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A Data

A.1 Labor supply and wage samples

I use data from the March Current Population Survey from 1964—2006 for all wage and labor
quantities. Survey years pertain to the preceding year, so the sample is actually 1963—2005. I
obtained the data from Unicon Research, by license to the Department of Economics at NYU. The
CPS is a monthly survey of about 50,000 households conducted by the Bureau of the Census for the
Bureau of Labor Statistics. The CPS includes data on employment, earnings, hours of work, and
other demographic characteristics including age, gender and educational attainment. Also available
are data on occupation and industry.

I follow the methodology of Katz and Murphy (1992) (henceforth KM) to construct wage and
employment series. To make sure that my understanding of their documentation is correct, I
replicated most of their tables and figures. I also replicate their estimate of the aggregate elasticity
of substitution by fitting log (ωt) = c−(1/σ) log (ht)+δ ·t (their equation 19), where ω is the relative
wage of college graduates versus high school graduates, and h is their relative supply (college versus
high school equivalents).

Cells
In every year I create 64 cells by gender, four education levels (less than 12 years of schooling,
12 years, 13—15 years and 16 or more years), and eight 5-year potential experience brackets (1—5,
6—10, ... 36—40). Potential experience is calculated as min{age-years of schooling-7, age-17}. For
the purpose of replicating KM’s tables and figures I use 40 single-year categories for experience, as
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they do. For the purpose of replicating KM’s regression I use the eight 5-year potential experience
brackets, as they do.

Series construction and sample restrictions
The CPS is used to create two samples, one for wages, the "wage sample", and one for labor supply,
the "count sample". Both samples have an equal number of cells, so they can be merged. The
rationale for constructing two separate samples is as follows. The count sample gauges supply in
the broadest way. The construction of the wage sample reflects the need to create consistent time
series of wages. For this purpose I focus on full time workers that are strongly attached to the labor
market. These considerations are reflected in the sample restrictions detailed below.

The count sample includes all individuals in the labor force who worked at least one week in
the preceding year. There are 3,335,991 observations in this sample in all years. Labor supply
is defined as annual hours worked times the CPS sampling weights as a share of the total annual
hours worked

hrsct =

∑
n∈〈c〉 λnthrsnt∑
n λnthrsnt

, (1)

where t = 1963, 1964...2005 is years, c denotes the cell and n ∈ 〈c〉 means that individual n is a
member of that cell. hrsnt is the number of hours worked by that individual and λnt are CPS
sampling weights.

The wage sample includes all individuals that were in the labor force at least 39 weeks in the
calendar year prior to the survey, worked full time for at least one week and were not self employed.
The wage sample further excludes individuals whose reason for not working full year was being
enrolled in school, retired or in the armed forces. There are 1,968,451 observations in this sample
in all years.

The wage measure is weekly wages, which was calculated as annual wages divided by number of
weeks worked. Wages are deflated using the implicit personal consumption expenditures deflator
from the NIPAs (data from Bureau of Economic Analysis). The average wage for each cell is
a weighted average of weekly wages, where the weights are annual hours worked times the CPS
sampling weights

wct =

∑
n∈〈c〉wntλnthrsnt∑

n λnthrsnt
, (2)

where t = 1963, 1964...2005 is years, c denotes the cell and n ∈ 〈c〉 means that individual n is
a member of that cell. wnt is the weekly wage of individual n and hrsnt is the number of hours
worked by that individual. λnt are CPS sampling weights.

A correction was used to account for different allocation procedures for wages in surveys 1968—
1975, relative to the following surveys. See KM for details. Not using this correction has no effect
on my results, but is relevant for replicating their’s, so I maintain it.

Imputing hours and weeks before 1976
Starting with survey 1976, annual hours are the product of weeks worked last year and usual weekly
hours. Before survey 1976 annual hours are the product of weeks worked and hours worked in the
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week before the survey. If no hours were reported, weekly hours were imputed by using the average
hours worked after survey 1975, by full time\part time status and gender. Weeks worked last year
are reported in six brackets until 1975. For those years weeks are imputed by using the average
number of weeks in the following years, within those brackets, by gender.

Top coding
Until 1995, top coded wages are multiplied by 1.45. After 1995 an adjustment for top coding is not
required, because a new method was used beginning in 1996. Individuals with values above the
maximum reported wage are grouped by sex, race, and worker status (full time full year/other). A
mean income value is calculated within these 12 groups and assigned to these individuals.

Industry and occupation re-classifications
Over the 1963—2005 sample there have been a few industry and occupation re-classifications, the
most substantial of which was in CPS 2003. This results in a small jump in the share of the service
sector employment, commensurate with a drop in the share of the goods sector. In order to mitigate
these breaks, I adjust labor supply at the 1-digit level using crosswalks from Census Bureau (2003).

The crosswalks comprise a transition matrix M between the Census 2000 system of indus-
trial classifications (used from CPS 2003) and the 1990 system (used until CPS 2002). Each
M (i2000, i1990) element in the matrix reports the expected proportion of people in industry i2000
according to the Census 2000 system that would be allocated to industry i1990 according to the
Census 1990 system. The original matrix actually gives the information in the opposite direction
(i.e. from i1990 to i2000). I apply Bayes’Rule to get the 2000-to-1990 transition in order to affect
the minimal number of years.

