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A B S T R A C T

This paper offers a novel perspective on the 𝛼-maxmin model, taking its components as originating from distinct
selves within the decision maker. Drawing from the notion of multiple selves prevalent in inter-temporal
decision-making contexts, we present an aggregation approach where each self possesses its own preference
relation. Contrary to existing interpretations, these selves are not merely a means to interpret the decision
maker’s overall utility function but are considered as primitives. Through consistency requirements, we derive
an 𝛼-maxmin representation as an outcome of a convex combination of the preferences of two distinct selves.
We first explore a setting involving objective information and then move on to a fully subjective derivation.
. Introduction

Schmeidler’s breakthrough (Schmeidler, 1989) opened the door to
sound, axiomatic foundation of behavior under uncertainty that does
ot reduce to subjective expected utility and accounts for a non-neutral
ttitude towards ambiguity. As a pioneering model, the Choquet Ex-
ected Utility model received a great deal of attention both concerning
xiomatic characterizations (e.g., Wakker, 1990; Chateauneuf, 1991;
arin and Wakker, 1992; Chateauneuf, 1994; Chew and Karni, 1994;
hateauneuf and Tallon, 2002; Zhang, 2002; Bastianello and Faro,
023) as well as to its consequences to fundamental economic models
e.g., Dow and Werlang, 1992; Epstein and Wang, 1994, 1995; Dow
nd Werlang, 1994; Marinacci, 2000; Chateauneuf et al., 2000; Billot
t al., 2000, and Billot et al., 2002). Almost simultaneously, the pub-
ication of the multiple prior model by Gilboa and Schmeidler (1989)
reatly impacted by elaborating an axiomatic foundation to the related
nd somewhat more ‘‘intuitive’’ multiple prior model. This approach
ave rise to a substantial amount of literature with a wide range of
xiomatic developments and applications,1 while significant criticisms
lso emerged. Among those was the fact that the multiple prior model,
.k.a the maxmin expected utility model, is widely classified as a
trongly paranoiac decision rule because of the embedded min operator

even though the set of priors over which the minimum is taken as

✩ We would like to thank Tzachi Gilboa for valuable comments. J. H. Faro is grateful for financial support from CNPq-Brazil (Grant no. 306515/2022-9).
∗ Corresponding author.

E-mail addresses: alain.chateauneuf@orange.fr (A. Chateauneuf), josehf@insper.edu.br (J.H. Faro), jean-marc.tallon@psemail.eu (J.-M. Tallon),
assili.vergopoulos@u-paris2.fr (V. Vergopoulos).

1 To cite a few from the axiomatic perspective: Chateauneuf (1991), Casadesus-Masanell et al. (2000), Ghirardato et al. (2003), Alon and Schmeidler (2014),
pstein and Schneider (2003), and Epstein et al. (2007).

part of the representation and thus also reflects the decision maker’s
attitude towards uncertainty (e.g., Siniscalchi, 2009).

To consider less extreme attitudes towards uncertainty (but still pre-
senting the min operator in their representations), the models known
as variational preferences of Maccheroni et al. (2006) and confidence
preferences of Chateauneuf and Faro (2009) emerged as generalizations
of the maxmin EU model where each prior representing the set of
beliefs is weighted by a kind of degree of plausibility for the decision-
maker. It is interesting to note that the intersection of these models
is exactly the maxmin EU model. These models are special cases of
uncertainty-averse preferences characterized by Cerreia-Vioglio et al.
(2011), a very general class of preferences with a representation that
makes use of the min operator over priors and also includes the popular
smooth model of Klibanoff et al. (2005).

From a different perspective, the task of characterizing less extreme
attitudes towards uncertainty was also tackled by Gajdos et al. (2004)
and Gajdos et al. (2008). It was done by assuming that the decision-
maker has some (partial but) objective information about the problem
at hand. Gilboa et al. (2010) developed the objective/subjective ra-
tionality framework that makes explicit how ‘‘cautious’’ a maxmin
decision maker is relative to a set of priors capturing ‘‘objective ra-
tionality’’ –see also Echenique et al. (2022), Ceron and Vergopoulos
(2022), Faro and Lefort (2019), Bastianello et al. (2022), Frick et al.
(2022).
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Another strand of literature, to which the current paper is contribut-
ing, studies a natural generalization of the maxmin expected utility
model – the so-called 𝛼-maxmin expected utility model – in which
oth the minimum and the maximum expected utility over some set of
riors are taken into account. The 𝛼-maxmin criterion was introduced
nitially by Hurwicz in an unpublished paper and appeared later as

special case in Arrow and Hurwicz (1972). This criterion is widely
sed in models formulated in different frameworks. For instance, if the
ecision-maker faces a possibly coarsely specified decision problem,
ncluding unforeseen contingencies, Ghirardato (2001) characterizes a
odel à la Arrow-Hurwicz with non-additive beliefs, echoing previ-

us work by Jaffray (1989). In the context of decision-making under
ncertainty with no state space, Olszewski (2007) provides an ax-
omatic foundation for the counterpart of the 𝛼-maxmin EU model for
references over sets of lotteries, offering a natural concept of objec-
ive ambiguity dispensing with state space. Ghirardato et al. (2004)
rovides an axiomatic in a standard Anscombe-Aumann setting. This
eminal paper also generated a sizable literature pointing to issues
oncerning the foundations of the model (Eichberger et al., 2011)
r the identification of the pessimism index together with the set
f prior (Siniscalchi, 2009; Klibanoff et al., 2014, 2022; Chateauneuf
t al., 2023; Hartmann, 2023), as well as extensions such as the neo-
dditive capacity approach of Chateauneuf et al. (2007), or the dual-self
epresentation of Chandrasekher et al. (2022) and Mononen (2024).
nother representation combining the max and min operators that
eneralizes the maxmin expected utility was proposed by Casaca et al.
2014). Bardier et al. (2023) obtains the 𝛼-maxmin representation
s the completion of an incomplete preference relation based on the
nanimity of two selves (a pessimistic one and an optismistic one).

While the 𝛼-maxmin EU model has received much attention in the
ecision theory literature, its use in economic applications has been
ore scarce. Beissner et al. (2020) provide an axiomatization of a
ynamically consistent version of the model and apply it to the CAPM.
eissner and Werner (2023) study risk-sharing under various (possibly
on-convex) preferences.

In this paper, we contribute to the existing literature by exam-
ning the 𝛼-maxmin model from a slightly different perspective. We
nterpret the two components of the criterion, the max and the min,
s originating from two distinct selves, with the 𝛼-maxmin criterion
erving as a means to aggregate these two selves. The notion that an
ndividual comprises multiple selves is a common modeling approach,
articularly in inter-temporal decision-making contexts, where differ-
nt selves make decisions at different points in time. While the concept
f multiple selves co-existing at a single point in time is also present
n static decision-making under uncertainty (as seen in Chandrasekher
t al., 2022), it is often more of an interpretation of the functional
orm rather than a foundational element of the model. In contrast,
e posit the existence of these selves, each with its own preference

elation, and explore methods of combining them to form a final
reference. The outcome is an aggregation rule that produces an 𝛼-
axmin representation, which can be conceptualized as the result of

n internal (though unmodeled) deliberation process between the two
elves.

More precisely, we provide a simple axiomatization of a decision-
aker who has to cope with her two selves, one optimistic (adven-

urous) and one pessimistic (cautious). Each self has thus its own
reference relation that has to be aggregated through some consistency
equirements to ‘‘yield’’ the final preference. The selves’ preferences
re not sub-relations of the final preferences except in the limit cases.
e derive an 𝛼-maxmin representation (and generalization thereof)

s the result of a convex combination between the preferences of the
wo selves, where 𝛼 is, in some sense, the ‘‘bargaining’’ weight of the
essimistic self and (1− 𝛼) the bargaining weight of the optimistic self.

The preference relation of each self cannot be directly observed
hrough choices; only choices reflecting the ‘‘final’’ preference are
2

S

bservable, aligning with the objective–subjective approach.2 Two in-
erpretations can be suggested for these selves’ preferences and their
bservability or lack thereof. The first interpretation posits that these
references could represent those the decision maker uses when pro-
iding advice, such as giving financial guidance to a cautious or an
dventurous investor. She herself has her own attitude, but when ad-
ising others, she tries to separate the ‘‘hard’’ information she has from
er tastes. So, the two ‘‘selves’’ relations are observable from her advice
o others, while her own relation is observable from her own choices.
he second interpretation regards these selves as deliberation tools used
y the decision maker who seeks to consider two ‘‘extreme’’ points of
iew before making a decision. However, these viewpoints must adhere
o rational axioms. Thus, the axiomatic construction proposed in this
aper can be understood as a normative way of building a moderate
reference relation that aggregates extreme views.

We begin by examining scenarios where some objective, albeit par-
ial, information about relative likelihood is accessible. This typically
anifests as a set of probability distributions on the state space, which

oth selves accept at face value. Examples illustrate that this situation
aturally arises when the core of a convex capacity can represent
robabilistic information. Additionally, the Choquet case facilitates the
erivation of an 𝛼-maxmin rule with conditional preferences. Next, we
ove to a fully subjective setting and assume each self is either the
axmin or the maxmax type. Consistency necessitates that both selves

hare an identical collection of priors within this setting. Lastly, we
ropose a generalization that does not rely on a specific functional
orm for each self, whose preferences need not be dual to one another
nd show how it can be used to derive a no-trade interval à la Dow
nd Werlang (1992). Interestingly, the case 𝛼 = 1∕2 coincides with
mbiguity neutrality in this construction.

The paper is constructed as follows. Section 2 introduces the frame-
ork and the necessary background and definitions. Section 3 derives

he 𝛼−Choquet and 𝛼−maxmin rules when the selves have access to
common capacity or a common set of probabilities representing the

nformation available. This section also contains a derivation of the
onditional maxmin model and two examples. Section 4 retains the
hoquet and Maxmin case but provides the analysis in a fully subjective
etting. Section 5 goes beyond this and assumes general preferences.
roofs are gathered in the Appendix.

. Framework

We consider a Savage-type model with monetary payoffs similar
o Chateauneuf (1991), assuming a finite state space 𝑆. In our frame-
ork, an act is a real-valued function defined on 𝑆. Let 𝐹 denote the

et of all acts. The set 𝐹 of acts is equipped with the natural (euclidean)
opology. For 𝑓, 𝑔 ∈ 𝐹 , we write 𝑓 ≥ 𝑔 if 𝑓 (𝑠) ≥ 𝑔(𝑠) for all 𝑠 ∈ 𝑆 and
> 𝑔 if 𝑓 (𝑠) > 𝑔(𝑠) for all 𝑠 ∈ 𝑆. For each 𝐸 ⊆ 𝑆 and 𝑓, 𝑔 ∈ 𝐹 , 𝑓𝐸𝑔 ∈ 𝐹

denote the element of 𝐹 equal to 𝑓 over 𝐸 and to 𝑔 outside 𝐸. The
constant act whose image is the singleton {𝑥} is denoted by 𝑥.

