
Techies and Firm Level Productivity ∗

James Harrigan† Ariell Reshef‡ Farid Toubal§

April 21, 2025

Abstract

We study the impact of techies—engineers and other technically trained workers—on
firm-level productivity. We first report new facts on the role of techies in the firm
using French administrative data. Techies are STEM-skill intensive and are associ-
ated with innovation, as well as with technology adoption, management, and diffu-
sion within firms. Using structural econometric methods, we then estimate the causal
effect of techies on firm-level Hicks-neutral productivity in both manufacturing and
non-manufacturing industries. We find that techies raise firm-level productivity, and
this effect goes beyond the employment of R&D workers, extending to ICT and other
techies. In non-manufacturing firms, the impact of techies on productivity operates
mostly through ICT and other techies, not R&D workers.
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1 Introduction

Technically trained workers—engineers, ICT specialists, and other technology-related staff,

who we will call techies—are thought to play a central role in shaping productivity. Their

importance is implicit in modern growth theory, where the accumulation and application of

technical knowledge is the key engine of long-run growth (Romer, 1990). Allocation of more

talent to technical occupations is also associated with faster development outcomes (Murphy

et al., 1991). Historical studies echo this insight, showing that the availability of technical

skills shaped the timing and diffusion of major growth episodes.1 Despite the prominent

perceived role of techies in productivity-enhancing activities, evidence at the firm level is

limited. This paper aims to help fill this gap.

We estimate the contribution of techies to firm-level productivity using matched survey

and administrative data from France. Our analysis shows that techies increase firm-level

productivity, and that this effect is not limited to techies that are engaged in research

and development (R&D). Techies working with information and communication technologies

(ICT) and other technology-related functions also contribute significantly. Their effects are

pervasive, extending beyond manufacturing to non-manufacturing industries.

We identify techie workers by using the French occupational classification. INSEE (2003)

distinguishes techies from other occupations: their tasks are characterized by the installation,

management, maintenance, and support of ICT, product and process design, R&D activities,

as well as other technology-related tasks. In line with this, we show that techies differ from

other workers by their STEM qualifications, skill profiles, and experience. Survey data also
1For example, Kelly et al. (2014) and Ben Zeev et al. (2017) emphasize the role of the apprentice system

in supplying the skills necessary for technology adoption during the British Industrial Revolution. Kelly
et al. (2023) show that industrialization began in areas with abundant technically trained mechanics, while
Hanlon (2022) highlights the emergence of ‘professional’ engineers. Maloney and Valencia Caicedo (2017)
document spatial patterns in engineer intensity across the Americas in the 19th century and relate them to
long-run income. An early discussion of techie labor markets appears in Blank and Stigler (1957).
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show that techies are strongly associated with innovation efforts and outcomes (e.g., patents),

and are involved in adopting and diffusing technology within firms.

Techies are not homogeneous. We classify them into three groups based on the precise

tasks they perform: R&D, ICT, and Other technical occupations. This classification allows

us to estimate their distinct contributions to firm-level productivity. While R&D techies

are concentrated in manufacturing, ICT techies are more prevalent in non-manufacturing.

Therefore, focusing only on R&D techies or only on manufacturing understates the broader

role of techies in the economy.

To quantify the contribution of techies to productivity, we construct an unbalanced panel

of French firms from 2011 to 2019, merging administrative records on revenues, capital,

materials, and detailed occupational labor input (hours). We estimate structural models of

firm-level Hicks-neutral total factor productivity (TFP), where firm-level productivity is a

function of lagged expenditure on techies. This methodology enables identification of the

causal impact of techies on firm-level productivity.

Our identification strategy relies on two assumptions. First, techies affect firm produc-

tivity with a lag. Second, they do not contribute directly to current output. We employ

different production function estimators that deal with identification challenges in different

ways, while maintaining this approach. This is analogous to how investment or R&D ex-

penditure is modeled in the productivity literature. We implement this approach across a

range of specifications, including flexible nonlinear productivity processes and alternative

classifications of techies. We also control for exporting status throughout, as exporting is

known to correlate with firm productivity (De Loecker, 2013; Barrows et al., 2023). We also

show in Section 6.3 that our findings are not sensitive to the inclusion of managers as an

additional determinant of firm-level productivity (Bloom et al., 2017).

We find that firms that employ techies experience a substantial increase in future pro-

ductivity: 4–5 percent higher productivity one year later, and a cumulative long-run effect

exceeding 45 percent. While R&D techies drive this pattern in manufacturing, as in Do-
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raszelski and Jaumandreu (2013), ICT and other techies also contribute meaningfully. In

non-manufacturing, only ICT and other techies enhance productivity, while R&D techies

have no significant effect. Disaggregating techies into engineers and technicians, we show

that both increase productivity across sectors, with larger effects for engineers.

Our assumption that techies do not affect current output but do affect future productiv-

ity is key to our research design. We examine the validity of this assumption. We clearly

reject the null hypothesis that techies are no different than other workers, in favor of the

alternative that our assumption about their contribution to firm output only through firm

productivity is a better fit to the data.

Related research. A growing literature examines the role of technically trained workers in

shaping firm-level outcomes such as productivity, employment structure, and output. Tambe

and Hitt (2014) motivate this line of inquiry by noting that “the technical know-how required

to implement new IT innovations is primarily embodied within the IT workforce.” Similarly,

Deming and Noray (2018) argue that “STEM jobs are the leading edge of technology diffusion

in the labor market.” While there is an extensive literature on the firm-level returns to overall

IT investment and R&D expenditure, these papers do not study the productivity implications

of the workers who install, manage, and diffuse these technologies inside firms. In addition,

papers that use R&D expenditure to study their effect on firm productivity are at risk of

double counting, since, as we show below, about 75% of R&D expenditure is on labor.

A key reason for this gap is the lack of matched firm-occupation data in most administra-

tive or survey datasets. An exception is Harrigan et al. (2021), who use detailed occupational

data for the entire French private sector (1994–2007) and show that firms with more techies

experience faster employment growth and within-firm skill upgrading. Earlier studies by

Lichtenberg (1995) and Tambe and Hitt (2012) estimate a positive output elasticity of IT

labor, while Brynjolfsson and Hitt (1996) consider IT spending. Tambe and Hitt (2014),

using a novel dataset on IT worker mobility, interpret job-switching patterns as evidence of
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inter-firm knowledge spillovers. More recently, Brynjolfsson et al. (2024) construct firm-level

IT usage measures from online job postings.

However, none of these studies structurally estimate the causal effect of techies on pro-

ductivity. Nor do they distinguish between different types of techies—for example, those

working in R&D versus ICT. Hall et al. (2013) distinguish between R&D and ICT invest-

ments using a sample of Italian firms, but study impacts on sales per worker rather than

productivity per se. Like us, they examine how R&D and ICT correlate with innovation,

but they do not capture the broader role of technical workers beyond these categories, such

as our “Other techies” group.

Hsieh and Rossi-Hansberg (2023) provide related evidence from the service sector. They

show that R&D and ICT employment is associated with market expansion, which they at-

tribute (but do not estimate) to greater productivity, and emphasize the role of ICT in what

they call the “industrialization of services.” We share their view that techies contribute to

output through productivity-enhancing activities. Their findings provide additional motiva-

tion to our structural analysis of productivity effects beyond manufacturing and to examining

different classes of techies.

The broader literature on productivity measurement recognizes the substantial hetero-

geneity in firm-level TFP, but the determinants of this heterogeneity remain poorly under-

stood. As emphasized in the survey by Syverson (2011), identifying what drives productivity

differences is an open question. De Loecker and Syverson (2021) argue that few papers tackle

this challenge in a structural framework, which is needed to estimate both productivity and

its causal sources.

Here our contribution is twofold. First, we are the first to jointly estimate the effects

of R&D, ICT, and other techies on firm-level productivity. Second, we extend the analysis

beyond manufacturing to include a large set of non-manufacturing firms. This broader scope

allows us to capture productivity-enhancing mechanisms that are missed in R&D-focused or

IT-focused studies.
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Two pioneering studies on structural productivity estimation are De Loecker (2013), who

examine exporting, and Doraszelski and Jaumandreu (2013), who focus on R&D expendi-

ture. We build on their frameworks. Doraszelski and Jaumandreu (2013) assume flexible

labor markets and specific functional forms; we relax these assumptions using alternative

estimation methodologies. In an earlier paper Crepon et al. (1998) also study the effect of

R&D on productivity, but rely on a cross-sectional setting and different instruments.2 Our

panel structure and identification strategy allow for sharper causal inference under weaker

assumptions.

The rest of the paper is organized as follows. In Section 2 we provide a detailed account

of the sources and construction of our datasets. In Section 3 we present a comprehensive

analysis of the role of techies, highlighting their technical expertise and their crucial role in

adopting, mediating, and diffusing technology at the firm level. Section 4 outlines the theo-

retical basis for the inclusion of techies in our productivity model and how they can impact

productivity. In Section 5 we describe our methodology, where we provide a comprehensive

discussion of the econometric challenges and the steps taken to address them. In Section 6

we present the main results of our analysis and perform various sensitivity checks to test the

robustness of our findings. We conclude in Section 7 with a summary of our key results and

a discussion of their implications for policymakers.

2 Data

We construct a panel dataset on firms in the French private sector between 2011 and 2019 by

merging three confidential, administrative firm-level datasets.3 We complement this infor-

mation with survey data to characterize techies and describe their roles in firms. Matching

firms across these datasets is straightforward because firms are identified by the same iden-
2Crepon et al. (1998) emphasize the endogeneity problems in estimating this relationship (selection and

simultaneity). The insights in De Loecker (2013) and Doraszelski and Jaumandreu (2013)—which we rely
on—address these issues in ways that we explain in Section 5. This differs from how Crepon et al. (1998)
address the econometric challenges, who had only a cross section of firms at their disposal.

32011 is the first year for which our data are available and 2019 is the last pre-pandemic year.
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tification number (SIREN) in each of the three datasets. We highlight key features of the

data here and relegate other details to Appendix A.

2.1 The composition of labor within firms

Our data on employment is from the DADS.4 All firms with employees are required to report

wages, hours paid, occupation, and the 2-digit sector of activity of the firm. Our labor input

measure is hours paid. In a robustness check we also consider quality-adjusted labor input,

as in Fox and Smeets (2011).5 The estimation sample includes firms in 17 industries in both

manufacturing and non-manufacturing sectors.6

The DADS reports detailed 4-digit PCS occupational codes, almost 500 in total. We use

the detailed definitions of these codes (INSEE, 2003) to select the 56 4-digit occupations

that we classify as techies. These definitions show that their work is closely related to the

installation, management, maintenance, and support of ICT, product and process design,

longer-term R&D activities, and other tasks related to technology. In short, the employment

of techies is a direct measure of firms’ investment in technology. The detailed 4-digit PCS

codes allow us to classify techie occupations along two dimensions. The first is whether

they are technical managers and engineers or technicians. The second dimension is their

technological orientation: R&D techies, ICT techies, and Other techies, see Table A1.

The documentation in INSEE (2003) makes it clear that techies perform different tasks

than workers in other occupations. For example, technical managers and engineers (PCS

38) are distinguished from other managers (PCS 37) by the fact that for the former, “the

scientific or technical aspect takes precedence over the administrative or commercial aspect”,

whereas for the latter “the administrative or commercial aspect prevails”. Similar distinctions
4Déclaration Annuelle de Données Sociales.
5Specifically, we multiply the hours of lower-paid, less-qualified workers by the ratio of their average wage

to the average wage of higher-paid, highly qualified workers, as do Gandhi et al. (2020).
6One sector (coke and refined petroleum) is dropped because it has tiny shares of total hours worked,

and one sector (Transportation and storage) is dropped because the estimation of the production function
using GLZ failed to converge. We also drop the computers and electronics sector because of its very high
intensity in techie workers.
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are made between technicians and other occupations.7 Beyond what is suggested by their

occupational titles (reported in Table A1), the INSEE documentation also makes clear that

techies perform tasks that support production but are not production or fabrication tasks per

se. This grounds our assumption that the role of techies is to increase productivity rather

than to contribute to current output like other types of workers.

The classification of techies into R&D and ICT techies is unambiguous. For example,

all the occupations classified as R&D techies have the phrase “research and development” in

their job descriptions, while those classified as ICT techies all have the phrases “Information

technology”, “computer science” and/or “telecommunications” in their job descriptions. A

close look at the detailed INSEE (2003) descriptions of the Other techies category yields

two observations. First, this group exhibits heterogeneity in their composition, comprising

engineers, technical executives, and technicians involved in the adoption and dissemination

of technologies not related to R&D or ICT and new production methods within their firms.

A case in point are the engineers and managers of production method (PCS 387c), who

are responsible for adapting and optimizing manufacturing methods in the private sector.

Second, while being notably distinct from production and fabrication occupations, they

optimize the productivity of workers in those fields.

We assume that non-techie occupations contribute directly to current output.

2.2 Balance sheets and exporting

We use firm balance sheet information from the FARE dataset for 2011–2019 on revenues,

expenditures on inputs, and the necessary series to construct each firm’s capital stock.8

Appendix A describes the source data and explains how we construct firm-level capital

stocks. We use data from the French Customs to generate an indicator of export status for

each firm-year.
7pages 191, 221 and 343 of INSEE (2003),
8Fichier Approché des Résultats Ésane. The source of information is firms’ tax declarations.
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2.3 Survey data

We use three surveys to provide additional information on techies that allows us to describe

their role in the firm. First, we provide information on education in STEM fields (Science,

Technology, Engineering, and Math, including Computer Science) and STEM training of

techie workers from the Training and Professional Qualification (TPQ) survey in 2015. The

survey collects data on the specialization of the highest degree obtained by the individual

and whether and which training after the highest degree s/he received.

Second, we collect data on firms’ expenditures on R&D (both internal and external) from

the Annual Survey on the Means dedicated to Research and Development (R&D survey).

Among other information, the R&D survey provides information on the labor costs included

in R&D expenditures and the share of R&D expenses that are outsourced. It also provides

information on firms’ innovation activities. Third, we use the Information and Communica-

tion Technology survey (ICT survey), which describes the relationship between ICT training

and technology diffusion within firms.

Appendix A provides detailed descriptions of all datasets. Both ICT and R&D surveys

can be linked to the administrative datasets described above since they use the same SIREN

firm identifier. We exploit this feature below.

3 Facts about techies

Using the DADS and survey data, this section provides information on techie’s education

and training, and on their role in adopting, mediating, and diffusing technology at the firms

that employ them. Here we report our key descriptive results, with further results and details

on the analysis reported in Appendix B.

Fact 1. The incidence of Techies across industries. Table 1 reports techie wage

bill shares by category in our sample and the French manufacturing and non-manufacturing

industries.
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Table 1: Wage bill shares of techies by categories (2019)

Overall Manufacturing Non-Manufacturing % techie wage bill
in manufacturing

(1) (2) (3) (4)

Techies 18.3 31.5 10.8 62.6

R&D 3.4 8.2 0.7 87.3
ICT 2.2 2.3 2.1 38.0
Other 12.7 21.1 8.0 60.2

Engineers (PCS 38) 11.9 19.7 7.4 60.3
Technicians (PCS 47) 6.5 11.9 3.4 66.9

Source: DADS. Columns (1), (2) and (3) report the wage bill share of Techies or their sub-
categories in the private sector overall, within manufacturing and within non-manufacturing
industries, respectively. Column (4) reports the share of the Techie wage bill (or sub-
categories thereof) that is in manufacturing.

In column (1) we see that Techies account for 18.3% of the French private sector’s wage

bill share, with a larger share of 31.5% within manufacturing (column 2) than the 10.8%

within non-manufacturing (column 3). Overall and across sectors, other techie workers are

a larger share of the techie wage bill than the shares of R&D and ICT workers. This

motivates studying the role of techies beyond R&D tasks.9 In column (4) we see that most

(62.6%) expenditures on techies are in manufacturing, while more than a third are in non-

manufacturing industries. This is why we do not confine our analysis of productivity to

manufacturing, in contrast to almost all of the relevant literature.

We observe interesting patterns when we break down techie workers into different cate-

gories. Most of the expenditure on R&D techies, 87.3%, is in manufacturing (column 4). Con-

sistent with this, manufacturing is much more R&D techie-intensive that non-manufacturing

(comparing column 2 to 3). This implies that studying the impact of R&D on productivity

can be largely done within manufacturing. In contrast, 62% of the expenditure on ICT

techies is in non-manufacturing, while the ICT techie-intensity is almost identical across

sectors. This emphasizes the importance of considering the non-manufacturing sector when
9Barth et al. (2017) find that 80 percent of U.S. private sector scientists and engineers worked outside

R&D occupations in 2013. This is close to the share of R&D techies in all techies’ wage bill (18.5%).
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studying the impact of techies on firm-level productivity.

