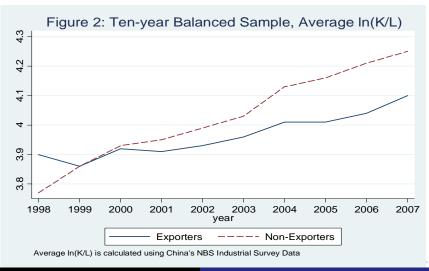
Overview	Firm-level Evidence	Model	Examining the Model	Appendix

Factor Intensity, Product Switching, and Productivity: Evidence from Chinese Exporters

Heiwai Tang (Tufts) Yue Ma, Yifan Zhang (Lingnan)

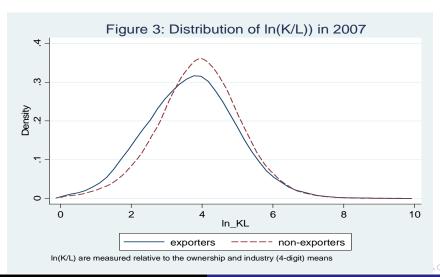
> AEA Meeting Jan 5, 2013

(4) (E) (b)


• Superior performance of exporters: larger, more capital-intensive, more skill-intensive, adopt better technology.

- Superior performance of exporters: larger, more capital-intensive, more skill-intensive, adopt better technology.
- We find that in China, a large labor-abundant country, exporters become more productive but less capital-intensive after exporting (within narrowly defined industries and productivity bins).
- The gap in capital intensity between exporters and non-exporters is widening over time (1998-2007).

(D) (A) (A) (A) (A)



Tang, Heiwai (Tufts) Factor Int

Factor Intensity, Product Switching, and Productivity

Overview 00000	Firm-level Evidence	Model 0000000	Examining the Model	Appendix 000000000
Distributio	on of Capital In	tensitv		

Overview ○○○●○○	Firm-level Evidence	Model 0000000	Examining the Model	Appendix 000000000
What do v	ve do?			

• Provide "mirror-image" evidence to Bernard, Jensen, and Schott (2006): US firms more exposed to import competition from low-wage countries; more likely to switch industry and become more capital-intensive. industries.

向下 イヨト イヨト

Overview 000000	Firm-level Evidence	Model	Examining the Model	Appendix 000000000
What do v	we do?			

- Provide "mirror-image" evidence to Bernard, Jensen, and Schott (2006): US firms more exposed to import competition from low-wage countries; more likely to switch industry and become more capital-intensive. industries.
- Develop a variant of Bernard, Redding, and Schott (2010; 2011): consider firms producing multiple products of different capital intensity.
- Upon exporting, a firm in a labor-abundant country adds or expands sales of L-intensive products (core competencies) and reduce sales of K-intensive products. (Heckscher-Ohlin forces within firms)

- 4 同 6 4 日 6 4 日 6

Overview ○○○●○○	Firm-level Evidence	Model	Examining the Model	Appendix 000000000
What do v	ve do?			

- Provide "mirror-image" evidence to Bernard, Jensen, and Schott (2006): US firms more exposed to import competition from low-wage countries; more likely to switch industry and become more capital-intensive. industries.
- Develop a variant of Bernard, Redding, and Schott (2010; 2011): consider firms producing multiple products of different capital intensity.
- Upon exporting, a firm in a labor-abundant country adds or expands sales of L-intensive products (core competencies) and reduce sales of K-intensive products. (Heckscher-Ohlin forces within firms)
- Use transactions-level data to examine the predictions.

- 4 同 6 4 日 6 4 日 6

- Recent literature on core competencies: upon exporting, firms seek opportunities to specialize in their best-performing (core) products
 - Feenstra and Ma (08); Nocke and Yeaple (08); Eckel and Neary (10); Bernard, Redding, and Schott (10-11); Arkolakis and Muendler (11); Melitz, Mayer, and Ottaviano (12); Manova and Zhang (12).
- Little effort to establish an empirical link between within-firm specialization patterns to firm productivity.

イロト イポト イヨト イヨト

- Recent literature on core competencies: upon exporting, firms seek opportunities to specialize in their best-performing (core) products
 - Feenstra and Ma (08); Nocke and Yeaple (08); Eckel and Neary (10); Bernard, Redding, and Schott (10-11); Arkolakis and Muendler (11); Melitz, Mayer, and Ottaviano (12); Manova and Zhang (12).
- Little effort to establish an empirical link between within-firm specialization patterns to firm productivity.
- 2 additional results:
 - Firm ex ante productivity : a smaller decline in capital intensity after exporting.
 - A sharper post-exporting decline in capital intensity: a larger increase in measured total factor productivity.