A.2 Series used in estimation

The estimation procedure is fed the aggregate skill abundance, h. It tries to match the following
data series: aggregate skill abundance h; skill intensity in services hs; skill intensity in the goods
sector hg; the relative wage of college graduates versus high school graduates, ω; and the relative
price of services, p. Here I describe in detail how they are constructed. As before, I follow the
methodology of KM, except for the relative price of services.

As noted above, there are 64 cells in every year. I use a vector of 64 fixed weights (one for each
cell) to aggregate wages (this is KM’s N vector):

hrsc =

∑
t hrsct∑
ct hrsct

,

where hrsct is described above in (1). Using fixed weights to aggregate wages across groups has
the benefit of keeping the composition of the labor force fixed, so that the results are not driven
by changes in composition.

College and high school equivalents
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The labor supply concept is annual hours worked. All labor supply series– h, hs and hg– are
defined in terms of college and high school full time equivalents. First I collapse the merged count
sample and wage sample into 4 cells by education level in every year

wet =

∑
c∈〈e〉wcthrsc∑
c∈〈e〉 hrsc

and hrset =
∑
c∈〈e〉

hrsct ,

where e = 11, 12, 14 and 16 correspond to less than 12 years of schooling, 12 years, 13—15 years
and 16 or more years, respectively. c ∈ 〈e〉 means that cell c has education level e. To obtain
equivalence weights I fit the following regressions for 1963—2005

w11 = ε1211w12 + ε1611w16 + ξ11

w14 = ε1214w12 + ε1614w16 + ξ14 ,

The regression embodies the assumption that the labor input of high school dropouts and indi-
viduals with some college education is a linear combination of the labor input of high school and
college graduates. The estimates are ε1211 = 1.11, ε1611 = −0.16, ε1214 = 0.93 and ε1614 = 0.14.

Aggregate skill abundance
Using the same merged count sample and wage sample, I aggregate into high school and college
equivalents as follows,

Lhs = hrs12 + ε1211hrs11 + ε1214hrs14

Lcol = hrs16 + ε1611hrs11 + ε1614hrs14 ,

and skill abundance is defined as h = Lcol/Lhs.

Sector skill intensities
I start with creating a count sample and wage sample where in addition cells are also defined by
sector. Thus, there are 128 cells in every year. The industries that fall under each sector are detailed
in Table 1. I collapsed the merged count sample and wage sample into 8 cells by education level
and sector in every year

west =

∑
c∈〈e,s〉wcthrsc∑
c∈〈e,s〉 hrsc

and hrsest =
∑
c∈〈e,s〉

hrsct ,

where e = 11, 12, 14 and 16 correspond to less than 12 years of schooling, 12 years, 13—15 years
and 16 or more years, respectively. c ∈ 〈e, s〉 means that cell c has education level e and is a
member of sector s ∈ {goods, services}. hrsc is calculated as above, except that cells are also
defined by sectors. I use the same equivalence weights as before to aggregate into high school and
college equivalents by sector. An alternative is to calculate aggregate and sector specific equivalence
weights separately. Doing so has no qualitative effect on the results. Sector skill intensity is defined
as hs = Lcol,s/Lhs,s.
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Relative wage
I use the aggregate merged count sample and wage sample described above. The relative wage of
college versus high school is defined as ω = w16/w12. When computing sector-specific relative wage
of college versus high school (ωgoods and ωservice) I use the same methodology as in (2). The only
difference is that I restrict the set of cells 〈c〉 to include one sector or the other.

Relative price of services
The Bureau of Economic Analysis (BEA) provides chain-type price indices for value added by 1-
digit industries (starting in 1947). I allocate industries to sectors in a way that is consistent with
the classification Table 1. For each sector in every period I calculate a weighted average of the
chain-type prices of industries that fall in that sector, where the weights are value added

ps =

∑
i∈〈s〉 pivai∑
i∈〈s〉 vai

,

where i ∈ 〈s〉 means that industry i is in sector s ∈ {goods, services}, pi are BEA prices and vai is
value added. The relative price of services versus goods in 1963—2005 is the ratio p = pservices/pgoods.
I normalize this price to one in 1963. The simulated price of services used in the method of moments
estimation is also normalized to one in 1963 to reflect the arbitrary base year.

A.3 Construction of task indices

I start with the March CPS data 1964—2006 and use the same sample restrictions of the aggregate
"count sample". The count sample includes all individuals in the labor force who worked at least
one week in the preceding year. I characterize each individual in the sample by 3-digit industry,
education level (4), 3-digit occupation and gender. I also keep the annual hours worked and CPS
weight. Then I merge the task intensities from the Dictionary of Occupational Titles (DOT).

Consistent occupation classification
I re-classify the occupations throughout the sample into one consistent occupation classification,
the 1990 Census system. This is done using Stata code obtained from Peter Meyer, which is based
on Meyer and Osborne (2005). I slightly modified the code to capture a few additional occupations
which were originally not reclassified. The consistent occupation classification performs well for
the entire economy in the entire sample, in the sense that occupational employment share do not
exhibit large "jumps". However, this classification does not perform well outside of the 1967—2001
sample at the sectoral level. In particular, the task indices that I calculate exhibit jumps at the
beginning and end of that sample. There were major occupation re-classifications in the 1968 and
2003 CPS’s. Therefore I restrict the analysis to 1967—2001.