Table 1 also reports the wage bill shares of engineers and technicians. Engineers are twice

as large a share of the techie wage bill as technicians.

Fact 2. Techies have more STEM education and training than other occupations.

We use the TPQ survey to classify degrees and training and build an indicator for STEM(see

Appendix B). The TPQ survey has 26,861 individuals with valid observations, among whom

5.4% are Engineers (PCS 38), and 5.1% are Technicians (PCS 47). These shares are similar

to the shares in the DADS administrative data.

As we report in Table B1, techies have more STEM education and training than other

occupations. In particular, around 63 percent of techies have a degree and/or training in

STEM, with about a fifth having both a STEM degree and further STEM training. STEM

degrees are somewhat more common among engineers (55%) than technicians (41%).

In contrast, STEM education is uncommon in all other PCS codes, with only 11 percent

having a STEM degree, less than a fifth having either a degree or training, and only two

percent have both a STEM degree and further training. In particular, this is true for admin-

istrative and commercial managers. This is consistent with the distinctions made in the PCS

code documentation (INSEE 2003), supporting the idea that techies’ skills and role in the

firm are technological, and that they are distinct from other workers, including managers.

Fact 3. Most R&D spending is on wages and occurs “in-house”. In our structural

analysis below, we use the techie wage bill share to measure firm-level resources devoted to

improving productivity. Here we compare the techie wage bill to total R&D expenditures.

Firm-level R&D expenditure includes spending on materials and capital goods, which can

lead to double-counting when it comes to production function estimation for two reasons.

First, total materials are included as an input to production, and it is not possible to extract

expenditure on R&D materials from total materials. Second, R&D capital expenditure is part

of the firm’s total investment, which we use to construct firm level capital stocks. Moreover,

capital investment tends to occur in “spikes”, which leads to over-estimating effort towards
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productivity growth when this type of investment occurs and under-estimation of effort in

other years. By focusing on wages spent on R&D and excluding techies from current labor

input we avoid double counting and obtain a potentially more stable indication of firms’

R&D effort.

The R&D survey reports labor costs associated with R&D, as well as how much of the

firm’s R&D budget is spent in-house, particularly on wages related to R&D. Table B3 shows

that wages account for most of R&D spending, especially when R&D is done within the

firm. For example, the median share of externally-sourced R&D services is zero, while the

mean is only 9 percent. For the average and median firm wage costs are 67 percent of total

R&D spending, and 74 percent of in-house R&D. These findings are consistent with those of

Saunders and Brynjolfsson (2016) in a sample of U.S. firms, where they find that more than

half of all spending on IT was on IT-related techies.10 Similarly, Schweitzer (2019) finds that

in 2014, labor costs accounted for 60 percent of aggregate R&D spending in France.11

One potential threat to our approach is that firms can purchase ICT, R&D, and other

technology-related consulting services. This cost would show up as a purchased service, not

as a productivity-enhancing activity. Table B3 indicates that this is not a large concern,

since expenditure on R&D is overwhelmingly spent within the firm, with the median firm

spending nothing on external R&D. Moreover, less than 3 percent of techie hours are in the

IT and R&D consulting sectors in 2019, which implies that over 97 percent of the hourly

services supplied by techies are obtained in-house rather than purchased from consultants.12

Fact 4. Techies are positively associated with the diffusion of ICT skills within

firms. The ICT survey provides information on whether the firm offers training in develop-

ing or improving ICT skills to its workers. ICT training is uncommon, with only 18 percent
10Saunders and Brynjolfsson (2016) find that for a sample of 127 large publicly traded US firms from 2003

to 2006, half of all spending on IT is for “Internal IT Services (e.g., custom software, design, maintenance,
administration)”. Including IT training services brings the share to 0.54.

11The remainder 40 percent are split into 6 percent capital expenditures and 34 percent “other current
expenses”.

12We refer to the IT and R&D consulting sectors as industry codes 62 (Computer Programming, consul-
tancy, and related activities), 631 (Data Processing, Hosting, and related activities; web portals), and 72
(Scientific R&D) in the NAF classification. These are dropped from our analysis.
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of firms offering training (Table B9). After matching the ICT survey with the DADS dataset,

we examine the correlation between techies and ICT training. We use a linear probability

model to explain the likelihood of offering ICT training. Our regressions (reported in Table

B10) control for firm size, and include sector and year-fixed effects.13

We find a strong association between the likelihood of offering ICT training and the

employment of techies, even after controlling for firm size. This association is particularly

strong for ICT techies, and is much weaker for other techie categories. We interpret ICT

training as an investment in worker skills, which makes an effect after training takes place.

Techies are associated with this investment-like activity.

Fact 5. Techies are positively associated with patenting and innovation. The

R&D survey provides information on firms’ patent filings and product and process innova-

tion. As is observed elsewhere, patenting is rare. The firm at the 75th percentile of the

patenting distribution files no patents, and the 95th percentile firm files only 4 patents. The

99th percentile firm files 26 patents, and the top four firms file around 2,000. In contrast,

innovation is quite common: only a quarter of firms report no process or product innovations

in the past year, while half report having both (Table B11). We match the survey outcomes

with the information on techies from the DADS.

Patenting correlates positively with all types of R&D expenditures in the R&D survey:

internal or external, wages or other expenses (Table B12). Interestingly, the strongest cor-

relation between innovation and patenting is with R&D wages and internal R&D. We find a

positive correlation between the techie wage bill (from DADS) and firms’ patenting (Table

B13). This correlation is particularly strong for R&D techies.

We also find that techies are positively related to both product and process innovation

(Table B14). Interestingly, the R&D and ICT techie wage bills are similarly correlated with

product innovation (although in non-manufacturing the relationship for ICT techies is not
13Controlling for firm size captures the ability of firms to overcome fixed costs more generally. Thus, our

regressions pick up the Techie-specific association with ICT training, over and above the higher propensity
of larger firms to offer training, a fixed cost activity. In practice, controlling for size does not influence our
results.

12



statistically significant). In contrast, Other techies are uncorrelated with product innovation.

The R&D and Other techie wage bills are positively related to process innovation (although

in non-manufacturing the relationship for R&D techies is not statistically significant). In

contrast, ICT techies are not associated with process innovation.

The analysis reported here (and in greater detail in the appendix) reveals a clear pattern:

expenditure on techies’ wages are related to patenting and innovation. It also suggests

different roles for R&D, ICT and Other techies: R&D techies are associated with both types

of innovation, while ICT techies are associated only with product innovation, and Other

techies are associated only with process innovation. These findings are consistent with Hall

et al. (2010), who argue that R&D is related to product and process innovation.14 Arora et

al. (2017) show how corporate research in the U.S. leads to innovation and patenting, and

how the effect on productivity is positively related to the quality of researchers employed in

such activities. This quality is likely captured by wages.

4 Why only some firms employ techies: A simple selec-

tion model

Despite the potential productivity gains, relatively few firms employ techies. This fact

mirrors a well-documented puzzle in trade: although exporting raises firm productivity, only

a subset of firms export. Following Melitz (2003), the standard explanation is the presence of

fixed or variable costs that make exporting profitable only for high-productivity firms (Melitz

and Ottaviano, 2008). We develop a simple model of firm decision-making that applies the

same logic to techie employment. The model rationalizes why only some firms choose to

employ techies, and motivates our structural estimation strategy.

For maximum simplicity, suppose there are only two periods. Firm f takes the demand,

costs, and initial period log productivity ωft−1 as given and has to choose optimal techie
14Similar to other studies that examine the impact of R&D on productivity, our methodology does not

separately identify whether this occurs through process, product or other types of innovation.
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employment Tft−1 to maximize profits. The relationship between techies and changes in

productivity is

ωft = ωft−1 +Max [βlnTft−1, 0] , β ≥ 0 .

Fixed costs of employing positive techies are κf and the wage of techies is r, so the cost of

hiring techies is rTft−1 + κf . With heterogeneity in the costs κf not all firms will employ

techies, and we derive the following very intuitive conclusions in Appendix C. First, the

optimal amount of techies is more likely to be positive when demand and/or initial produc-

tivity are higher. Conversely, the optimal amount of techies is more likely to be zero when

their fixed costs are high. Second, the optimal amount of techies may be zero even if the

fixed cost of employing techies is zero. This decision can occur if the effectiveness of techies

is perceived to be insufficient to generate a large enough increase in productivity. Finally,

when the optimal amount of techies is positive, it is increasing in initial productivity.

These predictions are consistent with findings in Brynjolfsson et al. (2023), who find

larger incidence of IT investment in larger firms, who also benefit more from it (we estimate

a similar pattern below). A further implication of this framework is that since firms that

export will have a higher demand level, they will also be more likely to employ techies. This

prediction aligns with our empirical strategy, where we control for exporting. It also echoes

the findings of Aw et al. (2011), who show that firms endogenously select into both exporting

and productivity-enhancing investments, such as R&D, when returns justify the fixed and

sunk costs.

5 Empirical strategy

We estimate the causal impact of techies on firm-level productivity using structural produc-

tivity models. Our empirical strategy addresses two challenges. First, we observe revenue

rather than physical output.15 Second, productivity is unobserved to the econometrician but
15For a discussion of the challenges that such a data environment poses for estimation, see De Loecker and

Goldberg (2014). Even when quantities are known, there remain difficult methodological issues in relating
inputs to outputs in multi-product, multi-input firms, which cannot be overcome without strong assumptions.
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observed by firms when they make input decisions. We follow Grieco et al. (2016) (GLZ)

and Gandhi et al. (2020) (GNR), which provide solutions to these challenges under different

assumptions.

Our key identifying assumption is that techies affect output only through their impact on

future productivity. This is analogous to the standard treatment of R&D: it enters the pro-

duction process only through future productivity, not contemporaneous output (Doraszelski

and Jaumandreu, 2013). Beaudry et al. (2016) use a similar framework, where cognitive

labor contributes to organizational capital with future returns.

We model firm revenue using a standard CES demand system and a Hicks-neutral pro-

duction technology. Let output be Qft = ΩftF (xft), where Ωft is firm-level productivity and

xft is a vector of inputs. Taking logs, we write

qft = ωft + f(xft). (1)

Demand for the firm’s output takes the form Qft = BtP
−η
ft , where Bt is an industry demand

shifter, Pft is the price that the firm charges and η = 1/(1− ρ) is the elasticity of demand,

with ρ ∈ (0, 1). Taking logs:

qft = bt − ηpft. (2)

We do not observe physical output or prices. Instead, we observe revenue rft, which in

logs equals qft + pft + uft, where uft is an ex post firm-specific demand shock. Combining

equations (1) and (2), we obtain the firm-level revenue production function:

rft = (1− ρ)bt + ρωft + ρf(xft) + uft. (3)

Productivity evolves according to a controlled Markov process:

ωft = g(ωft−1, zft−1) + ξft, (4)
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where zft−1 includes lagged firm decisions such as techie employment. The unobserved

components ξft and uft differ in timing: ξft is known by the firm when input choices are

made, while uft is realized ex post. This timing structure underpins identification in both

the GLZ and GNR estimators, as we explain below.

Techies enter only in (4), not (3), reflecting our identifying assumption: techies affect

productivity with a lag and do not enter the production function as an input. This is

consistent with how R&D or investment decisions are typically modeled in the productivity

literature (Doraszelski and Jaumandreu, 2013). We assess in Section 6.3 the robustness of

our results to allowing techies to affect current output.

While we present equation (4) in a linear form, our results are robust to richer specifica-

tions of the productivity process. In Appendix F1, we report estimates from a third-order

polynomial in lagged productivity. These are consistent with our baseline findings. We also

report below results when we allow for non-linear effects of techies by interacting techies

with lagged productivity.

Controlled Markov approach. Equation (4) generalizes the productivity process in the

control function literature, notably Olley and Pakes (1996), Levinsohn and Petrin (2003), and

Ackerberg et al. (2015) (OP/LP/ACF). It separates expected productivity, g(ωft−1, zft−1),

from the innovation ξft. The inclusion of lagged firm decisions, such as techie employment,

in zft−1 allows us to estimate the causal impact of those decisions, under the maintained

assumption that ξft is mean independent of past choices. This can be justified if firms are

forward-looking and make decisions based on the expected outcomes of their actions.

De Loecker (2013) adopts this structure and emphasizes two implications. First, the lag

structure implies that productivity innovations are realized after zft−1 is chosen. Second,

persistence in productivity is accounted for by including ωft−1 as a state variable. The

coefficient on zft−1 in equation 4 thus captures the incremental effect of firm choices—such

as techie hiring—on future productivity.
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Importantly, this framework does not require a structural model of firm decision-making.

As in Doraszelski and Jaumandreu (2013), the estimation strategy identifies the causal im-

pact of firm-level choices on productivity evolution from cross-sectional differences in out-

comes between firms that do and do not hire techies, conditional on observables.

We do not apply the OP/LP/ACF control function approach for two reasons. First,

Gandhi et al. (2020) show that it suffers from weak instruments when there is insufficient

input price variation. Second, Ackerberg et al. (2023) show that the associated GMM objec-

tive often exhibits multiple global minima, which can make estimates sensitive to starting

values. The GLZ and GNR estimators do not suffer from these issues, and are better suited

to our data and identification problem.

The GLZ methodology. The estimator of Grieco et al. (2016) addresses the challenge

of unobserved material input quantities by leveraging theoretical restrictions on firm be-

havior when only expenditures on materials are observed. It assumes a constant elasticity

of substitution (CES) production function with constant returns to scale, and monopolistic

competition with CES demand, as in Klette and Griliches (1996). These assumptions allow

real output to be inferred from observed expenditures.

GLZ use first-order conditions under profit maximization to eliminate unobserved ma-

terials and productivity from the estimating equation. The demand elasticity is estimated

from variation in revenues, which permits the recovery of firm-level prices and output. The

resulting production function is estimated by nonlinear least squares without requiring in-

struments or assumptions on the productivity process.

In order to overcome the challenge of unobserved material input quantities the GLZ

estimator relies on the existence of at least one flexible input in addition to materials that

are adjusted after productivity is observed. These “static” inputs contrast with dynamic

inputs such as capital. In practice, we assume that labor is such a static input. With these

assumptions, firm-level productivity {ω̂GLZ
ft } can be estimated for each firm and year.
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To estimate the impact of techies on productivity, we regress ω̂GLZ
ft on its lag and lagged

firm-level techie decisions:

ω̂GLZ
ft = θi(f)t + λω̂GLZ

ft−1 + βzft−1 + ξft, (5)

where θi(f)t captures industry-year effects. We estimate this specification separately for man-

ufacturing and non-manufacturing firms. Standard errors are computed by bootstrapping

the full two-step procedure and clustering at the firm level. We compute the long-run impact

of techies on productivity by dividing β by 1− λ.

The GNR methodology. The estimator of Gandhi et al. (2020) imposes no functional

form on the production function and allows for arbitrary returns to scale. It requires that at

least one input–—typically materials or labor—–is fully flexible and adjusts after productiv-

ity is observed. While GNR’s baseline estimator assumes physical quantities are observed,

they propose an extension that relies only on revenues, building on Klette and Griliches

(1996). This version is applicable to our data. Unlike GLZ, GNR identifies the full revenue

production function jointly with the productivity process via the moment conditions implied

by the controlled Markov equation (4).

A limitation of the GNR approach is that the demand elasticity ρ is identified from time-

series variation. With only nine years of data (2011–2019), our estimates of ρ are imprecise.

We therefore report productivity scaled by ρ: ρ̂ωGNR
ft , and estimate:

ρ̂ωGNR
ft = θi(f)t + λρ̂ωGNR

ft−1 + (βρ)zft−1 + ξft, (6)

where ρ is the average elasticity across industries. As expected, the estimated coefficients

(reported below) in equation 6 are scaled-down relative to equation 5, which is consistent

with demand elasticities being greater than unity (ρ ∈ (0, 1)), and which is what we estimate

using the GLZ methodology.
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We implement the GNR estimator separately for manufacturing and non-manufacturing,

and compute standard errors using a bootstrap clustered at the firm level. While GNR does

not recover level effects, it is robust to functional form misspecification and does not require

labor to be static.

Comparing GLZ to GNR. While GNR does not impose any functional form on the

production function, this flexibility comes at a cost in our context. First, the parameters β

in equation 6 are identified only up to a scale factor ρ. Nonetheless, the signs and relative

magnitudes of the elements of βρ remain informative. Second, GNR assumes that input

quantities are observed, while our data report only expenditures. To address this, we deflate

material expenditures using industry-specific price indices. As noted by Grieco et al. (2016),

this approach may bias measures of productivity dispersion.