イロト イポト イヨト イヨト

Overview ○○○○○●	Firm-level Evidence	Model 0000000	Examining the Model	Appendix 000000000
Literature	Review			

Exporting firms are superior

• Bernard and Jensen (99); Van Biesebroeck (05); Bernard, Jensen, and Schott (06); De Loecker (07); Bustos (11); Harrigan and Reshef (11).

Self-selection

- Bernard, Eaton, Jensen, and Kortum (03); Melitz (03).
- Clerides, Lach, and Tybout (98); Bernard and Jensen (99); Aw, Chung, and Roberts (00); Delgado, Farinas, and Ruano (02).

Learning by Exporting

• Wagner (02); Girma, Greenway, and Kneller (03); Alvarez and Lopez (05); Van Biesebroeck (05); De Loecker (07); Lileeva and Trefler (10) ...

イロン 不同と 不同と 不同と

Overview 000000	Firm-level Evidence ●○○○○	Model	Examining the Model	Appendix 000000000
Firm-level	Data			

- Annual surveys of industrial firms from China's National Bureau of Statistics (NBS) over 1998-2007.
- All state-owned enterprises (SOEs) + all non-SOE with sales over 5 million yuan.
- Account for 94% of total industrial value added in 2007.
- Basic data cleaning procedures (e.g. drop all firms with fewer than 8 employees, winsorize (e.g. Verhoogen, 2008))
- 17% of firms in the raw data set are dropped from the sample in 1998, but this fraction drops to 6% in each year after 2001.
- 148,685 firms in 1998 to 313,048 in 2007.

向下 イヨト イヨト

- 3 measures of capital intensity ln(K/L)
 - Use the perpetual inventory method (Brandt, et al., 2011) to measure real capital stock, then divide it by the firm's employment.
 - Offlated Net value of fixed asset/ employment.
 - (1) (1)/ firm wage bill.
- Revenue TFP are estimated using Levinsohn and Petrin (2003) method. Different production functions for exporters and non-exporters.
 - Results are robust to using the standard approach (e.g., Van Biesbroeck, 2005; De Loecker, 2007).

Overview	Firm-level Evidence	Model	Examining the Model	Appendix
000000	○○●○○	0000000		000000000
Exporte	rs are less capita			

Sample	All Firms	Domestic	Foreign	All firms			
Panel A: Dependent v	/ariable ln(K/	L)					
Exporter	-0.062***	-0.072***	-0.031***	-0.054***			
·							
N	1,976,637	1,555,076	421,561	1,976,637			
Panel B: Dependent v	variable In(K/	wL)					
	· · · · · · · · · · · · · · · · · · ·						
Exporter	-0.143***	-0.175***	-0.078***	-0.116***			
	0.1.10	0.110	0.010	0.110			
Ν	1,974,962	1.554.766	421.463	1.976.637			
	1,51 1,502	2,00 1,1 00	122,100	2,510,001			
Year FE	Yes	Yes	Yes	Yes			
Industry (4-digit) FE	Yes	Yes	Yes	No			
Ownership FE	Yes	No	No	No			
Firm FE	No	No	No	Yes			

Notes: 4-digit industry classification contains 480 industries. *, **, and *** indicate significance at the 10%, 5%, and 1% levels,

respectively. Numbers in brackets are p-values corrected for industry-ownership clustering.

Overview 000000	Firm-level Evidence ○○○●○	Model	Examining the Model	Appendix 000000000
Capital	Intensity Gap by	Rins		

$ riangle \ln({\cal K}/L)_{\sf new} - riangle \ln({\cal K}/L)_{\sf non-exp}$						
	In(TFP) quartiles before exporting					
	1 2 3 4					
	1	-0.033***	-0.031***	-0.018**	-0.002*	
$\ln({\rm K}/L)$ qt before exp	2	-0.045***	-0.039***	-0.026***	-0.019**	
	3	-0.051***	-0.043***	-0.038***	-0.039***	
	4	-0.063***	-0.061***	-0.055***	-0.051***	

