - no proof of uniqueness
 - numerical demonstration of existence

Moments targeted and not targeted


Trade flows and output: Data versus model


► To H/L and trade flows

Gravity

• Plot $\log [X_{in}X_{ni}/(X_{ii}X_{nn})]$ and $\log (\tau_{in}\tau_{ni})$ With $\varphi = 0$, constant elasticity

Trade costs

- ullet We project au_{in} onto standard "gravity" variables
 - distance, distance squared, common language, common border, exporter and importer FEs
 - ★ only using those τ_{in} s not set to $+\infty$
 - \Rightarrow $R^2 = 0.74$ with expected signs and statistical significance

Trade costs

- ullet We project au_{in} onto standard "gravity" variables
 - distance, distance squared, common language, common border, exporter and importer FEs
 - ★ only using those τ_{in} s not set to $+\infty$
 - \Rightarrow $R^2 = 0.74$ with expected signs and statistical significance
- Do poor countries face higher export and/or import costs conditioning on other observables?
 - ▶ Regressing importer FEs on importer GDP per capita ⇒ negative coefficient highly significant
 - ▶ Regressing exporter FEs on exporter GDP per capita ⇒ negative coefficient significant at 10% level
- Similar results if we directly include exporter & importer GDP per capita in gravity regression

Other moments not targeted: Mexico

• Exporter skill-intensity premium, controlling for industry

$$\ln\left[\frac{h_i}{h_i + l_i}\right] = \beta_0 + \beta_1 Exporter_i + IndustryFE_i + \varepsilon_i$$

- in model $\beta_1 = 0.25$ in merchandise
- lacktriangle in data $eta_1=$ 0.21, 1998 EIA unreported from Verhoogen (2008)

Other moments not targeted: Brazil

Elasticity of skill intensity to firm i size controlling for industry

$$\log\left[\frac{h_i}{h_i + l_i}\right] = \beta_0 + \beta_1 \log sales_i + IndustryFE_i + \varepsilon_i$$

- in model $\beta_1 = 0.24$ in merchandise
- ▶ in data $\beta_1=0.36$, 1995 Pesquisa Industrial Anual (PIA) sample (large manuf firms) unreported from Menezes-Filho et. al. (2008)
- Elasticity of skill intensity to domestic sales controlling for industry

$$\log\left[\frac{h_i}{h_i + l_i}\right] = \beta_0 + \beta_1 \log\left(\text{domestic sales}\right)_i + IndustryFE_i + \varepsilon_i$$

- in model $\beta_1 = 0.34$ in merchandise
- in data $\beta_1=0.34$, 1995 PIA sample unreported from Menezes-Filho et. al. (2008)

- ullet % of exporters = 0.51 too high, as in **BEJK**
 - need fixed cost
- However
 - share of aggregate revenues by exporters
 - ★ in model = 65% in merchandise
 - ★ in data = 60%, 1992 Census of Manuf, **BEJK**
 - VA per worker exporter premium in US

$$ln(VA per worker_i) = \beta_0 + \beta_1 Exporter_i + Industry FE_i + \varepsilon_i$$

- ★ in model $\beta_1 = 0.135$ in merchandise
- \star in data $\beta_1=0.11$, 2002 Census of Manuf, Bernard et. al. (2007)

Exporter skill-intensity premium, controlling for industry

$$\ln\left[\frac{h_i}{h_i + I_i}\right] = \beta_0 + \beta_1 Exporter_i + IndustryFE_i + \varepsilon_i$$

- in model $\beta_1 = 0.14$ in merchandise
- in data $\beta_1=0.11$, 2002 Census of Manuf, Bernard et. al. (2007)
- ► Imperfect comparison: Bernard et. al. (2007) use non-production worker share

