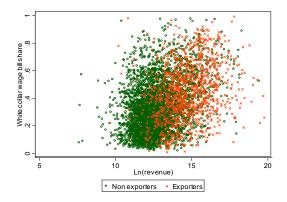
Skill Biased Heterogeneous Firms, Trade Liberalization and the Skill Premium

> James Harrigan and Ariell Reshef University of Virginia

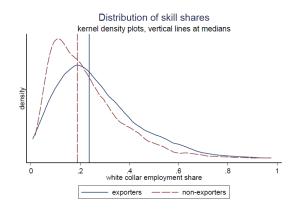
> > AEA, 5 January 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


Trade liberalization and inequality

Since 1970s many economies have experienced trade liberalization, trade growth (globalization) and increased inequality (skill premia).

We propose a new model that combines skill bias of technology with trade liberalization in a GE model of heterogenous firms.


- Designed to generate stylized facts on firm heterogeneity.
- Increase in skill premium after trade liberalization unrelated to factor endowments or relative prices:
- not a Stolper-Samuelson mechanism, not HO, yet GE
- w/trade patterns and factor content predictions as HO.

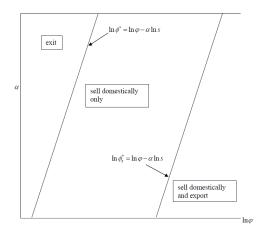
We highlight changes in composition, not with-firm changes.

- Exporters larger and more skill intensive, on average.
- Positive (imperfect) relationship between size and skill.
- Lots of heterogeneity, overlap.

Our model is designed to generate similar scatter plots.

- Higher median for exporters, similar variance, overlap.
- Variance within 4-digit industries is 50% higher than between.
- Same for U.S.: Dunne, Foster, Haltiwanger and Troske ('04).

Our model is designed to generate similar distributions.


What we do: add skill heterogeneity to Melitz (2003)

- $w \equiv$ unskilled wage, $s \equiv$ skilled wage.
- ► Cobb-Douglas production ⇒ unit costs in variable costs:

$$c_{v}(\alpha, \varphi, s, w) = rac{1}{arphi}s^{lpha}w^{1-lpha} \equiv rac{1}{oldsymbol{\phi}}$$

- Entrants pay to draw **technology** $(\alpha, \varphi) \sim G(\alpha, \varphi)$.
 - Consider $G(\alpha, \varphi)$ set of production possibilities.
 - Once drawn, technology (α, φ) is fixed.
- Given factor prices s and w, some firms φ ≥ φ^{*} survive, of which only the most competitive φ ≥ φ^{*}_x > φ^{*} export.
- Only φ matters for competitiveness, and comes with heterogenous φ and α.
- **Technique** = $\frac{H}{L} = \frac{\alpha}{1-\alpha} \left(\frac{s}{w}\right)^{-1}$ responds to factor prices.

Size, skill intensity and exporting in equilibrium

Positive skill premium \Rightarrow upward sloping cutoffs (iso-cost curves).

What we do: consider correlation

$$c_{m{v}}\left(lpha,arphi,m{s},w
ight)=rac{1}{arphi}m{s}^{lpha}w^{1-lpha}\equivrac{1}{oldsymbol{\phi}}$$

Consider correl(α, φ) > 0 (as implied by data):

- Positive association between skill, productivity and competitiveness.
- Interpretation: to produce more efficiently, must hire more engineers, on average.
- Result: Exporters are more skill intensive.

(When s > w, conditional on φ , higher α is *less* competitive)

Fixed technology assumption

We highlight changes in composition, not within-firm changes.

Consistent with findings in Bernard and Jensen (1997).

$$c_{v}\left(lpha, arphi, s, w
ight) = rac{1}{arphi}s^{lpha}w^{1-lpha} \equiv rac{1}{oldsymbol{\phi}}$$

We assume no effect of liberalization on firm α or φ :

- Simplification that allows general equilibrium analysis.
- Trade-induced upgrades in α are small (Bustos 2011).

- Haltiwanger, Lane and Spletzer (2007): firm level heterogeneity very persistent.
- Chilean data consistent with fixed α.

Heckscher-Ohlin tradition

Factor intensity in production related to preferences.