Two acts 𝑓, 𝑔 ∈ 𝐹 are said to be

• comonotonic if
(

𝑓 (𝑠) − 𝑓 (𝑠′)
) (

𝑔(𝑠) − 𝑔(𝑠′)
)

≥ 0 for all 𝑠, 𝑠′ ∈ 𝑆,
• complementary if 𝑓 (𝑠) + 𝑔(𝑠) = 𝑓 (𝑠′) + 𝑔(𝑠′) for all 𝑠, 𝑠′ ∈ 𝑆.

2 It is worth noting that we have two such relations here, while Gilboa
t al. (2010) require only one. While it would be possible to formally conduct
similar analysis with only one underlying (non-observable through choices)

reference relation, a maybe more significant distinction from Gilboa et al.
2010) is that the cautious and adventurous selves are not subsidiary relations
f the final preference within our framework. We elaborate on the relationship
f our construction with Gilboa et al. (2010) and Frick et al. (2022) in

ection 3.
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Consider a functional 𝐼 from 𝐹 to R. We say that 𝐼 is monotonic if
𝐼(𝑓 ) ≥ 𝐼(𝑔) for all 𝑓, 𝑔 ∈ 𝐹 such that 𝑓 (𝑠) ≥ 𝑔(𝑠) for all 𝑠 ∈ 𝑆. We say
hat it is constant additive if 𝐼(𝑓 +𝑥) = 𝐼(𝑓 ) +𝑥 for all 𝑓 ∈ 𝐹 and 𝑥 ∈ R.

e say that it is positively homogeneous if 𝐼(𝛾𝑓 ) = 𝛾𝐼(𝑓 ) for all 𝛾 ≥ 0
and 𝑓 ∈ 𝐹 . It is constant linear if it is constant additive and positively
omogeneous.

A capacity 𝑣 on 𝑆 is a function from the power set of 𝑆 to [0, 1]
satisfying 𝑣(∅) = 0, 𝑣(𝑆) = 1 and 𝑣(𝐸) ≥ 𝑣(𝐹 ) for all 𝐸, 𝐹 ⊆ 𝑆 such that
𝐹 ⊆ 𝐸. A capacity 𝑣 on 𝑆 is said to be a probability if it is additive,
that is, if 𝑣(𝐸 ∪𝐹 ) = 𝑣(𝐸) + 𝑣(𝐹 ) for all 𝐸, 𝐹 ⊆ 𝑆 such that 𝐸 ∩𝐹 = ∅. It
is said to be convex if 𝑣(𝐸 ∪𝐹 ) + 𝑣(𝐸 ∩𝐹 ) ≥ 𝑣(𝐸) + 𝑣(𝐹 ) for all 𝐸, 𝐹 ⊆ 𝑆
and concave if 𝑣(𝐸 ∪ 𝐹 ) + 𝑣(𝐸 ∩ 𝐹 ) ≤ 𝑣(𝐸) + 𝑣(𝐹 ) for all 𝐸, 𝐹 ⊆ 𝑆. For
every capacity 𝑣 on 𝑆, we define the dual capacity 𝑣 on 𝑆 by setting
𝑣(𝐸) = 1−𝑣(𝐸𝑐 ) for all 𝐸 ⊆ 𝑆. Consider a capacity 𝑣 on 𝑆. The Choquet
integral of 𝑓 ∈ 𝐹 with respect to 𝑣 is defined by

∫𝑆
𝑓 (𝑠)𝑑𝑣(𝑠) = ∫

0

−∞
[𝑣[{𝑠 ∈ 𝑆, 𝑓 (𝑠) ≥ 𝑥}] − 1] 𝑑𝑥

+ ∫

+∞

0
𝑣[{𝑠 ∈ 𝑆, 𝑓 (𝑠) ≥ 𝑥}]𝑑𝑥.

Suppose 𝑣 is a capacity on 𝑆. The core 𝐶(𝑣) of 𝑣 is defined as the
collection of all probabilities 𝜇 on 𝑆 such that 𝜇(𝐸) ≥ 𝑣(𝐸) for all 𝐸 ⊆ 𝑆.
If 𝑣 is convex, then 𝐶(𝑣) is nonempty, and we have for all 𝑓 ∈ 𝐹 :

∫𝑆
𝑓 (𝑠)𝑑𝑣(𝑠) = min

𝜇∈𝐶(𝑣)∫𝑆
𝑓 (𝑠)𝑑𝜇(𝑠).

If 𝑣 is concave, then 𝐶(𝑣) is nonempty, and we have for all 𝑓 ∈ 𝐹 :

∫𝑆
𝑓 (𝑠)𝑑𝑣(𝑠) = max

𝜇∈𝐶(𝑣)∫𝑆
𝑓 (𝑠)𝑑𝜇(𝑠).

Consider 𝛼 ∈ [0, 1], a closed and convex set 𝐶 of probabilities on 𝑆 and
a capacity 𝑣 on 𝑆. We define 𝐼𝛼,𝐶 as the real-valued functional on 𝐹
such that, for all 𝑓, 𝑔 ∈ 𝐹 ,

𝐼𝛼,𝐶 (𝑓 ) = 𝛼min
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠) + (1 − 𝛼)max
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠).

We define 𝐼𝛼,𝑣 as the real-valued functional on 𝐹 such that, for all
𝑓, 𝑔 ∈ 𝐹 ,

𝐼𝛼,𝑣(𝑓 ) = 𝛼 ∫𝑆
𝑓 (𝑠)𝑑𝑣(𝑠) + (1 − 𝛼)∫𝑆

𝑓 (𝑠)𝑑𝑣(𝑠).

Consider a binary relation ≿ on 𝐹 and a real-valued functional 𝐼
efined on 𝐹 . We say that 𝐼 is a representation of ≿ if, for all 𝑓, 𝑔 ∈ 𝐹 ,
≿ 𝑔 ⟺ 𝐼(𝑓 ) ≥ 𝐼(𝑔). We say that a pair (𝛼, 𝐶) provides an 𝛼-maxmin

epresentation of ≿ if 𝐼𝛼,𝐶 is a representation of ≿. When 𝛼 = 1, we
peak of a maxmin representation; when 𝛼 = 0, we speak of a maxmax
epresentation. Finally, we say that a pair (𝛼, 𝑣) provides an 𝛼-Choquet
epresentation of ≿ if 𝐼𝛼,𝑣 is a representation of ≿.

Say that a convex capacity 𝑣 on 𝑆 is regular (see Chateauneuf et al.,
011) if,
∀𝐴,𝐵 ⊂ 𝑆,𝐴, 𝐵 ≠ ∅,

0 < 𝑣(𝐴 ∩ 𝐵), 𝑣(𝐴 ∪ 𝐵) < 1 ⇒ 𝑣(𝐴 ∩ 𝐵) + 𝑣(𝐴 ∪ 𝐵) = 𝑣(𝐴) + 𝑣(𝐵)
(1)

inally, conditionally on 𝐸 ⊆ 𝑆 being realized, one can define, for
ny 𝐴 ⊆ 𝑆 the conditional capacity 𝑣𝐸 (𝐴) =

𝑣(𝐴∩𝐸)
𝑣(𝐴∩𝐸)+1−𝑣(𝐴∪𝐸𝑐 ) (see, for

nstance, Jaffray, 1992 and references therein). When 𝑣 is convex and
egular, 𝑣𝐸 is convex and 𝐶(𝑣𝐸 ) = {𝑃𝐸 |𝑃 ∈ 𝐶(𝑣)}, where 𝑃𝐸 denotes
he conditional probability measure 𝑃 given 𝐸.

. Objective information

In this section, we assume a closed and convex set 𝐶 of probabilities
on 𝑆 representing the objective but partial information available to
the DM (and her two selves). This approach is related to Gajdos et al.
(2008), although we consider preferences defined over acts 𝑓 in 𝐹 .

he exogenously given set of priors 𝐶 offers a natural concept of
bjective ambiguity in a Savage-type model. Objective ambiguity was
lso previously modeled under the assumption of intractable states of
ature by Olszewski (2007) and Ahn (2008) with preferences defined
ver sets of lotteries.
3

i

.1. Combining optimistic and pessimistic selves with same information

A decision-maker is characterized by three preference relations

• ≿1 and ≿2 on 𝐹 representing her pessimistic and optimistic selves
respectively,

• ≿ on 𝐹 representing her observable behavior.

We assume that both selves face the objective information described
y the set of priors 𝐶, thereby imposing a consistency requirement
mong the two selves. We begin with axioms on the selves’ preferences.
1 states that the two selves have transitive preferences; completeness

s not assumed, being a property that will be satisfied due to the
ombination of transitivity with the others introduced below.
1 ≿1 and ≿2 are transitive.

The next axiom, A2, imposes that the two selves agree when eval-
ating constant acts, according to the usual order on R.
2 For all 𝑥, 𝑦 ∈ R, 𝑥 ≿1 𝑦 iff 𝑥 ≿2 𝑦 iff 𝑥 ≥ 𝑦. Axioms A3 and A4
ompare the expected utility of random variables with respect to priors
n the set 𝐶 to (the utility of) constant acts. They deliver the fact that
1 is of the pessimistic (min) type while ≿2 is of the optimistic (max)

ype, both with respect to the given set 𝐶.
3 For all 𝑓 ∈ 𝐹 and 𝑥 ∈ R, (i) if ∫𝑆 𝑓 (𝑠)𝑑𝜇(𝑠) ≥ 𝑥 for all 𝜇 ∈ 𝐶, then
≿1 𝑥 and (ii) if 𝑥 ≥ ∫𝑆 𝑓 (𝑠)𝑑𝜇(𝑠) for all 𝜇 ∈ 𝐶, then 𝑥 ≿2 𝑓 .
4 For all 𝑓 ∈ 𝐹 and 𝑥 ∈ R, (i) if 𝑥 ≥ ∫𝑆 𝑓 (𝑠)𝑑𝜇(𝑠) for some 𝜇 ∈ 𝐶,

hen 𝑥 ≿1 𝑓 and (ii) if ∫𝑆 𝑓 (𝑠)𝑑𝜇(𝑠) ≥ 𝑥 for some 𝜇 ∈ 𝐶, then 𝑓 ≿2 𝑥.
ext, we impose axioms on ‘‘final’’ preferences, which are assumed to
e complete, transitive, and continuous.
1 ≿ is complete and transitive.
2 For all 𝑓 ∈ 𝐹 , {𝑔 ∈ 𝐹 , 𝑔 ≿ 𝑓} and {𝑔 ∈ 𝐹 , 𝑓 ≿ 𝑔} are closed in 𝐹 .