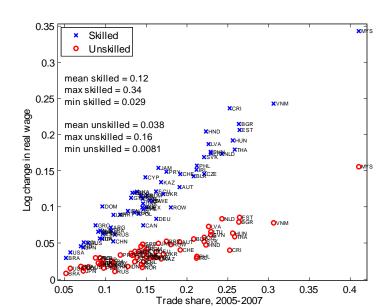
- $\bullet \ \, \mathsf{Regress} \ \, \frac{\mathsf{Exp}_{\mathit{US}}(j) + \mathsf{Imp}_{\mathit{US}}(j)}{\mathsf{Absorption}_{\mathit{US}}(j)} \ \, \mathsf{on} \ \, j \ \, \mathsf{skill} \ \, \mathsf{intensity} \ \, \mathsf{in} \ \, \mathsf{US} \ \, \mathsf{merchandise} \ \, j \mathsf{s}$
 - ▶ in data, coefficient on skill intensity = 0.70
 - ★ significant at 1% level
 - ★ use BEA's detailed IO tables for 2002 Benchmark
 - ▶ in model, coefficient on skill intensity = 0.88
 - re-parameterize model imposing $\phi = 1/2$, coefficient = -0.06

- Regress $\frac{\mathsf{Exp}_{\mathit{US}}(j) + \mathsf{Imp}_{\mathit{US}}(j)}{\mathsf{Absorption}_{\mathit{US}}(j)}$ on j skill intensity in US merchandise js
 - ▶ in data, coefficient on skill intensity = 0.70
 - ★ significant at 1% level
 - ★ use BEA's detailed IO tables for 2002 Benchmark
 - ▶ in model, coefficient on skill intensity = 0.88
 - re-parameterize model imposing $\phi = 1/2$, coefficient = -0.06
- Intuition: interaction between the two mechanisms

$$\phi > 1/2 \Rightarrow$$
 unit costs more sensitive to z in high α_j sectors

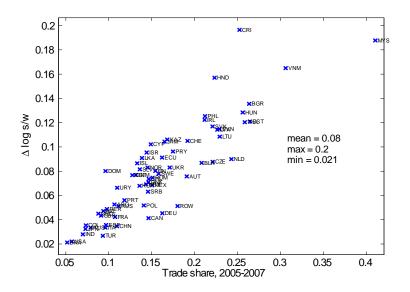
$$\left| \frac{d}{d\alpha_i} \left| \frac{d \log \left[\text{unit cost} \left(\omega, j \right) \right]}{d \log z} \right| > 0 \Leftrightarrow \phi > 1/2$$

- \Rightarrow more dispersed distribution of unit costs in high α_i sectors
 - even though same distribution of productivities across sectors
- \Rightarrow more trade in high α_i sectors

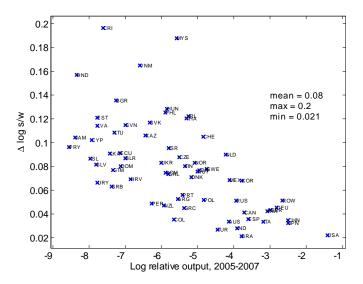


Counterfactuals

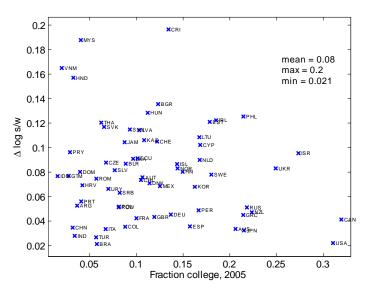
- Range of counterfactuals:
 - autarky
 - ▶ 10% reduction in trade costs
 - ► Growth in China
 - Both with factor mobility and limited factor mobility, labor fixed in merchandise and services at baseline levels
 - ★ In 10% and China experiments, keep (Net Exports); / Output; fixed
 - Skill-biased technical change
- Revisit previous approaches using data generated by model and show why they would predict small effects of trade


Real wage changes from autarky to baseline

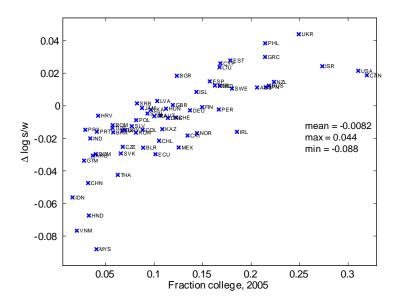
Large differences in real wage changes across factors