- Competition stronger among producers with same factor intensity than across producers with different intensities.
- Elasticity across varieties produced with same intensity η >
 ϵ elasticity across varieties produced with different intensities.
 - Standard HO competitive model: $\eta = \infty$
 - Dornbusch, Fischer, and Samuelson (1980): $\eta = \infty$, $\epsilon = 1$
 - Helpman and Krugman (1985): $\eta >$ 1, $\eta > \epsilon$
 - Bernard, Redding and Schott (2007): $\eta > \epsilon = 1$

 \Rightarrow Trade liberalization has different effects on different industries depending on factor intensity \Rightarrow **Stolper-Samuelson effects**.

What we do: separate preferences from production

Break with HO tradition: preferences over goods not related to goods' factor intensity

- > All firms compete head-to-head, regardless of skill intensity.
- Only ϕ matters for **competitiveness**, regardless of α .
- Symmetry in demand: one elasticity of substitution σ for all.

A more natural way to model preferences.

- Is competition stronger across or within skill categories?
- ▶ Data: $Var(\alpha)$ within > 1.5 × $Var(\alpha)$ between industries.

 \Rightarrow Trade liberalization has same effect on all firms, regardless of firms' skill intensity \Rightarrow **No Stolper-Samuelson effects**, *yet*

• Trade patterns and factor content predictions as HO.

Symmetric effect on all firms

Sales

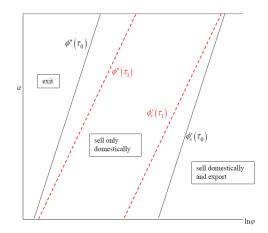
$$\begin{array}{lll} \mathsf{Domestic} & : & r_d \left(\phi \right) = \mathsf{R}_d \left(\rho \mathsf{P}_d \right)^{\sigma-1} \phi^{\sigma-1} \\ \mathsf{Export} & : & r_x \left(\phi \right) = \tau^{1-\sigma} \mathsf{R}_x \left(\rho \mathsf{P}_x \right)^{\sigma-1} \phi^{\sigma-1} \end{array}$$

depend only on ϕ .

- Increase import competition: $P_d \downarrow$ on impact.
- More export opportunities: $\tau \downarrow$ on impact.
- Both affect all firms equally, regardless of skill intensity (α) .

Trade liberalization mechanism

As in Melitz (2003), with falling barriers:


- ϕ^* \uparrow : least competitive firms exit (import competition).
- $\phi_x^* \downarrow$: some marginal non-exporters decide to export.
- Incumbent and new exporters expand, non-exporters retrench/exit.

If correl(α, φ) > 0 (as in the data), then:

- Incumbent exporters: relatively skill intensive and expand.
- Non exporters: relatively skill un-intensive and contract.
- Aggregate demand for skill rises \Rightarrow skill premium rises.

Caveat: Newest exporters less skill intensive than incumbents. When very open, further liberalization may lower skill demand.

Tariff reduction

 $\tau_0 > \tau_1$. Skill premium increases \Rightarrow cutoff slopes become flatter.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two Asymmetric Countries

<□ > < @ > < E > < E > E のQ @

Asymmetric equilibrium

Two countries (A and B) identical except for endowments,

$$(H/L)^A > (H/L)^B \iff (s/w)^A_{aut} < (s/w)^B_{aut}$$

Choose $(H + L)^B$ so that $Q^B = Q^A$ in autarky to avoid *ex ante* market size effects.

• A and B have same $G(\alpha, \varphi)$.

No analytical results. Numerical solution challenging, equilibrium involves all endogenous variables simultaneously from both countries, including aggregates, e.g.,

$$\begin{split} \phi_x^{*a} &= \phi^{*a} \tau \left(\frac{P^a}{P^b}\right) \left(\frac{R^a}{R^b} \frac{f_x}{f}\right)^{\frac{1}{\sigma-1}} \ . \\ P^a &= \left[M^a \left(1/\rho \widetilde{\phi}^a\right)^{1-\sigma} + \chi^b M^b \left(\tau/\rho \widetilde{\phi}^b_x\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}} \ . \end{split}$$

Numerical Experiments

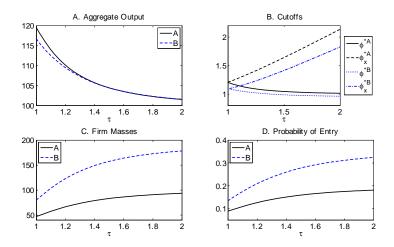
<□ > < @ > < E > < E > E のQ @

Parametrization of joint distribution

Marginal distributions

- $\varphi \sim \text{Pareto}(m, k)$. Standard.
- $\alpha \sim \text{Beta}(a, b)$. Restricts $\alpha \in [0, 1]$.

