Imported Inputs, Quality Complementarity, and Skill Demand

Diego Saravia (Central Bank of Chile)

Nico Voigtländer (UCLA and NBER)

ASSA San Diego 5 January 2013

Motivation

- How does trade affect firms and their use of productive resources?
 - Export-driven reallocation of resources to more productive firms (Melitz, 2003)
 - Imported inputs also important driver of firm productivity (Amiti and Konings, 2007; Goldberg et al., 2010). Input quality probably important driver.
- Rich (skill-abundant) countries supply high-quality varieties (Schott, 2004; Hummels and Klenow, 2005; Hallak, 2006)

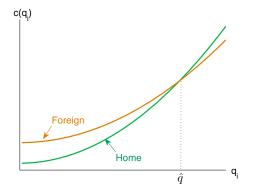
Existing literature

- Work on heterogenous product quality focuses on *output* (Bastos and Silva, 2010; Manova and Zhang, 2012)
- Models with heterogenous *inputs* typically do not analyze quality dimension (Grossman and Rossi-Hansberg, 2008; Costinot and Vogel, 2010)

Motivation

- How does trade affect firms and their use of productive resources?
 - Export-driven reallocation of resources to more productive firms (Melitz, 2003)
 - Imported inputs also important driver of firm productivity (Amiti and Konings, 2007; Goldberg et al., 2010). Input quality probably important driver.
- Rich (skill-abundant) countries supply high-quality varieties (Schott, 2004; Hummels and Klenow, 2005; Hallak, 2006)

Existing literature


- Work on heterogenous product quality focuses on *output* (Bastos and Silva, 2010; Manova and Zhang, 2012)
- Models with heterogenous *inputs* typically do not analyze quality dimension (Grossman and Rossi-Hansberg, 2008; Costinot and Vogel, 2010)

This Paper – Theory

- Heterogenous input quality
- Quality complementarity across inputs (O-Ring)
- Developing countries have cost advantage at producing low-quality inputs
- Two opposing effects:
 - Substitution effect: Firms in developing countries substitute domestic quality-sensitive inputs (skilled labor) with imported inputs ("quality fragmentation of production")

Complementarity effect: Higher-quality inputs ⇒ higher quality/skill demand for remaining domestic inputs

Cost of input quality in domestic and foreign market

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 - のへで

This Paper – Empirics

- Combine Chilean plant-level panel with customs data on imports and exports
- Calculate two indicators for 'quality' of imports:
 - Price relative to all other importers of the same (8-digit) product
 - Skill intensity of import production in the U.S.
- Evidence in line with model predictions:
 - Importing firms use higher-quality domestic inputs (both physical inputs and labor) and produce higher-quality output
 - Firms that import inputs use a smaller proportion of white-collar labor, but:
 - High-quality imports are associated with more skill demand

Examples

- Embraer in Brazil: Uses large share of imported inputs. One reason for success: Import tariff exemption (military firm)
- From a case study on Embrear and other Brazilian firms (Bernardes, 2003)
 - "Firms are scaling down local R&D,...effort shifted into the more simple adaptation of imported processes and products"
 - "highly-qualified engineers engaged in R&D transferred to other, less-specialized functions, such as production, quality assurance, sales or marketing"

Related Literature – Broader

- Firm level effects of trade:
 - Re-allocate market shares towards exporters (Pavcnik, 2002 REStud; Melitz, 2003 ECMA). Rising revenues foster investment in technology (Bustos, 2011 AER)
 - Workers using imported machines in Hungarian firms earn higher wages (Csillag and Koren, 2011)
 - In general: Selection of firms more important than within-firm effects
- ► Trade integration leads to rising skill demand in developed and developing countries (Goldberg and Pavcnik, 2007 JEL) ⇒ in contrast to standard trade theory
- Theories on how import of skill-biased capital raises aggregate skill demand (Burstein et al. 2011; Parro, 2011)

Related Literature – Imported Inputs; Product Quality

- Strong evidence that inputs from international markets affect firms in developing countries:
 - Raise firm productivity (Amiti and Konings 2007, AER)
 - New intermediates due to trade promote domestic product growth (Goldberg et al., 2010 QJE)
 - Foster introduction of new products (Goldberg et al. 2010, QJE)
 - Increase profits (De Loecker et al., 2012)
 - Important channel: Higher quality of imported inputs
- Trade and product quality:
 - Complementarity between input and output quality (Kugler and Verhoogen, 2012 REStud)
 - Higher output quality associated with higher skill demand (Verhoogen, 2008 QJE)

Model – Overview

- Continuum of variety-producers: $\omega \in \Omega$
 - Produce output of quality $Q(\omega)$
 - Quantity demanded $x(\omega)$ increases in quality
- Each firm ω uses continuum of inputs *i*
 - Heterogenous input quality *q_{iω}*
 - ► Quality-complementarity across inputs (CES over input quality q_{iω})
 - Can interpret domestic inputs as labor (quality \sim skills)
- Partial equilibrium model
 - Given cost function of input quality
 - Input and output quality endogenously determined

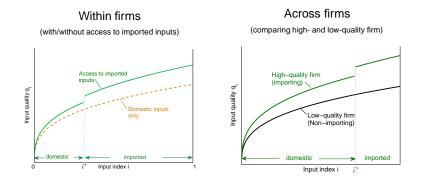
Quality Prd Fct

More Detail

Model – Overview

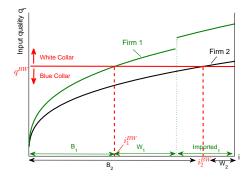
- Continuum of variety-producers: $\omega \in \Omega$
 - Produce output of quality $Q(\omega)$
 - Quantity demanded $x(\omega)$ increases in quality
- Each firm ω uses continuum of inputs *i*
 - Heterogenous input quality q_{iω}
 - Quality-complementarity across inputs (CES over input quality q_{iw})
 - Can interpret domestic inputs as labor (quality \sim skills)
- Partial equilibrium model
 - Given cost function of input quality
 - Input and output quality endogenously determined

Quality Prd Fct


More Detail

Model – Overview

- Continuum of variety-producers: $\omega \in \Omega$
 - Produce output of quality $Q(\omega)$
 - Quantity demanded $x(\omega)$ increases in quality
- Each firm ω uses continuum of inputs *i*
 - Heterogenous input quality q_{iω}
 - Quality-complementarity across inputs (CES over input quality q_{iw})
 - Can interpret domestic inputs as labor (quality \sim skills)
- Partial equilibrium model
 - Given cost function of input quality
 - Input and output quality endogenously determined


Quality Prd Fct Mo

Optimal choice of input quality

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ の久(で)

Mapping the model to the data: white collar (W) and blue-collar (B) workers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Model Predictions – Summary

Importing firms in a developing country...