From autarky to baseline

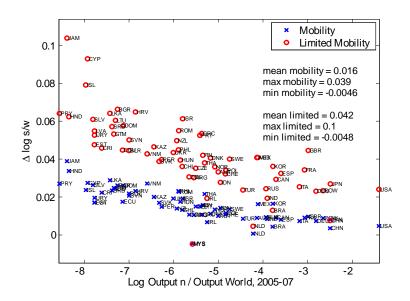
Change in skill premium vs 2005-07 trade share, correlation = 0.70


From autarky to baseline

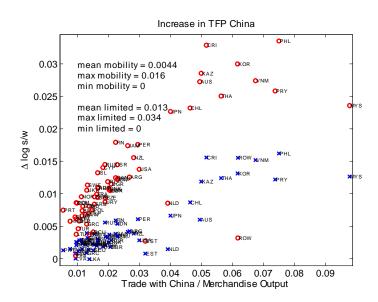
Change in skill premium vs 2005-07 country size, correlation = -0.62


From autarky to baseline: strength of H-O

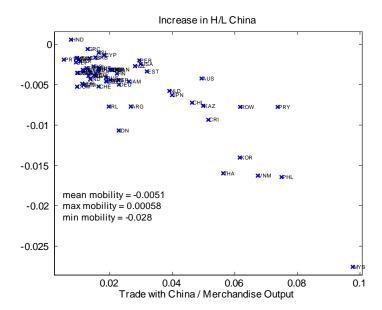
Correlation change skill premium & H/L = -0.16


From autarky to baseline: strength of H-O

No skill bias, low prctivity dispersion, tn=0: correl change skill premium & H/L=0.75


10% fall in trade costs from baseline parameterization

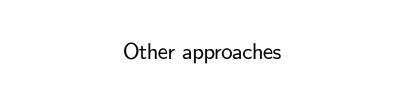
Skill premium with full and limited mobility


Three-fold increase in China's TFP

Skill premium change in China's trading partners, with full and limited mobility

Increase in China's skill abundance to equal US

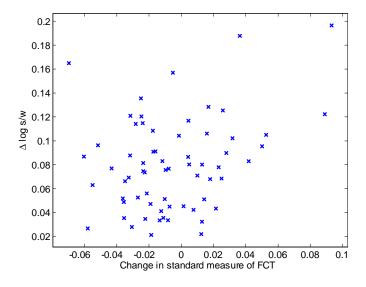
Skill premium change in China's trading partners, with full mobility

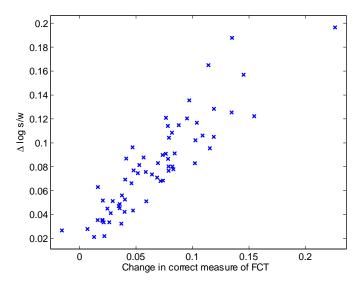


Skill-biased technical change in all countries

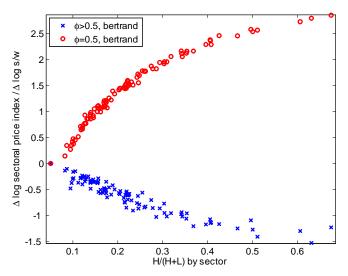
s/w rises by 25% in median country

$$\frac{h}{I} = \left(\frac{w_i}{s_i}\right)^{\rho} \frac{A_h}{A_I} \frac{\alpha_j}{1 - \alpha_j} z^{\varphi}$$