This table reports the difference of capital intensity growth between new exporters and non-exporters within each bin. In Panel A, bins are defined by ln(TFP) and ln(K/L) quartiles. In Panel B, bins are defined by ln(TFP), ln(K/L) and ln(sales). We calculate these bins industry by industry to ensure each bin covers all industries. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

<ロ> (四) (四) (三) (三) (三) (三)

Overview 000000	Firm-level Evidence ○○○○●	Model 0000000	Examining the Model	Appendix
Capital	Intensity Gap by	Bins - Pro	pensity-scored N	Natched

$ riangle \ln(K/L)_{\sf new} - riangle \ln(K/L)_{\sf non-exp}$				
		(1)	(2)	(3)
K/L Group	TFP Group	All Firms	Domestic	Foreign
	All	-0.051***	-0.054***	-0.042***
	NO	-0.046***	-0.049***	-0.036***
ŇO	Ľ	-0.048***	-0.048***	-0.037***
-	Ŧ	-0.029** -0.032**	-0.031** -0.041**	-0.029 -0.027
_	NO	-0.064***	-0.067***	-0.061***
High	Ľ	-0.061***	-0.066***	-0.053***
	Ξ	-0.063***	-0.068***	-0.051***
	-	-0.059***	-0.062***	-0.61***

This table reports the estimation results of the impact of exporting on ln(K/L) for new exporters, using DID propensity score matching method. The matching is conducted within each bin. These bins (bin1 to bin 8) are illustrated in Panel B of Table 2. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. \blacktriangleright Matching equations \blacklozenge Decision to start exporting

More Results on TFP → More Results on In(K/L)

Tang, Heiwai (Tufts)

Factor Intensity, Product Switching, and Productivity

< E.

Overview 000000	Firm-level Evidence	Model ●○○○○○○	Examining the Model	Appendix 000000000
Preference	2S			

- Based on Bernard, Redding, and Schott (2010, 2011).
- Country j has a mass of L_j consumers with identical preferences; each endowed with K_j/L_i amount of capital
- Consumers consume a continuum of products, and derive utility $U = \left[\int_0^1 C_s^{\nu} ds\right]^{\frac{1}{\nu}}$;elasticity of subst. $= \kappa = \frac{1}{1-\nu} > 1$.

Overview 000000	Firm-level Evidence	Model ●○○○○○○	Examining the Model	Appendix 000000000
Preference	s			

- Based on Bernard, Redding, and Schott (2010, 2011).
- Country j has a mass of L_j consumers with identical preferences; each endowed with $\frac{K_j}{L_i}$ amount of capital
- Consumers consume a continuum of products, and derive utility $U = \left[\int_0^1 C_s^{\nu} ds\right]^{\frac{1}{\nu}}$;elasticity of subst. $= \kappa = \frac{1}{1-\nu} > 1$.
- Within each product, firms produce horizontally differentiated varieties.

$$\mathcal{C}_{s} = \left[\int_{\omega \in \Omega_{s}} \left(\lambda_{s} \left(\omega \right) c_{s} \left(\omega \right) \right)^{\rho} d\omega
ight]^{rac{1}{
ho}}$$
, $0 <
ho < 1$,

where elasticity of subst $\sigma = \frac{1}{1-\rho} > \kappa > 1$.

Overview 000000	Firm-level Evidence	Model ○●○○○○○	Examining the Model	Appendix 000000000
Technolog	у			

• Two factors of production – capital and labor; a firm's cost function:

$$TC_s = \left[f_s + \frac{q_s}{\varphi}\right] w^{1-\beta(s)} r^{\beta(s)},$$

where w and r are the wage rate and the rental rate, respectively; $\beta\left(0\right)=$ 0, $\beta\left(1\right)=$ 1, and $\beta'\left(s\right)>$ 0.

• Firm profit is determined by productivity and market-specific fixed cost:

$$\pi_{j}\left(\varphi\right) = \int_{0}^{1} \left[\int_{\lambda_{s}^{*}\left(\varphi\right)}^{\infty} \pi_{sj}\left(\varphi,\lambda_{s}\right)g\left(\lambda_{s}\right)d\lambda_{s}\right]ds - f_{j}$$

向下 イヨト イヨト

Overview 000000	Firm-level Evidence	Model ○○●○○○○	Examining the Model	Appendix 000000000
Product C	utoffs			