- 1. ...produce high-quality output
- 2. ... use higher-quality domestic inputs
- 3. ...c.p. use a smaller share of skilled workers than non-importing firms, but this effect is alleviated when controlling for imported input quality
- 4. ...will pay higher wages if the complementarity effect is strong

Empirical Results – Data

Main Dataset: ENIA

- Census of Chilean plants with more than 10 employees. About 4,500 plants between 1992-2005
- Observations on large set of firm-level variables. Most importantly:
 - Various categories of skilled workers: Managers, Specialized workers in the productive process, Administrative Staff and "Empleados a comision"
 - Capital stock, domestic inputs, sales, value added, etc.
 - Output prices

Combine with Chilean Customs data

Value of imported product *j* purchased by firm *i* in year *t* from country of origin *c*

Replication of stylized facts

/lized facts ◆ Tariffs over time

- Product j measured at HS-8 level
- Tariff associated with imp_{ijtc}

Import Quality Indicators

- 1. Import Price Index (from customs data)
- 2. Import Skill Intensity (using U.S. manufacturing data)

Prediction 1

Importing firms produce higher-quality output

$$\ln(\mathbf{P}_{ikjt}^{out}) = \mathbf{d}_{it}^{imp} + \beta \theta_{it}^{imp} + \gamma \mathbf{X}_{ijt} + \alpha_{st} + \alpha_{kjt} + \alpha_{r} + \varepsilon_{ijt}$$

Where

P^{out}_{ikjt}: price at which firm *i* sells output product *k*, measured in unit *j*, in year *t*

- ► *d*^{*imp*}: importer dummy
- θ_{it}^{imp} : indicator for quality of imported inputs
- X_{ijt}: vector of control variables
- α_{st}: Sector (3-digit) year FE
- α_{kjt}: Product (8-digit) unit year FE
- α_r: Region dummies

Prediction 1 – Results

Importing firms produce higher-quality output

	(1)	(2)	(3)	(4) [‡]	(5)	(6)
	PANEL A:	Dependent V	/ariable: ln(o	utput price)		
ln(workers)	.0535*** (.009)					.0201* (.011)
Export dummy		.116*** (.026)			.0933*** (.027)	.0358 (.031)
Import dummy			.0834*** (.022)		.0487** (.023)	0157 (.027)
Import price index				.0694*** (.015)	.0741*** (.014)	.0599*** (.015)
Further controls						\checkmark
Product-Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Sector-Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Region dummies	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
\mathbb{R}^2	.141	.14	.14	.146	.141	.147
Observations	101,572	101,572	101,572	49,578	101,572	87,058

Prediction 2

Importing firms use higher-quality domestic inputs

$$\ln(P_{ikjt}^{dom}) = d_{it}^{imp} + \beta \cdot \theta_{it}^{imp} + \gamma X_{ijt} + \alpha_{st} + \alpha_{kjt} + \alpha_r + \varepsilon_{ijt}$$

Where

P^{dom}: price paid by firm *i* for domestic input k, measured in unit *j*, in year t

- d^{imp}: importer dummy
- θ_{it}^{imp} : indicator for quality of imported inputs
- X_{ijt}: vector of control variables
- α_{st}: Sector (3-digit) year FE
- α_{kjt}: Product (8-digit) unit year FE
- α_r: Region dummies

Prediction 2 – Results

Importing firms use higher-quality domestic inputs

<i>PA</i>	NEL B: Dep	endent varia	ble: In(dome	stic input pri	ce)	
ln(workers)	.0477***					.0451***
	(.008)					(.010)
Export dummy		.0732***			.0592***	.00357
		(.021)			(.023)	(.025)
Import dummy			.0530***		.0284	0153
			(.018)		(.018)	(.022)
Import price index				.0506***	.0484***	.0394***
				(.012)	(.012)	(.013)
Further controls						\checkmark
Product-Unit-Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Sector-Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Region dummies	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
\mathbb{R}^2	.067	.066	.066	.061	.067	.069
Observations	276,358	276,358	276,358	137,985	276,358	234,130

PANEL B: Dependent Variable: ln(domestic input price)

Prediction 3

Importing firms (i) use c.p. a smaller share of skilled workers than non-importing firms, (ii) this effect is alleviated when controlling for imported input quality

$$h_{ist} = d_{it}^{imp} + \beta \cdot \theta_{it}^{imp} + \gamma X_{ijt} + \alpha_{st} + \alpha_{r} + \varepsilon_{ijt}$$

Where

- *h*_{ist}: share of skilled workers in firm *i* in sector *s*, year *t*
- d^{imp}: importer dummy
- θ_{it}^{imp} : indicator for quality of imported inputs
- X_{ijt}: vector of control variables
- α_{st}: Sector (3-digit) year FE
- α_r: Region dummies

Prediction 3 – Results for Import Price Index

Importing firms (i) use c.p. a smaller share of skilled workers than non-importing firms, (ii) this effect is alleviated when controlling for imported input quality

Sample	Impo	orters only		A		
	(1)	(2)	(3)	(4)	(5)	(6)
Import price index θ_{it}^{Imp}	.00988***	.00711***	.00713***	.00966***	.00717***	.00772***
	(.002)	(.002)	(.002)	(.002)	(.002)	(.002)
Import share	0348**	0504***	0469***	0321**	0538***	0460***
Imports _{it} / Sales _{it}	(.014)	(.015)	(.016)	(.014)	(.015)	(.015)
Capital per worker $\ln(k_{it})$.0173***	.0202***	.0212***	.0235***	.0249***	.0281***
	(.003)	(.004)	(.004)	(.003)	(.004)	(.004)
Productivity	.0301***	.0292***	.0288***	.0195***	.0212***	.0206***
ln(VA per worker _{it})	(.003)	(.004)	(.004)	(.003)	(.003)	(.003)
Interm. Input share	0128	.00884	.0120	0392***	00111	00182
Inputs ^{int} / Sales _{it}	(.012)	(.012)	(.012)	(.010)	(.009)	(.010)
Foreign owner	.0187**	.0228***	.0218***	.0199***	.0284***	.0283***
	(.008)	(.008)	(.008)	(.008)	(.007)	(.007)
Importer Dummy d_{it}^{Imp}				0377*** (.004)	0302*** (.004)	0309*** (.004)
Region-Year FE		\checkmark	\checkmark		\checkmark	\checkmark
Sector FE		\checkmark	\checkmark		\checkmark	\checkmark
Sector-Year FE			\checkmark			\checkmark
R^2	.077	.116	.164	.084	.116	.146
Observations	24,949	24,949	24,949	53,351	53,351	53,351