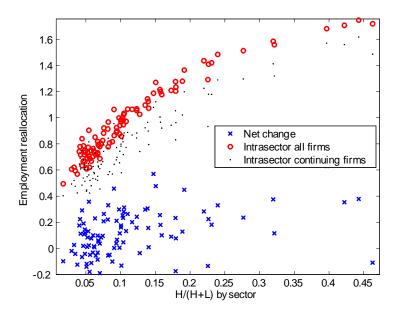

- Hicks-neutral technology, $\varphi = 0$
 - ► Trade share for median country rises by 0.1%
- Skill-biased technology, $\varphi > 0$
 - ► Trade share for median country rises by 4.5%
- Skill-biased technical change induces aggregate outcomes that look like reductions in international trade costs
- Intuition: with $\phi > 0$, elasticity of unit costs with respect to productivity \uparrow if $A_h/A_l \uparrow$
 - \triangleright same intuition for why more trade in high α_i sectors


Other approaches

- Factor content of trade (FCT)
- Between-sector price changes
- Between-sector factor reallocation


Standard measure of factor content of trade

Correct measure of factor content of trade



Changes in domestic prices by sector

Between sector factor reallocation

Model's implication for Chile: from autarky to baseline (s/w rises 7.5%)

Conclusion

- Embed into otherwise standard quantitative trade model 2 central mechanisms in theoretical and empirical trade literature through which trade shapes skill premium
- Much of gains from trade accrue to skilled labor bc skill premium in most countries in response to changes in trade costs
- Use computational approach to accurately match bilateral exports, does not require analytic gravity at any level of aggregation

Conclusion

- Embed into otherwise standard quantitative trade model 2 central mechanisms in theoretical and empirical trade literature through which trade shapes skill premium
- Much of gains from trade accrue to skilled labor bc skill premium in most countries in response to changes in trade costs
- Use computational approach to accurately match bilateral exports, does not require analytic gravity at any level of aggregation
- Multinational production is another major form of globalization
 - ► MP may strengthen H-O mechanism, high productivity firms can produce in countries with comparative advantage in their sector
 - ► MP may strengthen SBT mechanism, promotes international diffusion of best technologies

Perfect competition

Same $\{\rho, \varphi, \theta\}$, redo middle and inner loops Move countries to autarky, full factor mobility, change in skill premium (%)

	Baseline	Perfect competition
mean	+8.00	+7.89
max	+19.65	+19.82
min	+2.12	+1.88

Alternative trade cost parameterization

Same $\{\rho, \varphi, \theta\}$, redo middle and inner loops Move countries to autarky, full factor mobility, change in skill premium (%)

	Baseline	symm trade costs in ROW	symm trade costs in US	symm trade costs in all <i>n</i>
mean	+8.00	+8.00	+8.00	+8.08
max	+19.65	+19.63	+19.63	+19.47
min	+2.12	+2.12	+2.12	+2.12

Sectoral comparative advantage

Same $\{\rho, \varphi, \theta\}$, redo middle and inner loops From 2006 parameterization, move countries to autarky, full factor mobility, change in skill premium (%)

	Baseline	Setting $t_i = 0$
mean	+8.00	+9.27
max	+19.65	+23.23
min	+2.12	+0.81

Measure of skill endowment

Same $\{\rho, \varphi, \theta\}$, redo middle and inner loops From 2006 parameterization, move countries to autarky, full factor mobility, change in skill premium (%)

			$\frac{H_i}{L_i}$ avg yrs of educ.
	Baseline	$\frac{H_i}{L_i}$ avg yrs of educ.	and setting $t_i = 0$
mean	+8.00	+7.90	+9.80
max	+19.65	+19.40	+22.63
min	+2.12	+2.01	+1.84

Skill bias of technology

Same $\{\rho,\theta\}$, redo middle and inner loops From 2006 parameterization, move countries to autarky, full factor mobility, change in skill premium (%)

	Baseline	arphi=0	arphi= 0.08	$\varphi=$ 0.24	$\varphi=0.64$	$\varphi = 0.72$
	arphi= 0.4					
mean	+8.00	-0.2	+1.14	+4.28	+13.83	+15.64
max	+19.65	+2.67	+4.05	+11.41	+33.19	+37.99
min	+2.12	-2.56	-1.01	+0.6	+3.04	+3.28