Merging DOT task intensities
Five DOT task intensities by occupation (373) and gender (2) are used. The occupations are classi-
fied using the same consistent system of Meyer and Osborne (2005), with very minor modifications.
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After merging, each individual in the sample has five task intensities: DEX (finger dexterity), CO-
ORD (eye hand foot coordination), STAND (set limits, tolerances and standards), MATH (math
aptitude) and PLAN (direction, control and planning). Table A1 provides more details and ex-
amples for the task intensities. Autor, Levy, and Murnane (2003) performed principle components
analysis on five classes of task measures and these five come out as the principle components in their
class. The task measures vary over the [0, 10] interval. In Table A2 I report summary statistics.

Originally, there were 3886 DOT occupations, which were assigned to 411 1970 Census occu-
pations. This was done (in 1977) using the April 1971 CPS, for which experts from the National
Academy of Sciences assigned DOT occupations. The task intensities for the 1970-Census occu-
pations are weighted averages of the DOT occupation tasks that were assigned to them, using the
CPS sampling weights. The averages were different for men and women, hence the separation by
gender.

Task indices by industry-education-gender cells
After matching the task intensities into individuals’occupations I compute the average for each
generic task by industry-education-gender (in each year)

TASKi,e,g =

∑
n∈〈i,e,g〉 TASKnλnhrsn∑

n∈〈i,e,g〉 λnhrsn
,

where TASK ∈ {DEX, COORD, STAND, MATH, PLAN }, n denotes a particular individual, i
is industry, g is gender and e ∈ {11, 12, 14, 16} denotes education. 11 means less than 12 years of
schooling, 12 means 12 years, 14 means 13—15 years and 16 means 16 years or more. n ∈ 〈i, e, g〉
means that individual n is a member of the 〈i, e, g〉 cell. λn are CPS sampling weights and hrs are
annual hours.

Converting to percentiles in the 1967 distribution
I construct the empirical distribution of each TASKi,e,g in 1967. Denote this distribution by
F (TASKi,e,g). There are 1066 cells in 1967, which constitute a grid. Store these numbers together
in ascending order. Relabel the values and corresponding F (TASKi,e,g) values by their position,
i.e. TASKr and Fr, where TASKr < TASKr+1 and Fr < Fr+1, r = 1, 2, ...1066.

For each of the following years I assign an F value for each task value. This is done by finding
where in the 1967 distribution that particular value lies. Formally,

F (TASKi,e,g) = Fr if TASKr ≤ TASKi,e,g < TASKr+1 .

I do not interpolate between values because it is computationally taxing in Stata and because the
grid for 1967 is very fine (there are 1066 points on the [0, 1] interval). Not interpolating introduces
a negligible downward bias in the indices for all years after 1967, but this does not affect how the
index evolves after 1967. If a task value is above the maximum of 1967 it gets F = 1. If the highest
F value in a particular year does not reach 1, then I rescale by dividing all the F values in that
year by that highest F value in that year.
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Task indices by sector and education
I use F (TASKi,e,g) to aggregate by sector and education level

TASKs,e =

∑
i∈〈s〉,g F (TASKi,e,g)λi,e,ghrsi,e,g∑

i∈〈s〉,g λi,e,ghrsi,e,g
,

where i ∈ 〈s〉 means that industry i is in sector s ∈ {goods, services}, and education, e, is defined
above. I construct indices for high school and college equivalents using a similar procedure as for
their labor supply, as described below.

Using the F (TASKi,e,g) rather than TASKi,e,g has two benefits. First, it makes the task indices
comparable in magnitude. Second, it assigns smaller weight to extreme values of TASKi,e,g that
are found in ranges of the support that are less dense in 1967. The results are qualitatively the
same if I use simple weighted averages of TASKi,e,g.

College and high school equivalents
In practice, I need to aggregate tasks into high school equivalents and college equivalents. Aggre-
gating is done by using the same equivalence weights as reported above and a similar procedure.
Consider

AeLe =

(∑
o

λeoa
e
o

)
Le ,

where e ∈ {11, 12, 14}. Notice that this last expression resembles the one in the main text, except
that here aeo is indexed by education level. This allows for two individuals with different education
levels but the same occupation to have different occupational effi ciency. For a particular sector,

AhsLhs =

(∑
o

λ12o a
12
o

)
L12 +

(∑
o

λ11o a
11
o

)
L11 +

(∑
o

λ14o a
14
o

)
L14

=

(∑
o

λ12o a
12
o

)
L12 +

(∑
o

λ11o a
12
o ε

12
11

)
L11 +

(∑
o

λ14o a
12
o ε

12
14

)
L14

=

(∑
o

λ12o a
12
o

)
L12 +

(∑
o

λ11o a
12
o

)
ε1211L11 +

(∑
o

λ14o a
12
o

)
ε1214L14 .

