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75647 Paris Cedex 13, FRANCE (e-mail: jmtallon@univ-paris1.fr)

Received: July 27, 1999; revised version: November 7, 2000

Summary. We show, in the Choquet expected utility model, that preference
for diversification, that is, convex preferences, is equivalent to a concave utility
index and a convex capacity. We then introduce a weaker notion of diversifi-
cation, namely “sure diversification.” We show that this implies that the core
of the capacity is non-empty. The converse holds under concavity of the utility
index, which is itself equivalent to the notion of comonotone diversification, that
we introduce. In an Anscombe-Aumann setting, preference for diversification is
equivalent to convexity of the capacity and preference for sure diversification is
equivalent to non-empty core. In the expected utility model, all these notions of
diversification are equivalent and are represented by the concavity of the utility
index.
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1 Introduction

Dekel (1989) made the point that having a preference for portfolio diversification
is an important feature when modelling markets of risky assets. He also observed
that the relationship between risk aversion and preference for diversification is
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trivial in the expected-utility model, and much more complicated in alternative
models. More precisely, the equivalence between these two properties established
in the EU framework does not hold in more general models. There, diversification
implies risk-aversion but the converse is false.

This note takes up the study of diversification to the case of uncertainty, that
is, non-probabilized risk, focussing on the Choquet-expected-utility model (CEU
model henceforth).

We first consider a finite state space setting in which consequences are real
number, say, monetary payoffs. We establish there that preference for portfolio
diversification (i.e. convexity of the decision maker (DM henceforth) preferences)
is equivalent to the agent having a convex capacity and a concave utility index.
We then introduce a weaker notion of preference for diversification,i.e. pref-
erence for sure diversification. This property simply says that when indifferent
between several assets, an agent should prefer a combination of these assets that
yields a constant act to any of the ones used in the combination. We show that
preference for sure diversification implies that the core of the capacity is non-
empty. The converse holds true under the assumption that the utility index is
concave.

This leads us to find conditions under which the utility index is concave.
As it turns out, the concavity of the utility index is equivalent to a property we
name comonotone diversification. This states that if two assets are indifferent
and comonotone, then an agent prefers a combination of these assets to any
of them. A CEU agent might exhibit preference for sure diversification but not
comonotone diversification, as we make clear with an example. Conversely, it is
clear that an agent exhibiting preference for comonotone diversification does not
necessarily exhibit a preference for sure diversification.

A corollary to the previous result is that comonotone diversification and sure
diversification is equivalent to the capacity having a non-empty core and the
utility index being concave.

We then place ourselves in an Anscombe and Aumann (1963) setup, fol-
lowing the lead of Schmeidler (1989). In that setup consequences are lotteries.
Schmeidler (1989) established that convexity of preferences (which is equivalent
to preference for diversification as we defined it) is equivalent to convexity of
the capacity. Schmeidler called this propertyuncertainty aversion. We show that
preference for sure diversification, slightly adapted to fit the Anscombe-Aumann
setting, is equivalent to non-empty core of the capacity. Preference for sure diver-
sification in that particular setting is best understood (and labelled) as preference
for sure “expected” utility diversification. Indeed, the axiom says that if indiffer-
ent among acts that yield lotteries and if a combination of these acts gives rise to
an act paying off lotteries in different states among which the decision maker is
indifferent, then the DM should prefer this combination to any of the initial acts.
Hence, a CEU DM prefers an act which gives him, in expected utility terms, the
same utility state by state. However, in each state, he still bears some risk,i.e.,
which eventual (monetary) payoff the lottery will give.
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Finally, we show that these different notions of diversification cannot be
distinguished in the EU model, and are all equivalent to the concavity of the
utility index.