▲ロト▲御ト▲臣ト▲臣ト 臣 のQ@

Prediction 3 – Results for Import Skill Intensity

Importing firms (i) use c.p. a smaller share of skilled workers than non-importing firms, (ii) this effect is alleviated when controlling for imported input quality

]	Dependent variable: Firm-level skilled labor share, h_{it} .							
Sample	Imp	Importers only			All firms			
	(1)	(2)	(3)	(4)	(5)	(6)		
Import skill intensity σ_{it}^{Imp}	.223***	.186***	.176***	.175***	.133***	.143***		
	(.045)	(.050)	(.052)	(.045)	(.048)	(.049)		
Import share	0363**	0504***	0472***	0359**	0557***	0480***		
Imports _{it} / Sales _{it}	(.015)	(.015)	(.016)	(.014)	(.015)	(.015)		
Capital per worker $\ln(k_{it})$.0174***	.0201***	.0210***	.0236***	.0249***	.0281***		
	(.003)	(.004)	(.004)	(.003)	(.004)	(.004)		
Productivity	.0294***	.0297***	.0293***	.0193***	.0213***	.0208***		
ln(VA per worker _{it})	(.003)	(.004)	(.004)	(.003)	(.003)	(.003)		
Interm. Input share	0138	.00883	.0118	0399***	00151	00231		
Inputs ^{int} / Sales _{it}	(.012)	(.012)	(.012)	(.010)	(.009)	(.010)		
Foreign owner	.0164**	.0219***	.0209***	.0183**	.0277***	.0275***		
	(.008)	(.008)	(.008)	(.008)	(.007)	(.007)		
Importer Dummy d_{it}^{Imp}				107*** (.018)	0832*** (.020)	0878*** (.020)		
Region-Year FE Sector FE Sector-Year FE		\checkmark	\checkmark \checkmark		\checkmark	\checkmark \checkmark		
R^2	.077	.116	.164	.084	.115	.146		
Observations	24,949	24,949	24,949	53,351	53,351	53,351		

Interaction with Import Share

Dependent variable is the firm-level skilled labor share, h_{it} .									
Import quality measure	Import price index (θ_{it}^{Imp})			Import	Import skill intensity (σ_{it}^{Imp})				
Sample	Importers only		All firms	Importers only		All firms			
	(1)	(2)	(3)	(4)	(5)	(6)			
Import Quality $\theta_{it}^{Imp} / \sigma_{it}^{Imp}$.00604*** (.002)	.00513** (.002)	.00577*** (.002)	.145*** (.055)	.119** (.058)	.082 (.054)			
Imports/Sales	.0103 (.013)	0374** (.015)	0345** (.015)	179** (.083)	240** (.098)	261*** (.097)			
Imp. Qual. \times (Imp/Sales)	.0227* (.013)	.0277* (.015)	.0270* (.014)	.459** (.208)	.492** (.243)	.549** (.243)			
Capital per worker $\ln(k_{it})$.0219*** -(.004)	.0285*** -(.004)		.0217*** -(.004)	.0285*** -(.004)			
Productivity ln(VA per worker _{it})		.0305*** (.004)	.0221*** (.003)		.0308*** (.004)	.0222*** (.003)			
Interm. Input share Inputs $_{it}^{int}$ / Sales _{it}		.0169 (.013)	.000934 (.010)		.0159 (.012)	.000186 (.010)			
Importer Dummy d_{it}^{Imp}			0303*** (.004)			0621*** (.022)			
Region FE Sector-Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
R^2 Observations	.13 27,692	.16 24,949	.14 53,351	.14 27,692	.16 24,949	.14 53,351			

Dependent veriable is the ferm level skilled labor shore. h

Further Controls: Exports and Domestic Inputs

Depe	ndent variable	is the firm-lev	el skilled labo	r share, h_{it} .		
Import quality measure	Impo	rt price index	Import skill intensity (σ_{it}^{Imp})			
Sample	Importe	ers only	All firms	Importe	ers only	All firms
	(1)	(2)	(3)	(4)	(5)	(6)
Import quality θ_{it}^{Imp}	.00782*** (.002)	.00776*** (.002)	.00913*** (.002)	.198*** (.049)	.197*** (.049)	.184*** (.046)
Export quality index θ_{it}^{Exp}	.00205 (.003)	.00202 (.003)	.00157 (.003)	.00243 (.003)	.00239 (.003)	.00194 (.003)
Domestic input price index θ_{it}^{Dom}		.00305 (.002)	.00269 (.002)		.00311 (.002)	.00277 (.002)
Exporter Dummy d_{it}^{Exp}	.0000845 (.004)	.000164 (.004)	00264 (.004)	.000717 (.004)	.000788 (.004)	00234 (.004)
Domestic Input Dummy d_{it}^{Dom}		00195 (.006)	00723 (.005)		00163 (.006)	0071 (.005)
Importer Dummy d_{it}^{Imp}			0163*** (.004)			0898*** (.019)
Region FE Sector-Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
R^2 Observations	.133 29,193	.133 29,193	.126 63,987	.133 29,193	.133 29,193	.126 63,987

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Effects over Time

Sample	Impo	orters only		All firms			
	(1)	(2)	(3)	(4)	(5)	(6)	
$\frac{\text{Import price index}}{\theta_{it}^{Imp}}$	00583**	00731**	00583**	00621**	00542**	00381	
	(.003)	(.003)	(.003)	(.003)	(.002)	(.002)	
Years as importer Y^{Imp}	00378***	00299**	00362***	00578***	00780***	00565***	
	(.001)	(.001)	(.001)	(.001)	(.001)	(.001)	
Interaction $\theta_{it}^{Imp} \times Y^{Imp}$.00302***	.00152***	.00124**	.00324***	.00142***	.00116**	
	(.001)	(.001)	(.001)	(.001)	(.001)	(.001)	
Importer Dummy d_{it}^{Imp}				.0136*** (.004)	.0191*** (.004)	.0132*** (.005)	
Region FE Sector-Year FE Firm FE	\checkmark	√ √	\checkmark \checkmark	\checkmark	√ √	\checkmark \checkmark	
R^2	.14	.57	.54	.13	.56	.51	
Observations	29,193	29,193	29,193	63,987	63,987	63,987	

Dependent variable: Firm-level skilled labor share, h_{it} .