The second line follows from the same assumption that led to the use of the equivalence coeffi cients.
Now that all occupational effi ciencies are in the same denomination, a12o , I drop the superscript.

For a particular sector

Ahs =

(∑
o

λ12o ao

)
L12
Lhs

+

(∑
o

λ11o ao

)
ε1211L11
Lhs

+

(∑
o

λ14o ao

)
ε1214L14
Lhs

.

Ahs is the effi ciency index of high school equivalents, which is the empirical counterpart to A and
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Lhs is the empirical counterpart to L. Similarly,

Bcol =

(∑
o

λ16o bo

)
H16
Hcol

+

(∑
o

λ11o bo

)
ε1611H11
Hcol

+

(∑
o

λ14o bo

)
ε1614H14
Hcol

,

where Bcol is the effi ciency index of college equivalents, which is the empirical counterpart to B,
and Hcol is the empirical counterpart to H.

The task indices are initially calculated by education e ∈ {11, 12, 14, 16} and sector (see main
text). I use the last expressions to calculate the indices for high school and college equivalents in
both sectors

TASKhs = TASK12
L12
Lhs

+ TASK11
ε1211L11
Lhs

+ TASK14
ε1214L14
Lhs

and

TASKcol = TASK16
H16
Hcol

+ TASK11
ε1611H11
Hcol

+ TASK14
ε1614H14
Hcol

.

Correction of equivalence weight for high school dropouts
Since ε1611 = −0.16, it causes a problem in calculating Bcol: I get negative values for some tasks,
which are intensive for high school dropouts and not intensive for college graduates. I fix this in
the following way. The equivalence weights are used in order to translate the labor input of one
class into that of another. Then for calculating the task indices let ε1211 = 1.11 − 0.16 · 1.75 = 0.84

and ε1611 = 0. 1.75 is the average relative wage of college graduates versus high school graduates for
the sample. To justify this procedure, manipulate the wage regression for high school dropouts

w11 = w12

(
ε1211 + ε1611

w16
w12

)
+ ξ11

and replace w16/w12 by its sample average, 1.75. This yields a similar result to fitting

w11 = w12ε̃
12
11 + ξ̃11 ,

where ε̃1211 is approximately ε
12
11+ε1611

(
w16/w12

)
. This way I avoid negative values, while maintaining

the logic of relative effi ciency.

A.4 IT capital share

I compute the share of information technology (IT) in the capital stock in each sector as follows. I
use data from the BEA’s fixed assets tables by industry, which provide both current-cost net capital
stock of private nonresidential fixed assets, as well as chain-type quantity indices for these fixed
assets. Denote kt as current-cost net capital stock of some fixed asset, and denote q2000t as chain-
type quantity index for that asset, where q20002000 = 100. I use the following formula to get constant
price values for each fixed asset, k2000t = q2000t ·k2000/100. Aggregation to goods and services sectors
follows the classification used throughout the paper. The IT capital share is computed as the share
of the k2000t series for "computers and peripheral equipment" plus "software", divided by the k2000t
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series for the aggregate equipment fixed assets.

B Estimation

I estimate the parameters of the model by weighted nonlinear least squares, applying the method
of simulated moments. Let

G∗ (x, θ) ≡ E (y|x, θ) .

This is a high dimensional integral, which is evaluated by simulation. Approximating population
moments by simulation increases the variance of estimators, but this increase vanishes as the
number of simulations approaches infinity. See Stern (1997) for a clear explanation of the method
of simulated moments and its implementation.

It follows that
y = G (x, u, θ) = G∗ (x, θ) + e

where E (e|x, θ) = 0 and e is a nonlinear function of u. I estimate θ by solving the following
problem:

choose θ ∈ Θ to minimize e′We = [y −G∗ (x, θ)]′W [y −G∗ (x, θ)] ,

where W is a positive definite symmetric weighting matrix and the set Θ restricts the elasticities
to non negative numbers.

In order to deal with potential heteroscedasticity, I useW =diag(yy′) (this transforms all errors
into the same percent units). The time series in y are upward trending. Therefore errors may
be larger when values in y are larger in the latter part of the sample; this might make the later
observations more influential in the estimation. Translating the errors into percent terms solves this
problem. However, results with W = I are similar. In a generalized method of moments context,
Altonji and Segal (1996) show that using the identity matrix has superior statistical properties
(smaller bias and greater effi ciency) to the optimal weighting matrix in small samples. Blundell,
Pistaferri, and Preston (2006) use the diagonal of the optimal weighting matrix to account for
heteroscedasticity.

In order to estimate θ, one must evaluate G∗ (x, θ) by simulation (this is not feasible analyti-
cally), which requires knowing Ω or an estimate of Ω. Although it is possible to jointly estimate θ
and Ω, it is computationally taxing. In order to proceed, consider

G0 (x, θ) ≡ G (x, u, θ) |u=0 .

Due to nonlinearities G0 (x, θ) is not equal to G∗ (x, θ). Confronting G0 (x, θ) with actual data gives
rise to

y = G0 (x, θ) + v .

