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Allais’ trading process and the dynamic evolution
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Summary. We construct a simple trading process that is based on the maximiza-
tion, at each stage, of the total distributable surplus. We show that this process
converges to a Pareto optimal allocation.
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1 Introduction

This note takes up the issue of the optimality of a trading process in a market
economy from a benefit viewpoint. We show that the trading process consisting
in maximizing at each stage the total benefit in the economy (ie, that ensures
the maximal gains to exchange at each point in time) is efficient in the sense
that it is individually rational at each stage and converges to a Pareto optimal
allocation. Allais (1981) introduced the idea of total distributable surplus as a way
to analyze the efficiency properties of a market economy. Luenberger (1992a, b)
extend Allais’ analysis and proves a series of result linking distributable surplus
(the benefit function in his terminology) to efficiency properties in particular (see
also Luenberger, 1996).

More precisely, Allais (1943) defined a market economy as an economy in
which agents make all possible advantageous transactions. In contrast to the
walrasian theory of markets, agents do not trade through a single price system.
A stable equilibrium is then defined as a situation in which no further trade
is done, i.e., where no further surplus can be distributed. Allais (1968) stated
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(without proofs) two “fundamental theorems for market economy”. The first one,
which assesses that an equilibrium (in his sense) is Pareto optimal was formally
proved using the notion of benefit function by Luenberger (1992b). Allais’ second
fundamental theorem states that a market economy will converge to a “situation
of stable equilibrium”. A first attempt to prove this theorem may be found in
De Montbrial (1970), where it is shown that Allais’ second theorem is not true
in full generality. The purpose of this note is to give a proof of Allais’ second
theorem by formalizing a particular trading mechanism, that maximizes the total
distributable surplus at each stage. We then find conditions under which such a
mechanism converges to a Pareto optimal allocation.

2 Set-up

We consider a pure exchange economy withC goods andI agents (i = 1, . . . , I ).
Agent i ’s endowments are denotedwi . We assumewi >> 0 for all i . Denote
w = (w1, . . . , wI ). Each agent has a utility functionui : IRC

+ → IR that will be
assumed continuous, strictly increasing and strictly quasi-concave. Let

FA(w) =

{
x ∈ IRCI

+ |
I∑

i =1

xi =
I∑

i =1

wi

}

be the set of feasible allocations.
We now introduce the concept of distributable surplus (Allais, 1943, 1981)

or of benefit function (Luenberger, 1992a):

Definition. Let g ∈ IRC
+ , g /= 0, be the “reference” bundle. The benefit function bi

corresponding to utility function ui is defined as:

bi (x, u; g) = max{β |ui (x − βg) ≥ u, x − βg ∈ IRC
+ }

If the constraint is not feasible, set bi (x, u; g) = −∞.

Taking the reference bundle as fixed, we’ll omit it as an argument of the
benefit function and writebi (x, u). The benefit function measures the maximum
an individual i is willing to give up of a bundleg to move from a utility level
of u to the pointx. If x is “above” the indifference curve of levelu, bi (x, u) is
positive, while it is negative if the pointx is “below” the indifference curveu.

3 A trading process

We now consider a trading process, based on the maximization of the total
distributable surplus or total benefit, which leads to a Pareto optimal allocation.
Define the set of individually rational allocations as follows:

IR(y) = {x ∈ FA(w) |ui (xi ) ≥ ui (yi ) ∀i } for all y ∈ IRCI
+
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The allocationx1 = (x1
1 , . . . , x1

I ) resulting from the first round of exchanges
is a solution to the following problem:

max
x1

I∑
i =1

bi
(
x1

i , ui (wi )
)

s.t. x1 ∈ IR(w)

At the nth stage, the allocationxn is a solution of:

max
xn

I∑
i =1

bi
(
xn

i , ui (x
n−1
i )

)
s.t. xn ∈ IR(xn−1) (?)

Hence, at each stage of the trading process each individual’s utility increases.
Further, the allocation maximizes the total benefit function. We now show that
this trading process converges to a Pareto optimal allocation.

Proposition. Let {xn}n be a sequence of allocations such that xn is a solution to
(?) for all n. Then{xn}n converges to an allocation̄x . Furthermore,̄x is Pareto
optimal.

Proof. The proof is decomposed in four steps.

Step one.Let {un
i } be i ’s utility along the sequence{xn}, andun = (un

1 , . . . , un
I ).

Then, there is a ¯u = (ū1, . . . , ūI ) such thatun → ū.

Proof. {un} is an increasing sequence that lies in

U (w) ≡ {
u ∈ IRI |∃x ∈ IR(w), ui (xi ) = ui ∀i

}
This set is compact as it is the image of the compact setIR(w) by a continuous
function. Hence,{un} converges.