Prediction 4 – Wages as Dependent Variable

If the complementarity effect is strong, importing firms pay higher wages

Dependent variable: Firm-level wages.							
]	Importers onl	у	All firms			
	(1)	(2)	(3)	(4)	(5)	(6)	
Dep. Var.	ln(wage)	$ln(wage^W)$	$ln(wage^B)$	ln(wage)	ln(wage ^W)	ln(wage ^B)	
Import price index θ_{it}^{Imp}	.0289***	.0202***	.0250***	.0294***	.0227***	.0263***	
	(.005)	(.006)	(.004)	(.005)	(.006)	(.004)	
Import share	.295***	.307***	.189***	.316***	.301***	.202***	
Imports _{it} / Sales _{it}	(.037)	(.043)	(.032)	(.035)	(.042)	(.031)	
Capital per worker $\ln(k_{it})$.130***	.0805***	.0995***	.0880***	.0458***	.0700***	
	(.011)	(.011)	(.010)	(.007)	(.009)	(.007)	
Interm. Input share	190***	227***	166***	260***	314***	226***	
Inputs $_{it}^{int}$ / Sales _{it}	(.031)	(.038)	(.029)	(.021)	(.027)	(.020)	
Foreign owner	.224***	.220***	.133***	.240***	.234***	.147***	
Inputs ^{int} / Sales _{it}	(.023)	(.024)	(.020)	(.022)	(.023)	(.019)	
Export quality index θ_{it}^{Exp}	.00849	00642	.00320	.00917	00512	.00585	
	(.006)	(.008)	(.006)	(.006)	(.007)	(.006)	
Exporter Dummy d_{it}^{Exp}	.225***	.297***	.146***	.216***	.304***	.138***	
	(.012)	(.015)	(.011)	(.011)	(.013)	(.010)	
Importer Dummy d_{it}^{Imp}				.251*** (.009)	.356*** (.012)	.183*** (.009)	
Year-Region FE Sector-Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
R^2	.555	.378	.508	.599	.466	.538	
Observations	24952	24559	23411	53379	50326	48116	

Conclusion

Examined effect of trade on firms via import-quality channel

- Partial equilibrium model with heterogenous inputs and quality complementarity
- Two effects of trade integration in developing country:
 - Substitute imports for high-quality domestic inputs (skilled workers) ⇒ skill demand ↓
 - Complementarity with high-quality imported inputs ⇒ skill demand ↑
- Strong empirical evidence for both effects from Chilean firm panel
- Complementarity effect can help to explain puzzle in trade theory vs. data

Further work

 Derive predicted change in firm-quality distribution when import tariffs fall

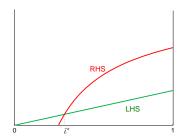
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

Currently partial equilibrium. Move to GE?

BACKUP

Choice of Input Quality for Given Output Quality \bar{Q}_{ω}

Cost minimization problem:


$$\min_{q_{i\omega}}\left\{\int_{0}^{1} c(q_{i\omega})di + m_{\omega} \quad s.t. \quad A_{\omega}\left(\int_{0}^{1} \alpha_{i} q_{i\omega}^{\frac{\rho-1}{\rho}}di\right)^{\frac{\rho}{\rho-1}} \geq \bar{\mathsf{Q}}_{\omega}\right\}$$

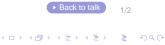
Yields optimal input quality $q_{i\omega}$ for given \bar{Q}_{ω} and cutoff $\hat{\iota}_{\omega}$:

$$q_{i\omega} = \left(\frac{\alpha_i}{c'\left(q_{i\omega}\right)} \frac{MC_{\omega} \bar{Q}_{\omega}}{\int_0^1 \alpha_i q_{i\omega}^{-\frac{1-\rho}{\rho}} di}\right)^{\rho}$$

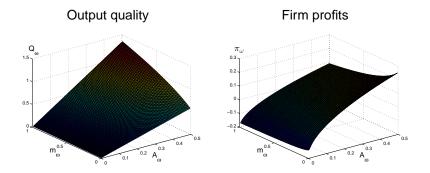
Cutoff point for domestic vs. imported inputs $\hat{\iota}_{\omega}$ Minimize $C(Q_{\omega}, \hat{\iota}_{\omega})/Q_{\omega}$ with respect Q_{ω} and $\hat{\iota}_{\omega}$ yields:

$$2\hat{\iota}_{\omega}(a_{F}-a_{H})=\frac{3\rho+1}{1+\rho}(a_{F}+m_{\omega})-\frac{1-\rho}{1+\rho}\cdot\frac{a_{F}-a_{H}}{\hat{\iota}_{\omega}^{\frac{2\rho}{1+\rho}}\cdot\left[\left(\frac{b_{H}}{b_{F}}\right)^{\frac{1-\rho}{1+\rho}}-1\right]}$$

Optimal $\hat{\iota}_{\omega}$ independent of A_{ω}


Profits and Firm Selection

When producing Q^*_{ω} , firms earn profits:


$$\Pi(\omega) = (\sigma - 1)^{\sigma - 1} \sigma^{-\sigma} P^{\sigma} X \underbrace{\left(\frac{C(\mathbf{Q}_{\omega}^{*}, \hat{\iota}_{\omega}^{*})}{\mathbf{Q}_{\omega}^{*}}\right)^{1 - \sigma}}_{AC(\mathbf{Q}_{\omega}^{*}, \hat{\iota}_{\omega}^{*})^{1 - \sigma}} - f$$

Suppose:

- Currently no access to imports
- ► 2 entrepreneurs, both have ideas that would currently earn $\Pi(\omega_1) = \Pi(\omega_2) = 0$
- ω_1 : high quality, ω_2 : low quality
- Decrease import tariffs $\Rightarrow \omega_1$ will enter the market; ω_2 not
- \Rightarrow Falling import tariffs favor high-quality producers

Quality and Profits as Functions of A_{ω} and m_{ω}

 \Rightarrow High-quality producers not necessarily most profitable

< ロ > < 同 > < 回 > < 回 >

Optimal Quality Q*

$$\mathbf{Q}_{\omega}^{*} = \frac{\sum_{i=1}^{N} c(q_{i\omega}) + m_{\omega} + w_{U}}{\frac{1}{A_{\omega}} \left(\sum_{i=1}^{N} \alpha_{i} \left(\frac{c'(q_{i\omega})}{\alpha_{i}} \right)^{1-\rho} \right)^{\frac{1}{1-\rho}}}$$