Our contribution has some links with the recent debate around the defini-
tion and measurement of uncertainty aversion. Schmeidler (1989) provided an
axiomatic definition of uncertainty aversion for his model (in an Anscombe-
Aumann setting), showing that it is characterized by the convexity of the ca-
pacity. Wakker (1990) and Chateauneuf (1991) subsequently derived convexity
of the capacity from axioms respectively labelled pessimism-independence and
strong uncertainty aversion, that are strengthenings of comonotone independence
used in the derivation of CEU. Ghirardato and Marinacci (1997) defined am-
biguity aversion identifyinga priori uncertainty neutrality with expected utility.
They then show that this notion of ambiguity aversion is equivalent to non-empty
core. Epstein (1999) based his definition of uncertainty aversion on thea priori
identification of uncertainty neutrality with probabilistic sophistication. His no-
tion of uncertainty aversion however cannot be directly linked to convexity of
the capacity or non-emptiness of its core.

We view our contribution as a complement to these results. First, our notion
of preference for sure diversification reflects a general notion of uncertainty
aversion encompassing both aversion towards risk and towards ambiguity,i.e.,
we do not attempt to disentangle risk from ambiguity. Although such a distinction
is theoretically important, one could argue that in most “real-life” situations that
distinction is not so clear.

Second, in an Anscombe-Aumann setting, where risk is treated via lotteries
in the second stage, we find that preference for sure “expected” utility diver-
sification is equivalent to non-empty core for a CEU DM. This property also
characterizes ambiguity aversion according to Ghirardato and Marinacci (1997)
where ambiguity aversion is defined comparatively, by factoring out risk atti-
tudes. By giving a direct characterization of the non-emptiness of the core (in
the Anscombe-Aumann setting), we provide another justification for this prop-
erty.

Finally, although non-empty core characterizes a notion of preference for sure
“expected” utility diversification in the Anscombe-Aumann setting, this is not the
case for the notion of preference for sure diversification in a Savage like setup
(that is, in which the consequence space is the set of real numbers). As recalled
in Epstein (1999), the difference between the two setups should carefully be
taken into account when transposing notions of uncertainty aversion from one to
another. Indeed, in a Savage like setup, preference for sure diversification (which
could be viewed as a notion of aversion towards uncertainty broadly defined) is
stronger than non-empty core.

The paper is constructed as follows. We introduce the notation and recall
some definitions in Section 2. Section 3 contains our main results in a Savage
framework, while Section 4 studies notions of diversification in an Anscombe-
Aumann setting. In Section 5 we characterize all three types of preference for
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diversification introduced in Section 3 in the expected utility model. Section 6
concludes. Proofs are gathered in an appendix.

2 Notation and definitions

There arek possible states of the world, indexed by superscriptj . Let S be the
set of states of the world andA the set of subsets ofS .

Let � be the preference relation of a decision maker, defined on the setD
of non-negative random variables onS . Say that two random variablesC and
C ′ are indifferent, that isC ∼ C ′, if C � C ′ andC ′ � C . C j ∈ IR+ is wealth
in statej .

As usual, say that an agent’s preferences are

– convex if ∀C , C ′ ∈ D , ∀α ∈ [0, 1], C � C ′ ⇒ αC + (1− α)C ′ � C ′

– continuous if for all x ∈ IRk
+, {C ∈ IRk

+ | C � x} and{C ∈ IRk
+ | x � C} are

closed.
– monotone if ∀C , C ′ ∈ D , C ≥ C ′ ⇒ C � C ′.

We focus on Choquet-Expected-Utility (Schmeidler, 1989). Preferences are
then represented by the Choquet integral of a utility indexu with respect to
a capacityν. The function u is cardinal i.e. defined up to a positive affine
transformation.

A capacity is a set functionν : A → [0, 1] such thatν
(∅) = 0, ν (S ) = 1,

and, for all A, B ∈ A, A ⊂ B ⇒ ν (A) ≤ ν (B ). We assume throughout that
there existsA ∈ A such that 1> ν (A) > 0.

A capacityν is convex if for allA, B ∈ A, ν (A ∪ B ) + ν (A ∩ B ) ≥ ν (A) +
ν (B ).

The core of a capacityν is defined as follows

core(ν) =


π ∈ IRk

+ |
∑

j

πj = 1 andπ (A) ≥ ν (A) , ∀A ∈ A




whereπ (A) =
∑

j∈A πj . core(ν) is a compact, convex set which may be empty.