Unlike GLZ, GNR does not require labor to be static, which is relevant in the French

institutional context. French firms face rigid employment adjustment due to both permanent

and temporary contract regulations. Accordingly, we implement GNR under two alternative

assumptions: one treating labor and materials as static inputs (as in GLZ), and another

allowing labor to be dynamic and slow-adjusting.

6 Results

We first discuss our baseline results using the GLZ methodology, and then report results

that use GNR. Our focus is on the estimates of the effects of Techies in a controlled Markov

process (4). We control for exporting in all of our specifications (De Loecker, 2013) and in

Section 6.3 we show that our results are not sensitive to the inclusion of managers in the

controlled Markov (Bloom et al., 2017).

Quantification of the control Markov estimates requires descriptive statistics for different

categories of techies, separately in manufacturing and non-manufacturing industries. Table

(2) reports the percentage of observations with positive values for each techie category, as

well as the percentiles of the techie wage bill shares for observations that have positive
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values and the 75th-25th percentile difference (the inter-quartile range or IQR). As explained

in Section 2.1 above, overall techies are subdivided in two different ways: as R&D, ICT, or

Other techies, and alternatively as Engineers or Technicians.

Table 2: Descriptive statistics for estimation sample

Percentiles of techie wage bill shares
on positive support, percent

Percent with Mean conditional 10 25 50 75 90 IQR
positive values on positive values

Manufacturing

Techies 71.8 22.6 6.4 11.3 19.1 30.4 44.0 19.1
R&D techies 35.4 7.4 1.2 2.6 5.1 9.7 16.2 7.2
ICT techies 22.4 3.6 0.6 1.0 1.9 3.6 7.1 2.5
Other techies 69.7 18.3 5.5 9.5 15.7 24.4 34.8 14.9
Engineers 60.4 14.5 4.3 7.2 12.0 19.0 28.2 11.8
Technicians 60.6 12.3 2.6 5.1 9.6 16.3 25.3 11.3

Non-Manufacturing

Techies 19.9 16.8 2.2 5.5 12.2 23.4 38.1 17.9
R&D techies 1.3 5.2 0.3 0.9 2.5 6.4 13.1 5.5
ICT techies 5.0 10.5 0.6 1.6 4.0 10.9 31.6 9.3
Other techies 18.3 15.1 2.1 5.1 11.3 21.3 33.8 16.2
Engineers 13.8 13.8 2.1 4.8 10.2 18.9 30.3 14.1
Technicians 13.7 10.5 1.1 2.9 6.6 13.8 25.2 10.9

Table 2 shows that techies are much more prevalent in manufacturing firms (71.8% of the

observations) than in non-manufacturing firms (19.9% of the observations). Furthermore,

Table 2 shows that the wage bill shares of different types of techies vary across industries.

While Other techies have the highest wage bill shares on average in both manufacturing and

non-manufacturing sectors, R&D techies have higher wage bill shares in manufacturing and

ICT techies have a higher average wage bill share in non-manufacturing. This pattern is

even more pronounced for firms with the highest wage bill shares.

In our estimation sample, we find a higher percentage of exporters in manufacturing

(56.4%) compared to non-manufacturing (11.5%). While this difference is expected, we find

a non-negligible incidence of exporting among non-manufacturing firms, notably in wholesale
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and in publishing and broadcasting.16//

6.1 Production function estimates

The GLZ production function estimates and implied elasticities are reported in Table 3.

We report industry-by-industry estimates of the production function parameters and the

demand elasticity. All of our estimates of the elasticity of substitution across inputs, σ,

and of the demand elasticity, η, are greater than one, and in all industries, we can reject

the nulls that σ = 1 and η = 1 at conventional levels of statistical significance. Rejecting

σ = 1 is important for identification in the GLZ estimator. This is because the expression

for materials input quantities (as a function of expenditures on materials, the wage bill and

labor input in quantities) is not defined for the knife-edge case of σ = 1 (i.e., a Cobb-Douglas

production function; see Grieco et al. (2016) for details). Additionally, finite profits require

η > 1.

Overall, our estimates of the production function and demand elasticities are very plau-

sible. For example, we find particularly large elasticities in Wholesale and Retail, which

is consistent with low profit margins in these industries. In contrast, elasticites of demand

are estimated to be much lower in industries that exhibit greater product differentiation.

Beyond this, the estimates of the distribution parameters αN , αM and αK reflect the relative

importance of each input in production in ways that are in line with what one may expect,

both in manufacturing and in service sectors.17

We relegate the estimates of the “revenue production function” using the GNR method-

ology to Appendix E. Despite using quite different methodologies, the estimates from the

two methodologies are broadly in line with each other. For example, the relative importance

of materials, labor and capital are quite similar (the levels are not comparable because we

do not identify ρ in GNR).
16In our estimation sample 49% of wholesale firms export, and 22.6% of publishing and broadcasting firms

export.
17The GLZ estimator ensures that the distribution parameters are equal to output elasticities at the

geometric mean of the data.
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Table 3: GLZ Production function estimates

Industries αN αM αK σ η # Obs. #Firms

Food, beverage, tobacco 0.223 0.597 0.180 2.629 5.339 29277 4721
(0.002) (0.006) (0.009) (0.199) (0.249)

Textiles, wearing apparel 0.341 0.573 0.086 1.752 2.741 8936 1312
(0.006) (0.010) (0.017) (0.279) (0.074)

Wood, paper products 0.283 0.417 0.300 1.362 4.142 17384 2543
(0.006) (0.009) (0.014) (0.067) (0.229)

Chemical products 0.157 0.56 0.283 1.581 4.446 7380 941
(0.003) (0.012) (0.015) (0.078) (0.281)

Pharmaceutical products 0.18 0.451 0.37 1.594 3.303 1703 222
(0.015) (0.038) (0.053) (0.215) (0.58)

Rubber and plastic 0.226 0.532 0.242 1.677 3.895 16100 2143
(0.004) (0.009) (0.012) (0.095) (0.169)

Basic metal and fabricated metal 0.303 0.392 0.306 1.466 3.436 30407 4148
(0.004) (0.005) (0.008) (0.046) (0.09)

Electrical equipment 0.196 0.56 0.244 1.687 3.755 5094 675
(0.006) (0.019) (0.025) (0.17) (0.308)

Machinery and equipment 0.189 0.548 0.263 1.525 3.524 11526 1502
(0.005) (0.015) (0.021) (0.132) (0.214)

Transport equipment 0.177 0.546 0.277 1.818 5.445 6465 873
(0.005) (0.017) (0.022) (0.205) (0.588)

Other manufacturing 0.333 0.424 0.243 1.605 2.872 24178 3601
(0.006) (0.007) (0.013) (0.084) (0.077)

Construction 0.393 0.396 0.211 1.448 2.672 119766 22417
(0.004) (0.004) (0.008) (0.032) (0.039)

Wholesale 0.119 0.735 0.146 1.284 8.931 188565 27882
(0.000) (0.002) (0.002) (0.018) (0.186)

Retail 0.131 0.794 0.074 1.793 6.033 258474 40393
(0.000) (0.002) (0.002) (0.072) (0.066)

Accommodation and food services 0.396 0.265 0.339 1.861 5.518 116511 22411
(0.006) (0.004) (0.017) (0.053) (0.298)

Publishing and broadcasting 0.381 0.062 0.557 1.237 2.272 15771 2680
(0.018) (0.003) (0.021) (0.023) (0.119)

Administrative and support activities 0.465 0.069 0.466 1.702 3.339 31177 5707
(0.014) (0.002) (0.017) (0.044) (0.184)

Notes. The CES production function can be written as: Qft = eωft(αNNγ
ft+αKKγ

ft+αMMγ
ft)

1/γ , where
Qft is the quantity of output produced using labor Nft, intermediate inputs Mft and capital Kft. As
discussed by GLZ, it is important for identification to normalize each data series by its geometric mean,
which we do. The elasticity of substitution across inputs σ is determined by γ, where γ = (σ − 1)/σ,
and η is the elasticity of demand. We reject the null hypothesis of σ being equal to one in all industries
at significance levels well below 1%. We also reject the null hypothesis of η being smaller than one in
absolute value in all industries at significance levels well below 1%.
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6.2 Baseline results

We capture the effect of techies along two margins. The first is the “extensive techie margin”,

measured by an indicator for whether the firm employs techies, either overall or separately

for each category of techies, I(Tft−1>0). The second is the “intensive techie margin”, measured

by the techie wage bill share, either overall or by category of techies, Tft−1. We always

control for the extensive margin when examining the intensive margin, which identifies the

impact of techie-intensity over and above the extensive margin, while allowing for separate

effects of each margin.18 Formally, we estimate specifications of this general form:

ω̂GLZ
ft = θi(f)t + λω̂GLZ

ft−1 + β0I(Tft−1>0) + β1Tft−1 + ξft, (7)

where we sometimes include only the extensive margin and in other specifications we allow

for multiple arguments for techies by their category. θi(f)t is an industry × year fixed effect.

We estimate (7) by OLS, with productivity computed from industry-by-industry estimates of

equation (3) using the GLZ estimator. As discussed above, we report bootstrapped standard

errors that are clustered by firm.

We report our baseline controlled Markov estimates of (5) in Table 4. In Table F1,

we report estimates of the controlled Markov process where we add ω2
f,t−1 and ω3

f,t−1. The

results using this more elaborate specification of the Markov process are not materially

different from the baseline results reported in Table 4. We report the effects of techies

on firm-level productivity in the samples of manufacturing industries (columns 1 to 6) and

non-manufacturing industries (columns 7 to 12). Our analysis of non-manufacturing firms

contrasts with most of the literature, which restricts attention to manufacturing firms.

Columns (1) and (7) show that firms that employ techies have higher future productivity

than firms without techies. The effect is sizable at 4.0 log points in manufacturing industries

and 5.7 log points in non-manufacturing industries. Using the persistence coefficient for
18Quantitatively, using the inverse hyperbolic sine transformation of Tft−1 or terciles on the positive

support of Tft−1 yield virtually identical results. These results are available upon request.
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lagged techies from the final row of the Table, we find that the steady state, cross-sectional

effect of techies is virtually identical in both sectors, at around 45 log points. Using equation

(5), the steady state effect of z is β/(1−λ). While the estimated effects of employing techies

are the same in both sectors, the incidence of techies is 3.5 times higher in manufacturing,

so the overall effect of techies on within-industry productivity dispersion is estimated to be

higher in manufacturing.

Columns (2) and (8) include the techie wage bill share in addition to the techie indicator.

We find statistically significant effects of techies on productivity along the intensive margin.

The coefficients on the techie indicator remain statistically significant but are more than

halved in both samples. This shows that the presence of even a small number of techies

raises future productivity, and that the effect increases with greater techie employment. Two

simple calculations using Tables 4 and 2 illustrate the magnitudes. First, comparing firms

with no techies to those with the median level of positive techies, the latter have 3.9 and 4.9

log points higher future productivity in manufacturing and non-manufacturing, respectively.

Second, comparing firms at the 75th percentile of the positive techie distribution to those at

the 25th percentile (the inter-quartile range, or IQR), the former have 2.3 and 3.7 log points

higher future productivity in manufacturing and non-manufacturing, respectively.

The long-term effects are about 11 times larger than the impact effects for manufacturing

firms and 8 times larger in non-manufacturing.19 These can be seen in Table 5, where we

see that firms with the median intensity of techies are estimated to have 57.5% greater

productivity in manufacturing, compared to 48.3% in non-manufacturing. The long run

intensive margin IQR techie effect on productivity is estimated at 31% in manufacturing

and 34.5% in non-manufacturing. Overall, these estimates are not very different across

broad sectors.

Columns (3), (4), (9), and (10) in Table 4 display the estimates when techie workers

are broken down by their detailed job descriptions. We find that both the presence and

19The long-term estimated effects are calculated by multiplying the short-run effects by 1/(1− λ̂), where
the λ̂ are taken from the last row of Table 4.
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Table 4: Impact of techies on productivity – GLZ estimates

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.040*** 0.016*** 0.057*** 0.024***
(0.002) (0.003) (0.003) (0.003)

Tft−1 0.123*** 0.207***
(0.008) (0.012)

I
(
TRD
ft−1 > 0

)
0.017*** 0.011*** 0.010* -0.002
(0.002) (0.003) (0.006) (0.007)

I
(
T ICT
ft−1 > 0

)
0.021*** 0.014*** 0.025*** 0.015***
(0.002) (0.003) (0.004) (0.004)

I
(
TOTH
ft−1 > 0

)
0.029*** 0.011*** 0.053*** 0.018***
(0.002) (0.003) (0.003) (0.003)

TRD
ft−1 0.069*** 0.160*

(0.023) (0.088)
T ICT
ft−1 0.101*** 0.117***

(0.036) (0.021)
TOTH
ft−1 0.113*** 0.243***

(0.010) (0.015)
I
(
T 38
ft−1 > 0

)
0.030*** 0.012*** 0.048*** 0.013***
(0.002) (0.003) (0.003) (0.003)

I
(
T 47
ft−1 > 0

)
0.017*** 0.006** 0.033*** 0.022***
(0.002) (0.002) (0.003) (0.003)

T 38
ft−1 0.144*** 0.263***

(0.013) (0.018)
T 47
ft−1 0.093*** 0.112***

(0.011) (0.017)
I (xft−1 > 0) 0.009*** 0.007*** 0.002 0.003 0.004* 0.005** 0.008*** 0.006** 0.006** 0.005** 0.004* 0.004*

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002)
ω̂ft−1 0.911*** 0.913*** 0.908*** 0.911*** 0.910*** 0.913*** 0.874*** 0.875*** 0.874*** 0.876*** 0.874*** 0.875***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Obs. 131,697 523,877
No. firms 21,854 106,430

Notes. The table reports estimates of equation (5) in the text. The dependent variable is ω̂ft, log estimated productiv-
ity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47} denote R&D,
ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year fixed effects
included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value ≤ 0.01, **
p-value ≤ 0.05, * p-value ≤ 0.10

the intensity of R&D techies have a large impact on productivity in manufacturing. These

findings corroborate the results of Doraszelski and Jaumandreu (2013), indicating that R&D

expenditures, most of which are accounted for by techie wage bills, play an important role

in explaining the differences in productivity across manufacturing firms.
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However, techies’ positive impact on productivity is not limited to R&D techie workers.

In columns (3) and (9), we also find positive impacts of the presence of ICT and other techie

workers on the productivity of both manufacturing and non-manufacturing firms. Interest-

ingly, the presence of R&D techie workers at the extensive margin has a smaller impact on

productivity than ICT and Other techies in both sectors, especially in non-manufacturing.

Other techie workers have the largest impact on productivity in both manufacturing

and non-manufacturing sectors, with a 1.7 times larger impact in manufacturing and 5.3

times larger impact in non-manufacturing than the impact of R&D techie workers. Using

the estimates reported in Table 4, we find that in manufacturing, a one IQR difference

in R&D and ICT techies leads to 0.49 and 0.26 percent higher productivity, respectively,

while the IQR effect of other techies is 1.7 percent. For non-manufacturing firms, the IQR

effect of R&D and ICT techies is comparable, at 0.88 and 1.09 percent, respectively, but the

IQR effect of Other techies is quite large, at 4 percent. These results convey an important

message: firm-level productivity is driven more by non-R&D techies than by R&D techies,

especially outside manufacturing.

Columns (5), (6), (11), and (12) in Table 4 display the estimates when we distinguish

between engineers (PCS 38) and technicians (PCS 47). Engineers and technicians positively

affect productivity, although the engineers exhibit a greater effect than the technicians, both

at the extensive and intensive margins. This makes sense, as engineers are more knowledge-

able and skilled, and thus matter more in the technology-enhancing and diffusion process.

However, technicians’ impact is not negligible.

Turning to the effect of exporting, we find a positive impact on productivity, in line with

what De Loecker (2013) finds in manufacturing firms. We estimate similar effects in manu-

facturing and in non-manufacturing firms. We note that only 11.5% of non-manufacturing

firms in our sample are exporters (primarily in wholesale, publishing, and broadcasting).

This suggests that exporting is not a significant factor accounting for the variability of pro-

ductivity in non-manufacturing. We estimate smaller impacts of exporting on productivity
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when we employ more flexible specifications for techies, distinguishing them by their tasks

or occupation types, such as engineers versus technicians. This enables us to gauge bet-

ter the influences of different types of techies on productivity. This finding is in line with

De Loecker (2013), who argues that investments in technology partly drive the impact of

exports on productivity.

We summarize the main results of the overall impacts of techies on productivity in Table

5, which reports estimates of the magnitudes of the short run impacts and steady-state level

effects in percent points. The table illustrates that while the short-run impacts of techies are

larger in non-manufacturing, the higher persistence of productivity in manufacturing miti-

gates these differences in the long run, and in some cases overturns the relative magnitudes.