The next axiom, B3, is a form of constant-additivity. Scaling indif-
erent acts and adding constants do not change the preference.
3 For all 𝑓, 𝑔 ∈ 𝐹 , 𝑥 ∈ R and 𝛾 ≥ 0, if 𝑓 ∼ 𝑔, then 𝛾𝑓 + 𝑥 ∼ 𝛾𝑔 + 𝑥.

Finally, B4 encapsulates the fact that ≿ follows unanimity of the
wo selves.
4 For all 𝑓, 𝑔 ∈ 𝐹 , if 𝑓 ≿1 𝑔 and 𝑓 ≿2 𝑔, then 𝑓 ≿ 𝑔. It resembles
xiom 7 in Ghirardato et al. (2004). It generalizes the axiom of Cau-

ion in Gilboa et al. (2010) and corresponds to the Security-Potential
ominance axiom in Frick et al. (2022).

The preceding axioms characterize an 𝛼−maxmin decision-maker.
s the following proposition demonstrates, the aggregation between

he two selves is to take a convex combination of the maximal and the
inimal expectation (with respect to the set 𝐶).

roposition 1. (≿1, ≿2) satisfies A1–A4 and ≿ satisfies B1–B4 if and
nly if there exists 𝛼 ∈ [0, 1] such that (𝛼, 𝐶) provides an 𝛼-maxmin
epresentation of ≿. Moreover, 𝛼 is unique if 𝐶 is non-singleton.

Proposition 1 is comparable in spirit to the results of Ghirardato
t al. (2004), Gilboa et al. (2010) and Frick et al. (2022). The maxmin
nd maxmax representations are obtained as a direct consequence
f the combination of A3 and A4, and the 𝛼-maxmin representation
s obtained through arguments similar to those of Ghirardato et al.
2004) and Frick et al. (2022). Ghirardato et al. (2004) assume a
ingle preference relation representing the agent’s behavior. From it,
hey derive an auxiliary preference relation, the so-called unambiguous
reference. This latter preference admits a unanimity representation à
a Bewley (1986, 2002), and hence gives rise to pessimistic (maxmin)
nd optimistic (maxmax) dual evaluations in a natural way. An ax-
om of consistency with respect to these dual evaluations delivers the
-maxmin representation of the initial preference.

Gilboa et al. (2010) start with two preference relations representing
ubjective and objective rationality from the outset. The axioms lead to
unanimity rule representation of the objective rationality preference.
onsistency requirements between the two forms of rationality, includ-
ng a form of caution, deliver the maxmin representation of subjective
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rationality. In our terms, the pessimistic self is thus, through caution,
assigned all the bargaining power.

Frick et al. (2022) extend the analysis of Gilboa et al. (2010)
by allowing each self to receive some bargaining power. Objective
rationality still has a unanimity representation leading, as in Ghi-
rardato et al. (2004), to pessimistic (maxmin) and optimistic (maxmax)
dual evaluations. Consistency with respect to the latter delivers the 𝛼-

axmin representation of subjective rationality. Our analysis departs
rom that of Frick et al. (2022) in the assumption of exogenously given
essimistic and optimistic preferences. It is further simplified by the
ssumption of an exogenously given set of probabilities representing
he objective information, an assumption that we dispense with in the
ext section.

.2. Belief updating with objective information

Next, we extend the analysis to conditional preferences, in which
he decision maker knows that the relevant set of objective distributions
s the set of all updated distributions, i.e., the so-called ‘‘full-Bayes
pdate’’ of 𝐶. In the next result, we fix an objectively non-null event
⊆ 𝑆, which means that 𝜇(𝐸) > 0 for all 𝜇 ∈ 𝐶, and consider

inary relations ≿𝐸
1 , ≿𝐸

2 and ≿𝐸 on 𝐹 . Here, ≿𝐸
1 and ≿𝐸

2 represent the
essimistic and optimistic preferences conditional on 𝐸, respectively,

while ≿𝐸 represents the final preferences conditional on 𝐸.
The next axiom collects different standard requirements that we

need to impose on the selves’ conditional preferences to derive our next
result:
A5 (i) ≿𝐸

1 and ≿𝐸
2 are transitive.

(ii) For all 𝑥, 𝑦 ∈ R, 𝑥 ≿𝐸
1 𝑦 iff 𝑥 ≿𝐸

2 𝑦 iff 𝑥 ≥ 𝑦.
(iii) For all 𝑓 ∈ 𝐹 and 𝑥 ∈ R, 𝑓 ∼𝐸

1 𝑥 iff 𝑓𝐸𝑥 ∼1 𝑥 and 𝑓 ∼𝐸
2 𝑥 iff

𝑓𝐸𝑥 ∼2 𝑥.
We will also use the following conditional versions of Axioms

B1–B4.
CB1 ≿𝐸 is complete and transitive.
CB2 For all 𝑓 ∈ 𝐹 , {𝑔 ∈ 𝐹 , 𝑔 ≿𝐸 𝑓} and {𝑔 ∈ 𝐹 , 𝑓 ≿𝐸 𝑔} are closed in
𝐹 .
CB3 For all 𝑓, 𝑔 ∈ 𝐹 , 𝑥 ∈ R and 𝛾 ≥ 0, if 𝑓 ∼𝐸 𝑔, then 𝛾𝑓 +𝑥 ∼𝐸 𝛾𝑔+𝑥.
CB4 For all 𝑓, 𝑔 ∈ 𝐹 , if 𝑓 ≿𝐸

1 𝑔 and 𝑓 ≿𝐸
2 𝑔, then 𝑓 ≿𝐸 𝑔.

Proposition 2. (≿1, ≿𝐸
1 , ≿2, ≿𝐸

2 ) satisfies A1–A5 and ≿𝐸 satisfies CB1–
CB4 if and only if there exists 𝛼𝐸 ∈ [0, 1] such that (𝛼𝐸 , 𝐶𝐸 ) provides
an 𝛼-maxmin representation of ≿𝐸 . Moreover, 𝛼𝐸 is unique if 𝐶𝐸 is
non-singleton.

Proposition 2 echoes the result in Faro and Lefort (2019), which
characterizes a dynamic version of the Gilboa et al. (2010) model in
which unconditional beliefs are updated prior-by-prior.

Corollary 1. Suppose A1–A4 and B1–B4 hold. If 𝐶 is the core of a
convex capacity 𝑣, there exists 𝛼 ∈ [0, 1] such that (𝛼, 𝑣) provides an 𝛼-
Choquet representation of ≿. Moreover, 𝛼 is unique if 𝑣 is not a probability
istribution (i.e., if 𝐶(𝑣) is not a singleton).

orollary 2. Suppose A1–A5 and CB1–CB4 hold. If 𝐶 is the core of
convex, regular capacity 𝑣, there exists 𝛼𝐸 ∈ [0, 1] such that (𝛼𝐸 , 𝑣𝐸 )

rovides an 𝛼-Choquet representation of ≿𝐸 . Moreover, 𝛼𝐸 is unique if 𝑣𝐸
s not a probability distribution (equivalently, 𝐶(𝑣𝐸 ) is not a singleton).

As stated in the Introduction, it is easy to come up with examples
here objective information comes in the form of the core of a capacity.
n example of this is when information is given in the form of bounds

or singleton. Assume that the decision maker is told that the probabil-
ty 𝑝(𝑠) of state 𝑠 is such that 𝑝(𝑠) ∈ [𝑎𝑠, 𝑏𝑠] for all 𝑠 ∈ 𝑆, with 𝑏𝑠 ≥ 𝑎𝑠

for all 𝑠 and ∑

𝑠 𝑏𝑠 ≥ 1 ≥
∑

𝑠 𝑎𝑠. De Campos et al. (1994) show that the
set of such distributions is actually the core of the convex capacity 𝑣

∑ ∑
4

defined by: for each 𝐸 ⊂ 𝑆, 𝐸 ≠ ∅, 𝑣(𝐸) = max( 𝑠∈𝐸 𝑎𝑠, 1 − 𝑠∉𝐸 𝑏𝑠). If
the DM conforms to A1–A4 with 𝐶 = core(𝑣) and B1–B4, then (𝛼, 𝑣) is
an 𝛼−Choquet representation of her preferences.

To identify 𝛼, one needs to elicit the certainty equivalent 𝛾(𝐸) of
some event 𝐸 and compute 𝛼 = 𝛾(𝐸)−(1−𝑣(𝐸𝑐 ))

𝑣(𝐸)−(1−𝑣(𝐸𝑐 )) . Obviously, if one reveals
through an experiment that 𝛼 thus defined depends on 𝐸, this would
eveal that the decision-maker is not of the 𝛼−Choquet type.

This example can also be used to illustrate Corollary 2. The capacity
defined above satisfies property (1) for instance whenever 𝑏𝑠 = 1 for

all 𝑠, or 𝑎𝑠 = 0 for all 𝑠 or, more generally, if ∑𝑠∈𝐸 𝑎𝑠 ≥ 1 −
∑

𝑠∉𝐸 𝑏𝑠 for
all 𝐸 or if ∑

𝑠∈𝐸 𝑎𝑠 ≤ 1 −
∑

𝑠∉𝐸 𝑏𝑠 for all 𝐸. In that case, it is regular
and hence, as established by Chateauneuf et al. (2011), the conditional
preferences ≿𝐸 of a decision-maker satisfying A1–A5 with 𝐶 = core(𝑣)
and CB1–CB4, admit an 𝛼−Choquet representation (𝛼𝐸 , 𝑣𝐸 ).

Another (class of) example(s) is the case of ‘‘inner probabilis-
tic information’’. This arises when there is an objective probabil-
ity on a sub-algebra  of 2𝑆 . Denote 𝑃0 this probability and let
𝑣(𝐸) = max{𝑃 (𝐸);𝑃 is a probability on (𝑆, 2𝑆 ) s.th. 𝑃 = 𝑃0 on },
while �̄�(𝐸) = min{𝑃 (𝐸);𝑃 is a probability on (𝑆, 2𝑆 ) s.th. 𝑃 = 𝑃0 on
}. Classical results show that 𝑣 is the inner probability of 𝑃0 on
, i.e., 𝑣(𝐸) = inf𝑃∈{𝑃 (𝐸)} where  = {𝑃 on (𝑆, 2𝑆 ) s.th. 𝑃 =
𝑃0 on }. Furthermore, 𝑣 thus defined is convex. If the decision-maker
satisfies A1–A4 with 𝐶 = core(𝑣) and B1–B4, her preferences can
be represented by 𝐼(𝑓 ) = 𝛼min𝑃∈ ∫ 𝑓𝑑𝑃 + (1 − 𝛼) max𝑃∈ ∫ 𝑓𝑑𝑃 ,
according to Corollary 1, that is, 𝐼(𝑓 ) = 𝛼 ∫𝑆 𝑓𝑑𝑣(𝑠) + (1 − 𝛼) ∫𝑆 𝑓𝑑�̄�(𝑠).