Heterogeneity of productivity within sectors

Same $\{\rho, \varphi\}$, redo middle and inner loops From 2006 parameterization, move countries to autarky, full factor mobility, change in skill premium (%)

	Baseline	heta=0.125	$\theta = 0.17$	$\theta = 0.3$
	$\theta = 0.25$			
mean	+8.00	+3.60	+5.15	+9.74
max	+19.65	+10.34	+13.56	+23.20
min	+2.12	0	+0.93	+2.45

Heterogeneity of alpha within sectors

- Aggregation bias in skill intensities: Feenstra 2010
- $\alpha_{j}\left(\omega\right)=\min\left\{ ar{\alpha}_{j}\exp\left(\varepsilon\right)$, $1
 ight\}$
- $\varepsilon \sim \ln \mathcal{N} (0, \sigma_{\alpha})$
- Stronger H-O mechanism (now also operates within sector)
- If impose $\varphi = 0$, exporters exhibit low h/I in high s/w countries
 - Negative elasticity of firm's skill intensity to firm's sales

Heterogeneity of alpha within sectors

•
$$\alpha_{j}\left(\omega\right)=\min\left\{\max\left\{0,ar{\alpha}_{j}\exp\left(\varepsilon\right)\right\},1\right\}$$
, $\varepsilon\sim\mathcal{N}\left(0,\sigma_{\alpha}\right)$

Redo outer, middle and inner loops

- Require lower ρ (more within reallocation)
- From 2006 parameterization, move countries to autarky, full factor mobility, change in skill premium (%)

Baseline			
$\sigma_{lpha}=0$	$\sigma_{lpha}=$ 0.05	$\sigma_{lpha}=$ 0.1	$\sigma_{\alpha} = 0.2$

	Baseline			
	$\sigma_{\alpha} = 0$	$\sigma_{\alpha}=0.05$	$\sigma_{lpha}=0.1$	$\sigma_{\alpha}=0.2$
St. dev $\log h/I$: (median	0.21	0.66	2	4.2
sector within) / btw				

	$v_{\alpha} = 0$	$v_{\alpha} = 0.05$	$v_{\alpha} = 0.1$	$v_{\alpha} = 0.2$
St. dev $\log h/I$: (median	0.21	0.66	2	4.2
sector within) / btw				

St. dev log h/I : (median sector within) / btw	0.21	0.66	2	4.2
mean	+8.00	+8.32	+9.64	+10.84

sector within / btw				
mean	+8.00	+8.32	+9.64	+10.84
max	+19.65	+20.26	+24.07	+28.62
min	+2.12	+2.09	+1.73	-1.67

Elasticity of substitution across goods

Lower $\sigma \downarrow$ btw sector reallocation induced by SBT effect

Redo outer, middle and inner loops, keeping $\eta=2.7$. From 2006 parameterization, move countries to autarky, full factor mobility, change in skill premium (%)

	Baseline	$\sigma = 2.2$	$\sigma=1$	$\sigma=1$
	$\sigma = \eta = 2.7$	$\eta = 2.7$	$\eta = 2.7$	$\eta=2.7$
		BW 3 digits		base $ ho$ $(\widehat{ ho}=1.38)$
mean	+8.00	+6.94	+3.96	+6.24
max	+19.65	+17.9	+12.10	+18.21
min	+2.12	+1.53	-0.3	+0.3