• Zero profit condition for selling a product

$$\pi_{s}\left(\varphi,\lambda_{s}^{*}\left(\varphi\right)\right) = \frac{R_{s}}{\sigma}\left(\rho P\left(s\right)\varphi\lambda_{s}^{*}\left(\varphi\right)\right)^{\sigma-1} - f_{s}w^{1-\beta\left(s\right)}r^{\beta\left(s\right)} = 0$$

• Product cutoff for domestic sales

$$\lambda_{s}^{*}\left(\varphi\right) \propto \frac{P\left(s\right)^{-\gamma}}{\varphi} \left(\frac{f_{s}\widehat{P}}{R} w^{1-\beta\left(s\right)} r^{\beta\left(s\right)}\right)^{\frac{1}{\sigma-1}},$$

where γ is a parameter in terms of elasticities of subst.

• Product cutoff for foreign sales

$$\lambda_{sj}^{*}(\varphi) \propto \frac{\tau_{j} P_{j}(s)^{-\gamma}}{\varphi} \left(\frac{f_{sj} \widehat{P}_{j}}{R_{j}} w^{1-\beta(s)} r^{\beta(s)} \right)^{\frac{1}{\sigma-1}}$$

Overview 000000	Firm-level Evidence	Model ○○○●○○○	Examining the Model	Appendix 000000000
Product	Cutoffs			

٩

 $\lambda_{sj}^{*}\left(\varphi\right)=\Phi_{j}\left(s\right)\lambda_{s}^{*}\left(\varphi\right)$

$$\Phi_{j}\left(s\right) = \tau_{j}\left(\frac{f_{sj}}{f_{s}}\frac{\widehat{P}_{j}}{\widehat{P}}\frac{R}{R_{j}}\right)^{\frac{1}{\sigma-1}}\left(\frac{P_{j}\left(s\right)}{P\left(s\right)}\right)^{-\gamma}$$

If country j is more capital-abundant than China, ^{P_j(s)}/_{P(s)} is decreasing in s. Φ'_j(s) > 0.

• Lu (2011).

Overview 000000	Firm-level Evidence	Model ○○○○●○○	Examining the Model	Appendix 000000000
Impact of	exporting on c	apital inter	nsity	

- Product s's capital intensity: $\theta_s = \frac{rk_s}{rk_s + wl_s}$
- Capital intensity of the domestic and export baskets:

$$\Theta_{d}\left(\varphi\right) = \int_{0}^{1} \frac{R_{s}\left(\varphi,\lambda_{s}\right)}{R\left(\varphi\right)} \theta_{s} I_{s}\left(\lambda_{s} \geq \lambda_{s}^{*}\left(\varphi\right)\right) ds,$$

$$\Theta_{j}\left(\varphi\right) = \int_{0}^{1} \frac{R_{sj}\left(\varphi,\lambda_{s}\right)}{R_{j}\left(\varphi\right)} \theta_{s} I_{s}\left(\lambda_{s} \geq \Phi_{j}\left(s\right)\lambda_{s}^{*}\left(\varphi\right)\right) ds,$$

• After exporting, a firm's capital intensity:

$$\Theta_{d+j}\left(\varphi\right) = \left(1 - \frac{R_{j}\left(\varphi\right)}{R\left(\varphi\right) + R_{j}\left(\varphi\right)}\right) \Theta_{d}\left(\varphi\right) + \frac{R_{j}\left(\varphi\right)}{R\left(\varphi\right) + R_{j}\left(\varphi\right)} \Theta_{j}\left(\varphi\right)$$

• Since $\Phi_{j}'(s) > 0$, $\Theta_{j}(\varphi) < \Theta_{d}(\varphi)$

Overview	Firm-level Evidence	Model	Examining the Model	Appendix
		0000000		
Predicti	onc			

Hypothesis

A firm's overall capital intensity $\Theta_{d+j}(\varphi)$ after exporting to a capital-abundant country satisfies the following inequality:

$$\Theta_{j,t+1}\left(arphi
ight)<\Theta_{t+1}\left(arphi
ight)<\Theta_{d,t+1}\left(arphi
ight)=\Theta_{t}\left(arphi
ight)$$
 ,

where $\Theta_d(\varphi)$ and $\Theta_j(\varphi)$ are the capital intensities of the domestic and foreign baskets of products after exporting.