I use G0 (x, θ) to obtain initial values for the numerical searches for θ and for Ω. I proceed according
to the following steps.
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1. Obtain initial values for the search for θ by solving

choose θ0 ∈ Θ to minimize v′Wv =
[
y −G0 (x, θ0)

]′
W
[
y −G0 (x, θ0)

]
.

θ̂0 is biased, but provides reasonable initial values for the search below.

2. Use v̂ from above to compute Σ̂v = v̂v̂′, and solve

choose Ω to minimize d(Σ̂v,Σe (Ω)) ,

where Σe = E (ee′) and d (X,Y ) is the sum of element-by-element squared differences between
Σ̂v and Σe (Ω). Given θ̂0, I compute Σe (Ω) by simulating the model 500 times and averaging
over those simulations for each guess of Ω. Each simulation r generates a Σ̂e,r matrix, r =

1, 2, ...500, and the average of those is used for Σe (Ω). The estimate of Ω here, Ω̂0, is used for
approximating G∗ (x, θ) in the next step. The price series is normalized, p (1) = 1, and the
estimation procedure also forces this normalization. This creates a column and a row that
are identically zero in Σ̂v = v̂v̂′ and reduces the rank of Σ̂v by one. To avoid this, I drop the
first observation in all variables, so that the dimensions of Σ̂v are [4 (T − 1)]× [4 (T − 1)].

3. Using the initial values θ̂0 and Ω̂0 from above, solve

choose θ ∈ Θ to minimize e′We = [y −G∗ (x, θ)]′W [y −G∗ (x, θ)] ,

where Ω̂0 is used to approximate G∗ (x, θ) at every iteration in the search for θ. The approxi-
mation of G∗ (x, θ) is done by simulating G (x, ur, θ) 500 times, r = 1, 2, ...500, and computing
the average.

4. Using ê from above to compute Σ̂e = êê′, solve

choose Ω to minimize d(Σ̂e,Σe (Ω)) ,

where d (·) is the same distance function as before. Given θ̂, I compute Σe (Ω) by simulating
the model 500 times and averaging over those simulations for each guess of Ω. Each simulation
r generates a Σ̂e,r matrix, r = 1, 2, ...500, and the average of those is used for Σe (Ω).

I use parametric bootstrapping to compute standard errors. This entails estimating θ̂r by solving

choose θr ∈ Θ to minimize e′rWer = [y −G (x, ur, θ)]
′W [y −G (x, ur, θ)] ,

r = 1, 2, ...500 times, and computing the standard errors over all estimates, where each ur is
independently drawn from F (Ω̂).

Standard errors for θ̂ can also be approximated using the delta method, which relies on asymp-
totic variances. But the delta method may underestimate or overestimate standard errors in highly
nonlinear models such as the present one.
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C Discussion of modeling assumptions

A main assumption in the estimation strategy is the exogenous relative supply of skilled labor.
In the face of a positive elasticity of relative supply of skilled labor, this may bias the estimates.
One way to deal with this is to endogenize the supply of skill in a stylized way, along the lines of
Findlay and Kierzkowski (1983) or Dinopolous and Segerstrom (1999). However, it is not clear how
to identify the additional parameters that this will entail without credible instruments.

Given the incremental nature of investment in education (a flow), the elasticity of aggregate
relative supply (a stock) to the relative wage is likely to be very small in any given period. The
relative wage affects individuals’decision to go to college, typically when young, whereas the sample
includes individuals with up to 40 years of potential experience. Therefore, the contemporaneous
increase in supply in a given year will not have a large effect on the aggregate relative supply.
Moreover, an increase in college enrollment in response to a higher relative wage will show up
in supply only 4 years later. Thus, relative supply can be thought of as "almost exogenous" to
contemporaneous demand shocks.

Another assumption is that the economy is closed. Ignoring this does not affect the estimation
through relative prices, because relative prices are explicitly used in the estimation below. However,
output effects of international trade may bias the estimates of changes in As/Ag. For example, if in
the data the trade deficit becomes increasingly composed of goods, then this will bias any estimator
of Ag upwards, since the model economy must satisfy all of the demand for goods domestically
(estimators of As/Ag will be biased downwards). However, this is not the case. Although the trade
deficit increases in this sample, the relative contributions of services and goods to the deficit do
not exhibit trends. Using data from the BEA, I find that the trade deficit in goods as a proportion
to the overall trade deficit in goods and services (usually greater than 1) does not exhibit a trend
in the sample. Therefore, there is not bias in the estimator of As/Ag. In fact, the estimates of
the changes in As/Ag imply changes in relative sectoral labor productivity that are in line with
independent estimates from Jorgenson and Stiroh (2000). Thus, ignoring international trade does
not seem to be a major concern. In fact, Freeman (2003) argues that trade has had a very small
impact on the labor market. In addition, Feenstra and Hanson (1999) estimate that expenditures
on IT are about twice as important as outsourcing in U.S. manufacturing.