Skill premium decomposition

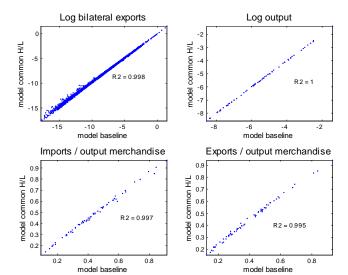
- Define:
 - $ightharpoonup L_{k,i} = \text{employment of factor } k \text{ in country } i$
 - ▶ $L_{k,in}(j)$ = employment of k in country i sector j used in goods bound for country n
 - \triangleright $w_{k,i}$ avg wage paid to factor k in country i
 - $\blacktriangleright FCT_{i}(k) = \sum_{j} \sum_{n} \left[L_{k,in}(j) L_{k,ii}(j) \frac{\Lambda_{ni}(j)}{\Lambda_{ii}(j)} \frac{w_{k,ii}(j)}{w_{k,i}} \right]$
 - * $w_{k,ii}(j) = \text{wage paid to factor } k \text{ employed in sector } j \text{ used to supply domestic mkt}$
 - ★ $\Lambda_{ni}(j)$ share of i's expenditure in sector j from country n
 - $\Phi_{i}(k) = \sum_{j} \left[w_{k,ii}(j) L_{k,ii}(j) \right] / \Lambda_{ii}(j)$
- Accounting identity $L_{k,i} = \sum_{j} \sum_{n} L_{k,in}(j)$ implies

$$w_{k,i}L_{k,i}=w_{k,i}FCT_{i}\left(k\right)+\Phi_{i}\left(k\right)$$

Skill premium decomposition

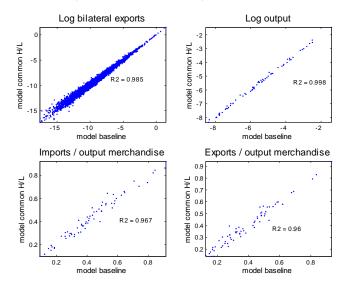
ullet Can express $\Phi_i(k)$ and $FCT_i(k)$ as

$$\begin{array}{rcl} \Phi_{i}\left(k\right) & = & \sum_{j}\lambda_{ii}\left(j\right)\alpha_{k,ii}\left(j\right)E_{i}\left(j\right) \\ w_{k,i}FCT_{i}\left(k\right) & = & \sum_{j,n}\left[\begin{array}{cc} \alpha_{k,in}\left(j\right)\lambda_{in}\left(j\right)\Lambda_{in}\left(j\right)E_{n}\left(j\right) \\ -\alpha_{k,ii}\left(j\right)\lambda_{ii}\left(j\right)\Lambda_{ni}\left(j\right)E_{i}\left(j\right) \end{array}\right] \end{array}$$


- $ightharpoonup \alpha_{k,in}(j) = \text{share of factor payments paid to } k, \text{ in } j \text{ product product payments}$
- $\lambda_{in}(j) = \text{share of } i \text{ sales in country } n \text{ in sector } j \text{ paid to all factors}$
- $E_n(j) = n$'s expenditure in j
- If $\alpha_{k,in}(j)$ and $\lambda_{in}(j)$ fixed across destinations

$$\Rightarrow$$
 FCT_i $(k) = \sum_{j} L_{k,i}(j) \omega_{i}(j)$

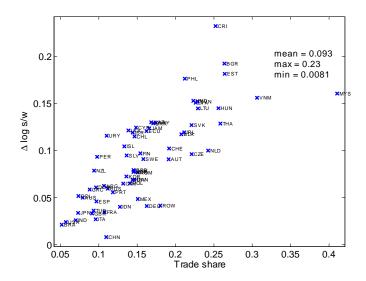
- $\qquad \qquad \omega_{i}(j) = \left(\mathsf{Net} \; \mathsf{Exp}_{i}(j) \right) / \left(\mathsf{Rev}_{i}(j) \right)$
- ► ⇒ Component 1 easily measured using sector-level data
- If $\lambda_{ii}(j)$ and $\alpha_{k,ii}(j)$ fixed and $E_i(j)/E_i(j')$ fixed \Rightarrow
 - ⇒ Component 2 constant across equilibria


Do H/L's play large role in shaping bilateral exports?