Overview 000000	Firm-level Evidence	Model ○○○○○○●	Examining the Model	Appendix 000000000
Prediction	S			

Hypothesis

An ex-ante more productive firm experiences a smaller decline in capital intensity $\Theta_{d+i}(\varphi)$ after exporting. Formally,

$$\frac{\Theta_{d+j}\left(\varphi\right)}{\Theta_{d}\left(\varphi\right)} < \frac{\Theta_{d+j}\left(\varphi'\right)}{\Theta_{d}\left(\varphi'\right)} < 1 \quad \text{if } \varphi' > \varphi.$$

- ∢ ⊒ →

Overview 000000	Firm-level Evidence	Model	Examining the Model	Appendix 000000000
D .			and the second second	

Determinants of the Change in Capital Intensity

Dep. Var.: $\triangle \ln(K/L)_{\text{non-exp}} - \triangle \ln(K/L)_{\text{new}}$						
	All New Exporters	Domestic New Exporters only	Foreign New Exporters only			
$ln(TFP)_{t-1}$	-0.096	-0.132	0.021			
	[0.006]***	[0.007]***	[0.011]***			
$ln(K/L)_{t-1}$	0.298	0.345	0.276			
· · ·	[0.000]***	[0.000]***	[0.000]***			
$ln(wagerate)_{t-1}$	-0.188	-0.193	-0.198			
	[0.000]***	[0.000]***	[0.024]**			
$ln(age)_{t-1}$	-0.029	-0.035	-0.027			
	[0.008]***	[0.009]***	[0.012]**			
Ownership FE	Yes	No	No			
Industry FE	Yes	Yes	Yes			
Province FE	Yes	Yes	Yes			
N	49,742	33,409	16,333			

All regressors are lagged by one year. Only new exporters are included in the regressions. P-values based on standard errors clustered at the four-digit industry are reported in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. Exporters and their matched non-exporters are matched using the DID propensity score matching techniques which is conducted within their own bins.

イロン イヨン イヨン イヨン

Overview	Firm-level Evidence	Model	Examining the Model ○●○○○○○	Appendix

Product Churning Effects on Measured Productivity

• Product-specific productivity, $\mu_{s} = R(\varphi, \lambda_{s}) / x_{s}(\varphi, \lambda_{s})$:

Domestic:
$$\mu_{s} = \frac{w^{1-\beta(s)}r^{\beta(s)}}{\rho} \left(1 - \frac{f_{s}}{x_{s}\left(\varphi, \lambda_{s}\right)}\right);$$

Exports:
$$\mu_{sj} = \frac{\tau_{j}w^{1-\beta(s)}r^{\beta(s)}}{\rho} \left(1 - \frac{f_{sj}}{x_{sj}\left(\varphi, \lambda_{s}\right)}\right)$$

•
$$\mu_{sj} > \mu_s$$
 if $\frac{f_{sj}}{f_s} < \left(\frac{P_j(s)}{P(s)}\right)^{\gamma} \Psi_j$ and $\tau_j = 1$ (for simplicity)

• The estimated revenue-based productivity of an exporter:

$$\widehat{TFP}_{j}(\varphi) = \int_{0}^{1} \mu_{s} \frac{R_{s}(\varphi, \lambda_{s})}{R(\varphi) + R_{j}(\varphi)} ds + \int_{0}^{1} \mu_{sj} \frac{R_{sj}(\varphi, \lambda_{s})}{R(\varphi) + R_{j}(\varphi)} ds$$

向下 イヨト イヨト

Overview	Firm-level Evidence	Model	Examining the Model	Appendix
			000000	

Product Churning Effects on TFP

Dep. \	/ar.: $\triangle \ln(TFP)_{new} - \Delta$	$\ln(TFP)_{non-ex}$	кр
	All New Exporters	Domestic	Foreign
$\triangle \ln(L/K)_{t-1}$	0.049	0.055	0.022
	[0.000]***	[0.005]***	[0.022]***
$ln(TFP)_{t-1}$	0.121	0.135	0.119
	[0.000]***	[0.000]***	[0.000]***
$ln(wagerate)_{t-1}$	0.087	0.093	0.076
	[0.000]***	[0.002]***	[0.002]***
$ln(age)_{t-1}$	-0.076	-0.086	-0.078
	[0.009]***	[0.013]**	[0.037]**
Industry FE	Yes	Yes	Yes
Ownership FE	Yes	No	No
Province FE	Yes	Yes	Yes
N	50,019	33,637	16,382

All regressors are lagged by one year, besides labor intensity increase, which is defined as the first difference in labor intensity from year t-1 to t. Only new exporters are included in the regressions. P-values, based on standard errors clustered at the four-digit industry level, are reported in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

イロン イボン イヨン イヨン 三日

Overview 000000	Firm-level Evidence	Model	Examining the Model	Appendix
Transact	tion-level Trade	Data		

- Transaction-level (firm-product-country-year) trade data that cover the universe of Chinese exporters and importers (2000-2006).
- Information on import, export values, and quantities from China to 200 destination countries at the HS 6-digit level.
- We merge the NBS data with the transaction-level trade data based on firm names and contact information (phone number, area code).
- 70% of export value recorded in NBS is merged.