Table 5: Impact of techies on productivity – Magnitude of the baseline estimates (percent)

Manufacturing Non-Manufacturing
0−p50 IQR 0−p50 IQR

A. Impact effects

Techies 4.03 2.38 5.05 3.77
R&D techies 1.46 0.49 0.20 0.88
ICT techies 1.60 0.26 1.99 1.09
Other techies 2.92 1.70 4.65 4.02
Engineers 2.97 1.71 4.06 3.53
Technicians 1.50 1.05 2.98 1.23

B. Steady state effects

Techies 57.45 31.00 48.29 34.50
R&D techies 17.72 5.66 1.63 7.35
ICT techies 19.59 2.99 17.20 9.17
Other techies 38.12 20.83 44.28 37.36
Engineers 40.01 21.57 37.52 32.01
Technicians 18.72 12.72 26.51 10.26

Notes. Units are percent points. We use the statistics on the
median and IQR from the descriptive statistics in Table 2 and
the estimated parameters from columns (2), (4), (6), (8) (10) and
(12) in Table 4 to compute the impact and steady-state effects of
the baseline specification. For instance, when comparing a firm
with no techies to a firm with the median intensity of techies, the
estimated impact effect of techies is equal to β̂Tft−1

+β̂I(Tft−1>0)×
p50. The steady-state effects are computed by multiplying the
impact effects by 1/(1 − λ̂), where λ̂ is the estimated coefficient
on lagged productivity, reported in the final row of Table 4. These
magnitudes are then translated from log points to percent points
by taking the exponent, subtracting 1 and multiplying by 100.
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The results reported in Table 5 are calculated from estimates of equation (3), which is

a simple linear AR(1) version of the general controlled Markov process given by equation

(2). We next consider a more general specification of (2) which allows the effect of techies

to differ across the distribution of lagged productivity,

ω̂GLZ
ft = θi(f)t + λω̂GLZ

ft−1 + β1Tft−1 + β2
(
ω̂GLZ
ft−1 × Tft−1

)
+ ξft, (8)

where Tft−1 is firm f ’s lagged techie wage bill share.

Compared to a firm with no lagged techies, the productivity effect of lagged techies at

the pth percentile for a firm with lagged productivity at the qth percentile is then β1Tp +

β2
(
ω̂GLZ
q × Tp

)
. We report estimates of this quantity for p, q ∈ {25, 50, 75} in Table 6. We

find that the marginal effect of techies declines somewhat with the levels of both the techie

wage bill and lagged productivity, but the effects are not substantially different from the

baseline results reported in Panel A of Table 5.20

Table 6: Impact of techies on productivity – General specification

Percentile of lagged ω

25 50 75

Percentile of lagged Techies

Manufacturing
25 1.68 2.91 4.10
50 3.13 3.78 4.42
75 5.26 5.07 4.89

Non-manufacturing
25 1.05 2.70 4.63
50 3.39 4.30 5.35
75 7.40 7.01 6.56

Notes. Units are percent points.

20Table G1 in the appendix presents the estimates of equation 8, with a short analysis of their implications.
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6.3 Sensitivity analysis

Our baseline results reported in Section 6.2 are computed using the GLZ estimator, and

include the full range of techies in the estimation of equation (4). In this section, we report

sensitivity analysis in two dimensions. We begin by exploring how our results change when

we modify the way techies enter the analysis. We next report results using the GNR esti-

mator. In appendix H, we report the results that consider the quality of labor inputs and

show that our baseline results are qualitatively unchanged.

Alternative assumption: techies belong in the production function. Central to

our methodology is that we assume that techies affect output only through their effect on

future productivity and not through any contemporaneous contribution to factor services

that affect current output. This assumption is analogous to the standard assumption that

investment in t − 1 does not affect output in t − 1, but raises output in t through its

contribution to capital in time t. One way to check if this methodology makes sense is to

compare it to a simple alternative where techies are no different from other workers. To

do so, we estimate the production functions and associated Hicks neutral productivity series

with techies included in the definition of labor. If techies only contribute to production, then

they should not affect productivity when we estimate the controlled Markov specification for

productivity with techies, as given by equation (5).

Table 7 reports the results of this exercise. The full results are reported in the Appendix

in Table I1. The estimated effects of techies on productivity are somewhat smaller than in

our baseline estimates in Table 4, but the null hypothesis that the effects are zero is easily

rejected. We thus conclude that the data reject the model that techies affect output only

through a contemporaneous effect on output. Of course, under our baseline model, the re-

sults in Table 7 are inconsistent, so they should not be compared to our baseline results in

Table 4. This is because the GLZ production function estimator requires labor to be a static

input, and the results in Table 7 contradict this.
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Table 7: Allocating techies to production – GLZ estimates

Manufacturing Non-Manufacturing

(1) (2) (3) (4)

I (Tft−1 > 0) 0.022*** 0.006* 0.028*** 0.008***
(0.003) (0.003) (0.003) (0.003)

Tft−1 0.086*** 0.124***
(0.010) (0.012)

I (xft−1 > 0) 0.009*** 0.007*** 0.024*** 0.023***
(0.002) (0.002) (0.003) (0.003)

ω̂ft−1 0.917*** 0.915*** 0.880*** 0.880***
(0.003) (0.003) (0.002) (0.002)

Other controls Yes Yes
Obs. 130,605 525,725
No. firms 21,744 106,450

Notes. The table reports estimates of equation (5) in the text. The
dependent variable is ω̂ft, log estimated productivity. I (.) is the
indicator function. T is the techie wage bill share, x is the value of
firm exports. Industry-year fixed effects included in all columns.
Bootstrap standard errors clustered by firm in parentheses. ***
denotes p-value ≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10

Alternative assumption: Other techies belong in production, not in the con-

trolled Markov equation. Considering the heterogeneity of the occupations that we

group into Other techies, it is possible that not all of them satisfy our assumption that

techies contribute to output only through their effect on future productivity. To address

this, here we make the opposite assumption and allocate Other techies to general labor.

We then estimate the effects of R&D and ICT techies on productivity estimated with this

alternative treatment of Other techies.

Table 8 reports results of this modified specification. Comparing Table 8 to our baseline

results in Table 4, the most important comparison is the estimated effects of R&D and ICT

techies reported in columns (3), (4), (9) and (10) in the two tables. The estimated effects

at both the intensive and extensive margins are substantially larger in Table 8, which is to

be expected since the incidence of Other techies is correlated with R&D and ICT techies.

This means that when we take Other techies out of the controlled Markov, more of the
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explanatory power of techies is shifted onto R&D and ICT techies.

Our conclusion from this exercise is that our baseline conclusions about the importance

of R&D and ICT techies for productivity are not sensitive to the treatment of Other techies.

Table 8: Allocating Other techies to production – GLZ estimates

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.037*** 0.019*** 0.058*** 0.040***
(0.002) (0.002) (0.003) (0.003)

Tft−1 0.264*** 0.192***
(0.026) (0.021)

I
(
TRD
ft−1 > 0

)
0.027*** 0.012*** 0.034*** 0.023***
(0.002) (0.003) (0.006) (0.007)

I
(
T ICT
ft−1 > 0

)
0.024*** 0.018*** 0.055*** 0.038***
(0.002) (0.003) (0.003) (0.004)

TRD
ft−1 0.274*** 0.296***

(0.032) (0.110)
T ICT
ft−1 0.219*** 0.188***

(0.051) (0.022)
I
(
T 38
ft−1 > 0

)
0.028*** 0.011*** 0.049*** 0.031***
(0.002) (0.003) (0.004) (0.005)

I
(
T 47
ft−1 > 0

)
0.021*** 0.016*** 0.036*** 0.027***
(0.002) (0.003) (0.004) (0.004)

T 38
ft−1 0.331*** 0.222***

(0.040) (0.031)
T 47
ft−1 0.149*** 0.119***

(0.039) (0.036)
I (xft−1 > 0) 0.000 0.002 -0.001 0.000 -0.001 0.000 0.021*** 0.022*** 0.020*** 0.022*** 0.020*** 0.022***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
ω̂ft−1 0.915*** 0.915*** 0.914*** 0.915*** 0.914*** 0.915*** 0.878*** 0.878*** 0.878*** 0.878*** 0.878*** 0.878***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Obs. 131,697 523,877
No. firms 21,854 106,430

Notes. The table reports estimates of equation (5). Other techies are allocated to production. The dependent
variable is ω̂ft, log estimated productivity. I (.) is the indicator function. T is the techie wage bill share, superscripts
{RD, ICT, 38, 47} denote R&D, ICT, other techies, engineers and technician respectively, x is the value of firm exports.
Industry-year fixed effects included in all columns. Bootstrap standard errors clustered by firm in parentheses. ***
denotes p-value ≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10

Alternative assumption: managers in the controlled Markov equation? As dis-

cussed in Section 5, a core element of our methodology is that techies are the only workers in
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the firm who affect output with a lag, through their effect on future productivity, rather than

contemporaneously. In other words, no workers other than techies belong in the second-stage

controlled Markov given by equation (2). This treatment of techies is motivated by a careful

study of the tasks that techies do (Section 2.1 above) as well as their qualifications (Section 3)

and their associations with innovative and productivity-enhancing activities (Sections 3 and

3). In contrast, we treat managers as part of general labor, whose contributions to output

are contemporaneous. In Table 9, we test this implication by including lagged managerial

workers (PCS code 37) in the second stage. Columns (1) and (3) reproduce our baseline

estimates for convenience, while columns (2) and (4) add lagged managerial labor to the

controlled Markov equation.

Table 9: Adding Managers to the Controlled Markov – GLZ estimates

Manufacturing Non-Manufacturing

Baseline Managers Baseline Managers
(1) (2) (3) (4)

I (Tft−1 > 0) 0.016*** 0.016*** 0.024*** 0.018***
(0.003) (0.003) (0.003) (0.003)

Tft−1 0.123*** 0.119*** 0.207*** 0.204***
(0.008) (0.008) (0.013) (0.013)

I (Mft−1 > 0) 0.002 0.027***
(0.003) (0.002)

Mft−1 -0.063*** -0.021***
(0.010) (0.006)

I (xft−1 > 0) 0.007*** 0.008*** 0.006** 0.004
(0.002) (0.002) (0.002) (0.003)

ω̂ft−1 0.913*** 0.914*** 0.875*** 0.873***
(0.003) (0.003) (0.002) (0.002)

Obs. 131,697 523,877
No. firms 21,854 106,430

Notes. The table reports estimates of equation (8) in the text.
The dependent variable is ω̂ft, log estimated productivity. I (.)
is the indicator function. T is the techie wage bill share, M is
the managers (PCS37) wage bill share, x is the value of firm ex-
ports. Industry-year fixed effects included in all columns. Boot-
strap standard errors clustered by firm in parentheses. *** denotes
p-value ≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10

The results in Table 9 indicate that including lagged managers does not materially affect
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the estimated effects of lagged techies. We emphasize that the models estimated in columns

(2) and (4) are misspecified because we maintain managers’ contribution to contemporane-

ous labor input. Therefore, the estimated effects on lagged managers do not have a coherent

interpretation.

Alternative estimator: results using the GNR estimator. All the results discussed

so far have been computed using the GLZ estimator. Here we consider how our results

change using the GNR estimator, for two reasons. The first is simply a general robustness

check. The second is that the GNR estimator allows us to relax the assumption that labor

is a static input, which is an important consideration given labor market rigidities in the

French labor market, e.g., firing costs. Table 10 reports the results when labor is assumed to

be “static” (like materials, and as we assumed when implementing the GLZ estimator), and

Table 11 reports the results for when labor is assumed to be “predetermined” (like capital).

Recall that the estimates here are not directly comparable to our GLZ estimates because

GNR does not separately identify the coefficients β in equation (4) from the demand param-

eter ρ in equation (3). This implies that the numbers we report in Tables 10 are estimates

of βρ, not β. In both tables, the estimated effects of the control variables are generally

lower than those reported in Table 4, which is consistent with ρ < 1 and with the demand

elasticities that we estimate using the GLZ estimator (see Table 3 in the appendix).

Despite differences in methodologies, including assumptions on the response of labor

to innovations to productivity and on returns to scale, the results in Tables 10 and 11 are

consistent with those using the GLZ estimator that are reported in Table 4. In particular, we

find that techies cause higher productivity both via the extensive and the intensive margins,

both in manufacturing and non-manufacturing industries—more so in the former than in the

latter. We also identify causal effects of techies on productivity that extend beyond their

involvement in R&D. The impact of R&D on productivity in manufacturing is stronger and

more tightly identified than in non-manufacturing. Overall, the impact of ICT and Other
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Table 10: Impact of techies on productivity – GNR estimates assuming labor to be static

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.037*** 0.029*** 0.025*** 0.015***
(0.002) (0.002) (0.001) (0.001)

Tft−1 0.041*** 0.051***
(0.004) (0.003)

I
(
TRD
ft−1 > 0

)
0.014*** 0.012*** 0.008*** 0.007***
(0.001) (0.001) (0.002) (0.002)

I
(
T ICT
ft−1 > 0

)
0.014*** 0.012*** 0.010*** 0.006***
(0.001) (0.002) (0.001) (0.001)

I
(
TOTH
ft−1 > 0

)
0.031*** 0.026*** 0.023*** 0.014***
(0.002) (0.002) (0.001) (0.001)

TRD
ft−1 0.019* -0.016

(0.011) (0.025)
T ICT
ft−1 0.017 0.036***

(0.016) (0.008)
TOTH
ft−1 0.029*** 0.057***

(0.005) (0.004)
I
(
T 38
ft−1 > 0

)
0.028*** 0.024*** 0.022*** 0.014***
(0.002) (0.002) (0.001) (0.001)

I
(
T 47
ft−1 > 0

)
0.021*** 0.019*** 0.014*** 0.010***
(0.001) (0.002) (0.001) (0.001)

T 38
ft−1 0.026*** 0.050***

(0.006) (0.005)
T 47
ft−1 0.021*** 0.034***

(0.006) (0.005)
I (xft−1 > 0) 0.015*** 0.014*** 0.013*** 0.013*** 0.013*** 0.013*** 0.008*** 0.007*** 0.007*** 0.006*** 0.006*** 0.006***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
ω̂ft−1 0.916*** 0.918*** 0.915*** 0.916*** 0.913*** 0.914*** 0.932*** 0.933*** 0.933*** 0.933*** 0.932*** 0.933***

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Obs. 157,660 715,861
No. firms 22,515 117,594

Notes. The table reports estimates of equation (6) in the text. The dependent variable is ρ̂ωft, log estimated
productivity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47}
denote R&D, ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year
fixed effects included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value
≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10

techies is greater than that of R&D. Finally, we find that engineers have a greater impact

than technicians on the extensive and intensive productivity margins in both manufacturing

and non-manufacturing industries.
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Table 11: Impact of techies on productivity – GNR estimates assuming labor to be prede-
termined

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.028*** 0.017*** 0.014*** 0.010***
(0.002) (0.002) (0.001) (0.001)

Tft−1 0.052*** 0.024***
(0.007) (0.004)

I
(
TRD
ft−1 > 0

)
0.004** -0.001 0.003*** 0.005***
(0.002) (0.002) (0.001) (0.002)

I
(
T ICT
ft−1 > 0

)
0.010*** 0.005*** 0.00017 -0.001
(0.002) (0.002) (0.001) (0.001)

I
(
TOTH
ft−1 > 0

)
0.024*** 0.015*** 0.010*** 0.008***
(0.002) (0.002) (0.001) (0.001)

TRD
ft−1 0.044*** -0.024

(0.014) (0.016)
T ICT
ft−1 0.073*** 0.018***

(0.021) (0.008)
TOTH
ft−1 0.052*** 0.013***

(0.008) (0.003)
I
(
T 38
ft−1 > 0

)
0.019*** 0.012*** 0.010*** 0.008***
(0.002) (0.002) (0.001) (0.001)

I
(
T 47
ft−1 > 0

)
0.016*** 0.011*** 0.012*** 0.009***
(0.002) (0.002) (0.001) (0.001)

T 38
ft−1 0.046*** 0.011**

(0.008) (0.005)
T 47
ft−1 0.042*** 0.026***

(0.008) (0.006)
I (xft−1 > 0) 0.028*** 0.027*** 0.026*** 0.027*** 0.026*** 0.026*** 0.009*** 0.009*** 0.006*** 0.006*** 0.008*** 0.008***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
ω̂ft−1 0.689*** 0.687*** 0.690*** 0.687*** 0.690*** 0.687*** 0.820*** 0.820*** 0.846*** 0.845*** 0.821*** 0.820***

(0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.007) (0.007) (0.008) (0.008) (0.007) (0.007)

Obs. 157,660 715,861
No. firms 22,515 117,594

Notes. The table reports estimates of equation (6) in the text. The dependent variable is ρ̂ωft, log estimated
productivity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47}
denote R&D, ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year
fixed effects included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value
≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10

Some differences with Table 4 are apparent. For example, in Table 10 we do not identify

a statistically significant impact of ICT in the intensive margin in manufacturing. And in

Table 11, we find that the extensive margin of ICT techies in non-manufacturing industries is
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nil, although the intensive margin is very large. However, these differences do not undermine

the main conclusions from the baseline analysis. Broadly, the two sets of GNR estimates are

consistent with those in the main analysis, for example, in the relative magnitudes of the

effects of R&D, ICT and Other techies.