4. A fully subjective derivation

In this section, we no longer assume an exogenously given set 𝐶
representing the objective probabilistic information and characterize
𝛼-maxmin and 𝛼-Choquet representations. Axioms A3 and A4 are now
void since there is no exogenous set 𝐶 one can use to express pessimism
and optimism. We thus impose C-independence as well as ambiguity
aversion (resp. loving) on ≿1 (resp. ≿2). Furthermore, there is no longer
an exogenous coordination device among the two selves and we need
an extra axiom to ensure that the subjective sets of priors of the
two selves coincide. The axioms relating the two selves to ≿ remain
unchanged.

A binary relation ≿′ on 𝐹 is standard if it is complete, transitive,
continuous and monotonic in the following sense:

(1) For all 𝑓, 𝑔 ∈ 𝐹 , 𝑓 ≿′ 𝑔 or 𝑔 ≿′ 𝑓 .
(2) For all 𝑓, 𝑔, ℎ ∈ 𝐹 , if 𝑓 ≿′ 𝑔 and 𝑔 ≿′ ℎ, then 𝑓 ≿′ ℎ.
(3) For all 𝑓 ∈ 𝐹 , {𝑔 ∈ 𝐹 , 𝑔 ≿′ 𝑓} and {𝑔 ∈ 𝐹 , 𝑓 ≿′ 𝑔} are closed

n 𝐹 .
(4) For all 𝑓, 𝑔 ∈ 𝐹 , if 𝑓 ≥ 𝑔, then 𝑓 ≿′ 𝑔 and if 𝑓 > 𝑔, then 𝑓 ≻′ 𝑔.
We say that the pair (≿1, ≿2) is standard if each of ≿1 and ≿2 is

tandard. We say that it is standard∗ if, in addition, each of ≿1 and ≿2
s positively homogeneous and constant additive in the following sense:

(5) For all 𝑓, 𝑔 ∈ 𝐹 , 𝑥 ∈ R and 𝛾 ≥ 0, if 𝑓 ∼′ 𝑔, then 𝛾𝑓 +𝑥 ∼′ 𝛾𝑔+𝑥.
We continue with more axioms on the selves’ preferences. Axiom

6 is related to Axioms 8 and 9 in Echenique et al. (2022). In the
epresentation given by Proposition 3, it is instrumental to obtain a
ingle set of priors 𝐶 that represent both the maxmin self and the
axmax self.
6 For all 𝑖 ∈ {1, 2} and complementary 𝑓, 𝑔 ∈  , 𝑓 + 𝑔 ∼𝑖 𝑓 if and

only if 𝑔 ∼−𝑖 0.
Axiom A7 imposes a maxmin form on ≿1 and a maxmax form on

≿2.
A7 For all 𝑓, 𝑔 ∈ 𝐹 and 𝛾 ∈ [0, 1], (i) if 𝑓 ∼1 𝑔, then 𝛾𝑓 + (1 − 𝛾)𝑔 ≿1 𝑓
and (ii) if 𝑓 ∼2 𝑔, then 𝑓 ≿2 𝛾𝑓 + (1 − 𝛾)𝑔.

Proposition 3. (≿1, ≿2) is standard∗ and satisfies A6 and A7, and ≿
satisfies B1–B4 if and only if there exists 𝛼 ∈ [0, 1] and a closed and convex
set 𝐶 of probabilities on 𝑆 such that

(i) 𝐶 provides a maxmin representation of ≿1 and a maxmax representa-

tion of ≿2,
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(ii) (𝛼, 𝐶) provides an 𝛼-maxmin representation of ≿.
Moreover, 𝐶 is unique, and 𝛼 is unique if 𝐶 is non-singleton.

Replacing A7 with a form of comonotonic independence, A8 below,
yields an 𝛼-Choquet representation with a capacity 𝑣 for ≿1 and its
conjugate for ≿2.
A8 For all 𝑓, 𝑔, ℎ ∈ 𝐹 with 𝑔 and ℎ comonotonic, (i) if 𝑓 ∼1 𝑔, then
𝑓 + ℎ ≿1 𝑔 + ℎ and (ii) if 𝑓 ∼2 𝑔, then 𝑔 + ℎ ≿2 𝑓 + ℎ.

Proposition 4. (≿1, ≿2) is standard and satisfies A6 and A8, and ≿
satisfies B1–B4 if and only if there exists 𝛼 ∈ [0, 1] and a convex capacity
𝑣 on 𝑆 such that
(i) 𝑣 and 𝑣 provide Choquet representations of ≿1 and ≿2 respectively,
(ii) (𝛼, 𝑣) provides an 𝛼-Choquet representation of ≿.
Moreover, 𝑣 is unique, and 𝛼 is unique if 𝑣 is non-additive.

In the specific context of Proposition 4, A6 can be replaced with the
ollowing simpler condition: For all 𝛾1, 𝛾2 ∈ R and 𝐸 ⊆ 𝑆, if 1𝐸0 ∼1 𝛾1
nd 1𝐸0 ∼2 𝛾2, then 𝛾1 + 𝛾2 = 1.

. Generalization

In this section, we no longer commit to assumptions implying
axmin or Choquet representations of the selves’ preferences and seek

or a general representation of final preferences. We no longer require
hat the two selves have the same set of priors, i.e., in the present
ore general context, the selves’ preferences can be represented by

unctionals that are not dual to one another.
9 For all 𝑓 ∈ 𝐹 and 𝑥 ∈ R, if 𝑓 ≿1 𝑥, then 𝑓 ≿2 𝑥.

roposition 5. (≿1, ≿2) is standard∗ if and only if there exist (unique)
onotonic and constant linear functionals 𝐼1 and 𝐼2 from 𝐹 to R such that,

or all 𝑓, 𝑔 ∈ 𝐹 ,

≿1 𝑔 ⟺ 𝐼1(𝑓 ) ≥ 𝐼1(𝑔) 𝑎𝑛𝑑 𝑓 ≿2 𝑔 ⟺ 𝐼2(𝑓 ) ≥ 𝐼2(𝑔).

oreover, (≿1, ≿2) satisfies A6 if and only if 𝐼2(𝑓 ) = −𝐼1(−𝑓 ) for all 𝑓 ∈ 𝐹
nd satisfies A9 if and only if 𝐼1(𝑓 ) ≤ 𝐼2(𝑓 ) for all 𝑓 ∈ 𝐹 .

5 For all 𝑖 ∈ {1, 2}, 𝑥 ∈ R and 𝑓 ∈ 𝐹 , (i) if 𝑓 ≿𝑖 𝑥 and 𝑥 ≻ 𝑓 , then
≿−𝑖 𝑓 for all 𝑦 ∈ R such that 𝑦 ≿ 𝑓 , and (ii) if 𝑥 ≿𝑖 𝑓 and 𝑓 ≻ 𝑥, then
≿−𝑖 𝑦 for all 𝑦 ∈ R such that 𝑓 ≿ 𝑦.

roposition 6. (≿1, ≿2) is standard∗ and ≿ satisfies B1–B5 if and only
f there exist (unique) monotonic and constant linear functionals 𝐼1 and
2 from 𝐹 to R representing ≿1 and ≿2 respectively and a closed interval
⊆ [0, 1] such that, for all 𝑓, 𝑔 ∈ 𝐹 ,

≿ 𝑔 ⟺ min
𝛼∈𝐴

{

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 )
}

≥ min
𝛼∈𝐴

{

𝛼𝐼1(𝑔) + (1 − 𝛼)𝐼2(𝑔)
}

,

r a closed interval 𝐴 ⊆ [0, 1] such that, for all 𝑓, 𝑔 ∈ 𝐹 ,

≿ 𝑔 ⟺ max
𝛼∈𝐴

{

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 )
}

≥ max
𝛼∈𝐴

{

𝛼𝐼1(𝑔) + (1 − 𝛼)𝐼2(𝑔)
}

.

oreover, 𝐴 is unique in each case if there exist 𝑓, 𝑔 ∈ 𝐹 and 𝑥, 𝑦 ∈ R such
hat 𝑓 ≻2 𝑥 and 𝑥 ≿1 𝑓 while 𝑔 ≻1 𝑦 and 𝑦 ≿2 𝑔.

The representation obtained in Proposition 6 extends Lemma B.5
n Ghirardato et al. (2004) and Lemma A. 1 of Frick et al. (2022).
t generalizes the standard 𝛼−maxmin representation in various ways.
irst, it does not assume that the selves’ preferences are maxmin and
axmax. Second, it does not assume that the functionals representing

he two selves are dual to one another. For instance, they could be
axmin and maxmax preferences, with respect to different sets 𝐶1 and
2, much as in the asymmetric representation of Chandrasekher et al.

2022). They could also be Choquet with respect to arbitrary capacities.
inally, it does not assume that the agent’s final preferences aggregate
inearly her selves’ preferences.
6 For all 𝑥 ∈ R and 𝑓 ∈ 𝐹 , if 𝑓 ≿1 𝑥, then 𝑓 ≿ 𝑥 and, if 𝑓 ≿ 𝑥, then
≿ 𝑥.
5

2

Corollary 3. (≿1, ≿2) is standard∗ and satisfies A9, and ≿ satisfies B1–
B4 and B6 if and only if there exist (unique) monotonic and constant linear
functionals 𝐼1 and 𝐼2 from 𝐹 to R representing ≿1 and ≿2 respectively and
𝛼 ∈ [0, 1] such that, for all 𝑓, 𝑔 ∈ 𝐹 ,

𝑓 ≿ 𝑔 ⟺ 𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 ) ≥ 𝛼𝐼1(𝑔) + (1 − 𝛼)𝐼2(𝑔).

oreover, 𝛼 is unique if there exists 𝑓 ∈ 𝐹 and 𝑥 ∈ 𝑋 such that 𝑓 ≻2 𝑥
and 𝑥 ≿1 𝑓 .