向下 イヨト イヨト

Overview 000000	Firm-level Evidence	Model 0000000	Examining the Model	Appendix 000000000
Product C	hurning			

	Nb. of	Nb. survived	Avg nb. products (HS6)	Avg nb. products	Avg nb. of
	new exporters	next year	added next year	dropped	continuing products
2001	15,928	13,187	10.17	4.28	4.85
2002	21,383	18,410	9.56	4.46	5.34
2003	27,107	22,941	10.02	5.58	5.48
2004	37,646	31,583	10.22	6.56	5.13
2005	40,024	33,552	9.29	7.92	4.97
2006	46,400				

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Overview 000000	Firm-level Evidence	Model 0000000	Examining the Model	Appendix 000000000
				1

Capital Intensity of New Products and Dropped Products

$\ln(K/L)_{ik} = \alpha + \beta * new_product_{ik} + \delta * dropped_product_{ik} + e_i$

Dependent Variable = $ln(K/L)$ at firm-product cell						
	(1)	(2)	(3)	(4)	(5)	(6)
	All New Exporters	Intermediaries Excl.	Non-processing	Processing	K-Abundant Dest	K-Scarce
New	-0.048	-0.049	-0.050	-0.045	-0.050	-0.043
	[0.000]***	[0.000]***	[0.000]***	[0.000]***	[0.000]***	[0.000]***
D. I	0.023	0.021	0.024	0.013	0.022	0.023
Dropped	[0.000]***	[0.000]***	[0.000]***	[0.005]***	[0.000]***	[0.002]***
Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
N	326,784	281,035	252,887	73,897	213,272	42,987

This table reports the results of regressions of capital intensity on the new product portfolio dummy and the dropped product portfolio dummy. The omitted group is the continuing product portfolio. The classification of capital abundance is based on Antweiler and Trefler (2002). P-values, based on robust standard errors, are reported in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Overview	Firm-level Evidence	Model	Examining the Model	Appendix
000000		0000000	○○○○○○●	000000000
Concludin	g Remarks			

- Within a narrow industry, firms become less capital-intensive after exporting, relative to the matched non-exporters. The gap is widening over time.
- Chinese exporters add new products that are more labor-intensive and drop those that are less.
- Ex-ante more productive firms experience a smaller decline in capital intensity.
- Specialization in labor-intensive products contributes to higher measured TFP.
- Research direction: Product churning and TFP estimation

向下 イヨト イヨト

Overview 000000	Firm-level Evidence	Model	Examining the Model	Appendix • • • • • • • • • • • • • • • • • • •
Export Sta	atus			

- Non-exporters: firms that never exported up to and including the reporting year.
- New exporters : firms that did not export in the previous years but started exporting in the year of analysis.
- Existing exporters : firms that have export records in previous years, or firms that start exporting already in their first year of entry.
- New exporters' pre-export characteristics are used to match similar non-exporters.

Overview 000000	Firm-level Evidence	Model	Examining the Model	Appendix ••••••••
-				

Exporters are more productive

Dependent variable = ln(TFP)

•	· · · · · · · · · · · · · · · · · · ·	· ·		
Sample	All Firms	Private	Foreign	All
Exporter	0.087	0.095	0.003	0.124
	[0.000]***	[0.000]***	[0.439]	[0.000]**
Year FE	Yes	Yes	Yes	Yes
Tear FE	res	res	res	res
Industry FE	Yes	Yes	Yes	No
Ownership FE	Yes	No	No	No
Firm FE	No	No	No	Yes
N	1,916,347	1,495,115	421,232	1,916,347

Notes: 4-digit industry classification contains 480 industries. *, **, and *** indicate significance at the 10%, 5%, and 1% levels,

respectively. Numbers in brackets are p-values corrected for industry-ownership clustering.