- $c(q_{i\omega})$: Cost of task quality
- *m*_ω: Cost of raw material (per unit of output)
- Unskilled wage rate: w_U
- A_{ω} : Efficiency of quality production

Deriving $C(Q_{\omega})$ from $c(q_{i\omega})$

$$C(Q_{\omega}) = \sum_{i=1}^{N} (a + bq_{i\omega}^{2}) + m_{\omega} + w_{U}$$

$$q_{i\omega} = \left(\frac{\alpha_{i\omega}b_{1\omega}}{\alpha_{1\omega}b_{i\omega}}\right)^{\frac{\rho}{1+\rho}} q_{1\omega}$$

$$Q_{\omega} = A_{\omega} \left(\frac{b_{1\omega}}{\alpha_{1\omega}}\right)^{\frac{\rho}{\rho+1}} \left(\sum_{i=1}^{N} \alpha_{i\omega} \left(\frac{\alpha_{i\omega}}{b_{i\omega}}\right)^{\frac{\rho-1}{\rho+1}}\right)^{\frac{\rho}{\rho-1}} \cdot q_{1,\omega}$$

$$\Rightarrow C(Q_{\omega}) = C_{f,\omega} + \frac{1}{A_{\omega}^{2}} \left(\sum_{i=1}^{N} b_{i\omega}^{\frac{1-\rho}{1+\rho}} \alpha_{i\omega}^{\frac{2\rho}{1+\rho}}\right)^{\frac{1+\rho}{1-\rho}} \cdot Q_{\omega}^{2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Detailed Solution Steps

Optimal input quality $q_{i\omega}$ implicitly determined by:

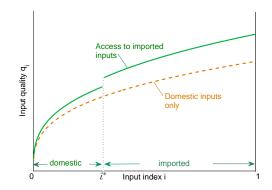
$$\boldsymbol{q}_{i\omega} = \left(\frac{\alpha_i}{\boldsymbol{c}'\left(\boldsymbol{q}_{i\omega}\right)}\right)^{\rho} \left(\frac{\boldsymbol{C}(\boldsymbol{Q}_{\omega})}{\sum_{i=1}^{N} \alpha_i \boldsymbol{q}_{i\omega}^{\frac{\rho-1}{\rho}}}\right)^{\rho}$$

Thus:

$$\frac{q_{i\omega}}{q_{1\omega}} = \left(\frac{\alpha_{i\omega}}{\alpha_{1\omega}}\frac{b_{1\omega}q_{1\omega}}{b_{i\omega}q_{i\omega}}\right)^{\rho} \quad \Rightarrow \quad q_{i\omega} = \left(\frac{\alpha_{i\omega}b_{1\omega}}{\alpha_{1\omega}b_{i\omega}}\right)^{\frac{p}{1+\rho}}q_{1\omega}$$

Also:

$$\mathbf{Q}_{\omega}^{*} = \frac{C(\mathbf{Q}_{\omega}^{*})}{MC(\mathbf{Q}_{\omega}^{*})} = \frac{\sum_{i=1}^{N} c(q_{i\omega}) + m_{\omega} + w_{U}}{\frac{1}{A_{\omega}} \left(\sum_{i=1}^{N} \alpha_{i\omega}^{\rho} c'(q_{i\omega})^{1-\rho} \right)^{\frac{1}{1-\rho}}}$$


where:

$$c(q_{i\omega}) = a_0 + a_2 q_i^2$$

Optimal Input Quality – Graphically

For a firm with given draw a_{ω} ; before and after access to imports

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Deriving $C(Q_{\omega})$ from $c(q_{i\omega})$

Quadratic functional form $c(q_{i\omega})$ given

Use given $\bar{Q}(\omega)$ in:

$$\boldsymbol{q}_{i\omega} = \left(\frac{\alpha_i}{\boldsymbol{c}'\left(\boldsymbol{q}_{i\omega}\right)}\right)^{\rho} \left(\frac{\boldsymbol{M}\boldsymbol{C}(\omega) \ \bar{\boldsymbol{Q}}(\omega)}{\sum_{i=1}^{N} \alpha_i \boldsymbol{q}_{i\omega}^{\frac{\rho-1}{\rho}}}\right)^{\rho}$$

where
$$MC(Q_{\omega}) = \frac{1}{A_{\omega}} \left(\sum_{i=1}^{N} \alpha_i \left(\frac{c'(q_{i\omega})}{\alpha_i} \right)^{1-\rho} \right)^{\frac{1}{1-\rho}}$$

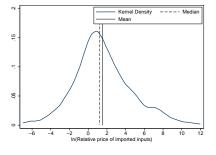
Iteration:

- 1. Initial guess for $\{q_{i\omega}\}_{i=1,...,N}$
- 2. Solve for $q_{i\omega} \forall i$; update $\{q_{i\omega}\}_{i=1,...,N}$ and $MC(\{q_{i\omega}\})$

3. Iterate until
$$A(\omega) \left(\sum_{i=1}^{N} \alpha_i q_{i\omega}^{\frac{p-1}{p}} \right)^{\frac{p}{p-1}} = \bar{Q}(\omega)$$

4. Derive
$$C(Q_{\omega}) = \sum_{i=1}^{N} c(q_{i\omega}) + m_{\omega} + w_U$$

▶ Back to talk 1/1


Relative Price of Imports vs. Domestic Inputs

$$\theta_{kt}^{rel} \equiv \ln\left(\frac{\bar{P}_{kt}^{imp}}{\bar{P}_{kt}^{dom}}\right) = \ln\left(\frac{\sum_{i} V_{ikt}^{imp} / \sum_{i} Q_{ikt}^{imp}}{\sum_{i} V_{ikt}^{dom} / \sum_{i} Q_{ikt}^{dom}}\right)$$

where

- \bar{P}_{kt}^{dom} : average price of product k purchased domestically by all firms i
- \bar{P}_{kt}^{imp} : average price of product k when imported

Quality of imported inputs as compared to domestic inputs

1#1 na (~

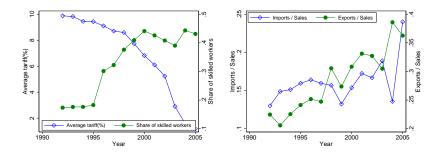
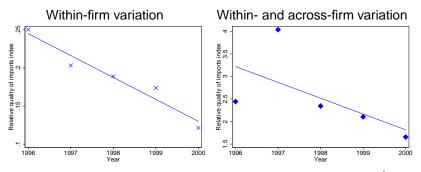