A version of B6 holds by construction in Ghirardato et al. (2004) as,
in our terminology, the selves have maxmin and maxmax preferences
with respect to revealed ambiguity. Likewise, a version of B6 holds
in Gilboa et al. (2010) because the selves have maxmin and maxmax
preferences with respect to a set appearing in the unanimity representa-
tion of the subrelation capturing ‘‘objective rationality’’. A similar point
can be made for Frick et al. (2022). In the two latter papers, the fact
that the ‘‘objective rationality’’ preference is a subrelation of the agent’s
preferences is a consequence of the Consistency axiom.

For a possible illustration of the construction in a financial setting,
consider that an act 𝑓 ∈ 𝐹 represents the payoff delivered by an
sset at the various states. Suppose, as implied by Proposition 5, that
2(𝑓 ) = −𝐼1(−𝑓 ). This has the following interpretation: the selling (resp.
uying) price of the pessimistic self for 𝑓 equals the buying (resp.
elling) price of the optimistic self for 𝑓 . Suppose also, consistently
ith B6, that 𝐼1(𝑓 ) < 𝐼2(𝑓 ). This means that the evaluation of 𝑓 made
y the pessimistic self is lower than that made by the optimistic self.
hen, under the assumptions of Corollary 3, there is a (possibly trivial)
o-trade interval of prices à la Dow and Werlang (1992), that is, a
ange of prices at which the agent neither wants to buy the asset nor
o sell it short, if and only if 𝐼(𝑓 ) ≤ −𝐼(−𝑓 ) where 𝐼 is the representing

functional defined by 𝐼(𝑔) = 𝛼𝐼1(𝑔) + (1 − 𝛼)𝐼2(𝑔) for all 𝑔 ∈ 𝐹 . This,
in turn, is equivalent to 𝛼 ≥ 1∕2. Hence, and as long as the bargaining
weight of the pessimistic self remains higher than that of the optimistic
self, Corollary 3 predicts a no-trade interval. Note also that the case
where 𝛼 = 1∕2 makes this no-trade interval of prices a trivial one. This
is similar to what happens under standard subjective expected utility
preferences. Hence, it is tempting to think of the case 𝛼 = 1∕2 as
one of neutrality towards ambiguity. While this has a bit of truth in
this specific application, it is known that the case 𝛼 = 1∕2 does not
correspond to ambiguity neutrality in general. The role of our final
result is precisely to clarify the circumstances under which 𝛼 = 1∕2
leads to neutrality towards ambiguity.

The next axiom appears in Siniscalchi (2009) under the name Com-
plementary Independence and is known to characterize, in the context
of the maxmin model, the central symmetry of the set of priors.
B7 For all 𝑓, 𝑓 , 𝑔, 𝑔 ∈ 𝐹 such that each of {𝑓, 𝑓} and {𝑔, 𝑔} is made of
complementary acts, if 𝑓 ∼ 𝑓 and 𝑔 ∼ 𝑔, then 𝑓 + 𝑔 ∼ 𝑓 + 𝑔.

Corollary 4. Suppose (≿1, ≿2) is standard∗ and let 𝐼1 and 𝐼2 be functionals
as in Proposition 5. Suppose also (≿1, ≿2) satisfies A6. Suppose finally ≿
satisfies B1–B5. If ≿ additionally satisfies B7, then there exists a (unique)
probability measure 𝜇 on 𝑆 such that, for all 𝑓 ∈ 𝐹 ,
1
2
𝐼1(𝑓 ) +

1
2
𝐼2(𝑓 ) = ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠).

Corollary 4 extends the result in Siniscalchi (2009) to the case of
-maxmin preference and its generalization as per Proposition 6 with
2(𝑓 ) = −𝐼1(−𝑓 ). It gives a rationale for interpreting 𝛼 = 1

2 as reflecting
ambiguity neutrality since the functional form is actually an expected
utility for that value.
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Appendix

Proof of Proposition 1. Suppose first A1–A4 hold. Fix 𝑓 ∈ 𝐹 and
efine 𝑥 = min𝜇∈𝐶 ∫𝑆 𝑓 (𝑠)𝑑𝜇(𝑠). We have ∫𝑆 𝑓 (𝑠)𝑑𝜇(𝑠) ≥ 𝑥 for all 𝜇 ∈ 𝐶

and, by obtain A3, obtain 𝑓 ≿1 𝑥. Meanwhile, we have 𝑥 ≥ ∫𝑆 𝑓 (𝑠)𝑑𝜇(𝑠)
for some 𝜇 ∈ 𝐶 (take a 𝜇 ∈ 𝐶 achieving the minimum) and, by obtain
A3, obtain 𝑥 ≿1 𝑓 . Overall, we have 𝑓 ∼1 𝑥. Fix also 𝑔 ∈ 𝐹 and define
𝑦 = min𝜇∈𝐶 ∫𝑆 𝑔(𝑠)𝑑𝜇(𝑠). By the same argument, we obtain 𝑔 ∼1 𝑦.
Thanks to A1, it must be that 𝑓 ≿1 𝑔 is equivalent to 𝑥 ≿1 𝑦 and, by
A2, further equivalent to 𝑥 ≥ 𝑦. This shows that, for all 𝑓, 𝑔 ∈ 𝐹 , we
have

𝑓 ≿1 𝑔 ⟺ min
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠) ≥ min
𝜇∈𝐶 ∫𝑆

𝑔(𝑠)𝑑𝜇(𝑠).

A symmetric argument shows that, for all 𝑓, 𝑔 ∈ 𝐹 ,

𝑓 ≿2 𝑔 ⟺ max
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠) ≥ max
𝜇∈𝐶 ∫𝑆

𝑔(𝑠)𝑑𝜇(𝑠).

Suppose now that B1–B4 hold. Proceed as in Lemma 1 of Chateauneuf
(1994) to obtain a real-valued functional 𝐼 defined on 𝐹 such that, for
all 𝑓, 𝑔 ∈ 𝐹 , 𝑓 ≿ 𝑔 if and only if 𝐼(𝑓 ) ≥ 𝐼(𝑔) and such that 𝐼(𝑥) = 𝑥
for all 𝑥 ∈ R. (Note, however, that, in the present paper, we use the
classical continuity axiom B2, which allows us to construct certainty
equivalents through the connexity of 𝐹 .)

Note that 𝐼 is monotonic in the following sense: for all 𝑓, 𝑔 ∈ 𝐹 such
that 𝑓 (𝑠) ≥ 𝑔(𝑠) for all 𝑠 ∈ 𝑆, we have 𝐼(𝑓 ) ≥ 𝐼(𝑔). Indeed, consider such
𝑓, 𝑔 ∈ 𝐹 . By the representations of ≿1 and ≿2 obtained above, we have
𝑓 ≿1 𝑔 and 𝑓 ≿2 𝑔. Then, B4 yields 𝑓 ≿ 𝑔 and 𝐼(𝑓 ) ≥ 𝐼(𝑔).

Note also that 𝐼 is constant linear in the following sense: for all
𝑓 ∈ 𝐹 , 𝑥 ∈ R and 𝛾 ≥ 0, we have 𝐼(𝛾𝑓 + 𝑥) = 𝛾𝐼(𝑓 ) + 𝑥. Indeed, let
𝑦 = 𝐼(𝑓 ) so that 𝐼(𝑓 ) = 𝐼(𝑦) and 𝑓 ∼ 𝑦. Then, B3 yields 𝛾𝑓 + 𝑥 ∼ 𝛾𝑦+ 𝑥
and 𝐼(𝛾𝑓 + 𝑥) = 𝐼(𝛾𝑦 + 𝑥) = 𝛾𝑦 + 𝑥 = 𝛾𝐼(𝑓 ) + 𝑥.

Thanks to B4, we can apply Lemma A.3 from Frick et al. (2022) and
obtain the existence of 𝛼 ∈ [0, 1] such that, for all 𝑓 ∈ 𝐹 ,

𝐼(𝑓 ) = 𝛼min
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠) + (1 − 𝛼)max
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠).

Suppose next the existence of 𝛼 ∈ [0, 1] such that (𝛼, 𝐶) provides an
𝛼-maxmin representation of ≿. Axioms B1–B3 follow from standard
arguments while B4 follows from the representations of ≿1 and ≿2
obtained in the first paragraph of this proof.

As for uniqueness, suppose 𝛼′ ∈ [0, 1] such that (𝛼′, 𝐶) provides an
𝛼-maxmin representation of ≿, and let 𝐼 ′ denote the induced functional
representing ≿. For all 𝑓 ∈ 𝐹 , let 𝑥 = 𝐼(𝑓 ) so that 𝐼(𝑓 ) = 𝐼(𝑥) and
𝑓 ∼ 𝑥. Then, we must have 𝐼 ′(𝑓 ) = 𝐼 ′(𝑥) = 𝑥. Therefore, we obtain
𝐼(𝑓 ) = 𝐼 ′(𝑓 ) for all 𝑓 ∈ 𝐹 .

Suppose finally that 𝐶 is nonsingleton. Then, we may construct
𝑓 ∈ 𝐹 such that

min
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠) < max
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠).

Moreover, the equality 𝐼(𝑓 ) = 𝐼 ′(𝑓 ) implies

0 = (𝛼 − 𝛼′) ⋅
(

min
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠) − max
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠)
)

,

which reduces to 𝛼 = 𝛼′.
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Proof of Proposition 2. Suppose first A1–A5 hold. Proceed as in
the first paragraph of the proof of Proposition 1 to show that, for all
𝑓, 𝑔 ∈ 𝐹 ,

𝑓 ≿1 𝑔 ⟺ min
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠) ≥ min
𝜇∈𝐶 ∫𝑆

𝑔(𝑠)𝑑𝜇(𝑠),

and

𝑓 ≿2 𝑔 ⟺ max
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠) ≥ max
𝜇∈𝐶 ∫𝑆

𝑔(𝑠)𝑑𝜇(𝑠).

Now, fix 𝑓 ∈ 𝐹 and let 𝑥 = min𝜇∈𝐶𝐸
∫𝑆 𝑓 (𝑠)𝑑𝜇(𝑠). Consider any 𝜇 ∈ 𝐶.

We have

∫𝑆
(𝑓𝐸𝑥)(𝑠)𝑑𝜇(𝑠) = 𝜇(𝐸)∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠|𝐸) + 𝜇(𝐸𝑐 )𝑥 ≥ 𝜇(𝐸)𝑥 + 𝜇(𝐸𝑐 )𝑥

= 𝑥.

This shows 𝑓𝐸𝑥 ≿1 𝑥. Moreover, let 𝜇 ∈ 𝐶 be such that 𝑥 =
∫𝑆 𝑓 (𝑠)𝑑𝜇(𝑠|𝐸). Then, we have

∫𝑆
(𝑓𝐸𝑥)(𝑠)𝑑𝜇(𝑠) = 𝜇(𝐸)∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠|𝐸) + 𝜇(𝐸𝑐 )𝑥 = 𝜇(𝐸)𝑥 + 𝜇(𝐸𝑐 )𝑥

= 𝑥.