- Set $H_n/L_n = H_{world}/L_{world}$ for all n, keep $H_n + L_n = 1$
- Other parameters (incl. calibrated t_n , T_n , τ_{in}) unchanged

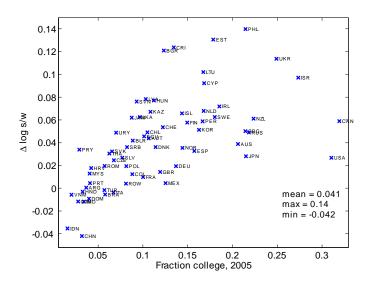
Do H/L's play large role in shaping bilateral exports?

- Set $H_n/L_n = H_{world}/L_{world}$ for all n, keep $H_n + L_n = 1$
- Other parameters (incl. $t_n = 0$, T_n , τ_{in}) unchanged

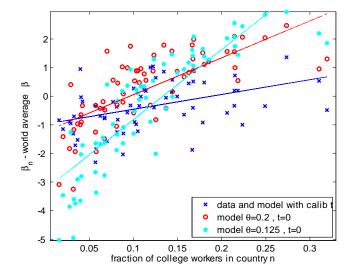

Do H/L's play large role in shaping bilateral exports?

- Set $H_n/L_n = H_{world}/L_{world}$ for all n, keep $H_n + L_n = 1$
- ullet Other parameters (incl. $t_n=$ 0, heta= 0.1, arphi= 0, T_n , au_{in}) unchanged

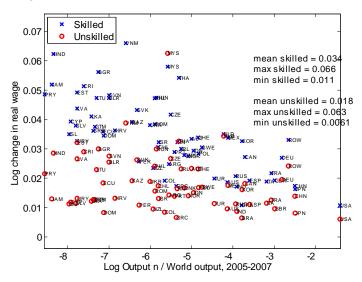
Log bilateral exports Log output model common H/L model common H/L -5 R2 = 1-10 -10 -15 model baseline model baseline Imports / output merchandise Exports / output merchandise model common H/L model common H/L 0.7 0.6 0.5 R2 = 0.997R2 = 0.9960.2 0.8 0.6 8.0 0.4 0.6 0.2 0.4 model baseline model baseline


From autarky to baseline: strength of H-O

Skill bias, high prctivity dispersion, tn=0: correl change skill premium & H/L=0.04


From autarky to baseline: strength of H-O

Skill bias, low prctivity dispersion, tn=0: correl change skill premium & H/L=0.60


Target moment 4: Alternative parameterizations

Skill bias

10% fall in trade costs from baseline parameterization

Real wages: large difference between skilled & unskilled workers

Costs and prices

• Let $c_{ink}(\omega, j)$ denote $\tau_{in} \times$ the unit cost of production of the k'th most productive (ω, j) firm in country i

$$c_{ink}\left(\omega,j
ight) = rac{ au_{in}}{A_{i}\left(j
ight)} \left[lpha_{j}z^{rac{arphi}{2}+
ho-1}s_{i}^{1-
ho} + \left(1-lpha_{j}
ight)z^{
ho-1-rac{arphi}{2}}w_{i}^{1-
ho}
ight]^{rac{1}{1-
ho}}$$

where z is the productivity of this firm

• Denote 1^{st} - and 2^{nd} -lowest costs of supplying (ω,j) to n by

$$C_{1n}(\omega,j) = \min_{i} \left\{ c_{in1}(\omega,j) \right\}$$

$$C_{2n}(\omega,j) = \min_{i} \left\{ c_{i^*n2}, \min_{i \neq i^*} \left\{ c_{in1}(\omega,j) \right\} \right\}$$

where i^* satisfies $C_{1n}\left(\omega,j\right)=c_{i^*n1}\left(\omega,j\right)$

• Price of (ω, j) in country n is

$$p_{n}\left(\omega,j\right)=\min\left\{ C_{2n}\left(\omega,j\right),rac{\eta}{\eta-1}C_{1n}\left(\omega,j
ight)
ight\}$$

What determines strength of H-O mechanism?

- If $\varphi = 0$, then only H-O mechanism is active
- Assume marginal cost pricing; $i = 1, 2; j = x, y; \& \sigma = \rho = 1$
 - Let i = 1 have comparative advantage in skill-intensive sector x

What determines strength of H-O mechanism?