7 Conclusion and implications

Our paper has shown the key role of techies in raising firm-level productivity. This conclusion

holds for both manufacturing and non-manufacturing firms in the French economy from 2011

to 2019. An important contribution of our paper is to separately estimate the role of techies

who work in R&D from those who work in ICT and other technical occupations. R&D

techies are more common and more important to productivity in manufacturing, while ICT

techies are more important in non-manufacturing, which is the bulk of the private sector

in all advanced economies. Economists have often conceived of R&D as improving the

technological frontier, and our results are consistent with this interpretation. However, it

is likely that attaining the frontier is at least as important to productivity as expanding it,

and this is where ICT and other techies are likely to be crucial. Our results on ICT and

other techies challenge the view that focusing solely on R&D techies can fully capture overall

impact of techies across various industries.

We have conceived of employment of techies as analogous to investment spending: em-

ploying techies is profitable because they raise the future productivity of other factors of

production, just as investment is profitable because it raises the firm’s future capital stock.

Our methodology has allowed us to study the causal effects of employing techies on future

productivity without having to model the difficult question of optimal employment of techies.

To do so we have adopted techniques from the productivity estimation literature, which has

similarly shown how to estimate the effect of capital and other factors of production on

output without estimating the full system of dynamic factor demands.

Our work has implications for policymakers concerned with promoting economic growth.
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Capital accumulation and R&D are rightly central to such policy goals. Our findings about

the key role of ICT and other techies suggest that educational, training and other policies

that enhance the supply of techies will also have positive effects on growth.
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Appendices
A Data definitions and construction
Here we discuss in detail the three administrative and survey datasets used in our paper, as
well as details on supplementary publicly available data.

A key feature of the French statistical system is that establishments are identified by a
unique number, the SIRET, used by all data sources. The first 9 digits of an establishment’s
SIRET comprise the SIREN of the firm to which the establishment belongs. This makes it
easy to aggregate from establishments to firms.
Workers: DADS Poste. Our source for information on workers is the DADS Poste,
which is based on mandatory annual reports filed by all firms with employees, so our data
includes all private-sector French workers except the self-employed.21 The DADS Poste is an
INSEE database compiled from the mandatory firm-level DADS reports. For each worker,
the DADS Poste reports gross and net wages, hours paid, occupation, tenure, gender and
age. There is no information about workers’ education or overall labor market experience.
The data do not include worker identifiers, so we can not track workers over time, but this
is of no concern to us given our focus on firm-level rather than individual outcomes.22 Our
unit of analysis is a firm-year observation.

The DADS reports detailed 4-digit occupational codes, almost 500 in total, beginning
in 2009, which determines the first year of our sample. We use the French occupational
classification PCS-ESE and the exhaustive definition of tasks for each occupation provided
by the INSEE (2003) to identify techie workers precisely. We distinguish between three types
of techie workers: ICT, R&D, and other techies. Table A1 reports our classification.

Table A1: Classification of ICT, R&D and other techies

PCS-ESE Description (see, INSEE (2003))
Research and Development
383a Engineers and R&D managers in electricity and electronics
384a Engineers and R&D managers in mechanics and metalworking
385a Engineers and R&D managers in the transformation industries (food processing,

chemistry, metallurgy, heavy materials)
386a Engineers and R&D managers in other industries (printing, soft materials, furniture

and wood, energy, water)
473b R&D technicians and manufacturing methods technicians in electricity, electrome-

chanics, and electronics
474b R&D technicians and manufacturing methods technicians in mechanical construc-

tion and metalworking
475a R&D technicians and production methods technicians in the transformation indus-

tries
Information and Communication Technologies
388a Engineers and R&D managers in computer science
388b Engineers and managers in administration, maintenance, support, and user services

in computer science

21All employers and their employees are covered by the DADS declaration with the exception of self-
employed and government bodies, domestic services (section 97-98 of NAF rev. 2) and employees in businesses
outside French territory (section 99 of NAF rev. 2). However, local authorities and public-employed hospital
staff are included since 1992. Public institutions of industrial and commercial nature are also included.

22A related dataset, made famous by Abowd et al. (1999), is the DADS Panel. This sample from of the
DADS data does include worker identifiers.
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388c IT project managers and IT managers
388e Engineers and specialist managers in telecommunications
478a Computer design and development technicians
478b Computer production and operation technicians
478c Computer installation, maintenance, support, and user services technicians
478d Telecommunications technicians and network IT technicians
Other
380a Technical directors of large companies
381a Engineers and management staff in agriculture, fishing, water, and forestry studies

and operations
382a Engineers and management staff in building and public works studies
382b Architects
382c Engineers, site managers, and construction supervisors (managers) in building and

public works
382d Technical sales engineers and managers in building and public works
383b Manufacturing engineers and managers in electrical and electronic equipment
383c Technical sales engineers and managers in professional electrical or electronic equip-

ment
384b Manufacturing engineers and managers in mechanics and metalworking
384c Technical sales engineers and managers in professional mechanical equipment
385b Manufacturing engineers and managers in transformation industries (food process-

ing, chemicals, metallurgy, heavy materials)
385c Technical sales engineers and managers in intermediate goods transformation indus-

tries
386d Production and distribution engineers and managers in energy and water
386e Manufacturing engineers and managers in other industries (printing, soft materials,

furniture, and wood)
387a Industrial purchasing and procurement engineers and managers
387b Logistics, planning, and scheduling engineers and managers
387c Production method engineers and managers
387d Quality control engineers and managers
387e Maintenance, maintenance, and new works technical engineers and managers
387f Technical engineers and managers in the environment
388d Technical sales engineers and managers in IT and telecommunications
389a Technical engineers and managers in transport operations
389b Technical and commercial navigating officers and managers of civil aviation
389c Technical navigating officers and managers of merchant navy.
471a Technical experts and consultants in agriculture, water, and forestry studies
471b Technical experts in operation and production control in agriculture, water, and

forestry
472a Building and civil engineering draftsmen
472b Surveyors and topographers
472c Quantity surveyors and various building and civil engineering technicians
472d State and local government public works technicians
473a Electrical, electromechanical, and electronic draftsmen
473c Electrical, electromechanical, and electronic production and quality control techni-

cians
474a Mechanical and metal construction draftsmen
474c Mechanical and metal construction production and quality control technicians
475b Production and quality control technicians in the transformation industries
476a Technical assistants, printing and publishing technicians
476b Soft materials, furniture, and wood industry technicians
477a Logistics, planning, and scheduling technicians
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477b Installation and maintenance technicians for industrial equipment (electrical, elec-
tromechanical, and mechanical, excluding IT)

477c Installation and maintenance technicians for non-industrial equipment (excluding
IT and telecommunications)

477d Environmental and pollution treatment technicians
479a Public research or teaching laboratory technicians
479b Independent expert technicians of various levels

Source: INSEE (2003): https://www.insee.fr/fr/information/2400059. Own classification.
Notes: The PCS (Professions et Catégories Socioprofessionnelles) system of occupational codes is
used to classify all workers in France.

The “Other techies” group is diverse. Their tasks are mostly related to adopting and
spreading new technologies and production methods within their firms. Unlike workers
directly contributing to current output, such as sales personnel, Other techies also aim to
boost productivity. Their main role is to support production processes rather than directly
engage in fabrication tasks. However, the tasks performed by technicians and engineers in
this category are often less clearly defined than those of R&D and ICT techies. This is why
we present results reallocating Other techies to ordinary workers contributing to current
output. The results on ICT and R&D are qualitatively similar.
Balance sheet data: FARE. Firm-level balance sheet information is reported in an
INSEE dataset called FARE. The balance sheet variables used in our empirical analysis
include revenue, expenditure on materials, and the book value of capital. We do not use
balance sheet data on employment or the wage bill, because the DADS Poste data is more
detailed, but the FARE wage bill and employment data are extremely highly correlated with
the corresponding DADS Poste data.

We begin constructing capital stocks with the book value of capital recorded in FARE.
We follow the methodology proposed by Bonleu et al. (2013) and Cette et al. (2015). Since
the stocks are recorded at historical cost, i.e. at their value at the time of entry into the firm
i’s balance sheet, an adjustment has to be made to move from stocks valued at historic cost
(KBV

i,s,t) to stocks valued at current prices (Ki,s,t). We deflate KBV by a price by assuming
that the sectoral price of capital is equal to the sectoral price of investment T years before
the date when the first book value was available, where T is the corrected average age of
capital, hence pKs,t+1 = pIs,t−T . The average age of capital is computed using the share of
depreciated capital, DKBV

i,s,t in the capital stock at historical cost.

T =
DKBV

i,s,t

KBV
i,s,t

× Ã

where

Ã = mediani∈S

(
KBV

i,s,t

∆DKBV
i,s,t

)
with S the set of firms in a sector. We use the median value Ã to reduce the volatility in the
data, as investments within firms are discrete events.
Trade data: Douanes. Data on bilateral exports of firms located in France are provided
by French Customs. For each observation, we know exporting status of the firm. We use
the firm-level SIREN identifier to match the trade data to other sources. This match is not
perfect: we fail to match about 11 percent of imports and exports to firms. The imperfect
match is because there are SIRENs in the trade data for which there is no corresponding
SIREN in our other data sources. This is likely to lead to a particular type of measurement
error: for some firms, we will observe zero trade even when true trade is positive. This is
not a big concern because most of the missing values are in the oil refining industry, which
we drop from our sample.
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Survey data. The data is taken from four French surveys related to R&D, ICT, patent and
innovation activities at the level of the firm and individual information on techies’ vocational
training.

• The Annual Survey on the Means dedicated to Research and Development (R&D sur-
vey: Enquête R&D Entreprises) provides information on the means devoted to R&D
by firms in terms of in-house and external expenditure and the number of researchers
and research support personnel. The survey is exhaustive for firms that have conducted
in-house R&D expenditures for a level greater than or equal to 400keand firms that
have newly declared in-house R&D expenditures during the year of the survey. These
“new” firms in terms of R&D are taken from administrative sources (the Research Tax
Credit (RTC) database, the Young Innovative Companies (YIC) database, companies
created via public incubators, i-Lab competition winners) or from the Innovation Ca-
pacity and Strategy (ICS) survey. The survey is completed with a sample of firms
whose in-house R&D expenditure is strictly smaller than 400ke. We focus on the pe-
riod from 2010 to 2019 to match the period of analysis in the DADS data. The survey
provided pooled cross-sectional data on about 10,000 firm-level observations each year.
For our purposes, we are mostly interested in how much of the firm’s R&D budget is
spent on internal R&D wages. Moreover, the survey asks firms if they filed patents
and had any process or product innovations in the past year. We are also interested
to see if internal R&D spending and employment of techies is related to patents or
innovation.

• The Information and Communication Technology survey (ITC survey: Enquête sur
les technologies de l’information et de la communication et le commerce électronique
– TIC entreprises) provides information on the computerization and the diffusion of
information and communication technologies in firms. The survey is exhaustive for
firms with more than 500 employees or having the highest turnover – about 2,800
firms in the sample. It is complemented by the ICT information of smaller firms. We
collected data on a pooled cross-sectional sample of about 10,000 firm-level observations
per year from 2012 to 2018. For our purpose, the survey provides useful information
on the relationship between ICT training and the diffusion of technology within a firm.

• The Training and Professional Qualification survey (TPQ survey: Enquête formation
et qualification professionnelle) provides information on professional mobility, initial
training, continuing education, social origin, and work income. Every ten years, the
INSEE collects detailed information on 45,000 individuals aged 21 to 64 and residing in
France. We use the 2015 edition of the survey. It gives a precise account of the specialty
of the highest degree obtained by the individual and whether and which training after
the highest degree he/she received. The survey provides a detailed classification of
specialties and training that allows us to classify the individual’s skills as STEM. It
also provides characteristics such as the individual’s occupation. Table A2 provides
information on the list of diplomas and training that we group to identify individuals
with education and training in science, technology, engineering, and math (STEM). .

Each firm in the survey has the same identifier as in the administrative dataset. We show
below that the information provided in the survey correlates well with the information in
the DADS dataset.
B Facts on Techies
Facts 1. Techies have more STEM education and training than other occupa-
tions. We argue that techie workers are engineers and technicians with skills and experience
in STEM. We use the TPQ survey to analyze whether techies have more STEM education
and more STEM training than other occupations. We find 26,861 individuals with valid
observations, among which 5.4% are Engineers (PCS 38) and 5.1% are Technicians (PCS
47). These shares are similar to the shares in the DADS administrative data.
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Table A2: Mapping diplomas’ specialties into STEM skills

French National Code Title

Diploma

110 Multi-science specialties
111 Physical chemistry
112 Chemistry, Biology, Biochemistry
113 Natural Sciences (Biology, Geology)
114 Mathematics, statistics
115 Physics
116 Chemistry
117 Earth Sciences
118 Life Sciences
200 Basic industrial technologies
201 Automation, robotics, industrial process control
230 Civil engineering, construction, wood
240 Multi-technology specialties in flexible materials
250 Multi-technology specialties mechanics-electricity
253 Aeronautics and space mechanics
255 Electricity, electronics
326 Computer science, information processing, networks

Training

420 Life Sciences
440 Physical Sciences
460 Mathematics and Statistics
481 Computer Science
482 Computer use
500 Engineering, processing and production

Source: TPQ, 2015. French classifications of diploma and vocational
training.

Table B1 reports the results. We show that around 60 percent of techies have a degree
and/or training in STEM, with about a fifth having a STEM degree and further STEM
training. STEM degrees are more common among engineers (PCS 38, 55%) than technicians
(PCS 47, 41%). By contrast, STEM education is quite uncommon in all other PCS codes,
with only 11% having a STEM degree and less than a fifth having a degree or training.
These results show that techies have more STEM education and more STEM training than
other occupations.

Table B1 gives some additional details on STEM degrees and training for large non-techie
occupations. Less than a fifth of upper managers have any STEM education, a share that is
even lower among middle managers and clerical workers. By contrast, over a third of skilled
industrial workers have some STEM education. However, the degrees earned by these workers
are primarily general and technical high school degrees rather than university degrees. More
than two-thirds of skilled industrial workers have either a professional baccalaureate (14%), a
vocational school certificate (in French, CAP, 29%), or a certificate of vocational proficiency
(in French, BEP, 15%).
Fact 2. Techies across industries. Table B2 reports the techie wage bill shares by
category in France and the French manufacturing and non-manufacturing sectors. Our
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Table B1: STEM education share by occupation

Degree or Degree and
Degree Training Training Training

Techies

Engineers 0.55 0.27 0.64 0.19
Technicians 0.41 0.35 0.59 0.18

Other occupations

Average 0.11 0.09 0.18 0.02
Upper managers 0.12 0.09 0.19 0.02
Middle managers 0.09 0.08 0.16 0.01
Other office workers 0.04 0.07 0.11 0.01
Skilled industrial workers 0.19 0.22 0.36 0.05

Source: TPQ, 2015 .

analysis indicates that most techie workers are employed in manufacturing, accounting for
roughly two-thirds of the total techie wage bill. We also observe interesting patterns when
we break down techie workers into different categories (ICT, R&D, and other tech workers).
The share of R&D workers in the manufacturing wage bill is considerably higher at 87.3%
compared to the share of ICT workers, which is only 38.0%. The wage bill share of other
techies workers is similar to the aggregate pattern.

Techies represent 18% of the French private sector’s wage bill share, with a larger share in
manufacturing than in non-manufacturing. Overall and across sectors, other techie workers
are a larger share of the techie wage bill than the shares of R&D and ICT workers. The share
of R&D techies is much more prominent in manufacturing, while the share of ICT techies is
almost identical across sectors. Table B2 also reports the wage bill shares of engineers and
technicians. Engineers are twice as large a share of the techie wage bill than technicians.