From there, we obtain 𝑓𝐸𝑥 ∼1 𝑥 and, by A5(iii), 𝑓 ∼𝐸
1 𝑥. Fix 𝑔 ∈ 𝐹 and

let 𝑦 = min𝜇∈𝐶𝐸
∫𝑆 𝑔(𝑠)𝑑𝜇(𝑠). By a similar argument, we obtain 𝑔 ∼𝐸

1 𝑦.
Since ≿𝐸

1 is transitive and constant monotonic, i.e. A5(i) and A5(ii), it
follows that, for all 𝑓, 𝑔 ∈ 𝐹 ,

𝑓 ≿𝐸
1 𝑔 ⟺ min

𝜇∈𝐶𝐸 ∫𝑆
𝑓 (𝑠)𝑑𝜇(𝑠) ≥ min

𝜇∈𝐶𝐸 ∫𝑆
𝑔(𝑠)𝑑𝜇(𝑠).

A symmetric argument shows that, for all 𝑓, 𝑔 ∈ 𝐹 ,

𝑓 ≿𝐸
2 𝑔 ⟺ max

𝜇∈𝐶𝐸 ∫𝑆
𝑓 (𝑠)𝑑𝜇(𝑠) ≥ max

𝜇∈𝐶𝐸 ∫𝑆
𝑔(𝑠)𝑑𝜇(𝑠).

We may then conclude the proof by applying Proposition 1 to the triple
(≿𝐸

1 , ≿
𝐸
2 , ≿

𝐸 ) and set 𝐶𝐸 .

Proof of Corollary 1. Suppose 𝐶 is the core of a convex capacity 𝑣
on 𝑆. Then, the Choquet integral of every 𝑓 ∈ 𝐹 with respect to 𝑣 is
equal to the minimal integral of 𝑓 over 𝐶. For instance, see Proposition
3 of Schmeidler (1986). Moreover, the Choquet integral of every 𝑓 ∈ 𝐹
with respect to 𝑣 is equal to the maximal integral of 𝑓 over 𝐶. The result
readily follows from an application of Proposition 1.

As for uniqueness, suppose 𝛽 ∈ [0, 1] is such that the functional
𝛽𝐼1 + (1 − 𝛽)𝐼2 also represents ≿. Since the representing functional is
nique, we must have for all 𝑓 ∈ 𝐹

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 ) = 𝛽𝐼1(𝑓 ) + (1 − 𝛽)𝐼2(𝑓 ).

Consider next 𝑓 ∈ 𝐹 and 𝑥 ∈ R such that 𝑓 ≻2 𝑥 and 𝑥 ≿1 𝑓 . It follows
that 𝐼1(𝑓 ) ≠ 𝐼2(𝑓 ), and the previous formula reduces to 𝛼 = 𝛽.

Finally, suppose 𝑣 is nonadditive. Then, by Lemma 3 and the con-
exity of 𝑣, there exists 𝐸 ⊆ 𝑆 such that 𝑣(𝐸) + 𝑣(𝐸𝑐 ) < 1. We obtain
(𝐸) < 𝑣(𝐸). Let 𝑥 ∈ R be such that 𝑥 = 𝑣(𝐸) and set 𝑓 = 1𝐸0. Then,
e have 𝑓 ≿1 𝑥 and 𝑓 ≻2 𝑥, and the uniqueness of 𝛼 follows from the

previous paragraph.

Proof of Corollary 2. Suppose 𝐶 is the core of a regular capacity 𝑣 on
𝑆. Consider the full Bayesian update 𝑣𝐸 of 𝑣 given 𝐸. More explicitly,
𝑣𝐸 is defined according to, for all 𝐹 ⊆ 𝑆,

𝑣𝐸 (𝐹 ) = min
𝜇∈𝐶𝐸

𝜇(𝐹 ).

hen, since 𝑣 is regular, Proposition 1 of Chateauneuf et al. (2011)
shows that 𝐶𝐸 is the core of 𝑣𝐸 . The result then follows from an
pplication of Corollary 1 to the triple (≿𝐸

1 , ≿
𝐸
2 , ≿

𝐸 ) and set 𝐶𝐸 .

Lemma 1. Suppose (≿1, ≿2) is standard∗ and also A6 and A7 hold. Then,
there exists a closed and convex set 𝐶 of probabilities on 𝑆 such that 𝐶
provides a maxmin representation of ≿1 and a maxmax representation of

≿2.
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Proof of Lemma 1. We first obtain two closed and convex sets
𝐶1 and 𝐶2 of probabilities on 𝑆 such that 𝐶1 provides a maxmin
representation of ≿1 and 𝐶2 provides a maxmax representation of ≿2.
ndeed, by standard arguments, we may obtain two monotonic and
ontinuous real-valued functionals 𝐼1 and 𝐼2 on 𝐹 representing ≿1 and
2 respectively and satisfying 𝐼1(𝑥) = 𝐼2(𝑥) = 𝑥 for all 𝑥 ∈ R. See, for

nstance, Lemma 1 from Chateauneuf (1994).
Moreover, thanks to Item (5) in the definition of a standard∗ pair of

inary relations, we obtain 𝐼1(𝛾𝑓 + 𝑥) = 𝛾𝐼1(𝑓 ) + 𝑥 for all 𝑓 ∈ 𝐹 , 𝑥 ∈ R
nd 𝛾 ≥ 0. This shows, in particular, that 𝐼1 is constant additive and
omogeneous of degree 1, and the same holds for 𝐼2. Finally, consider
, 𝑔 ∈ 𝐹 and let 𝑥 ∈ R be such that 𝐼1(𝑓 ) = 𝐼1(𝑔) + 𝑥. Then, by

constant additivity, 𝐼1(𝑓 ) = 𝐼1(𝑔′) and 𝑓 ∼1 𝑔′ where 𝑔′ = 𝑔 + 𝑥. A7
yields 1

2𝑓 + 1
2 𝑔

′ ≿1 𝑓 ; That is, by homogeneity and constant additivity,
𝐼1(𝑓 +𝑔)+𝑥 ≥ 2𝐼1(𝑓 ) and 𝐼1(𝑓 +𝑔) ≥ 𝐼1(𝑓 )+𝐼1(𝑔). This shows that 𝐼1 is
superadditive, and a symmetric argument shows that 𝐼2 is subadditive.
A double application of Lemma 3.5 of Gilboa and Schmeidler (1989)
yields two closed and convex sets 𝐶1 and 𝐶2 of probabilities on 𝑆 such
that, for all 𝑓 ∈ 𝐹 ,

𝐼1(𝑓 ) = min
𝜇∈𝐶1 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠) and 𝐼1(𝑓 ) = max
𝜇∈𝐶2 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠).

From there, the maxmin and maxmax representations of ≿1 and ≿2
readily follows.

Next, we show 𝐶1 = 𝐶2. Fix 𝑓 ∈ 𝐹 and let 𝑥 ∈ R be such that
𝑥 = 𝐼1(𝑓 ). Then, we have 𝑓 ∼1 𝑥. Define 𝑔 ∈ 𝐹 through 𝑔(𝑠) = 𝑥 − 𝑓 (𝑠)
for all 𝑠 ∈ 𝑆. Hence, 𝑓 and 𝑔 are complementary with 𝑓 + 𝑔 = 𝑥. Since
𝑓 ∼1 𝑥, we have 𝑓 ∼1 𝑓 + 𝑔 and, by A6, obtain 𝑔 ∼2 0. Put differently,
we have

0 = 𝐼2(𝑔) = 𝐼2(𝑥 − 𝑓 ) = 𝑥 + 𝐼2(−𝑓 ) = 𝐼1(𝑓 ) + 𝐼2(−𝑓 ).

From there, it follows that 𝐼2(𝑓 ) = −𝐼1(−𝑓 ) for all 𝑓 ∈ 𝐹 . In other
words, for all 𝑓 ∈ 𝐹 , we have

max
𝜇∈𝐶2 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠) = −min
𝜇∈𝐶1 ∫𝑆

(−𝑓 (𝑠))𝑑𝜇(𝑠) = max
𝜇∈𝐶1 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠).

A standard application of the separation theorem yields 𝐶1 = 𝐶2. Then,
set 𝐶 ∶= 𝐶1 = 𝐶2 to conclude.

Proof of Proposition 3. Let 𝐶 be as in Lemma 1 and suppose ≿ satisfies
B1–B4. Proceed as in Lemma 1 of Chateauneuf (1994) to obtain a real-
valued functional 𝐼 defined on 𝐹 such that, for all 𝑓, 𝑔 ∈ 𝐹 , 𝑓 ≿ 𝑔
if and only if 𝐼(𝑓 ) ≥ 𝐼(𝑔) and such that 𝐼(𝑥) = 𝑥 for all 𝑥 ∈ R. Note
that 𝐼 is monotonic and constant linear. See the proof of Proposition 1.
Thanks to B4, we can apply Lemma A.3 from Frick et al. (2022) and
obtain the existence of 𝛼 ∈ [0, 1] such that, for all 𝑓 ∈ 𝐹 ,

𝐼(𝑓 ) = 𝛼min
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠) + (1 − 𝛼)max
𝜇∈𝐶 ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠).

Lemma 2. Suppose (≿1, ≿2) is standard and also A6 and A8 hold. Then,
there exists a convex capacity 𝑣 on 𝑆 such that 𝑣 provides a Choquet
representation of ≿1 and 𝑣 provides a Choquet representation of ≿2.

Proof of Lemma 2. We first obtain a convex capacity 𝑣1 and a
concave capacity 𝑣2 on 𝑆 that provide Choquet representations of ≿1
and ≿2, respectively. It is indeed enough to build upon the proofs
of Chateauneuf (1994). Note, however, that, in the present paper, we
use the classical continuity axiom A2, which allows us to construct
certainty equivalents through the connexity of 𝐹 and establish their
uniqueness through monotonicity as captured by A3. Note also that our
A8 implies that each of ≿1 and ≿2 satisfies Chateauneuf’s axiom A.4.
of Comonotonic Independence.