We now define the Choquet integral off ∈ IRS :∫
fdν ≡ Eν (f ) =

∫ 0

−∞
(ν (f ≥ t) − 1) dt +

∫ ∞

0
ν (f ≥ t) dt

Hence, iff j = f (j ) is such thatf 1 ≤ f 2 ≤ . . . ≤ f k :

∫
fdν =

k−1∑
j=1

[
ν
({j , . . . , k})− ν

({j + 1, . . . , k})] f j + ν
({k}) f k

and, if we assume that an agent has wealthC j in statej , and thatC 1 ≤ . . . ≤ C k ,
then his preferences are represented by:
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V (C ) = [1 − ν({2, .., k})]u(C 1) + ...[ν({j , .., k})

−ν({j + 1, .., k})]u(C j ) + ...ν({k})u(C k )

It is well-known that whenν is convex, its core is non-empty and the Choquet
integral of any random variablef is given by

∫
fdν = minπ∈core(ν) Eπf (see

Shapley, 1967, 1971; Rosenmueller, 1972; Schmeidler, 1986).

3 Convexity and the core

We now study the implications of different forms of diversification. We first
define a natural notion of diversification (see also Dekel, 1989).

Definition 1. � exhibits preference for diversification if for any C1, C2, . . . , Cn ∈
D, and α1, . . . αn ≥ 0 such that

∑n
i=1 αi = 1.

[C1 ∼ C2 ∼ . . . ∼ Cn ] ⇒
n∑

i=1

αi Ci � C� ∀�

For sake of completeness we recall that this notion of diversification is equiv-
alent to convexity of preferences, that is, in our setup, equivalent to the quasi-
concavity ofV .

Proposition 1. Let � be continuous and monotone. Then, the following two as-
sertions are equivalent :

(i ) � exhibits preference for diversification
(ii ) � is convex

The following result provides a characterization of CEU agents that are di-
versifiers. We establish that convexity of preferences is equivalent to the capacity
being convex and the utility index being concave.

Theorem 1. Assume u : IR+ → IR to be continuous, differentiable on IR++ and
strictly increasing. Then, the following statements are equivalent

(i ) � exhibits preference for diversification
(ii ) V is concave
(iii ) V is quasi-concave
(iv) u is concave and ν is convex.

This notion of diversification might seem fairly strong and we now introduce
a weaker notion.

Definition 2. � exhibits preference for sure diversification if for any
C1, C2, . . . , Cn ∈ D, α1, . . . , αn ≥ 0 such that

∑n
�=1 α� = 1, and b ≥ 0:[

C1 ∼ C2 ∼ . . . ∼ Cn , and
n∑

�=1

α�C� = b1S

]
⇒ b1S � C� ∀�
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Thus, sure diversification means that if the decision maker can attain certainty
by a convex combination of equally desirable random variables, then he prefers
certainty to any of these random variables. This axiom can be interpreted as an
axiom of uncertainty aversion at large, reflecting the fact that the DM prefers total
certainty. Observe that this axiom embodies a notion of aversion to ambiguity
(i.e. imprecise probability) as well as a notion of aversion to risk.

Theorem 2. Let a decision maker be a CEU maximizer with capacity ν and con-
tinous, strictly increasing utility index u, differentiable on IR++. Then,

(i ) � exhibits preference for sure diversification ⇒ core(ν) /= ∅.
(ii ) If u is concave, core(ν) /= ∅ ⇒ � exhibits preference for sure diversifica-

tion.

This theorem falls short of a complete characterization of sure diversification.
Indeed, if the DM has a convex utility index, he might or might not be a sure
diversifier even thoughcore(ν) /= ∅. The following two examples illustrate this
point. In example 1, the DM has a capacity with a non-empty core and a convex
utility index and is not a sure diversifier. In example 2, the DM also has a
capacity with a non-empty core and a convex utility index, but this time he is a
sure diversifier.

Example 1. Assume there are two states. Letν1 = ν2 = 1
3 andu (x ) = x2. core(ν)

is obviously non-empty. However,(1, 11) ∼ (11, 1) and 1
2 (1, 11) + 1

2 (11, 1) =
(6, 6) but v (6, 6) = 36< v (1, 11) = 41. ♦

Example 2. Assume there are two states, 1 and 2. Letu (x ) = 3x + 1
1+x and

ν1 = ν2 = 1
4. u is strictly increasing, strictly convex.