Table B2: Wage bill shares of techies by categories (2019)

Overall Manufacturing Non-Manufacturing % techie wage bill
in manufacturing

Techies 18.3 31.5 10.8 62.6

R&D 3.4 8.2 0.7 87.3
ICT 2.2 2.3 2.1 38.0
Other 12.7 21.1 8.0 60.2

Engineers (PCS 38) 11.9 19.7 7.4 60.3
Technicians (PCS 47) 6.5 11.9 3.4 66.9

Regarding the presence of both R&D and ICT techie workers in manufacturing and non-
manufacturing firms, we observe that 47% of manufacturing firms that employ R&D techies
also have ICT techies. In contrast, the corresponding figure for non-manufacturing firms is
44%.

When considering the co-existence of R&D and other techie workers in manufacturing
and non-manufacturing firms, we find that many manufacturing firms with R&D techies also
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employ other techies.
Specifically, 96% of such manufacturing firms have other techies on their payroll. In non-

manufacturing firms, this proportion is slightly lower, with 84% of firms with R&D techies
also employing other techies.
Facts 3. Most R&D spending is on wages. The R&D survey provides detailed in-
formation on firms with positive internal R&D expenditures, which are the amounts spent
on R&D that originate within the firm’s control. The survey distinguishes between internal
and external R&D expenditures, which are spent outside the control of the firm. We show
in Table B3, that expenditure on R&D is overwhelmingly spent within the firm, with the
median firm spending nothing on external R&D. We conclude that conditional on reporting
positive internal R&D, most R&D expenditures originate within the control of the firm.

Table B3: External R&D and wage bill shares

Mean Median P90 P10

External share of total 0.09 0.00 0.32 0.00

Wage bill share:

– Total R&D 0.67 0.67 1.0 0.35
– Internal R&D 0.74 0.72 1.0 0.48

Source: R&D survey .

The R&D survey is interesting for our purpose because it gives the labor costs of those
workers who effectively do R&D. It is important because we cannot assume that all labor
costs in the firm’s R&D department are for R&D activities. We use the R&D survey to
analyze how much of the firm’s R&D budget is spent on in-house R&D wages. We show in
Table B3 that R&D spending is mainly spending on wages, especially when R&D is done
within the firm.

Table B4: Correlations

External Share Wage bill share Total R&D
of total R&D of total R&D Expenditures

External share of total R&D 1
Wage bill share of total R&D -0.60 1
Total R&D expenditures 0.08 -0.08 1

Source: R&D survey.

In Table B4, we show that the external share of R&D spending is weakly correlated with
overall R&D spending and strongly negatively correlated with the wage bill share of total
R&D. We conclude that firms indirectly hire some R&D workers through external R&D
spending, but not many: most R&D workers are employed by the firm paying for the R&D,
and their wages make up the bulk of firm R&D spending.

Our main data analysis uses information on various types of techies from the DADS data
to explain firm-level productivity. In Table B5, we show that the wage bills of techies in
the administrative data are highly correlated with different measures of R&D workers in the
survey data. We show that the strength of the correlation is about the same whether we
measure R&D workers in the survey by wage bill, headcount or FTEs. Reassuringly, the
correlations are highest for R&D techies.
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Table B5: Correlations between techie measures in the R&D survey and wage bills in DADS

R&D survey

Wage bill Headcount FTEs

All techies 0.72 0.83 0.79
DADS R&D techies 0.82 0.88 0.84

ICT techies 0.60 0.56 0.55
Other techies 0.49 0.65 0.61

Source: R&D survey matched with DADS data.

Facts 4. Techies are positively associated with the diffusion of ICT within firms.
We use the ICT survey to understand better the relationship between techies and the diffusion
of technology within firms. For our purpose, we exploit three questions in the questionnaires
received by the firms.

1. In 2018, was training in developing or improving skills in ICT offered by the firm to...

• ... specialists in ICT?
• ... other employees?

2. Does the firm employ specialists in ICT?

Table B6 shows that only 20 percent of firms surveyed offer ICT training. However, firms
that employ ICT workers are six times more likely (0.66/0.11) to offer ICT training. About
11 percent of firms offer ICT training even though they do not employ ICT workers. This
fact suggests a role for ICT training from outside the firm.

Table B6: ICT workers and ICT training

Offer ICT
training?
No Yes

Employ No 0.89 0.11
ICT workers? Yes 0.34 0.66

Mean 0.80 0.20

Source: ICT survey.

Table B7 shows further detail on the exposure of different types of workers on ICT
training. We distinguish between ICT workers, non-ICT workers, and both categories. The
table shows that firms that employ ICT workers are four times as likely to train non-ICT
workers in ICT. To see this, note that the first row reports that only 11 percent of firms that
don’t employ ICT workers train non-ICT workers in ICT. In contrast, the second row shows
that among firms that do employ ICT workers, about half train non-ICT workers in the use
of ICT.23

We match the ICT survey to the DADS sample. We find very small discrepancies between
the information in the DADS and ICT datasets. In particular, 10 percent of firms have ICT

230.12 + 0.35 = 0.47 which is about half.
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Table B7: Exposure to ICT training

Which workers get ICT training?

None Only ICT Only non-ICT ICT & non-ICT

Employ No 0.89 0.00 0.11 0.00
ICT workers? Yes 0.34 0.18 0.12 0.35

Mean 0.80 0.03 0.11 0.06

Source: ICT survey.

techies from the DADS, and 12 percent have ICT workers from the survey, a small difference.
We check how having ICT workers in the survey is related to having ICT techies (both and
others) in the DADS. Both panels A and B of Table B8 show that the answer is that the
two are closely related. The left panel shows that the conditional probability of having ICT
workers in the survey given that a firm has ICT techies in the DADS is 0.62, which is 9
times the conditional probability of having ICT workers in the survey given no ICT techies
in the DADS (0.07). The right panel of Table B8 shows that the conditional probability of
having ICT workers in the DADS given that a firm has ICT techies in the survey is 0.49,
which is 12 times the conditional probability of having ICT workers in the DADS given no
ICT techies in the survey (0.04).

Table B8: ICT workers in the ICT survey and DADS dataset

Panel A Panel B

ICT workers ICT techies
in survey? in DADS?

No Yes No Yes

ICT techies No 0.93 0.07 ICT workers No 0.96 0.04
in DADS? Yes 0.38 0.62 in survey? Yes 0.51 0.49

Mean 0.88 0.12 Mean 0.90 0.10

Source: ICT survey.

We next ask if ICT techies are associated with training of workers in ICT. To answer this
question, Table B9 repeats the analysis of Table B6 on the matched ICT survey and DADS
sample. However, we now examine crosstabs of training with ICT techies from the DADS
rather than ICT workers from the survey. Not surprisingly, the inferences are similar: firms
that have ICT techies are 0.49

0.14
= 3.5 times likely to offer ICT training.

Next, we ask what firm characteristics are associated with ICT training, using linear
probability regressions for the training dummy from the survey. All regressions include
industry × year fixed effects, and the log wage bill excluding techies, named “Ex-techies”, as
a control for firm size.

Table B10 shows that there is a strong association between the likelihood of having
techies and offering ICT training, even after controlling for firm size. To interpret the effect
sizes, keep in mind that ICT training is uncommon, with only 18 percent of firms offering
training (Table B9). Columns (1)-(3) use indicator variables to measure techie presence,
and the results are clear: firms with techies are substantially more likely to offer training.
Column (1) shows that firms with any techies are 6 percent more likely to offer ICT training.
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Table B9: ICT workers and ICT training

Offer ICT
training?
No Yes

Employ No 0.86 0.14
ICT techies? Yes 0.51 0.49
(DADS information) Mean 0.82 0.18

Source: Matched dataset.

This effect is driven by ICT techies, as shown in columns (2) and (3): the coefficient on the
dummy for ICT techies is 0.20, while R&D (0.06) and other techies (0.04) have a smaller
albeit positive effect. Columns (4)-(6) are restricted to firms that have positive techies, and
we see that the intensive margin effect is large: firms with 10 percent more expenditure on
techies have a 5 percentage point higher likelihood of offering ICT training, an effect that is
driven by ICT techies.

Table B10: Explaining ICT training

(1) (2) (3) (4) (5) (6)

I (techies > 0) 0.061***
(0.006)

I (ICT techies > 0) 0.203*** 0.188***
(0.009) (0.009)

I (R&D techies > 0) 0.063***
(0.009)

I (Other techies > 0) 0.037***
(0.006)

Wage bill (log):
– Techie 0.048***

(0.003)
– ICT techies 0.063*** 0.035***

(0.005) (0.007)
– R&D techies 0.024***

(0.006)
– Other techies 0.015

(0.011)
– Ex-techies 0.087*** 0.074*** 0.065*** 0.068*** 0.083*** 0.083***

(0.002) (0.002) (0.002) (0.004) (0.005) (0.011)

Obs. 47,363 47,363 47,363 30,859 15,720 8,727

Dependent variable is an indicator for whether the firm offers ICT training to any of its
workers. Regressions include industry×year fixed effects, with robust standard errors in
parentheses.*** denotes p-value ≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10.

To summarize what we have found in this sub-section, measures of ICT employment in
the survey are closely associated with the presence of ICT and other techies in the DADS.
In addition, firms with ICT techies are much more likely to offer ICT training to their ICT
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and non-ICT workers.
Facts 5. Techies are positively associated with patenting and innovations. We
describe the relationship between R&D spending, techies and patents, and innovation out-
comes. The R&D survey provides information on whether the firm has introduced technolog-
ically new or improved products or services on the market or implemented new or improved
production processes as a result of the R&D activity. It also gives the number of patents
filed during the year as a result of R&D activity. We make no attempt to estimate the causal
effects of R&D or techies on these measures of innovation, but the reduced form correlations
are informative.

We find that the distribution of patents is extremely skewed: the 75th percentile firm-
year files no patents, and the 95th percentile files only 4. The 99th percentile firm files 26,
and the top four firm-year observations are around 2,000. Responses to questions related
to innovations are much less skewed, as seen in Table B11: only a quarter of firms say that
they had no process or product innovations in the past year, while half had both.

Table B11: Innovation activity, share of firms

Process
innovation?
No Yes

Product No 0.24 0.10
innovation? Yes 0.19 0.47

Source: R&D survey.

Next, we analyze the relationship between patenting, R&D spending, and techies. We
proceed in two steps. First, we analyze the patenting and innovation activities of firms using
the R&D variables from the R&D survey. Second, we match the R&D survey with the
administrative DADS data to correlate the wage bill of techies with the firms’ patenting and
innovation activities. Both samples are restricted to firm-year observations with positive
R&D expenditures. We use a negative binomial model as the dependent variable is the
number of patents filed by the firm and a linear probability model to analyze innovation
activities. The estimates have the interpretation of elasticities as the right-hand side variables
are taken in logs. In the two sets of regressions, we include the firm’s non-techie wage bill
as a control for size, which turns out to be unimportant. Industry and year-fixed effects are
included in all regressions.

In Table B12, we report the results of the analysis of the R&D survey.
The results presented in columns (1) and (2) suggest that there is a positive relationship

between R&D spending and the number of patents, with an elasticity of around 0.60. This
elasticity hardly changes when we use the R&D wage bill in column (2). When we break
down R&D spending into wage and non-wage components in column (3), we still find a
positive correlation between patenting activity and R&D expenditures. This indicates the
importance of labor in producing R&D services.

Moving on to columns (4) to (12), we find a strong positive correlation between R&D
spending and the likelihood of innovation in both products and processes. Interestingly, the
elasticity of the R&D techie wage bill to innovation is almost five times greater than that of
the R&D ex-wage bill. This underscores the importance of R&D workers in driving product
innovation.

There, we find that ICT techies are also associated with patenting and innovation, In
contrast, when using the matched sample, our analysis suggests that Other techies do not
significantly impact product innovation, while ICT techies do have an effect. We find a
positive correlation between R&D and other workers on process innovation.
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Table B12: Number of patents (Results using the R&D survey)

Patent Innovation Product Process
Innovation Innovation

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Total R&D 0.609*** 0.084*** 0.045*** 0.039***
(0.015) (0.002) (0.001) (0.001)

R&D Wage Bill 0.592*** 0.333*** 0.083*** 0.066*** 0.047*** 0.045*** 0.037*** 0.021***
(0.016) (0.051) (0.002) (0.003) (0.001) (0.002) (0.001) (0.002)

R&D ex-wage bill 0.271*** 0.014*** -0.001 0.015***
(0.053) (0.003) (0.002) (0.002)

Obs. 87,393 86,339 76,297 87,393 86,339 76,297 87,393 86,339 76,297 87,393 86,339 76,297

Notes: Dependent variable is firm-level patent count from R&D survey data. All explanatory
variables are in logs. Industry and year-fixed effects are included in all regressions, with robust
standard errors in parentheses.*** denotes p-value ≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10.

We now study the results in the matched sample in Tables B13 and B14. We include the
firm’s non-techie wage bill as a control for size, which turns out to be unimportant.

In Table B13, we report the results from the matched R&D and DADS datasets on the
impact of techies on the number of patents.

Table B13: Number of patents (results using the matched dataset)

Non-
Manufacturing Manufacturing

(1) (2) (3) (4)

Wage bill (log):
– Techies 0.787***

(0.067)
– R&D techies 0.433*** 0.465*** 0.321***

(0.039) (0.046) (0.047)
– ICT techies 0.186*** 0.152*** 0.221***

(0.040) (0.043) (0.066)
– Other techies 0.096 0.238*** -0.127

(0.079) (0.063) (0.112)

Obs. 18,155 18,155 16,070 2,085

Source: Matched dataset.
Notes: Dependent variable is firm-level patent count from R&D survey
data. All explanatory variables are in logs. Firm’s non-techie wage bill
and industry and year-fixed effects are included in all regressions, with
robust standard errors in parentheses.*** denotes p-value ≤ 0.01, ** p-
value ≤ 0.05, * p-value ≤ 0.10.

In column (1), we estimate the impact of techies and observe a striking similarity to the
effect of total Research and Development (R&D) spending presented in Table B12. We then
split techies into their three subgroups by function in columns (2) to (4). We find a larger
correlation between patenting and R&D techies than with ICT techies. The correlation of
Other techies with patenting is much smaller and not well identified. It is noteworthy that
the results on R&D and ICT techies hold across both manufacturing and non-manufacturing
sectors.
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Our last statistical exercise in this section reports linear probability models for the three
innovation outcome indicator variables. The parameter estimates reported in Table B14
have the interpretation of semi-elasticities. Overall, Techies have a statistically significant
positive relationship with the likelihood of innovation. This suggests that techies can lead
to increased innovation in product development or process improvement.

Table B14: Innovation (Results using the R&D survey)

Innovation Product Innovation Process Innovation
Manuf. Non-

Manuf.
Manuf. Non-

Manuf.
Manuf. Non-

Manuf.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Wage bill (log):
– Techies 0.102*** 0.028*** 0.074***

(0.011) (0.006) (0.007)
– R&D techies 0.041*** 0.041*** 0.030*** 0.017*** 0.015*** 0.017*** 0.025*** 0.026*** 0.013

(0.008) (0.009) (0.015) (0.005) (0.005) (0.009) (0.005) (0.006) (0.009)
– ICT techies 0.017** 0.017** 0.019 0.015*** 0.015*** 0.014 0.002 0.002 0.005

(0.007) (0.008) (0.016) (0.004) (0.005) (0.011) (0.004) (0.005) (0.011)
– Other techies 0.037*** 0.031** 0.048** -0.001 -0.003 0.006 0.038*** 0.034*** 0.042***

(0.011) (0.013) (0.022) (0.007) (0.008) (0.014) (0.007) (0.008) (0.013)

Obs. 18,305 18,305 16,209 2,096 18,305 18,305 16,209 2,096 18,305 18,305 16,209 2,096

Source: Matched dataset.
Notes: Dependent variables indicators for innovation. All explanatory variables are in logs. Firm’s non-
techie wage bill and industry and year-fixed effects are included in all regressions, with robust standard
errors in parentheses. *** denotes p-value ≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10.

R&D techies have a statistically significant positive relationship with both process and
product innovation, in both manufacturing and non-manufacturing industries—except that
when we focus on process innovation in non-manufacturing firms, this correlation vanishes.
This suggests that while R&D techies are beneficial for innovation outcomes in general, their
impact on process innovation in non-manufacturing industries may be limited.

In addition, we find that ICT techies have a positive relationship with product innova-
tion in the manufacturing industry, but they are not associated with product innovation in
non-manufacturing industries. This implies that the presence of ICT techies may be partic-
ularly beneficial for product innovation in the manufacturing industry, but may not have a
significant impact on product innovation in other industries. Interestingly, ICT techies have
no impact on process innovation, regardless of the industry considered.