Next, we show 𝑣2 = 𝑣1. For all 𝑓 ∈ 𝐹 , let 𝐼1(𝑓 ) and 𝐼2(𝑓 ) denote the
Choquet integrals of 𝑓 with respect 𝑣1 and 𝑣2 respectively. Proceed as
in the proof of Lemma 1 to show that A6 implies 𝐼2(𝑓 ) = −𝐼1(−𝑓 ) for
all 𝑓 ∈ 𝐹 . In other words, for all 𝑓 ∈ 𝐹 , we have

𝑓 (𝑠)𝑑𝑣2(𝑠) = − (−𝑓 (𝑠))𝑑𝑣1(𝑠) = 𝑓 (𝑠)𝑑𝑣1(𝑠).
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∫𝑆 ∫𝑆 ∫𝑆
Applying this to indicator functions yields 𝑣2 = 𝑣1. It is then sufficient
o set 𝑣 = 𝑣1 to conclude.

emma 3. Consider a convex capacity 𝑣 on 𝑆. Then, 𝑣 is a additive if
nd only if 𝑣(𝐸) + 𝑣(𝐸𝑐 ) = 1 for all 𝐸 ⊆ 𝑆.

Proof of Lemma 3. The necessity part is obvious. Suppose now that
𝑣(𝐸) + 𝑣(𝐸𝑐 ) = 1 for all 𝐸 ⊆ 𝑆. Fix 𝐸, 𝐹 ⊆ 𝑆 such that 𝐸 ∩ 𝐹 = ∅. We

ill show that 𝑣(𝐸 ∪ 𝐹 ) = 𝑣(𝐸) + 𝑣(𝐹 ). By convexity, we already have
(𝐸 ∪ 𝐹 ) ≥ 𝑣(𝐸) + 𝑣(𝐹 ). By assumption, we have

(𝐸) = 1 − 𝑣(𝐸𝑐 ), 𝑣(𝐹 ) = 1 − 𝑣(𝐹 𝑐 ) and 𝑣(𝐸 ∪ 𝐹 ) = 1 − 𝑣(𝐸𝑐 ∩ 𝐹 𝑐 )

nd therefore obtain

(𝐸 ∪ 𝐹 ) − 𝑣(𝐸) − 𝑣(𝐹 ) = −𝑣(𝐸𝑐 ∩ 𝐹 𝑐 ) − 1 + 𝑣(𝐸𝑐 ) + 𝑣(𝐹 𝑐 ).

eanwhile, the convexity of 𝑣1 implies 𝑣(𝐸𝑐 ) + 𝑣(𝐹 𝑐 ) ≤ 𝑣(𝐸𝑐 ∪ 𝐹 𝑐 ) +
(𝐸𝑐 ∩ 𝐹 𝑐 ). Since 𝐸 ∩ 𝐹 = ∅, we have 𝑣(𝐸𝑐 ∪ 𝐹 𝑐 ) = 1 and obtain

−𝑣(𝐸𝑐 ∩ 𝐹 𝑐 ) − 1 + 𝑣(𝐸𝑐 ) + 𝑣(𝐹 𝑐 ) ≤ 0.

Finally, the inequality 𝑣(𝐸 ∪ 𝐹 ) ≤ 𝑣(𝐸) + 𝑣(𝐹 ) follows from the
combination of the two latter formulas.

Proof of Proposition 4. Let 𝑣 be as in Lemma 2 and suppose ≿ satisfies
B1–B4. Let 𝐼1 and 𝐼2 denote the Choquet integrals with respect to 𝑣 and
𝑣. Proceed as in Lemma 1 of Chateauneuf (1994) to obtain a real-valued
functional 𝐼 defined on 𝐹 such that, for all 𝑓, 𝑔 ∈ 𝐹 , 𝑓 ≿ 𝑔 if and only
f 𝐼(𝑓 ) ≥ 𝐼(𝑔) and such that 𝐼(𝑥) = 𝑥 for all 𝑥 ∈ R. Note that 𝐼 is
onotonic and constant linear. See the proof of Proposition 1. Thanks

o B4, we can apply Lemma A.3 from Frick et al. (2022) and obtain the
xistence of 𝛼 ∈ [0, 1] such that, for all 𝑓 ∈ 𝐹 ,

(𝑓 ) = 𝛼 ∫𝑆
𝑓 (𝑠)𝑑𝑣(𝑠) + (1 − 𝛼)∫𝑆

𝑓 (𝑠)𝑑𝑣(𝑠).

s for uniqueness, suppose 𝛽 ∈ [0, 1] is such that the functional 𝛽𝐼1 +
(1− 𝛽)𝐼2 also represents ≿. Since the representing functional is unique,
we must have for all 𝑓 ∈ 𝐹

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 ) = 𝛽𝐼1(𝑓 ) + (1 − 𝛽)𝐼2(𝑓 ).

Consider next 𝑓 ∈ 𝐹 and 𝑥 ∈ R such that 𝑓 ≻2 𝑥 and 𝑥 ≿1 𝑓 . It follows
that 𝐼1(𝑓 ) ≠ 𝐼2(𝑓 ), and the previous formula reduces to 𝛼 = 𝛽.

Finally, suppose 𝑣1 is nonadditive. Then, by Lemma 3 and the
onvexity of 𝑣1, there exists 𝐸 ⊆ 𝑆 such that 𝑣1(𝐸) + 𝑣1(𝐸𝑐 ) < 1. We
btain 𝑣1(𝐸) < 𝑣1(𝐸) = 𝑣2(𝐸). Let 𝑥 ∈ R be such that 𝑥 = 𝑣1(𝐸) and set
= 1𝐸0. Then, we have 𝑓 ≿1 𝑥 and 𝑓 ≻2 𝑥, and the uniqueness of 𝛼

ollows from the previous paragraph.

roof of Proposition 5. Suppose (≿1, ≿2) is standard∗. By standard
rguments, we may obtain two monotonic and continuous real-valued
unctionals 𝐼1 and 𝐼2 on 𝐹 representing ≿1 and ≿2 respectively and
atisfying 𝐼1(𝑥) = 𝐼2(𝑥) = 𝑥 for all 𝑥 ∈ R. See, for instance, Lemma 1
rom Chateauneuf (1994).

Moreover, thanks to Item (5) in the definition of a standard∗ pair of
inary relations, we obtain 𝐼1(𝛾𝑓 + 𝑥) = 𝛾𝐼1(𝑓 ) + 𝑥 for all 𝑓 ∈ 𝐹 , 𝑥 ∈ R
nd 𝛾 ≥ 0. This shows, in particular, that 𝐼1 is constant additive and
omogeneous of degree 1, and hence constant linear. The same holds
or 𝐼2.

Suppose now A6. Fix 𝑓 ∈ 𝐹 and let 𝑥 ∈ R be such that 𝑥 = 𝐼1(𝑓 ).
hen, we have 𝑓 ∼1 𝑥. Define 𝑔 ∈ 𝐹 through 𝑔(𝑠) = 𝑥 − 𝑓 (𝑠) for all
∈ 𝑆. Hence, 𝑓 and 𝑔 are complementary with 𝑓 +𝑔 = 𝑥. Since 𝑓 ∼1 𝑥,
e have 𝑓 ∼1 𝑓 + 𝑔 and, by A6, obtain 𝑔 ∼2 0. Put differently, we have

= 𝐼2(𝑔) = 𝐼2(𝑥 − 𝑓 ) = 𝑥 + 𝐼2(−𝑓 ) = 𝐼1(𝑓 ) + 𝐼2(−𝑓 ).

rom there, it follows that 𝐼2(𝑓 ) = −𝐼1(−𝑓 ) for all 𝑓 ∈ 𝐹 . In other
words, for all 𝑓 ∈ 𝐹 , we have

max 𝑓 (𝑠)𝑑𝜇(𝑠) = −min (−𝑓 (𝑠))𝑑𝜇(𝑠) = max 𝑓 (𝑠)𝑑𝜇(𝑠).

𝜇∈𝐶2 ∫𝑆 𝜇∈𝐶1 ∫𝑆 𝜇∈𝐶1 ∫𝑆



Journal of Mathematical Economics 113 (2024) 103006A. Chateauneuf et al.

T
i

P
e
o
m
o
f
M
r
P

f

𝐼

S

𝐽

T

t

W

𝑓

W

M

Finally, suppose A9. Fix 𝑓 ∈ 𝐹 and let 𝑥 ∈ R be such that 𝑥 = 𝐼1(𝑓 ).
hen, we have 𝑓 ∼1 𝑥. By A9, we obtain 𝑓 ≿2 𝑥; That is, 𝐼2(𝑓 ) ≥ 𝑥. The

nequality 𝐼2(𝑓 ) ≥ 𝐼1(𝑓 ) follows.

roof of Proposition 6. Suppose ≿ satisfies B1–B5. Observe that since
ach of ≿1 and ≿2 is monotonic in the sense of Item (4) in the definition
f a standard pair of binary relations, B4 makes sure that ≿ is also
onotonic in the latter sense. We can then proceed as in Lemma 1

f Chateauneuf (1994) and obtain a (unique) monotonic functional 𝐼
rom 𝐹 to R representing ≿ and satisfying 𝐼(𝑥) = 𝑥 for all 𝑥 ∈ R.
oreover, by Item (5) in the definition of a standard∗ pair of binary

elations, 𝐼 must be constant linear. (See, for instance, the proof of
roposition 5.)

By B4, there exists a real-valued function 𝜑 on 𝛷 = {(𝐼1(𝑓 ), 𝐼2(𝑓 )),
𝑓 ∈ 𝐹} ⊆ R2 such that, for all 𝑓 ∈ 𝐹 ,

𝐼(𝑓 ) = 𝜑[𝐼1(𝑓 ), 𝐼2(𝑓 )].

Now, fix 𝑓 ∈ 𝐹 . If 𝐼1(𝑓 ) > 𝐼(𝑓 ), then 𝑓 ∼1 𝑥 and 𝑥 ≻ 𝑓 for 𝑥 = 𝐼1(𝑓 ) ∈
R. By B5(i), we obtain 𝐼(𝑓 ) ≥ 𝐼2(𝑓 ). If 𝐼(𝑓 ) > 𝐼1(𝑓 ), then 𝑓 ∼1 𝑥 and
𝑓 ≻ 𝑥 for 𝑥 = 𝐼1(𝑓 ) ∈ R. By B5(ii), we obtain 𝐼2(𝑓 ) ≥ 𝐼(𝑓 ). In the
two cases, 𝐼(𝑓 ) lies in-between 𝐼1(𝑓 ) and 𝐼2(𝑓 ), and this obviously still
holds true if 𝐼(𝑓 ) = 𝐼1(𝑓 ). Overall, this shows for all 𝑓 ∈ 𝐹 ,

min[𝐼1(𝑓 ), 𝐼2(𝑓 )] ≤ 𝐼(𝑓 ) ≤ max[𝐼1(𝑓 ), 𝐼2(𝑓 )].