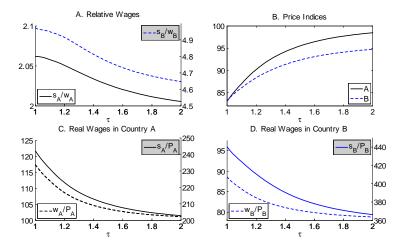
Given marginals, use Plackett copula to characterize


$$G\left(lpha ,arphi
ight) =C_{oldsymbol{ heta}}\left[B\left(lpha
ight)$$
 , $P\left(arphi
ight)
ight]$,

where $P(\phi)$ and $B(\alpha)$ are the marginal distributions.

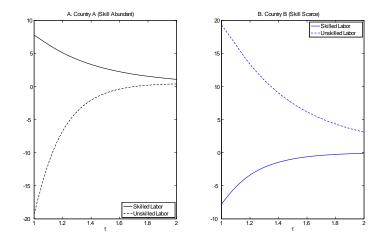
- θ governs degree of association between α and φ .
- $G(\alpha, \varphi)$ has 5 parameters: m, k, a, b, θ ; Normalize m = 1.

Use minimum distance estimator (values of other parameters from the literature); estimates imply *ex ante* correl(α , ln φ) \approx 0.6.

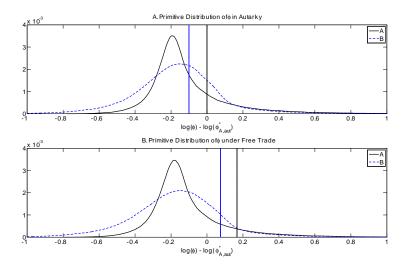

Tariff reduction in Asymmetric world: reals

Same as in Melitz (2003), but larger gains from trade in A.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)


Tariff reduction in Asymmetric world: prices

Skill premium rises, real wages rise, both in A and B.


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Net Factor content of trade

We have a HO thm-like result (when $\tau > 1$ not mirror image).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $\begin{array}{l} B \text{ is less competitive, more mediocre firms: Higher skill premium - } \\ \text{endowment (supply) farther away from ideal (technology, demand)} \\ & - \text{taxes the most } \varphi \text{-productive firms.} \end{array}$

Skill abundance (endowment) convergence of B to A

	$(H/L)^B$	country A	country B	B/A
Real	0.5	100	100	1
GDP	0.3	99.6	90.7	0.91
	0.1	98.4	70.9	0.72
Skill	0.5	2.04	2.04	1
premium	0.3	2.04	2.76	1.36
	0.1	2.03	4.84	2.39
Real	0.5	204	204	1
skilled	0.3	203	240	1.18
wage	0.1	200	343	1.71
Real	0.5	100	100	1
unskilled	0.3	99.6	86.8	0.87
wage	0.1	98.6	70.8	0.72

Big effects in B—little effects on A. Counteracting forces:

- B becomes more competitive \Rightarrow kills less productive A firms.
- B mkt size $\uparrow \Rightarrow$ easier for less productive A firms to survive.

Conclusions

- 1. Model: Two dimensional heterogenous firms in φ and α .
 - ► GE, but non Heckscher-Ohlin mechanism.
 - Breaks link between technology and preferences.
 - Does not rely on relative prices (no Stolper-Samuelson thm).
 - Predicts patterns/net factor content of trade (yes HO thm).
- 2. Model matches salient features of the data:
 - Estimate technology is skill biased: correl(α, φ) > 0.
 - Exporters larger and more skill intensive, on average.
 - Lots of skill heterogeneity along size/exporting dimensions.
- 3. Trade liberalization generates increase in skill premium:
 - Both in identical and asymmetric countries.
 - Larger gains in more competitive (skill abundant) country.