Finally, we show that Other techies have a positive relationship with process innovation
across industries. In contrast, Other techies are not associated with product innovation.
This suggests that having techies with expertise not specifically related to R&D or ICT can
still contribute to innovation outcomes, but their impact may be more important in process
innovation, in both manufacturing and non-manufacturing industries.
C Firm choice of techies
In this section, we describe a very simple model of a firm’s choice of how many techies to
employ. The purpose is to give intuition about why some but not all firms choose to hire
techies. We describe the firm’s optimal choice of techies, given a simple function from current
techies to future productivity. A two-period model is sufficient to illustrate the mechanisms
at work. Firm f faces an inverse demand curve given by

Pft = AfY
−1
η

ft , η > 1. (9)

The relationship from techies to changes in log productivity is

ωft = ωft−1 +Max [β lnTft−1, 0] , β ≥ 0. (10)
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Fixed costs of employing positive techies are κf , and techies are paid r per unit. The
production function is

Yft = ΩftLft

where Lf is a bundle of inputs available at cost w, and Ωft = eωft . By equation (9), revenue
is

Rft = Af [ΩftLft]
η−1
η .

Let labor be the numeraire. The static profit-maximizing input choice is

Lft = Ωη−1
ft

[
η − 1

η
Af

]η
.

Plugging this back into the expression for revenue gives optimized revenue for given produc-
tivity,

Rft = BfΩ
η−1
ft , Bf = Aη

f

(
η − 1

η

)η−1

.

With no discounting, the firm chooses Tft−1 to maximize two-period profits,

Πf = BfΩ
η−1
ft−1 +BfΩ

η−1
ft − (rTft−1 + κf ) I (Tft−1 > 0)

where I () is the indicator function. There will be two solutions, one the corner solution with
Tft−1 = 0 and the other an interior optimum with Tft−1 > 0. When Tft−1 > 0, equation (10)
implies Ωft = (Tft−1)

β Ωft−1. Substituting this into the expression for profits gives

ΠT
f = BfΩ

η−1
ft−1 +Bf

(
(Tft−1)

β Ωft−1

)η−1

− rTft−1 − κf (11)

At the interior solution, the firm chooses Tft−1 to maximize (11). The solution of this problem
is

T opt
ft−1 =

[
r−1β (η − 1)Ωη−1

ft−1

] 1
1−β(η−1) (12)

For high enough values of β, the second order condition of the profit maximization prob-
lem doesn’t hold and optimal techie employment is infinite. To rule this out we assume
β (η − 1) < 1. Plugging the solution (12) back into the expression for Ωft and defining the
constants ν = β (η − 1) < 1 and µ = 1

1−β(η−1)
> 1 gives

Ωopt
ft =

[ r
ν

]−βµ

Ωµ
ft−1 (13)

This equation establishes the intuitive result that optimized Ωft is decreasing in the cost of
techies r and increasing in Ωft−1.

To figure out whether Tf1 = 0 or Tf1 > 0 yields higher profits, the firm computes
maximized profits in each case. Profits at the corner solution Tf1 = 0 are

ΠC
f = 2BfΩ

η−1
f1

To compute profits at the interior solution, substitute (12) and (13) into (11) to obtain

ΠT
f = BfΩ

η−1
ft−1 +

(
Ωη−1

ft−1r
−νν
)µ

[Bfν
ν − 1]− κf

Thus the difference between the two profit levels is
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ΠT
f − ΠC

f =
(
Ωη−1

ft−1r
−νν
)µ

[Bfν
ν − 1]− κf

A necessary condition for this to be positive is that the term in brackets is positive. This will
be more likely when demand (captured by Bf ) is higher. If the term in brackets is positive,
the whole expression is more likely to be positive the smaller are κf and r and the larger is
Ωft−1. If the term in brackets is negative, then ΠT

f − ΠC
f < 0 even if κf = 0, which shows

that fixed costs are not a necessary condition for zero techies to be optimal.
The lessons from this exercise are intuitive:

• The optimal amount of techies is more likely to be positive when demand and/or initial
productivity are higher.

• The optimal amount of techies is more likely to be zero when fixed costs of techies are
high.

• The optimal amount of techies may be zero even if the fixed cost of employing techies
is zero.

• When the optimal amount of techies is positive, it is increasing in initial productivity.

D Production function and productivity estimation methodology
We refer the reader to Grieco et al. (2016) for their methodology. We do not deviate from
it. Here we provide complete details on our implementation of GNR.

GNR start with a production function (within some industry)

Qft = AftF (Xft) , (14)

for some input vector X and Hicks-Neutral productivity A. Taking logs this becomes

qft = lnQft = ln[AftF (e
lnXft)] = lnAft + ln[F (exft)] = aft + f (xft) , (15)

where all lower case letters denote logs of upper case variables and functions. Let

aft = ωft + uft, (16)

where ω is the part of the productivity shifter that the firm observes before making input
demand decisions and u is the unexpected part. While both ω and u affect output, the
important distinction is that ω is be correlated with variable input choices, while u is not.

Assume that ωft follows a 1st order controlled Markov (CM) process, and for purposes of
exposition, let it be a simple AR(1),

ωft = const + λωft−1 + βzft−1 + ξft, (17)

where zft−1 is a vector that includes firm choices (techies, exporting, etc.) and ξft is an
orthogonal innovation.

We do not observe quantities. Therefore we adjust the basic GNR model. We assume
that—as in GLZ—firms face an industry-specific downward sloping demand curve, with
elasticity η = 1/ (1− ρ) > 1, ρ ∈ (0, 1), á la Klette and Griliches (1996), as in GNR’s
Appendix O6-4 “Revenue Production Functions”.

A firm that sets price Pft sells quantity

Qft = Bt

(
Pft

Πt

)−η

, (18)
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where Πt is the aggregate price index and Bt is aggregate demand. Alternatively, write

Pft = Q
−1/η
ft B

1/η
t Πt = Q−1+ρ

ft B1−ρ
t Πt. (19)

Therefore, revenue is
Rft = PftQft = Qρ

ftB
1−ρ
t Πt. (20)

Given an aggregate price index Πt we have deflated revenues

R̃ft =
Rft

Πt

= Qρ
ftB

1−ρ
t . (21)

The theory-consistent measure of Bt is given by

Bρ
t =

∑
f∈Θt

Qρ
ft =

∑
f∈Θt

R̃ftB
−1+ρ
t =⇒ Bt =

∑
f∈Θt

R̃ft =
1

Πt

∑
f∈Θt

Rft, (22)

i.e., the sum of deflated revenues, where Θt is the set of all firms that serve the (single)
market. Taking logs of (20) we have

rft = ρqft + (1− ρ) lnBt + lnΠt, (23)

and using the production function and rearranging we have the deflated “revenue production
function”

r̃ft = ln
Rft

Πt

= (1− ρ) lnBt + ρf (·) + ρωft + ρuft. (24)

In principle, time variation in Bt can identify ρ, which can be used to “unpack” the
production function from the “revenue production function”—but since we have only a few
years we will take a different route. We absorb (1− ρ) lnBt in time fixed effects (see below),
so that in practice we don’t need to deflate revenues, which is inconsequential for the results.

Firms are price takers on input markets. Firms maximize expected profits (the value of
u is not in their current information set). By manipulating the FONC with respect to any
static input j that is chosen without frictions, we obtain the associated first step factor share
equation

sjft = ln
[
E(eu

′
)ρϵj(xft)

]
− u′ft, (25)

where sjft is the log of the cost share of input j in revenue (potentially greater than 1, if
the firm is hit by a large enough negative u shock), ϵj(xft) = ∂ ln f(xft)/∂ ln j is the output
elasticity w.r.t. input j, and u′ft = ρuft.

We estimate (25) by NLLS, using some parametric assumption on ϵj(xft). OnceE(eu′
)ρϵj(xft)

is identified, we use the residual to estimate E(eu′
), which allows identifying ρϵj(xft). In or-

der to identify ϵj(xft) we need an estimate of ρ, which can be obtained in the second step.
However, since our panel is too short to precisely identify ρ, we stay with ρϵj(xft).

In (25) u′ft = ρuft because u contributes directly to output. Unlike GLZ, the surprise
shock is not a demand shock. We can assume that, like in GLZ, a = ω and that u is an ex
post demand shock. In that case the same equation (25) arises, with the only difference that
there is no ρ in the residual, i.e., u′ft = uft. All this is inconsequential for what follows, so
henceforth we drop the superscript in u′ft.

In Section 5 of their paper, GNR use in the first step share equation a “complete” second-
order polynomial in m, l and k plus a term that combines all three (m× l × k). They then
integrate this w.r.t. m. They subtract this integral from q, and estimate the second step,
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in which there are only second-order terms in l and k. We adapt this to the case in which
output quantities are not observed, while only revenue is.

We entertain two assumptions on labor, Lft:

1. Lft is “predetermined”, i.e., it does not respond to the innovation to productivity ξft,
conditional on ωft−1 (like K).

2. Lft is “static”, i.e., it responds to the innovation to productivity ξft, conditional on
ωft−1, and the static FONC holds (like M).

These are described in the following subsections.

D.1 Single static input M , both L and K predetermined

Assume that, as in GNR, material inputs are static and frictionless, and that both L and K
are dynamic and predetermined. The first step share equation is

smft = lnSm
ft = ln [E(eu)ρϵm(xft)]− uft, (26)

where we drop the “prime” on u because, as noted above, this is inconsequential. Denote

E(eu)ρϵm(xft) = γ′(xft)

ρϵm(xft) = γm(xft) .

Estimate (26) by NLLS: choose the vector γ′ to minimize∑
ft

[smft − ln

(
γ′0 + γ′mmft + γ′llft + γ′kkft + γ′mmm

2
ft + γ′lll

2
ft + γ′kkk

2
ft

+γ′mlmftlft + γ′mkmftkft + γ′lklftkft + γ′mlkmftlftkft

)
]2. (27)

Once γ′ is estimated, we recover γm by dividing through all point estimates by (1/N)
∑

ft(e
uft).

Integrating γm(xft) yields∫ mft

0

γm(m, lft, kft)dm =

∫ mft

0

(
γ0 + γmm+ γllft + γkkft + γmmm

2 + γlll
2
ft + γkkk

2
ft

+γmlmlft + γmkmkft + γlklftkft + γmlkmlftkft

)
dm

=

(
γ0 +

1
2
γmmft + γllft + γkkft +

1
3
γmmm

2
ft + γlll

2
ft + γkkk

2
ft

+1
2
γmlmftlft +

1
2
γmkmftkft + γlklftkft +

1
2
γmlkmftlftkft

)
mft

The lower bound for integration implies a normalization on the production function param-
eters and is inconsequential.

The second step equation is

yft = r̃ft − uft −
∫ mft

0

γm(m, lft, kft)dm

= ρωft + (1− ρ) lnBt − C (lft, kft)

= ω′
ft + αllft + αlll

2
ft + αkkft + αkkk

2
ft + αlklftkft, (28)

where we absorb (1− ρ) lnBt in

ω′
ft = ρωft + (1− ρ) lnBt.
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For any guess of the vector of coefficients α we can compute ω̂′ (α)ft as a residual from (28).
Now invoke the Markov assumption (17), and estimate

ω̂′ (α)ft = FEt + λω̂′ (α)ft−1 + ρβzft−1 + ξ′ft, (29)

where ξ′ft = ρξft and the time fixed effects FEt absorb (1− ρ) lnBt. Here we can only identify
ρβ, not β. The estimated ξ̂′ (α)ft are orthogonal to

(
lft, l

2
ft, kft, k

2
ft, lftkft

)
because they are

predetermined by assumption. Use this to build a GMM estimator based on the following
moment conditions:

E
{
ξ̂ (αl, αll, αk, αkk, αlk)ft

(
lft, l

2
ft, kft, k

2
ft, lftkft

)′}
= 0 . (30)

Once we have estimates of α we can compute one last time ω̂′ (α)ft and regress (29) to obtain
estimates of λ and ρβ.

Finally, we compute the revenue elasticities w.r.t. L and K :

γl(xft) = αl + 2αlllft + αlkkft + γlmft + 2γlllftmft +
1

2
γmlm

2
ft + γlkkftmft +

1

2
γmlkm

2
ftkft

γk(xft) = αk + 2αkkkft + αlklft + γkmft + 2γkkkftmft +
1

2
γmkm

2
ft + γlklftmft +

1

2
γmlkm

2
ftlft,

where, as above, the true output elasticities ϵl(xft) = γl(xft)/ρ are not identified without
information on ρ.

D.2 Two static inputs M and L, K is predetermined

We estimate the first step share equations for M and L using the same procedure as above.
The first step share equations are

smft = ln [E(eu)γm(xft)]− umft (31)

slft = ln
[
E(eu)γl(xft)

]
− ulft . (32)

Here we obtain two residuals: umft = uft +ψm
ft and ulft = uft +ψl

ft. The additional ψj
ft terms

account for the fact that the residuals do not coincide. They are assumed to be orthogonal
to uft and xft. GNR discuss this in their Appendix O6-3 “Multiple Flexible Inputs”. An
efficient way to consistently estimate u is to use the average (umft + ulft)/2. With some abuse
of notation, let uft = (umft + ulft)/2. We estimate (31) and (32) separately by NLLS, and use
uft to build (1/N)

∑
ft(e

uft) and to obtain γm(xft) and γl(xft) in (31) and (32), respectively.
Denote the coefficients from theM share equation γm and those from the L share equation

γl. Using the result from Varian (1992) we compute the integral

I(m,l) =

∫ mft

m0

γm (m, l0, kft) dm+

∫ lft

l0

γl (mft, l, kft) dl . (33)
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This sum of integrals equals

I(m,l) =

(
γm0 + 1

2
γmmmft + γml l0 + γmk kft +

1
3
γmmmm

2
ft + γmll l

2
0 + γmkkk

2
ft

+1
2
γmmlmftl0 +

1
2
γmmkmftkft + γmlk l0kft +

1
2
γmmlkmftl0kft

)
mft

−
(
γm0 + 1

2
γmmm0 + γml l0 + γmk kft +

1
3
γmmmm0 + γmll l

2
0 + γmkkk

2
ft

+1
2
γmmlm0l0 +

1
2
γmmkm0kft + γmlk l0kft +

1
2
γmmlkm0l0kft

)
m0

+

(
γl0 + γlmmft +

1
2
γll lft + γlkkft + γlmmm

2
ft +

1
3
γllll

2
ft + γlkkk

2
ft

+1
2
γlmlmftlft + γlmkmftkft +

1
2
γllklftkft +

1
2
γlmlkmftlftkft

)
lft

−
(
γl0 + γlmmft +

1
2
γll l0 + γlkkft + γlmmm

2
ft +

1
3
γllll

2
0 + γlkkk

2
ft

+1
2
γlmlmftl0 + γlmkmftkft +

1
2
γllkl0kft +

1
2
γlmlkmftl0kft

)
l0

We choose the lower integration limits so that there is no constant. Choosing (m0, l0) = (0, 0)
does the trick and yields

I(m,l) =

∫ mft

0

ϵmft (m, 0, kft) dm+

∫ lft

0

ϵlft (mft, l, kft) dl

=

(
γm0 +

1

2
γmmmft + γmk kft +

1

3
γmmmm

2
ft + γmkkk

2
ft +

1

2
γmmkmftkft

)
mft

+

(
γl0 + γlmmft +

1
2
γll lft + γlkkft + γlmmm

2
ft +

1
3
γllll

2
ft + γlkkk

2
ft

+1
2
γlmlmftlft + γlmkmftkft +

1
2
γllklftkft +

1
2
γlmlkmftlftkft

)
lft

=

(
γm0 +

1

2
γmmmft + γmk kft +

1

3
γmmmm

2
ft + γmkkk

2
ft +

1

2
γmmkmftkft

)
mft

+

(
γl0 +

1

2
γll lft + γlkkft +

1

3
γllll

2
ft + γlkkk

2
ft +

1

2
γllklftkft

)
lft

+

(
γlmmft + γlmmm

2
ft +

1

2
γlmlmftlft + γlmkmftkft +

1

2
γlmlkmftlftkft

)
lft .

This ensures that each of the 17 unique variables in the polynomial gets a coefficient that is
identified from only one first step equation.

The second step equation is

yft = r̃ft − uft − I(m,l) = ρωft + (1− ρ) lnBt − C (kft) = ω′
ft + αkkft + αkkk

2
ft, (34)

where again we absorb (1− ρ) lnBt in

ω′
ft = ρωft + (1− ρ) lnBt .

For any guess of α we can compute ω̂′ (α)ft as a residual from (34). Now invoke the Markov
assumption for ωft (17), and estimate

ω̂′ (α)ft = FEt + λω̂′ (α)ft−1 + ρβeft−1 + ξ′ft, (35)

where ξ′ft = ρξft and the time fixed effects FEt absorb (1− ρ) lnBt. As above, we can
only identify ρβ, not β. The estimated ξ̂′ (α)ft are orthogonal to

(
kft, k

2
ft

)
because they are

predetermined by assumption. Use this to build a GMM estimator based on the following
moment conditions:

E
{
ξ̂′ (αk, αkk)ft

(
kft, k

2
ft

)′}
= 0 . (36)
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Once we have estimates of α we can compute one last time ω̂′ (α)ft and regress (29) to obtain
estimates of λ and ρβ.