Wages for the same type of worker are assumed to be the same in both sectors. If there
is individual heterogeneity or mobility costs this may not hold. However, Lee and Wolpin (2006)
argue that capital mobility, entry of new cohorts and entry from home production– including female
labor force participation, which increases disproportionately in the services sector– are suffi cient
to prevent wages in services from increasing in the face of the growth of that sector. The data
construction in this paper treats observations on women and men equally. See Goldin (2006)
for a summary of the changes in female labor force participation and their determinants, while
Goldin, Katz, and Kuziemko (2006) document the increase in women’s share of college enrolment
and attainment. It is worthwhile stressing that the wage series construction scheme neutralizes
compositional changes within cells, inter alia gender composition.

Using the sectoral classifications of this paper I find that the high school weekly wage in the
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goods sector is on average 26% higher than that in services, and fluctuates around that number; see
Figure A3 and Figure A6. Since there is no trend, assuming equal wages is not a bad assumption,
because the nature of the difference does not change over time. In contrast, the college weekly wage
in the goods sector is on average 20% higher than that in services until 1985; after that college
wages in services and goods catch up until they are almost equal. So the assumption of equal
wages for college graduates is somewhat more tenuous. Consistent with this, the skill premium
grows slightly faster in services than in the goods sector; see Figure A7. But their evolution over
time is almost identical: the correlation between them is 0.97. Using sector-specific skill premia in
non-structural estimation does not change the estimates materially, as shown in Table 3.

Ultimately, finding that the estimates of the technological processes are consistent with changes
in the occupational mixes in Section 4 supports the credibility of the identifying assumptions that
yield those estimates.

D Technical appendix

D.1 Calculating fixed Hicks neutral technology path

As/Ag captures relative Hicks neutral technological change only if βg and βs are fixed. In order to fix
the relative Hicks neutral technological position, changes in βg and βs must be taken into account.
To do this I proceed as follows. An alternative representation of the production technologies is

G = Zg

[
(1− αg)L

ρg
g + αgH

ρg
g

]1/ρg
S = Zs

[
(1− αs)Lρss + αsH

ρs
s

]1/ρs ,
where Zi are Hicks neutral technology shifters and αi are the distribution parameters in sector
i ∈ {g, s}. Given a non zero value for ρi one can find Zi and αi that correspond to Ai and βi:

αi =
β
ρi
i

1 + β
ρi
i

and Zi = Ai
(
1 + β

ρi
i

)1/ρi .
Given the estimates in Table 2, I calculate the inter-sector ratio of Hicks neutral sector produc-
tivities. I calculate the implied path for As/Ag which maintains the same initial inter-sector Hicks
neutral productivity ratio, controlling for the estimated changes in βg and βs. Fix Zs/Zg in all
periods to be equal to the initial value. Define this initial value as z1

z1 ≡
Z (1)s
Z (1)g

=
A (1)s
A (1)g

(1 + β (1)ρss )1/ρs(
1 + β (1)

ρg
g

)1/ρg .
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From period 1 and on I use the estimated biases in technological change, βi, to calculate a new
implied path for As/Ag

A
′
s (t)

A′g (t)
≡ z1

(
1 + β (t)

ρg
g

)1/ρg
(1 + β (t)ρss )1/ρs

,

where z1 is defined above and where βg (t) and βs (t) evolve according to the estimation results.
A
′
s (t) /A

′
g (t) maintains the same inter-sector Hicks neutral productivity ratio at A (1)s /A (1)g at

all subsequent periods.

D.2 An α-Z specification of the model

Output in the two sectors is given by

G = Zg

[
(1− αg)L

ρg
g + αgH

ρg
g

]1/ρg
S = Zs

[
(1− αs)Lρss + αsH

ρs
s

]1/ρs ,
where Zi are Hicks neutral technology shifters and αs ∈ (0, 1) are the "distribution parameters" in
sector i ∈ {g, s}. ρi ≤ 1 and the elasticity of substitution (EoS) is given by σi = 1/ (1− ρi). σs
need not equal σg. Unit cost functions are given by

cg =
1

Zg

[
(1− αg)σg w1−σgL + α

σg
g w

1−σg
H

] 1
1−σg (3)

cs =
1

Zs

[
(1− αs)σs w1−σsL + ασss w

1−σs
H

] 1
1−σs , (4)

where wL and wH are the (nominal) wages of low skilled labor and high skilled labor, respectively.
Labor mobility equalizes wages across sectors. By taking the derivative of the cost functions with
respect to each wage, one obtains unit demand for each factor. Then, by taking the ratio of unit
demands one gets relative demand of skilled labor, or skill intensity, for each sector

hg = ω−σgγ
σg
g and hs = ω−σsγσss , (5)

where ω = wH/wL is the relative wage of skilled workers, hi = Hi/Li is skill intensity and γi =

αi/ (1− αi).
Competition and CRS production require that the zero profit conditions must be satisfied.

Normalize the price of goods to one and rewrite (3)—(4) to get

cg =
wL

Zg (1− αg)
σg
σg−1

[1 + ωhg]
1

1−σg = 1

cs =
wL

Zs (1− αs)
σs
σs−1

[1 + ωhs]
1

1−σs = p .
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Take the ratio and use (5) to get the relative price of services

p =
Zg
Zs

(1− αg)
σg
σg−1

(1− αs)
σs
σs−1

[1 + ωhs]
1

1−σs

[1 + ωhg]
1

1−σg
. (6)

Unit factor demand is obtained by taking the derivative of the unit cost functions with respect
to the wage. By using (5)

L1i =
1

Zi (1− αi)
σi
σi−1

[1 + ωhi]
σi

1−σi and H1
i =

1

Ziα
σi
σi−1
i

[
1 + (ωhi)

−1
] σi
1−σi .