Step two.There exists a unique ¯x ∈ FA(w) s.th.ūi = ui (x̄i ) for all i . Furthermore,
xn → x̄.

Proof. Existence is ensured since ¯u ∈ U (w). Suppose it is not unique, i.e.,
there exist ¯x, x̄′ such that ¯ui = ui (x̄i ) = ui (x̄′

i ) and x̄ /= x̄′. Then, by strict quasi-
concavity,

ui (λx̄i + (1 − λ)x̄′
i ) ≥ ui (x̄i )

for all λ ∈ (0, 1), and for alli , with a strict inequality for at least onei . Hence,∑I
i =1 bi (λx̄i + (1− λ)x̄′

i , ūi ) > 0 sincebi (λx̄i + (1− λ)x̄′
i , ūi ) ≥ 0 for all i with a

strict inequality for at least onei . But thenū cannot be a limit utility allocation
of the trading sequence sinceλx̄ + (1 − λ)x̄′ yields a higher benefit and is in
IR(x̄). Hence, ¯x is unique.

Finally, sinceun
i = ui (xn

i ) → ūi and there exists a unique ¯x ∈ FA(w) such
that ūi = ui (x̄i ), xn

i → x̄i .

Step three. IR(.) is a continuous correspondence onFA(w).

Proof. IR(.) : FA(w) → FA(w) andFA(w) is compact. Furthemore,IR(.) is closed.
Hence it is u.h.c.
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We now prove it is l.h.c. as well. Letyn → y and x ∈ IR(y). We want to
show∃xn ∈ IR(yn) s.th.xn → x (Feldman (1973)).

If x = y, then choosexn = yn.
Suppose nowx /= y and supposeIR(.) is not l.h.c. aty. Then, there exists

ε > 0 such that, for an infinite number ofn, IR(yn) ∩ Bε(x) = ∅, whereBε(x) is
a closed ball of radiusε centered onx. Let {yq} be a sub-sequence of{yn} s.th.

IR(yq) ∩ Bε(x) = ∅ ∀q

Consider noŵx = λy + (1 − λ)x with λ ∈ (0, 1). Observe that by strict quasi-
concavity ofui , ui (x̂i ) ≥ ui (yi ) for all i and with a strict inequality for at least
one i . Construct fromx̂ an allocationx̃ s.th. ui (x̃i ) > ui (yi ) for all i . This is
always possible sinceui is strictly increasing and continuous.

Now, sinceui is strictly increasing and continuous for alli , it is possible to
pick λ andx̃ such that the distance betweenx andx̃ is ε/2. Chooseε′ > 0 small
enough (less thanε/2) so that

∀z ∈ Bε′
(
x̃
)

and∀yq ∈ Bε′ (y) , ui (zi ) > ui (y
q
i ) ∀i

andBε′
(
x̃
) ⊂ Bε (x).

Since yq → y, there existsN s.th. ∀q ≥ N , yq ∈ Bε′ (y) and therefore
ui (y

q
i ) < ui (zi ), ∀i ,∀z ∈ Bε′

(
x̃
)
. Thus, IR(yq) ∩ Bε′

(
x̃
)

/= ∅ ∀q ≥ N . Hence,
sinceBε′

(
x̃
) ⊂ Bε (x), one gets

∀q ≥ N , IR(yq) ∩ Bε(x) /= ∅

but this is a contradiction since we constructedyq so that∀q ≥ N , IR(yq) ∩
Bε(x) = ∅.

Step four.x̄ is a Pareto optimal allocation.

Proof. Define

V (xn−1) = max
x

{
I∑

i =1

bi (xi , ui (x
n−1
i )) s.t. x ∈ IR(xn−1)

}

SinceIR(.) is a compact-valued, and continuous correspondence,V (.) is contin-
uous. Hence,V (xn) → V (x̄). By definition,bi (x̄i , ui (x̄i )) = 0 for all i , and hence
V (x̄) = 0.

Thus,x̄ solves maxx{
∑I

i =1 bi (xi , ui (x̄i )) s.t. x ∈ IR(x̄}, and
∑I

i =1 bi (x̄i , ui (x̄i ))
= 0.

Assume now ¯x is not Pareto optimal. Then, there existsy ∈ FA(w) such
that ui (yi ) > ui (x̄i ) for all i . Furthermore, since utility functions are strictly
increasing, it is possible to chooseyi � 0 (Luenberger (1996), Theorem 2) for
all i . Then, there existsy ∈ IR(x̄) s.th.

∑I
i =1 bi (yi , ui (x̄i )) > 0, a contradiction.

ut
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