The Chilean Data Replicate Prominent Stylized Facts

Table 1: Previous and novel stylized facts.						
	(1)	(2)	(3)	(4)	(5)	(6)
	Firm	Size	Productivity	roductivity ———- Skills —		
Dependent Variable	ln(workers)	ln(Sales)	ln(VA/workers)	White-co	ollar share	ln(wage)
Import dummy	.808*** (.019)	1.352*** (.027)	.599*** (.014)	0160*** (.004)	0164*** (.004)	.308*** (.009)
Export dummy	.877*** (.026)	1.290*** (.035)	.424*** (.017)	00286 (.004)	00285 (.004)	.270*** (.011)
Import price index					.00922*** (.002)	.0219*** (.004)
Sector-Year FE Region dummies	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
R^2 Observations	.46 63,987	.54 62,063	.40 63,177	.13 63,987	.13 63,987	.56 63,907

Notes: Clustered standard errors (at firm level) in parentheses. Key: *** significant at 1%; ** 5%; * 10%.


Trade Liberalization in Chile

► Back to Talk 1/1

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Relative Price of Imports vs. Domestic Inputs

Left panel: Annual weighted average of the price-based quality index θ_{ikt}^{rel} . Right panel: Annual average of θ_{kt} . Both measures equal zero if imported and domestically purchased inputs of category *k* have the same price, on average; the measures are greater than zero if imports of the same good are more expensive.

Demand

Utility

$$\boldsymbol{U} = \left[\int_{\omega \in \Omega} \left(\boldsymbol{\mathsf{Q}}_{\omega} \boldsymbol{x}_{\omega}\right)^{\frac{\sigma-1}{\sigma}} \boldsymbol{d}\omega\right]^{\frac{\sigma}{\sigma-1}}$$

- Q_{ω} : quality; x_{ω} : quantity
- $\sigma > 1$: Varieties ω are substitutes

Firms face demand

$$x_{\omega} = \mathsf{Q}_{\omega}^{\sigma-1} \left(\frac{P}{p_{\omega}}\right)^{\sigma} X$$

X: quality-adjusted consumption aggregate

•
$$P \equiv \left(\int_{\omega \in \Omega} \left(\frac{Q_{\omega}}{p_{\omega}}\right)^{\sigma-1} d\omega\right)^{\frac{1}{1-\sigma}}$$
: aggregate price index

Focus on individual firms in partial equilibrium $\rightarrow X$ and P given

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Demand

Utility

$$\boldsymbol{U} = \left[\int_{\omega \in \Omega} \left(\boldsymbol{\mathsf{Q}}_{\omega} \boldsymbol{x}_{\omega}\right)^{\frac{\sigma-1}{\sigma}} \boldsymbol{d}\omega\right]^{\frac{\sigma}{\sigma-1}}$$

- Q_{ω} : quality; x_{ω} : quantity
- $\sigma > 1$: Varieties ω are substitutes

Firms face demand

$$\mathbf{x}_{\omega} = \mathbf{Q}_{\omega}^{\sigma-1} \left(rac{\mathbf{P}}{\mathbf{p}_{\omega}}
ight)^{\sigma} \mathbf{X}$$

X: quality-adjusted consumption aggregate

•
$$P \equiv \left(\int_{\omega \in \Omega} \left(\frac{Q_{\omega}}{p_{\omega}}\right)^{\sigma-1} d\omega\right)^{\frac{1}{1-\sigma}}$$
: aggregate price index

Focus on individual firms in partial equilibrium $\rightarrow X$ and P given

Production – Quality

Firms draw technology $\{A_{\omega}, m_{\omega}\}$:

- A_{ω} : productivity term (quality-specific)
- m_{ω} : quality (=price per unit) of raw material input

Quality production function:

$$\mathbf{Q}_{\omega} = \mathbf{A}_{\omega} \left(\int_{0}^{1} \alpha_{i} \mathbf{q}_{i\omega}^{\frac{\rho-1}{\rho}} di \right)^{\frac{\rho}{\rho-1}}$$

- ► $i \in [0, 1]$ tasks, each performed at specific quality $q_{i\omega}$
- α_i: sensitivity of output quality wrt quality of input i
- Rank inputs by quality sensitivity: $\alpha_i = i$
- ρ < 1: Quality-complementarity across tasks</p>

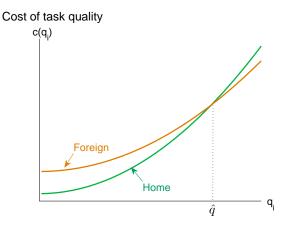
Production – Quantity (for given quality)

Inputs needed to produce one unit of final output:

- One unit of *each* input *i*, purchased at cost $c(q_{i\omega})$
- ► One unit of raw material of value/quality m_ω (variety-specific, randomly drawn)

Unit cost function:

$$C(\{q_{i\omega}\})=\int_0^1 c(q_{i\omega})di+m_\omega$$


Total cost (x_{ω} units produced):

$$\mathit{TC}_\omega = \mathit{C}(\{\mathit{q}_{i\omega}\})\mathit{x}_\omega$$

Quality-Specific Input Cost

Cost of Domestic Labor vs. Imported Inputs

- Domestic inputs $c_H(q_{i\omega}) = a_H + b_H q_{i\omega}^2$
- Imported inputs: $c_F(q_{i\omega}) = a_F + b_F q_{i\omega}^2$

Optimization of Production

Profits:

$$\Pi_{\omega} = \left[p_{\omega} - C(\mathsf{Q}_{\omega}) \right] x(\mathsf{Q}_{\omega}) - f$$

- $C(Q_{\omega})$: Cost per unit of variety ω at quality Q_{ω}
- $x(Q_{\omega})$: Quantity demanded of ω at quality Q_{ω}
- f: Fixed cost

Solve model in three steps:

- 1. Choice of input quality $\{q_{i\omega}\}$ for given output quality \bar{Q}_{ω}
- 2. Implied unit cost of given quality $C(\bar{Q}_{\omega})$
- 3. Obtain profit-maximizing choice of output quality Q^*_{ω}
- 4. Cutoff point for domestic vs. imported inputs $\hat{\iota}_{\omega}$

Optimization of Production

Profits:

$$\Pi_{\omega} = \left[p_{\omega} - C(\mathsf{Q}_{\omega}) \right] x(\mathsf{Q}_{\omega}) - f$$