Labor market clearing is given by L = SL1s + GL1g and H = SH1
s + GH1

g . Relative output is
obtained by manipulating these expressions,

S

G
=
Zs
Zg

(1− αs)
σs
σs−1

(1− αg)
σg
σg−1

(
h− hg
hs − h

)
(1 + ωhg)

σg
1−σg

(1 + ωhs)
σs

1−σs
, (7)

where h = H/L is the relative skill abundance of the economy. Relative demand is given by
S
G = p−ϕ

(
µ
1−µ

)ϕ
. Using this together with (7) and (5) the following equilibrium condition is

obtained

Φ
(
ω, h, γg, γs, Zs/Zg

)
=

Zs
Zg

(1− αs)
σs
σs−1

(1− αg)
σg
σg−1

(1−ϕ)(h− hg
hs − h

)
(1 + ωhs)

(ϕ−σs)/(1−σs)

(1 + ωhg)
(ϕ−σg)/(1−σg)

=

Zs
Zg

(1− αs)
σs
σs−1

(1− αg)
σg
σg−1

(1−ϕ)(h− ω−σgγσgg
ω−σsγσss − h

) (
1 + ω1−σsγσss

)(ϕ−σs)/(1−σs)(
1 + ω1−σgγ

σg
g

)(ϕ−σg)/(1−σg)
=

(
µ

1− µ

)ϕ
. (8)

The only differences between (8) and the implicit function Φ in the main text are in the expressions
for sectoral productivity in brackets and the functions for skill intensities.

D.3 Relationship between α-Z and A-B specifications

Static equivalence
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Consider a generic CES production function in the form that has been used above

Q = [(AL)ρ + (BH)ρ]1/ρ

= (Aρ +Bρ)1/ρ
[

Aρ

Aρ +Bρ
Lρ +

Bρ

Aρ +Bρ
Hρ

]1/ρ
= A (1 + βρ)1/ρ

[
1

1 + βρ
Lρ +

βρ

1 + βρ
Hρ

]1/ρ
,

where β = B/A. The alternative specification is

Q = Z [(1− α)Lρ + αHρ]1/ρ .

Given a non-zero value for ρ one can find A and β that correspond to Z and α:

α =
βρ

1 + βρ
⇔ β =

(
α

1− α

)1/ρ
= γ1/ρ ,

and given β,
Z = A (1 + βρ)1/ρ ⇔ A = Z (1− α)1/ρ = Z (1 + γ)−1/ρ .

Dynamic difference
I drop time indices where there is no confusion. The specifications for the exogenous technol-
ogy processes (without shocks) are Zs/Zg = exp {z0 + z1t} and γi = exp

{
γ0,i + γ1,it

}
, versus

As/Ag = exp {a0 + a1t} and βi = exp
{
β0,i + β1,it

}
, i ∈ {g, s}. There is an equivalent repre-

sentation of βi in terms of γi and vice versa. Since β = γ1/ρ, βi =
(
exp

{
γ0,i + γ1,it

})1/ρ
=

exp
{(
γ0,i/ρ

)
+
(
γ1,i/ρ

)
t
}
, which maintains the constant growth rate form of βi, so that β0,i =

γ0,i/ρ and β1,i = γ1,i/ρ. However, Zs/Zg does not have a constant growth rate if As/Ag does, and
vice versa. The reason is that given a constant growth rate for βi and As/Ag, the growth rate of

Zs/Zg would not be constant, since Zi = Ai
(
1 + β

ρi
i

)1/ρi . Alternatively, given constant growth
rates for γi and Zs/Zg, the growth rate of As/Ag would not be constant since Ai = Zi (1 + γi)

−1/ρi .
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Variable DOT task definition Interpretation Example tasks from Handbook of Analyzing Jobs

MATH
(math aptitude)

PLAN
(direction, control, 
planning)

STAND
(set limits, 
tolerances, or 
standards)

FINGDEX
(finger dexterity)

COORD
(eye-hand-foot 
coordination)

Source: U. S. Department of Labor, Manpower Administration, Handbook for Analyzing Jobs  (Washington, DC, 1972). Reproduced from Autor, Levy 
and Murnane (2003). 

Ability to move fingers, 
and manipulate small 
objects with fingers, 
rapidly or accurately

Routine 
manual

Mixes and bakes ingredients according to recipes; sews fasteners and decorative 
trimmings to articles; feeds tungsten filament wire coils into machine that mounts them to 
stems in electric light bulbs; operates tabulating machine that processes data from 
tabulating cards into printed records; packs agricultural produce such as bulbs, fruits, nuts, 
eggs, and vegetables for storage or shipment; attaches hands to faces of watches.

Ability to move the hand 
and foot coordinately 
with each other in 
accordance with visual 
stimuli

Non-routine 
manual

Lowest level: Tends machine that crimps eyelets, grommets; next level: attends to beef 
cattle on stock ranch; drives bus to transport passengers; next level: pilots airplane to 
transport passengers; prunes and treats ornamental and shade trees; highest level: 
performs gymnastic feats of skill and balance.