(日) (回) (E) (E) (E)

Overview	Firm-level Evidence	Model	Examining the Model	Appendix
				00000000

Dependent variable = New-exporter indicator

Decision to start exporting

Probit estimation					
	Domestic firms	Foreign firms			
$ln(TFP)_{t-1}$	0.113	0.002			
	[0.000]***	[0.314]			
$ln(wage)_{t-1}$	0.030	0.008			
	[0.000]***	[0.298]			
$\ln(K/L)_{t-1}$	-0.038	-0.031			
	[0.000]***	[0.000]***			
Age_{t-1}	-0.059	-0.119			
	[0.000]***	[0.000]***			
$ln(Sales)_{t-1}$	0.113	0.101			
	[0.000]***	[0.001]***			
Industry FE	Yes	Yes			
Provincial FE	Yes	Yes			
Year FE	Yes	Yes			
Pseudo R-squared	0.103	0.099			
Log pseudo-likelihood	-98,745.12	-23,457.83			
Observations	1,216,415	150,328			

Notes: The dependent variable is an indicator of a firm's first year of exporting. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. All regressions include a full set of industry and provincial dummies. P-values based on standard error clustered at the industry-province level are in brackets.

Tang, Heiwai (Tufts)

Factor Intensity, Product Switching, and Productivity

• Using matching estimators to evaluate the average (exporting) treatment effect on the treated (ATT):

$$\begin{aligned} ATT &= E\left[Y_i^1 - Y_i^0 | Start_i = 1\right] \\ &= E\left[Y_i^1 | Start_i = 1\right] - E_{Z|Start_i = 1}\left\{E\left[Y_i^0 | Start_i = 0, Z\right]\right\}, \end{aligned}$$

where Y_i is firm *i*'s TFP or capital intensity. Matching variables (*Z*) include all regressors in the previous Probit estimation.

• Among many matching estimators, use differnece-in-difference estimator by Heckman, Ichimura, and Todd (1997, 1998)

イロト イポト イヨト イヨト

Overview 000000	Firm-level Evidence	Model 0000000	Examining the Model	Appendix
More Mat	ching Estimatic	on Results	on TFP	

Dependent	Dependent variable = $ln(TFP)$					
All New Exporters	Domestic Private	e Foreign				
Local Linear I	Regression Matchir	ng				
0.000	0.071	0.000				
0.069	0.071	0.062				
[0.004]***	[0.006]***	[0.084]*				
Nearest No	eighbor Matching					
0.054	0.056	0.051				
[0.002]***	[0.010]***	[0.011]**				
1 1		· · · ·				

Notes: In(TFP) is estimated using LP (2003) method. P-values are reported in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

・ロン ・回 と ・ヨン ・ヨン

3

Overview 000000	Firm-level Evidence	Model 0000000	Examining the Model	Appendix
More Mat	ching Results on	Capital I	ntensity	

Dependent variable = $ln(K/L)$							
All New Exporters	Domestic New Exp.	Foreign New Exp.	All New Exp.;In(K/wL)				
Local Linear Regression Matching							
-0.048 [0.015]**	-0.047 [0.028]**	-0.042 [0.037]**	-0.081 [0.007]***				
	Nearest Neigh	bor Matching					
-0.062 [0.016]**	-0.075 [0.020]**	-0.040 [0.025]**	-0.103 [0.014]**				

Notes: Capital stock is measured by the perpetual inventory method. P-values are reported in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

・ロト ・回ト ・ヨト ・ヨト

æ

Overview 000000	Firm-level Evidence	Model 0000000	Examining the Model	Appendix 000000000

Over-time Relative Change in Exporters' Capital Intensity: DID Matching Estimation