- C(Q_ω): Cost per unit of variety ω at quality Q_ω
- $x(Q_{\omega})$: Quantity demanded of ω at quality Q_{ω}
- f: Fixed cost

Solve model in three steps:

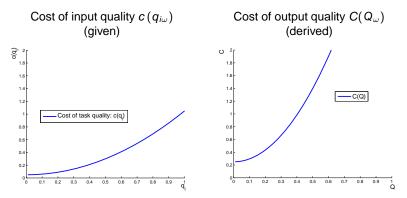
- 1. Choice of input quality $\{q_{i\omega}\}$ for given output quality \bar{Q}_{ω} \bullet
- 2. Implied unit cost of given quality $C(\bar{Q}_{\omega})$
- 3. Obtain profit-maximizing choice of output quality Q^*_{ω}
- 4. Cutoff point for domestic vs. imported inputs $\hat{\iota}_{\omega}$

Unit Cost of Output Quality $C(\bar{Q}_{\omega})$

Using optimal input quality $q_{i\omega}$ yields:

$$C(\mathsf{Q}_{\omega},\hat{\iota}_{\omega})=\frac{1}{A_{\omega}^{2}}I(\hat{\iota}_{\omega})^{\frac{1+\rho}{1-\rho}}\cdot\mathsf{Q}_{\omega}^{2}+C_{f,\omega}(\hat{\iota}_{\omega})$$

where


$$I(\hat{\iota}_{\omega}) = \int_{0}^{\hat{\iota}_{\omega}} \alpha_{i}^{\frac{2\rho}{1+\rho}} b_{H}^{\frac{1-\rho}{1+\rho}} di + \int_{\hat{\iota}_{\omega}}^{1} \alpha_{i}^{\frac{2\rho}{1+\rho}} b_{F}^{\frac{1-\rho}{1+\rho}} di; \quad \boxed{I'(\hat{\iota}_{\omega}) > 0}$$
$$C_{f,\omega}(\hat{\iota}_{\omega}) = \hat{\iota}_{\omega} a_{H} + (1 - \hat{\iota}_{\omega}) a_{F} + m_{\omega}; \quad \boxed{C'_{f,\omega}(\hat{\iota}_{\omega}) < 0}$$

Detail

Input and Output Cost Functions: $c(q_{i\omega})$ and $C(Q_{\omega})$

For the simple case of no domestic inputs only ($\hat{\iota}_{\omega} = 1$)

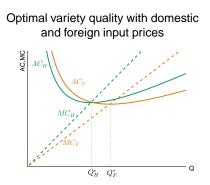
Cost-of-quality profiles:

Profit-Maximizing Choice of Output Quality Q_{ω}

Pricing:

$$p(\omega) = rac{\sigma}{\sigma - 1} C(\mathsf{Q}_{\omega}, \hat{\iota}_{\omega})$$

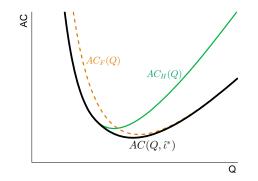
Substituting $p(\omega)$ and $x(Q_{\omega})$ into the profit equation:


$$\Pi(\omega) = (\sigma - 1)^{\sigma - 1} \sigma^{-\sigma} P^{\sigma} X \underbrace{\left(\frac{C(Q_{\omega}, \hat{\iota}_{\omega})}{Q_{\omega}}\right)^{1 - \sigma}}_{AC(Q_{\omega}, \hat{\iota}_{\omega})^{1 - \sigma}} - f$$

Optimal choice of output quality: minimize $AC \Rightarrow AC = MC$

$$\mathsf{Q}^*_\omega = rac{\textit{C}(\mathsf{Q}_\omega, \hat{\iota}_\omega)}{\textit{MC}(\mathsf{Q}_\omega, \hat{\iota}_\omega)}$$

Simple case without imported inputs in home/foreign


$$\mathsf{Q}^*_{\omega} = \frac{C(\mathsf{Q}^*_{\omega})}{MC(\mathsf{Q}^*_{\omega})} \Leftrightarrow MC(\mathsf{Q}^*_{\omega}) = AC(\mathsf{Q}^*_{\omega})$$

(日)

- Higher output quality in foreign
- Due to flatter foreign input-cost profile

Average cost of output quality for optimal choice of import cutoff $\hat{\iota}_{\omega}$

High-quality producers gain most from access to imported inputs

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のの⊙

Result 1: Optimal Variety Quality

$$Q_{\omega}^{*} = A_{\omega} \sqrt{\frac{C_{f,\omega}(\hat{\iota}_{\omega}^{*})}{I(\hat{\iota}_{\omega}^{*})^{\frac{1+\rho}{1-\rho}}}}$$

where $C_{f,\omega}'(\hat{\iota}_\omega) < 0$ and $I'(\hat{\iota}_\omega) > 0$

Predictions:

 Firms that import relatively more inputs (lower cutoff
 *î*_ω) produce higher-quality output

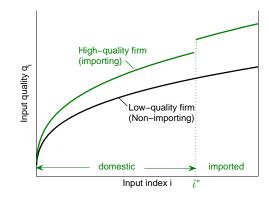
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のの⊙

 Thus: Importers produce higher-quality output than non-importers

Result 2: Quality of Domestic Inputs

$$q_{i\omega}^* = \left(rac{i}{b_H}
ight)^{rac{
ho}{1+
ho}} \sqrt{rac{C_{f,\omega}(\hat{\iota}_{\omega}^*)}{I(\hat{\iota}_{\omega}^*)}}$$

defined for inputs $i \leq \hat{\iota}^*_{\omega}$


recall: $C'_{f,\omega}(\hat{\iota}_{\omega}) < 0$ and $I'(\hat{\iota}_{\omega}) > 0$. Also: $\alpha_i = i$: quality sensitivity

Predictions:

- (Substitution effect): Importers purchase relatively fewer high-quality inputs domestically ⇒ demand for input quality (skills) ↓
- (Complementarity effect): For a given input *i*, importing firms use higher-quality domestic inputs than non-importers ⇒ demand for input quality (skills) ↑
 - More imports: $\hat{\iota}^*_{\omega} \downarrow \Rightarrow C_{f,\omega}(\hat{\iota}_{\omega}) \uparrow, I(\hat{\iota}^*_{\omega}) \downarrow \Rightarrow q^*_{i\omega} \uparrow$

Optimal Input Quality – Graphically

For a high-quality firm (a_{ω} high) and a low-quality firm (a_{ω} small)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mapping the Model to the Data

Three possibilities to perform task/input i:

- 1. Import task in the form of a physical input
 - observed at the detailed product level
- 2. Purchase physical input domestically
 - observed at the detailed product level
- 3. Hire domestic labor to perform the task
 - observe two main categories: blue-collar vs. white-collar workers
 - need to calculate average input quality (wages) for the two subsets

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のの⊙

Average Input Quality

Define the average input quality (skill level) of firm ω:

$$S_{\omega} = \frac{1}{\hat{\iota}_{\omega}^*} \int_0^{\hat{\iota}_{\omega}^*} q_{i\omega}^* di = \xi \cdot \left(\frac{\hat{\iota}_{\omega}^*}{b_H}\right)^{\frac{\rho}{1+\rho}} \cdot \sqrt{\frac{C_{f,\omega}(\hat{\iota}_{\omega}^*)}{I(\hat{\iota}_{\omega}^*)}}$$

 $\xi \equiv (
ho + 1)/(2
ho + 1)$. Recall: $C'_{f,\omega}(\hat{\iota}_{\omega}) < 0$ and $I'(\hat{\iota}_{\omega}) > 0$

More imported inputs: $\hat{\iota}^*_{\omega}$ smaller:

1. Skill substitution effect: High-quality imports substitute for skilled domestic labor $\Rightarrow S_{\omega} \downarrow$

2. Complementarity effect: $\sqrt{\cdot}$ term increases \Rightarrow S_{ω} \uparrow

Strong complementarity (ho
ightarrow 0): 2. effect dominates

Average Input Quality

Define the average input quality (skill level) of firm ω:

$$S_{\omega} = rac{1}{\hat{\iota}_{\omega}^{*}} \int_{0}^{\hat{\iota}_{\omega}^{*}} q_{i\omega}^{*} di = \xi \cdot \left(rac{\hat{\iota}_{\omega}^{*}}{b_{H}}
ight)^{rac{
ho}{1+
ho}} \cdot \sqrt{rac{C_{f,\omega}(\hat{\iota}_{\omega}^{*})}{I(\hat{\iota}_{\omega}^{*})}}$$

 $\xi \equiv (
ho + 1)/(2
ho + 1)$. Recall: $C'_{f,\omega}(\hat{\iota}_{\omega}) < 0$ and $I'(\hat{\iota}_{\omega}) > 0$

More imported inputs: $\hat{\iota}^*_{\omega}$ smaller:

- 1. Skill substitution effect: High-quality imports substitute for skilled domestic labor $\Rightarrow S_{\omega} \downarrow$
- 2. Complementarity effect: $\sqrt{\cdot}$ term increases \Rightarrow S_{ω} \uparrow

Strong complementarity ($\rho \rightarrow 0$): 2. effect dominates

Skilled Labor Share vs. Wages

Blue and White Collar Workers

- ► Assume that white collar workers typically perform more quality-sensitive tasks ⇒ high *i* tasks performed by white-collar workers
- ► *i* represents the extensive margin (worker categories)
- Imports replace white-collar workers (expect neg. corr. b/w imports and white-collar share) – when not controlling for import quality

Wages

- Assume that wages reflect the "quality" of workers within each category
- *q_i* represents the intensive margin (wages within given worker category)
- Corr. b/w imports and wages can be positive or negative, depending on how strong the complementarity effect is

・ロト・日本・日本・日本・日本

Skilled Labor Share vs. Wages

Blue and White Collar Workers

- ► Assume that white collar workers typically perform more quality-sensitive tasks ⇒ high *i* tasks performed by white-collar workers
- ► *i* represents the extensive margin (worker categories)
- Imports replace white-collar workers (expect neg. corr. b/w imports and white-collar share) – when not controlling for import quality

Wages

- Assume that wages reflect the "quality" of workers within each category
- *q_i* represents the intensive margin (wages within given worker category)
- Corr. b/w imports and wages can be positive or negative, depending on how strong the complementarity effect is

・ロト・日本・日本・日本・日本

Import Quality Indicator I: Import Price Index

1. Relative price of import *k* purchased by firm *i*:

$$heta_{ik} = \sum_{j=1}^{J} \omega_{ikj} \ln \left(\frac{P_{ikj}}{\overline{P}_{kj}} \right), \quad \text{where} \quad \omega_{ikj} \equiv \frac{V_{ikj}}{\hat{V}_{ik}}$$

where

- θ_{ik}: index for the quality (as proxied by prices) of import k used by firm i, relative to the quality of k used by all other firms in the sample
- *P*_{kj}: weighted average price of imports in HS-8 category k that are
 measured in unit j
- $\hat{V}_{ik} = \sum_{j=1}^{J} V_{ikj}$: total value of firm *i*'s imports of product category *k* (comprising all units of measurement *j*)

2. Relative price of all imports purchased by firm *i*:

$$\theta_i = \sum_{k=1}^{K} \frac{\hat{V}_{ik}}{\hat{V}_i} \; \theta_{ik}$$

Imports vs. Domestic Inpu

Back to tal

(日) (日) (日) (日) (日) (日) (日) (日)

Import Quality Indicator I: Import Price Index

1. Relative price of import *k* purchased by firm *i*:

$$heta_{ik} = \sum_{j=1}^{J} \omega_{ikj} \ln \left(\frac{P_{ikj}}{\overline{P}_{kj}} \right), \quad \text{where} \quad \omega_{ikj} \equiv \frac{V_{ikj}}{\hat{V}_{ik}}$$

where

- θ_{ik}: index for the quality (as proxied by prices) of import k used by firm i, relative to the quality of k used by all other firms in the sample
- *P*_{kj}: weighted average price of imports in HS-8 category k that are
 measured in unit j
- $\hat{V}_{ik} = \sum_{j=1}^{J} V_{ikj}$: total value of firm *i*'s imports of product category *k* (comprising all units of measurement *j*)
- 2. Relative price of all imports purchased by firm *i*:

$$\theta_i = \sum_{k=1}^{K} \frac{\hat{V}_{ik}}{\hat{V}_i} \; \theta_{ik}$$

Imports vs. Domestic Inputs

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のの⊙

Import Quality Indicator II: Import Skill Intensity

$$\sigma_{it} = \sum_{j=1}^{N} \mathbf{s}_{ijt} \mathbf{h}_{jt}^{w}$$

Where

- N: number of import categories (HS-6)
- s_{ijt}: share of import j in overall imports by firm i in year t
- h^w_{jt}: white-collar wage bill share in the production of product j in the U.S. in year t. Matched to U.S. SIC-4

Back to talk