Adaptability to situations 
requiring the precise 
attainment of set limits, 
tolerances, or 
standards

Routine 
cognitive

Operates a billing machine to transcribe from office records data; calculates degrees, 
minutes, and second of latitude and longitude, using standard navigation aids; measures 
dimensions of bottle, using gauges and micrometers to verify that setup of bottle-making 
conforms to manufacturing specifications; prepares and verifies voter lists from official 
registration records.

Table A1: DOT Task Definitions and Examples

General educational 
development, 
mathematics

Non-routine 
analytic

Lowest level: Adds and subtracts 2-digit numbers; performs operations with units such as 
cup, pint, and quart. Midlevel: Computes discount, interest, profit, and loss; inspects flat 
glass and compiles defect data based on samples to determine variances from and 
thermodynamic systems . . . to determine suitability of design for aircraft and missiles.

Adaptability to 
accepting responsibility 
for the direction, control, 
or planning of an activity

Non-routine 
interactive

Plans and designs private residences, office buildings, factories, and other structures; 
applies principles of accounting to install and maintain operation of general accounting 
system; conducts prosecution in court proceedings . . . gathers and analyzes evidence, 
reviews pertinent decisions . . . appears against accused in court of law; commands fishing 
vessel crew engaged in catching fish and other marine life.



Median Mean S.D. Min Max
FINGDEX 3.8 3.9 1.3 0 9
COORD 0.77 1.2 1.4 0 10
STAND 5.8 5.1 3.8 0 10
MATH 3.5 3.8 2.3 0 10
PLAN 0.5 2.3 3.2 0 10

FINGDEX COORD STAND MATH PLAN
FINGDEX 1
COORD 0.15* 1
STAND 0.6* 0.12* 1
MATH 0.02 -0.3* -0.08 1
PLAN -0.3* -0.18* -0.39* 0.63* 1

Table A2: DOT Tasks Summary Statistics

Notes: Statistics are calculated for 746 observations by occupation and 
gender. * denotes 5% statistical significance level.

A. Sample Statistics

B. Spearman rank correlations



Figure A1: IT Capital

Notes: IT capital is computed using chain-type quantity indices and 2000 prices. Aggregation to goods and services sectors follows the 
classification used throughout the paper. Sectors are defined in Table 1. See appendix for complete details. Data source: BEA Fixed Assets Tables.
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Figure A2: Employment Shares

Notes: Employment shares are calculated for college and high school equivalents. The conversion to labor equivalents causes the sum of the four 
series to deviate slightly from the total employment in the private sector because the conversion weights do not sum exactly to one (see appendix). 
The series reported here are normalized to sum to one. Sectors are defined in Table 1. Source: March CPS 1964-2006. 

Figure A3: Real Wages Across Sectors, within Education Groups

Notes: The figure reports the average weekly wage of each education group in the goods sector and in the services sector. The wages are 
calculated using the same methodology that is used throughout the paper, that controls for within-group compositional changes in gender and 
experience. Sectors are defined in Table 1. Source: March CPS 1964-2006.
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Figure A4: Relative Output of Services versus Goods

Notes: Relative output in skill-intensive services versus goods is calculated as the ratio of value-added in the service sector divided by value-added 
in the goods sector, further divided by the relative price of services, defined above in the text. The ratio is normalized to one in 1963. Sectors are 
defined in Table 1.

Figure A5: Aggregate Elasticity of Substitution

Notes: The aggregate elasticity of substitution is given by totally differentiating the equilibrium function Φ by the relative wage of skilled labor, ω , 
and skill abundance, h , and then applying the Implicit Function Theorem. The values reported here are calculated using the estimates of the model 
from Table 2.



Figure A6: Relative Wages Across Sectors, within Education Groups

Notes: The figure reports the ratios of the average weekly wage of each education group in the goods sector to that in the services sector. The 
wages are calculated using the same methodology that is used throughout the paper, that controls for within-group compositional changes in gender 
and experience. Sectors are defined in Table 1. Source: March CPS 1964-2006.

Figure A7: College Premium in Goods and Services

Notes: The College Premium is equal to the ratio of the average weekly wage of college graduates to average weekly wage of high-school 
graduates, minus one. The figure reports the college premium in as it is calculated separately in each sector, using the same methodology that is 
used for the aggregate college premium (Figure 1). Sectors are defined in Table 1. The correlation between the two series is 0.97. Source: March 
CPS 1964-2006. 
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Figure A8: Task Intensities for High School and College Equivalents

Notes: Task indices are averages for high school equivalents and college equivalents in each sector . The units are percentiles in the 1967 
distribution of each task. Task intensities are calculated from the Dictionary of Occupational Titles. DEX (finger-dexterity) captures routine manual 
tasks, COORD (eye-hand-foot coordination) captures non-routine manual tasks, STAND (set limits, tolerances and standards) captures routine 
cognitive tasks, MATH (math aptitude) and PLAN (direction, control and planning) capture non-routine cognitive tasks.
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