Over-time Effects on Capital Intensity

							•		
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9
1999	-0.086	-0.132	-0.149	-0.171	-0.178	-0.182	-0.185	-0.186	-0.184
	[0.054]*	[0.028]**	[0.034]**	[0.041]**	[0.048]**	[0.052]*	[0.047]**	[0.064]*	[0.069]*
2000	-0.054	-0.085	-0.105	-0.123	-0.133	-0.140	-0.143	-0.147	
	[0.049]*	[0.027]**	[0.029]**	[0.034]**	[0.043]**	[0.045]**	[0.054]*	[0.059]*	
2001	-0.053	-0.102	-0.124	-0.141	-0.149	-0.155	-0.157		
	[0.021]**	[0.019]**	[0.033]**	[0.037]**	[0.049]**	[0.051]*	[0.058]*		
2002	-0.014	-0.062	-0.075	-0.081	-0.090	-0.096			
	[0.352]	[0.041]**	[0.034]**	[0.046]**	[0.052]*	[0.063]*			
2003	-0.054	-0.085	-0.097	-0.107	-0.116				
	[0.019]**	[0.022]**	[0.025]**	[0.034]**	[0.037]**				
2004	-0.077	-0.090	-0.105	-0.113					
	[0.023]**	[0.031]**	[0.036]**	[0.037]**					
2005	-0.052	-0.086	-0.101						
	[0.032]**	[0.027]**	[0.036]**						
2006	-0.063	-0.091							
	[0.009]***	[0.011]**							
2007	-0.074								
	[0.005]**								
Pooled	-0.062	-0.092	-0.108	-0.122	-0.133	-0.143	-0.159	-0.167	-0.184
	[0.019]**	[0.021]**	[0.027]**	[0.28]**	[0.031]**	[0.034]**	[0.041]**	[0.045]**	[0.069]*

Notes: Firms are matched using the propensity score matching estimation. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. P-values based on bootstrapped standard errors are reported in brackets. "Marginal change" refers to the change of ln(K/L) estimated from balanced sample.

Tang, Heiwai (Tufts)

Factor Intensity, Product Switching, and Productivity

イロン イ部ン イヨン イヨン 三日

Overview	Firm-level Eviden	ice	Model 0000000	Examining the Model	Appendix
		- ·	A 1		

Example: Footware, Gaiters, & the like

55 HS6

640110	Waterproof footwear incorporating a protective metal toe-cap
640191	Waterproof footwear covering the knee
640192	Waterproof footwear covering the ankle but not the knee
640199	Waterproof footwear (not covering the ankle)
640212	Ski-boots & cross-country ski footwear of rubber or plastics
640219	Sport footwear, nes, of rubber or plastics
640220	Footwear with thongs plugged into soles, of rubber or plastics
640230	Footwear, with metal toe-cap, of rubber or plastics
640312	Ski-boots, etc, with rubber/plastics/leather soles, leather uppers
640319	Sports footwear, with rubber/plastics/leather.soles, leather uppers
640320	Sandles, with leather soles & straps (over instep, around big toe)
640330	Footwear with a wood base, no inner soles or caps, leather uppers
640340	Footwear, with a metal toe-cap, leather uppers
640351	Footwear with leather soles & uppers, covering the ankle
640359	Footwear with leather soles & uppers, not covering the ankle
640420	Footwear with leather or composition leather soles & textile uppers
640510	Footwear, nes, with leather or composition leather uppers
640520	Footwear, nes, with textile uppers
more	

Overview	Firm-level Evidence	Model	Examining the Model	Appendix
				00000000

Capital Intensities Across Products

			In(K/L)	
Sector	HS 2-digit	Nb. of HS 6-digits	Mean	Std. Dev
Animals & Animal Products	01-05	174	70.9	56.9
Vegetable Products	06-14	254	71.8	61.1
Animal Or Vegetable Fats	15	35	64.9	63.3
Prepared Foodstuffs	16-24	173	94.6	69.0
Mineral Products	25-27	134	90.1	70.9
Chemical Products	28-38	764	111.6	66.5
Plastics & Rubber	39-40	198	79.6	65.2
Hides & Skins	41-43	62	45.5	47.0
Wood & Wood Products	44-46	75	62.3	56.5
Wood Pulp Products	47-49	147	93.7	66.8
Textiles & Textile Articles	50-63	818	68.1	54.9
Footwear, Headgear	64-67	55	27.8	43.0
Articles Of Stone, Plaster, Cement, Asbestos	68-70	147	72.2	64.9
Pearls, Precious Or Semi-Precious Stones, Metals	71	41	32.1	59.5
Base Metals & Articles Thereof	72-83	563	93.9	63.5
Machinery & Mechanical Appliances	84-85	792	99.2	63.9
Transportation Equipment	86-89	121	107.2	66.8
Instruments - Measuring, Musical	90-92	235	99.6	62.8
Arms & Ammunition	93	10	152.4	69.9
Miscellaneous	94-96	130	47.8	51.5
Works Of Art	97-99	9	30.7	53.2

Tang, Heiwai (Tufts) Factor Intensity, Product Switching, and Productivity

イロト イヨト イヨト イヨト

æ