We show that the setC = {C =
(
C 1, C 2

) ∈ IR2
+ | C ∼ a1S } is above

the hyperplaneH =
{

C =
(
C 1, C 2

) ∈ IR2
+ | 1

2C 1 + 1
2C 2 = a

}
. We then conclude

that any sure convex combination of elements ofC is preferred toa1S .
In order to show that the setC is above the hyperplaneH , it is enough to

note that the indifference curveC consists of two concave curves,C1 : C 2 =
g1(C 1), 0 ≤ C 1 ≤ a andC2 : C 2 = g2(C 1), a ≤ C 1 ≤ b, such that the slope of
the tangent toC1 for C 1 = 0 is smaller than−1, and, symmetrically, the slope
of the tangent toC2 for C 1 = b is greater than−1.

Notice that the existence ofb andc such that (0, c) and (b, 0) belong toC

follows from strict increasingness, continuity and unboundedness ofu; concavity
of g1 andg2 comes from convexity ofu. Finally, straightforward computations
yield thatg′

1(0) = −6
u′(c) andg′

2(0) = −1
6 u ′(b). Sinceu ′(x ) ≤ 3 ∀x ∈ IR+, it comes

g′
1(0) ≤ −2 andg′

2(0) ≥ −1
2 , and henceg′

1(0) ≤ −1 andg′
2(0) ≥ −1. Figure 1

illustrates this example. ♦

Now, the concavity of the utility index can be shown to be equivalent to a
different form of diversification, from which any hedging is eliminated.

To define this notion of diversification, we first need to recall the definition
of comonotony of random variables. Say that two random variablesx andx ′ are
comonotone if there is nos ands ′ such thatx (s) > x

(
s ′) andx ′ (s ′) > x ′ (s).
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Figure 1

Definition 3. A decision maker exhibits preference for comonotone diversification
if for all comonotonic C and C ′ such that C ∼ C ′ one has λC + (1 − λ) C ′ � C
for all λ ∈ (0, 1).

Hence, comonotone diversification is nothing but convexity of preferences
restricted to comonotone random variables. Note that any hedging (in the sense
of Wakker, 1990) is prohibited in this diversification operation.

This type of diversification turns out to be equivalent, in the CEU model, to
the concavity ofu.

Theorem 3. Let a decision maker be a CEU maximizer with capacity ν and con-
tinuous utility index u, differentiable on IR++ and strictly increasing. Then, the
following two assertions are equivalent:

(i ) � exhibits preference for comonotone diversification.
(ii ) u is concave.

Corollary 1. Let a decision maker be a CEU maximizer with capacity ν and
continuous utility index u, differentiable on IR++ and strictly increasing. Then, the
following two assertions are equivalent:

(i ) � exhibits preference for comonotone and sure diversification.
(ii ) u is concave and core(ν) is non-empty.

4 Diversification in an Anscombe and Aumann setting

We now take up the issue of diversification in an Anscombe-Aumann setting.
Let Y be the set of distributions with finite support over IR+. Let L be the set
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of acts,i.e., functions fromS to Y . In this framework, convex combinations in
L are performed pointwise,i.e. for f , g ∈ L and α ∈ [0, 1], αf + (1 − α)g = h
whereh(s) = αf (s) + (1− α)g(s) on S .

The decision maker has preferences overL, which are represented, in the
CEU model, by a unique capacityν on A and an affine real valued functionU
on Y , that is, lettingf andg be two acts

f � g ⇔ W (f ) =
∫

U (f (.))dν ≥ W (g) =
∫

U (g(.))dν

Observe thatU (αf (s)+ (1−α)g(s)) = αU (f (s))+ (1−α)U (g(s)). Finally, define
u : IR+ → IR by u(x ) = U (δx ) whereδx is the degenerate lottery yielding the
outcomex ∈ IR+ for sure.

The following result, due to Schmeidler (1989), asserts that uncertainty aver-
sion, defined as convexity of the preferences, is, in this Anscombe-Aumann
setting, equivalent to the convexity of the capacity.