Let 𝑓 ∈ 𝐹 be such that min[𝐼1(𝑓 ), 𝐼2(𝑓 )] < max[𝐼1(𝑓 ), 𝐼2(𝑓 )]. Consider
the case where 𝐼1(𝑓 ) < 𝐼2(𝑓 ). Define 𝛼(𝑓 ) ∈ [0, 1] through the following
formula

𝐼(𝑓 ) = 𝛼(𝑓 )𝐼1(𝑓 ) + (1 − 𝛼(𝑓 ))𝐼2(𝑓 ).

Then, by constant linearity, we have

𝛼(𝑓 ) = −
𝐼(𝑓 ) − 𝐼2(𝑓 )
𝐼2(𝑓 ) − 𝐼1(𝑓 )

= −𝐼
[

𝑓 − 𝐼2(𝑓 )
𝐼2(𝑓 ) − 𝐼1(𝑓 )

]

= −𝜑
[

𝐼1(𝑓 ) − 𝐼2(𝑓 )
𝐼2(𝑓 ) − 𝐼1(𝑓 )

,
𝐼2(𝑓 ) − 𝐼2(𝑓 )
𝐼2(𝑓 ) − 𝐼1(𝑓 )

]

.

So we obtain 𝛼(𝑓 ) = −𝜑(−1, 0) which is independent of 𝑓 . Set 𝛼0 =
−𝜑(−1, 0). Consider now the case where 𝐼2(𝑓 ) < 𝐼1(𝑓 ). Define 𝛼(𝑓 ) ∈
[0, 1] through the following formula

𝐼(𝑓 ) = 𝛼(𝑓 )𝐼1(𝑓 ) + (1 − 𝛼(𝑓 ))𝐼2(𝑓 ).

Then, by constant linearity, we have

𝛼(𝑓 ) =
𝐼(𝑓 ) − 𝐼2(𝑓 )
𝐼1(𝑓 ) − 𝐼2(𝑓 )

= 𝐼
[

𝑓 − 𝐼2(𝑓 )
𝐼1(𝑓 ) − 𝐼2(𝑓 )

]

= 𝜑
[

𝐼1(𝑓 ) − 𝐼2(𝑓 )
𝐼1(𝑓 ) − 𝐼2(𝑓 )

,
𝐼2(𝑓 ) − 𝐼2(𝑓 )
𝐼1(𝑓 ) − 𝐼2(𝑓 )

]

.

So we obtain 𝛼(𝑓 ) = 𝜑(1, 0) which is independent of 𝑓 . Set 𝛼1 = 𝜑(1, 0).
Suppose 𝛼0 ≤ 𝛼1. Then, for all 𝑓 ∈ 𝐹 ,

𝐼(𝑓 ) = max
𝛼∈[𝛼0 ,𝛼1]

{

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 )
}

.

If 𝛼0 ≥ 𝛼1, then, for all 𝑓 ∈ 𝐹 ,

𝐼(𝑓 ) = min
𝛼∈[𝛼1 ,𝛼0]

{

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 )
}

.

As for uniqueness, suppose 𝐴 = [𝛼0, 𝛼1] and 𝐴′ = [𝛼′0, 𝛼
′
1] provide two

“max representations” of 𝐼 . (The proof is similar for “min representa-
tions”.) Let 𝑓, 𝑔 ∈ 𝐹 and 𝑥, 𝑦 ∈ R be such that 𝑓 ≻2 𝑥 and 𝑥 ≿1 𝑓 while
𝑔 ≻1 𝑦 and 𝑦 ≿2 𝑔. We must have 𝐼1(𝑓 ) < 𝐼2(𝑓 ) and 𝐼1(𝑔) > 𝐼2(𝑔). The
two representations yield

𝛼0𝐼1(𝑓 ) + (1 − 𝛼0)𝐼2(𝑓 ) = 𝛼′0𝐼1(𝑓 ) + (1 − 𝛼′0)𝐼2(𝑓 )

and

𝛼1𝐼1(𝑔) + (1 − 𝛼1)𝐼2(𝑔) = 𝛼′1𝐼1(𝑔) + (1 − 𝛼′1)𝐼2(𝑔).

This is only possible if 𝛼 = 𝛼′ and 𝛼 = 𝛼′ and hence if 𝐴 = 𝐴′.
8

0 0 1 1
Proof of Corollary 3. Suppose (≿1, ≿2) is standard∗ and satisfies B6.
We first show that B5 is implied. Indeed, proceed as in the proof
of Proposition 6 to obtain the unique monotonic and constant linear
functional 𝐼 from 𝐹 to R representing ≿ and satisfying 𝐼(𝑥) = 𝑥 for all
𝑥 ∈ R. By B6, we have 𝐼1(𝑓 ) ≤ 𝐼(𝑓 ) ≤ 𝐼2(𝑓 ) for all 𝑓 ∈ 𝐹 .

To show B5(i), consider 𝑓 ∈ 𝐹 and 𝑥 ∈ R such that 𝑓 ≿1 𝑥. Then, by
B6, it cannot be the case that 𝑥 ≻ 𝑓 . Suppose instead 𝑓 ≿2 𝑥 and 𝑥 ≻ 𝑓 .
Then, we have 𝐼2(𝑓 ) ≥ 𝑥 and 𝑥 > 𝐼(𝑓 ). Fix any 𝑦 ∈ R such that 𝑦 ≿ 𝑓 .
It must be that 𝑦 ≥ 𝐼(𝑓 ), and we obtain 𝑦 ≥ 𝐼1(𝑓 ); That is, 𝑦 ≿1 𝑓 . The
proof of B5(ii) is similar.

The result then follows from an application of Propositions 5 and 6.
As for uniqueness, suppose 𝛼, 𝛽 ∈ [0, 1] provide two representations

of 𝐼 . Let 𝑓 ∈ 𝐹 and 𝑥 ∈ R be such that 𝑓 ≻2 𝑥 and 𝑥 ≿1 𝑓 . We must
have 𝐼1(𝑓 ) < 𝐼2(𝑓 ). The two representations yield

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 ) = 𝛽𝐼1(𝑓 ) + (1 − 𝛽)𝐼2(𝑓 )

and

𝛼𝐼1(𝑔) + (1 − 𝛼)𝐼2[(𝑔) = 𝛽𝐼1(𝑔) + (1 − 𝛽)𝐼2(𝑔).

This is only possible if 𝛼 = 𝛽.

Proof of Corollary 4. By Proposition 6, ≿ has a “max representation”
or a “min representation”. We prove the result in the case of a “max
representation” given by 𝐴 = [𝛼, 𝛼]. (The proof is similar for a “min
representation”.) Let 𝐼 be the monotonic and constant linear functional
rom 𝐹 to R defined by, for all 𝑓 ∈ 𝐹 ,

(𝑓 ) = max
𝛼∈𝐴

{

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 )
}

.

Define a function 𝐽 from 𝐹 to R by setting, for all 𝑓 ∈ 𝐹 ,

𝐽 (𝑓 ) = 1
2

max
𝛼∈𝐴

{

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 )
}

+ 1
2

min
𝛼∈𝐴

{

(1 − 𝛼)𝐼1(𝑓 ) + 𝛼𝐼2(𝑓 )
}

.

uppose first 𝑓 ∈ 𝐹 is such that 𝐼1(𝑓 ) ≤ 𝐼2(𝑓 ). Then, we have

(𝑓 ) = 1
2
{

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 )
}

+ 1
2
{

(1 − 𝛼)𝐼1(𝑓 ) + 𝛼𝐼2(𝑓 )
}

= 1
2
𝐼1(𝑓 ) +

1
2
𝐼2(𝑓 ).

he same conclusion also obtains when 𝐼1(𝑓 ) ≥ 𝐼2(𝑓 ).
Consider now two complementary 𝑓, 𝑓 ∈  and let 𝑥 ∈ 𝑋 be such

hat 𝑓 + 𝑓 = 𝑥. Then, we have

𝑓 ∼ 𝑓 ⟺ 𝐼(𝑓 ) = 𝐼(𝑥 − 𝑓 ) ⟺ 𝐼(𝑓 ) − 𝐼(−𝑓 ) = 𝑥.

e therefore obtain

∼ 𝑓 ⟺ max
𝛼∈𝐴

{

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 )
}

− max
𝛼∈𝐴

{

𝛼𝐼1(−𝑓 ) + (1 − 𝛼)𝐼2(−𝑓 )
}

= 𝑥.

According to Proposition 5, we have 𝐼2(𝑓 ) = −𝐼1(−𝑓 ) and 𝐼1(𝑓 ) =
−𝐼2(−𝑓 ) for all 𝑓 ∈ 𝐹 and obtain from here

𝑓 ∼ 𝑓 ⟺ max
𝛼∈𝐴

{

𝛼𝐼1(𝑓 ) + (1 − 𝛼)𝐼2(𝑓 )
}

+min
𝛼∈𝐴

{

𝛼𝐼2(𝑓 ) + (1 − 𝛼)𝐼1(𝑓 )
}

= 𝑥

⟺ 𝐽 (𝑓 ) = 𝑥
2

⟺ 𝐼1(𝑓 ) + 𝐼2(𝑓 ) = 𝑥.

e now use these remarks to show that A9 implies the additivity of 𝐽 .
Let 𝑓, 𝑔 ∈ 𝐹 and 𝑥, 𝑦 ∈ 𝑋 be such that

𝑥 = 𝐼1(𝑓 ) + 𝐼2(𝑓 ) and 𝑦 = 𝐼1(𝑔) + 𝐼2(𝑔).

oreover, define 𝑓, 𝑔 ∈ 𝐹 according to 𝑓 = 𝑥 − 𝑓 and 𝑔 = 𝑦 − 𝑔. Then,
each of the pairs {𝑓, 𝑓} and {𝑔, 𝑔} is made of complementary acts, and
it follows from a remark above that 𝑓 ∼ 𝑓 and 𝑔 ∼ 𝑔. In this context,
A9 implies that 𝑓 + 𝑔 ∼ 𝑓 + 𝑔. But note that 𝑓 + 𝑔 and 𝑓 + 𝑔 are also
complementary with (𝑓 + 𝑔) + (𝑓 + 𝑔) = 𝑥+ 𝑦. That same remark above
then yields

𝐽 [𝑓 + 𝑔] =
𝑥 + 𝑦

= 𝐽 (𝑓 ) + 𝐽 (𝑔).

2
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In addition to being monotonic and constant linear, 𝐽 is hence additive
and, therefore, an expectation with respect to some probability measure
𝜇 on 𝑆. Moreover, by construction, we have, for all 𝑓 ∈ 𝐹 ,

1
2
𝐼1(𝑓 ) +

1
2
𝐼2(𝑓 ) = 𝐽 (𝑓 ) = ∫𝑆

𝑓 (𝑠)𝑑𝜇(𝑠).
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