Now compute the revenue elasticity w.r.t. K :

γkft(·) = αk + 2αkkkft

+γmk mft + 2γmkkmftkft +
1

2
γmmkm

2
ft

+γlklft + 2γlkklftkft +
1

2
γllkl

2
ft

+γlmkmftlft +
1

2
γlmlkmftlftlft.

D.3 Pooling firms across industries for the controlled Markov

We estimate the controlled Markov in a pooled sample of firms across industries i. This
implies estimating

ρ̂iω̂ (α)ift = FEit + λρ̂iω̂ (α)ift−1 + βeift−1 + ξ′ift . (37)

The estimator of λ is consistent for a weighted average of λi across industries. The estimator
of β is consistent for a weighted average of ρiβi across industries—not a weighted average of
βi. Thus, the estimator of β conflates cross-industry variation in demand curvature ρi and
industry-specific impacts in the controlled Markov process βi.
E Production functions estimates
Table E1 reports the average “revenue elasticity” (output elasticity ×ρ) across firms, by
industry. These estimates arise from the GNR estimator where labor is assumed to be
“dynamic”, i.e., predetermined in time t (like capital), and where we include in the control
Markov an indicator for employment of techies and their wage bill share.
F More lags of ω̂ft
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Table E1: GNR Production function estimates

Industries γm γl γk #Obs. #Firms

Food, beverage, tobacco 0.429 0.464 0.175 29093 4677
Textiles, wearing apparel 0.326 0.526 0.094 8871 1299
Wood, paper products 0.289 0.673 0.069 17272 2521
Chemical products 0.399 0.482 0.134 7357 938
Pharmaceutical products 0.260 0.640 0.089 1699 222
Rubber and plastic 0.362 0.497 0.161 16068 2137
Basic metal and fabricated metal 0.267 0.646 0.108 30333 4133
Electrical equipment 0.375 0.439 0.155 5080 674
Machinery and equipment 0.359 0.534 0.103 11489 1495
Transport equipment 0.396 0.570 0.094 6435 867
Other manufacturing 0.250 0.665 0.106 23963 3552
Construction 0.224 0.693 0.112 116713 21409
Wholesale 0.592 0.367 0.058 186147 27296
Retail 0.631 0.311 0.051 256347 39837
Accommodation and food services 0.210 0.642 0.173 113923 21554
Publishing and broadcasting 0.055 0.774 0.111 14213 2378
Administrative and support activities 0.070 0.571 0.240 28518 5120
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Table F1: Adding lags of productivity – GLZ estimates

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I
(
Tft−1 > 0

)
0.038*** 0.014*** 0.053*** 0.018***
(0.002) (0.003) (0.003) (0.003)

Tft−1 0.119*** 0.215***
(0.008) (0.013)

I
(
TRD
ft−1 > 0

)
0.015*** 0.009*** 0.013** 0.000
(0.002) (0.002) (0.006) (0.007)

I
(
T ICT
ft−1 > 0

)
0.018*** 0.011*** 0.025*** 0.015***
(0.002) (0.002) (0.003) (0.004)

I
(
TOTH
ft−1 > 0

)
0.028*** 0.009*** 0.048*** 0.012***
(0.002) (0.003) (0.003) (0.003)

TRD
ft−1 0.071*** 0.151

(0.023) (0.092)
T ICT
ft−1 0.111*** 0.118***

(0.037) (0.022)
TOTH
ft−1 0.114*** 0.251***

(0.010) (0.015)
I
(
T38
ft−1 > 0

)
0.028*** 0.010*** 0.046*** 0.009***
(0.002) (0.003) (0.003) (0.003)

I
(
T47
ft−1 > 0

)
0.015*** 0.005* 0.030*** 0.019***
(0.002) (0.002) (0.002) (0.003)

T38
ft−1 0.141*** 0.271***

(0.013) (0.018)
T47
ft−1 0.094*** 0.117***

(0.011) (0.017)
I
(
xft−1 > 0

)
0.007*** 0.004** 0.001 0.002 0.002 0.003 0.004* 0.003 0.002 0.002 0.001 0.001
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.003)

ω̂ft−1 0.936*** 0.940*** 0.934*** 0.939*** 0.936*** 0.940*** 0.931*** 0.933*** 0.932*** 0.933*** 0.931*** 0.933***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

ω̂ft−2 0.025*** 0.024*** 0.024*** 0.023*** 0.025*** 0.024*** 0.017*** 0.017*** 0.016*** 0.017*** 0.016*** 0.017***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ω̂ft−2 -0.02*** -0.02*** -0.02*** -0.02*** -0.02*** -0.02*** -0.03*** -0.03*** -0.03*** -0.03*** -0.03*** -0.03***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Obs. 131,697 523,877
No. firms 21,854 106,430

Notes. The table reports estimates of equation (5) in the text. The dependent variable is ω̂ft, log estimated productiv-
ity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47} denote R&D,
ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year fixed effects
included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value ≤ 0.01, **
p-value ≤ 0.05, * p-value ≤ 0.10
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G General Specification
Table G1 report the estimates of equation 8. It allows us to examine how the impacts of
intensive and extensive techie margin increases as productivity rises while Table 6 reports
the combined impact effects. Columns 1 and 3 report the baseline estimates (Columns 2 and
8 of Table 4), and columns 2 and 4 report the results when we interact the extensive and
intensive techie margins with the lagged productivity.

Interestingly, the extensive techie margin is larger for higher level of productivity and the
opposite effect is observed for the intensive techie margin. This result suggests dimininshing
return on techie investment.

Table G1: General Specification– GLZ estimates

Manufacturing Non-Manufacturing

Baseline Interaction Baseline Interaction
(1) (2) (3) (4)

I (Tft−1 > 0) 0.016*** 0.013*** 0.024*** 0.013***
(0.003) (0.003) (0.003) (0.003)

I (Tft−1 > 0) × ω̂ft−1 0.045*** 0.053***
(0.005) (0.003)

Tft−1 0.123*** 0.121*** 0.207*** 0.233***
(0.008) (0.008) (0.013) (0.014)

Tft−1 × ω̂ft−1 -0.163*** -0.266***
(0.016) (0.016)

I (xft−1 > 0) 0.007*** 0.008*** 0.006*** 0.005**
(0.002) (0.002) (0.002) (0.002)

ω̂ft−1 0.913*** 0.909*** 0.875*** 0.873***
(0.003) (0.004) (0.002) (0.002)

Obs. 131,697 523,877
No. firms 21,854 106,430

Notes. The table reports estimates of equation (8) in the text. The dependent variable is ω̂ft, log estimated produc-
tivity. I (.) is the indicator function. T is the techie wage bill share, x is the value of firm exports. Industry-year
fixed effects included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value
≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10
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H Labor Input Quality
To address differences in labor quality we adjust the labor input of less-qualified workers in
our data as in Gandhi et al. (2020). We identify highly qualified workers as those with PCS
codes starting with 2 or 3 (PCS codes starting with 1 are in the agriculture sector, which we
omit from our analysis). This, largely, corresponds to managers. We adjust downwards the
labor input of less-qualified workers (those with PCS codes starting with 4, 5 and 6) by the
ratio of their wage to that of qualified labor:

Ñft = Hft + (wL/wH)Lft, (38)

where wL is the average wage of L and wH is the average wage of H in the sample. This
assumes that less-qualified labor supply is a fraction (wL/wH) of that of highly qualified
labor input, in efficiency units.

The results using the GLZ estimator are reported in Table (H1) while the results using
the GNR estimator are presented in Tables (H2) and (H3).
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Table H1: Impact of techies on productivity – GLZ estimates (Adjusting for labor input
quality)

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.046*** 0.024*** 0.064*** 0.031***
(0.002) (0.003) (0.003) (0.003)

Tft−1 0.109*** 0.202***
(0.008) (0.012)

I
(
TRD
ft−1 > 0

)
0.018*** 0.014*** 0.008 -0.003
(0.002) (0.003) (0.006) (0.007)

I
(
T ICT
ft−1 > 0

)
0.019*** 0.014*** 0.026*** 0.017***
(0.002) (0.003) (0.004) (0.004)

I
(
TOTH
ft−1 > 0

)
0.035*** 0.018*** 0.060*** 0.024***
(0.002) (0.003) (0.003) (0.003)

TRD
ft−1 0.040 0.126

(0.025) (0.098)
T ICT
ft−1 0.081** 0.103***

(0.038) (0.022)
TOTH
ft−1 0.102*** 0.242***

(0.010) (0.015)
I
(
T 38
ft−1 > 0

)
0.030*** 0.017*** 0.050*** 0.015***
(0.002) (0.003) (0.003) (0.004)

I
(
T 47
ft−1 > 0

)
0.022*** 0.010*** 0.040*** 0.029***
(0.002) (0.003) (0.003) (0.003)

T 38
ft−1 0.108*** 0.254***

(0.014) (0.018)
T 47
ft−1 0.099*** 0.110***

(0.012) (0.018)
I (xft−1 > 0) 0.008*** 0.006** 0.001 0.002 0.003 0.003 0.008*** 0.006** 0.006** 0.006** 0.005* 0.005*

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
ω̂ft−1 0.913*** 0.916*** 0.911*** 0.914*** 0.912*** 0.915*** 0.876*** 0.877*** 0.876*** 0.878*** 0.876*** 0.877***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Obs. 131,697 523,877
No. firms 21,854 106,430

Notes. The table reports estimates of equation (5) in the text. The dependent variable is ω̂ft, log estimated productiv-
ity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47} denote R&D,
ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year fixed effects
included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value ≤ 0.01, **
p-value ≤ 0.05, * p-value ≤ 0.10
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Table H2: Impact of techies on productivity – GNR estimates assuming labor to be static
(adjusting for labor input quality)

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.037*** 0.029*** 0.026*** 0.016***
(0.001) (0.001) (0.001) (0.001)

TTft−1 0.037*** 0.056***
(0.003) (0.003)

I
(
TRD
ft−1 > 0

)
0.013*** 0.012*** 0.005*** 0.004**
(0.001) (0.001) (0.002) (0.002)

I
(
T ICT
ft−1 > 0

)
0.012*** 0.011*** 0.011*** 0.007***
(0.001) (0.001) (0.001) (0.001)

I
(
TOTH
ft−1 > 0

)
0.031*** 0.026*** 0.025*** 0.014***
(0.001) (0.001) (0.001) (0.001)

TRD
ft−1 0.014 -0.016

(0.009) (0.025)
T ICT
ft−1 0.016 0.037***

(0.016) (0.008)
TOTH
ft−1 0.027*** 0.063***

(0.004) (0.004)
I
(
T 38
ft−1 > 0

)
0.027*** 0.025*** 0.023*** 0.014***
(0.001) (0.001) (0.001) (0.001)

I
(
T 47
ft−1 > 0

)
0.022*** 0.019*** 0.015*** 0.010***
(0.001) (0.001) (0.001) (0.001)

T 38
ft−1 0.016*** 0.055***

(0.005) (0.005)
T 47
ft−1 0.024*** 0.041***

(0.005) (0.005)
I (xft−1 > 0) 0.014*** 0.013*** 0.012*** 0.012*** 0.012*** 0.012*** 0.005*** 0.004*** 0.004*** 0.004*** 0.004*** 0.003***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
ω̂ft−1 0.920*** 0.922*** 0.919*** 0.920*** 0.917*** 0.918*** 0.934*** 0.935*** 0.934*** 0.935*** 0.934*** 0.935***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Obs. 157,660 715,861
No. firms 22,515 117,594

Notes. The table reports estimates of equation (6) in the text. The dependent variable is ρ̂ωft, log estimated
productivity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47}
denote R&D, ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year
fixed effects included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value
≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10
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Table H3: Impact of techies on productivity – GNR estimates assuming labor to be prede-
termined (adjusting for labor input quality)

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.027*** 0.019*** 0.012*** 0.010***
(0.002) (0.002) (0.001) (0.001)

TTft−1 0.041*** 0.015***
(0.006) (0.004)

I
(
TRD
ft−1 > 0

)
0.003** -0.000 0.002** 0.004**
(0.001) (0.002) (0.001) (0.002)

I
(
T ICT
ft−1 > 0

)
0.007*** 0.003* -0.000 -0.002*
(0.002) (0.002) (0.001) (0.001)

I
(
TOTH
ft−1 > 0

)
0.024*** 0.017*** 0.010*** 0.008***
(0.002) (0.002) (0.001) (0.001)

TRD
ft−1 0.034*** -0.020

(0.013) (0.016)
T ICT
ft−1 0.057*** 0.017**

(0.021) (0.007)
TOTH
ft−1 0.043*** 0.011***

(0.007) (0.003)
I
(
T 38
ft−1 > 0

)
0.017*** 0.013*** 0.008*** 0.007***
(0.002) (0.002) (0.001) (0.001)

I
(
T 47
ft−1 > 0

)
0.017*** 0.012*** 0.011*** 0.009***
(0.002) (0.002) (0.001) (0.001)

T 38
ft−1 0.029*** 0.005

(0.008) (0.005)
T 47
ft−1 0.038*** 0.017***

(0.008) (0.006)
I (xft−1 > 0) 0.026*** 0.026*** 0.025*** 0.026*** 0.025*** 0.025*** 0.007*** 0.007*** 0.004*** 0.005*** 0.006*** 0.007***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
ω̂ft−1 0.680*** 0.678*** 0.681*** 0.678*** 0.681*** 0.679*** 0.839*** 0.839*** 0.843*** 0.842*** 0.839*** 0.839***

(0.021) (0.021) (0.020) (0.021) (0.021) (0.021) (0.009) (0.009) (0.008) (0.008) (0.009) (0.009)

Obs. 157,660 715,861
No. firms 22,515 117,594

Notes. The table reports estimates of equation (6) in the text. The dependent variable is ρ̂ωft, log estimated
productivity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47}
denote R&D, ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year
fixed effects included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value
≤ 0.01, ** p-value ≤ 0.05, * p-value ≤ 0.10
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I Sensitivity

Table I1: Allocating techies to production – GLZ estimates

Manufacturing Non-Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

I (Tft−1 > 0) 0.022*** 0.006* 0.028*** 0.008***
(0.003) (0.003) (0.003) (0.003)

Tft−1 0.086*** 0.124***
(0.010) (0.012)

I
(
TRD
ft−1 > 0

)
0.016*** 0.007** 0.017*** 0.019**
(0.003) (0.003) (0.006) (0.008)

I
(
T ICT
ft−1 > 0

)
0.022*** 0.020*** 0.038*** 0.019***
(0.003) (0.003) (0.004) (0.004)

I
(
TOTH
ft−1 > 0

)
0.013*** 0.005* 0.020*** 0.009***
(0.003) (0.003) (0.003) (0.003)

TRD
ft−1 0.115*** -0.022

(0.027) (0.112)
T ICT
ft−1 0.038 0.205***

(0.040) (0.020)
TOTH
ft−1 0.054*** 0.079***

(0.011) (0.012)
I
(
T 38
ft−1 > 0

)
0.014*** 0.004 0.017*** 0.004
(0.003) (0.003) (0.003) (0.003)

I
(
T 47
ft−1 > 0

)
0.015*** 0.008*** 0.031*** 0.022***
(0.003) (0.003) (0.003) (0.003)

T 38
ft−1 0.086*** 0.099***

(0.015) (0.017)
T 47
ft−1 0.070*** 0.091***

(0.013) (0.015)
I (xft−1 > 0) 0.009*** 0.007*** 0.001 0.001 0.005** 0.005** 0.024*** 0.023*** 0.020*** 0.021*** 0.021*** 0.021***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
ω̂ft−1 0.917*** 0.915*** 0.915*** 0.914*** 0.916*** 0.915*** 0.880*** 0.880*** 0.880*** 0.879*** 0.880*** 0.879***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Obs. 130,605 525,725
No. firms 21,744 106,450

Notes. The table reports estimates of equation (5) in the text. The dependent variable is ω̂ft, log estimated productiv-
ity. I (.) is the indicator function. T is the techie wage bill share, superscripts {RD, ICT,OTH, 38, 47} denote R&D,
ICT, other techies, engineers and technician respectively, x is the value of firm exports. Industry-year fixed effects
included in all columns. Bootstrap standard errors clustered by firm in parentheses. *** denotes p-value ≤ 0.01, **
p-value ≤ 0.05, * p-value ≤ 0.10
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