Theorem 4. (Schmeidler, 1989) A binary relation � on L exhibits uncertainty
aversion (i.e., for any f , g ∈ L and α ∈ [0, 1], if f � g then αf + (1 − α)g � g)
if and only if the capacity ν is convex.

Define now the adaptation of our preference for sure diversification to the
present setup. Before that, notice that the relation� on L induces a relation, also
denoted� on Y : if f is an act, say thatf (s) � f (t) for s, t ∈ S if the constant act
yielding lottery f (s) in all states is preferred to the constant act yielding lottery
f (t) in all states.

Definition 4. � exhibits preference for sure “expected” utility diversification if
for any f1, . . . , fr ∈ L, α1, . . . , αr ≥ 0 such that

∑r
�=1 α� = 1:[

f1 ∼ f2 ∼ . . . ∼ fr , and
r∑

�=1

α�f� = f s.th. f (s) ∼ f (t) ∀s, t ∈ S

]
⇒ f � f� ∀�

Observe that, in essence, preference for sure “expected” utility diversification
is stronger than preference for sure diversification (that is, in which the condition
f (s) ∼ f (t) is replaced byf (s) = f (t)), as the DM does not achieve a con-
stant outcome but rather only a constant (expected) utility from the lotteries1. A
decision maker who satisfies preference for sure “expected” diversification also
satisfies preference for sure diversification, while the converse is obviously false.
The following theorem proves that this notion is equivalent to non-empty core.

Theorem 5. Let a decision maker be a CEU maximizer with capacity ν and an
affine real valued utility function U defined on Y . Assume u is continuous and
strictly increasing on IR+. Then, the following assertions are equivalent:

(i) � exhibits preference for sure “expected” utility diversification
(ii) core(ν) is non-empty

1 Note that in the Savage like setup of the previous Section, in which consequences are real
numbers, these two axioms are equivalent, since the DM is then indifferent between tw o consequences
if and only if they are equal.
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Observe that “risk-attitude”, as reflected by properties ofu does not play any
role in this theorem.

5 Diversification with expected utility

We briefly discuss the implications of the different forms of diversification in the
(subjective) expected utility model, in the setup of Section 3. It is well-known
[although may be not in the finite case, for which the proof is more intricate,
see Debreu and Koopmans (1982) and Wakker (1989)] that diversification (i.e.
preference convexity) is equivalent to the concavity of the utility index. One can
also deduce from Theorem 3 that comonotone diversification is equivalent to the
concavity of the utility index in the EU model as well. Finally, sure diversification
is also equivalent, in the EU model, to concavity of the utility index.

Proposition 2. Let a decision maker be an EU maximizer with utility index u, C 2

on IR++, strictly increasing and continuous on IR+. Then, the following assertions
are equivalent :

(i ) � exhibits preference for diversification
(ii ) � exhibits preference for sure diversification
(iii ) � exhibits preference for comonotone diversification
(iv) u is concave

In the EU model, the two forms of diversification we introduced, namely
sure and comonotone diversification, are both represented by concavity of the
utility index and consequently cannot be distinguished. Furthermore, they cannot
be distinguished from the usual notion of diversification (i.e. convexity of the
preferences).

6 Concluding remarks

Our goal in this paper is not to give here yet another definition of aversion to
ambiguity, with the loose meaning that the DM would prefer to bet on events with
known probability rather than on “ambiguous” events. In particular, the present
study has not much to say on how to disentangle risk attitude from ambiguity
attitude.