- If $\varphi = 0$, then only H-O mechanism is active
- Assume marginal cost pricing; $i = 1, 2; j = x, y; \& \sigma = \rho = 1$
 - Let i = 1 have comparative advantage in skill-intensive sector x
- **Proposition**: Rise (fall) in s_1/w_1 (s_2/w_2) caused by moving from autarky to fixed trade share decreasing in θ & increasing in $A_1(x) A_2(y) / [A_1(y) A_2(x)]$
- Intuition 1: Higher $\theta \Rightarrow$ firm productivities more dispersed
 - \Rightarrow in relative firm costs, z more important vs. $A_{i}\left(j
 ight)$ and wages
 - \Rightarrow comparative advantage mitigated
 - \Rightarrow less btw sector reallocation \Rightarrow smaller wage changes

What determines strength of H-O mechanism?

- If $\varphi = 0$, then only H-O mechanism is active
- Assume marginal cost pricing; i = 1, 2; j = x, y; & $\sigma = \rho = 1$
 - Let i = 1 have comparative advantage in skill-intensive sector x
- **Proposition**: Rise (fall) in s_1/w_1 (s_2/w_2) caused by moving from autarky to fixed trade share decreasing in θ & increasing in $A_1(x) A_2(y) / [A_1(y) A_2(x)]$
- **Intuition 1**: Higher $\theta \Rightarrow$ firm productivities more dispersed
 - \Rightarrow in relative firm costs, z more important vs. $A_i(j)$ and wages
 - ⇒ comparative advantage mitigated
 - \Rightarrow less btw sector reallocation \Rightarrow smaller wage changes
- Intuition 2: Higher $A_1(x) A_2(y) / [A_1(y) A_2(x)]$ strengthens 1's comparative advantage in x
 - \Rightarrow more btw sector reallocation \Rightarrow bigger wage changes

Skill-biased technology and trade

ullet If arphi>0 then skill-biased technology and trade interact

$$\frac{h}{l} = \left(\frac{w_i}{s_i}\right)^{\rho} \frac{\alpha_j}{1 - \alpha_j} z^{\varphi}$$

- What shapes the strength of this mechanism?
 - $\frac{h(z')}{I(z')} / \frac{h(z)}{I(z)}$ is increasing in φ for all z' > z
 - avg difference btw expanding z' & contracting z increasing in θ
- ullet Shown quantitatively: strength of mechanism \uparrow in heta and ϕ

▶ Back to h/l

Skill Intensities

• Five most and least skill-intensive merchandise sectors

Most skill intensive	Intensity
Pharma. & medicine manuf.	.611
Aerospace product and parts manuf.	.561
Computer and peripheral equip. manuf.	.553
Commun., audio, & video equip. manuf.	.465
Forestry except logging	.455

Least skill intensive	Intensity
Logging	.040
Animal slaughtering, processing	.073
Fiber, yarn, and thread mills	.075
Carpets and rug mills	.085
Turned product, screw, nut, bolt manuf.	.086

Inner loop: factor prices and profit shares

Inner loop k_l : given φ , θ , ρ , τ , T_n , t_n

- Initial guesses $\{w_n, s_n, \pi_n\}$ from inner loop $(k_l 1)$
- Solve for
 - $P_n Q_n = \left(w_n L_n^d + s_n H_n^d \right) (1 + \pi_n) \left(1 n x_n^d \right)$
 - $ightharpoonup p_n\left(\omega,j\right)$, $\mathbb{I}_{in}\left(\omega,j\right)$, $P_n\left(j\right)$, $P_n\Leftarrow$ price equations
 - ▶ Q_n , $q_n(\omega,j)$ \Leftarrow price and demand equations
 - ▶ $y_n(\omega, j)$, $I_n(\omega, j)$, $h_n(\omega, j)$ \Leftarrow production fcn, h/I, $q_n(\omega, j)$, $\mathbb{I}_{in}(\omega, j)$