Schmeidler (1989) established in an Anscombe-Aumann setting that convex-
ity of the preferences is equivalent to convexity of the capacity. He named that
convexity property “uncertainty aversion” since it means that “smoothing or av-
eragingutility distributions makes the decision maker better off” (Schmeidler,
1989, p.582, italics by the author). When moving away from the Anscombe-
Aumann setup, our convexity axiom has a slightly different flavor since it means
here that smoothingconsumption distributions makes the decision maker better
off. That convexity axiom is therefore stronger when applied to a Savage like
setup. The characterization we obtain is also stronger than his since wederive
concavity of the utility function as well.
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Ghirardato and Marinacci (1997) defined a notion of ambiguity aversion and
characterized it in the CEU model (among other models) and found that this
notion is equivalent to non-empty core. Our sure diversification axiom also yields
non-empty core, although it is stronger than this, since non-empty core may not
in general imply sure diversification. Sure diversification is indeed stronger as it
also embodies some notion of risk attitude as well as ambiguity attitude, whereas
risk attitudes are factored out in Ghirardato and Marinacci (1997). The exact
characterization of sure diversification in this setup is still an open issue. In an
Anscombe-Aumann setting, in which risk is dealt with in the second stage, our
adaptation of sure diversification, namely, preference for sure “expected” utility
diversification, is equivalent to non-empty core.

Appendix : Proofs

Proof of Proposition 1

(ii ) ⇒ (i ) Let Ci ∈ D , i = 1, . . . , n be such thatC1 ∼ . . . ∼ Cn , and let
us prove by induction onn that

∑
i αi Ci � C1. The result is straightforwardly

true for n = 2. Assume it holds true forn ≥ 2, and let us show it is true for
n + 1. Let C1 ∼ . . . ∼ Cn ∼ Cn+1 and αi > 0, i = 1, . . . , n + 1,

∑n+1
i=1 αi = 1.

Defineβi = αi
1−αn+1

, i = 1, . . . , n. From the induction hypothesis,
∑n

i=1 βi Ci � C1

and hence
∑n

i=1 βi Ci � Cn+1. Now, � convex implies (1− αn+1)
(∑n

i=1 βi Ci
)

+

αn+1Cn+1 � Cn+1 that is
∑n+1

i=1 αi Ci � C1.
(i ) ⇒ (ii ) What remains to be proved is that

C � C ′ ⇒ αC + (1− α)C ′ � C ′ whereα ∈ [0, 1]

{α | 0 ≤ α ≤ 1, C ′ � (1 − α)C} /= ∅ since C ′ ≥ 0 implies C ′ � 0 by
monotonicity. Letε ∈ IR+ be defined byε = inf{α, 0 ≤ α ≤ 1, C ′ � (1− α)C}.
ε > 0 since C � C ′. Let us show now that (1− ε)C ∼ C ′. Let (εn ) be
a strictly increasing sequence converging towardsε. From the definition ofε,
(1− εn )C � C ′, and from continuity (1− ε)C � C ′. Therefore, (1− ε)C ∼ C ′.
Applying (i ) gives α(1 − ε)C + (1 − α)C ′ � C ′ and hence by monotonicity
αC + (1− α)C ′ � C ′. �

Proof of Theorem 1

(i ) ⇔ (iii ) follows from Proposition 1.
(ii ) ⇒ (iii ) is well-known.

We now establish that(iii ) ⇒ (iv). We first showV quasi-concave implies
ν convex. Convexity ofν is equivalent (see Shapley, 1971) to:

∀A, B , E ∈ A s.th.B ⊂ A andE ∩ A = ∅,

ν (A ∪ E ) − ν (A) ≥ ν (B ∪ E ) − ν (B ) (1)
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Assume (1) is false, and letA, B , E ∈ A be such that:
B ⊂ A, E ∩ A = ∅, and(ν (A ∪ E ) − ν (A)) − (ν (B ∪ E ) − ν(B )) + α < 0 for

someα > 0.
Let c ∈ IR++ be such thatu ′ (c) > 0 and leta, b ∈ IR+ satisfy a < c < b.

Finally, let F , E , A \ B , B be a partition ofS and consider the following random
variables:

F E A \ B B
C a c − εα1 c + εα2 b
C ′ a c + εβ1 c − εβ2 b

whereε > 0 is sufficiently small so thata and b are respectively the smallest
and the largest value ofC andC ′, and where

α1 = ν (A) − ν (B ) α2 = ν (A ∪ E ) − ν (A) + α
β1 = ν (A ∪ E ) − ν (B ∪ E ) + α β2 = ν (B ∪ E ) − ν (B )

Let us assume, w.l.o.g., thatu (a) = 0 andu (b) = 1. A straightforward compu-
tation yields, knowing thatu is strictly increasing:

V

(
C + C ′

2

)
< (ν (A ∪ E ) − ν (B )) u (c) + ν (B )

Now, one gets the following expression forV (C ):

V (C ) = (α2 − α) u (c − εα1) + α1u (c + εα2) + ν (B )

= (α2 − α) [u (c)

−εα1u ′ (c) + εα1 (ε)] + α1
[
u (c) + εα2u ′ (c) + εα2 (ε)

]
+ ν (B )

= (ν (A ∪ E ) − ν (B )) u (c) + ν (B ) + ε
[
u ′ (c) α1α + α3 (ε)

]
whereαi (ε) → 0 asε → 0 for i = 1, 2, 3. α1 > 0 since if it were not then (1)
would be true by monotony ofν. Hence,u ′ (c) α1α > 0, and therefore:

V (C ) > (ν (A ∪ E ) − ν (B )) u (c) + ν (B )

for ε small enough.
A similar argument would establish the same inequality forV

(
C ′), and

therefore we get:

V

(
C + C ′

2

)
< min

(
V (C ) , V

(
C ′))

that is,V not quasi-concave, a contradiction. We conclude thatν is convex.
Let us now show thatV quasi-concave implies thatu is concave. Recall first

Theorem 2 in Debreu and Koopmans (1982):

Let I andJ be open intervals in IR,f andg functions that are non-constant
on I andJ and such thatF : I ×J → IR defined byF (x , y) = f (x )+g (y)
is quasi-convex. Then, at least one of the two functionsf or g is convex.
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Let a > 0 andA ∈ A be chosen such that 0< ν(A) < 1. Let I ≡]0, a[ and
J ≡]a, +∞[ and defineF on I × J by F (x , y) = V (x1Ac + y1A).

Clearly,F is quasi-concave andF (x , y) = (1 − ν(A)) u (x )+ν (A) u (y). There-
fore, u is concave on ]0, a[ or on ]a, +∞[ for all a > 0, hence on ]0, +∞[ since
u is differentiable, and on IR+ sinceu is continuous.

Finally, (iv) ⇒ (ii ). Indeed,V (C ) is then equal to minQ∈core(ν)
∫

u (C ) dQ
and is therefore concave being the minimum of a family of concave functions.�

Proof of Theorem 2

(i ) Recall first (see Shapley, 1997) that core(ν) /= ∅ is equivalent to[
r∑

�=1

a�1A�
= 1S , a� ≥ 0

]
⇒

r∑
�=1

a�ν (A�) ≤ 1, whereA� ∈ A

Let A� ∈ A, a� ≥ 0 be such that
∑r

�=1 a�1A�
= 1S . W.l.o.g., assumea� > 0.

Assume there existsx > 0 such that
∑

� a�ν (A�) > 1 +x . L will denote the
set {� | ν(A�) > 0}. Let a > 0 be such thatu ′ (a) > 0 and chooseε > 0 such
that

ε (1 + x ) ≤ a (2)

Define now the following positive random variables:

D�,ε = [a − εν (A�)] 1Ac
�

+ [a + ε (1 + x − ν(A�))] 1A�

Let α� =
a�∑
� a�

. A straightforward computation (recall that
∑r

�=1 a�1A�
= 1S )

yields:
∑

� α�D�,ε = d (ε) 1S where

d (ε) = a +
ε∑
� a�

(
1 + x −

∑
�

a�ν (A�)

)
< a

If � /∈ L , ν(A�) = 0 and clearlyV (D�,ε) = u(a).
If � ∈ L , a computation similar to the one of Theorem 1 yields:

V
(
D�,ε

)
= u (a) + u ′ (a) ε (xν (A�) + α� (ε))

whereα� (ε) → 0 asε → 0. By assumption,u ′ (a) > 0. Hence,V
(
D�,ε

)
> u (a)

for all � ∈ L if ε > 0 is sufficiently small.
Let ε0 be such anε. For all � ∈ L , consider the following random variables:

D ′
�,t� = D�,ε0 − t�1S

wheret� ≥ 0 is chosen such thatD ′
�,t�

≥ 0. Let

g� (t�) ≡ V
(
D ′

�,t�

)
= (1 − ν(A�)) u (a − t� − ε0ν(A�))

+ν (A�) u (a − t� + ε0 (1 + x − ν(A�)))
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g� is continuous, strictly decreasing, andg� (0) = V
(
D�,ε0

)
> u (a) as previously

shown.
Let us now prove that there existst� ≥ 0 such thatD ′

�,t�
≥ 0 andg�(t�) ≤

u(a). It is enough to show that there existst� satisfying:

a − t� − ε0ν (A�) ≥ 0 (3)

a − t� + ε0 (1 + x − ν(A�)) ≥ 0 (4)

−t� + ε0 (1 + x − ν(A�)) ≤ 0 (5)

Since (3) implies (4), it is enough to note that there existst� ≥ 0 satisfying
(3) and (5),i.e., t� ≥ 0 such thatε0 (1 + x − ν(A�)) ≤ t� ≤ a − ε0ν (A�). This
proves to be true from (2).

Hence, for all� ∈ L , there exists̄t� > 0 such thatD ′
�,t̄�

≥ 0 andD ′
�,t̄�

∼ a1S .
Let C� = D�,ε0 if � /∈ L , andC� = D ′

�,t̄�
if � ∈ L . ThenC� ∼ a1S for all �, and∑

� α�C� = b1S , whereb ≥ 0, andb = d (ε0)−∑�∈L
α� t̄� < a, a contradiction.

(ii ) Supposeu concave and assume core(ν) /= ∅. Let C�, � = 1, . . . , n be such
that C1 ∼ C2 ∼ . . . ∼ Cn and

∑n
�=1 α�C� = b1S , α� ≥ 0,

∑n
�=1 α� = 1. Let

π ∈ core(ν). Then,
∫

u (C�) dν ≤ Eπu (C�) for all � (see,e.g., Proposition 2.1
in Chateauneuf, Dana and Tallon, 2000). Hence,

n∑
�=1

α�

∫
u (C�) dν ≤

n∑
�=1

α�Eπu (C�) ≤ Eπu

(
n∑

�=1

α�C�

)
= u (b)

Therefore,u (b) ≥ ∫ u (C�) dν for all �, i.e. b1S � C� for all �. �

Proof of Theorem 3

[(i ) ⇒ (ii ) ] The same argument as in the end of the proof of (ii ) ⇒ (iii ) of
Theorem 1 applies, since the random variables considered there,i.e. x1Ac + y1A

are comonotone.
[(ii ) ⇒ (i ) ] Let C and C ′ be two comonotone random variables such that
C ∼ C ′, and λ ∈ (0, 1). Then, λEνu (C ) + (1 − λ) Eνu

(
C ′) = Eν [λu (C )

+ (1 − λ) u
(
C ′)]. This last expression is less thanEνu

(
λC + (1 − λ) C ′) by

concavity ofu and henceλC + (1 − λ) C ′ � C . �

Proof of Theorem 5

[(i ) ⇒ (ii ) ] The argument of the proof is essentially the same as that of (i ) of
Theorem 2, and we only sketch the argument. Using the same notation as there,
define the actsf�,ε as follows (recallu is strictly increasing and continuous, and
take w.l.o.g.u(0) = 0):

f�,ε =

{
δu−1(a−εν(A�)) if s ∈ Ac

�

δu−1(a+ε(1+x−ν(A�))) if s ∈ A�
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where a > 0 and ε > 0 such thatε(1 + x ) ≤ a. Let fε =
∑

� α�f�,ε where
α� = a�∑

�
a�

. A straightforward computation yieldsU (f�,ε(s)) = D�,ε(s) for all

s ∈ S and henceU (fε(s)) = d (ε) for all s ∈ S and fε(s) ∼ fε(t) for all s, t ∈ S .
Observe that if� /∈ L , W (f�,ε) = a and if � ∈ L

W (f�,ε) = a − εν(A�) + ε(1 + x )ν(A�) = a + εxν(A�)

Define next

f ′
�,t�

=

{
δu−1(a−εν(A�)−t�) if s ∈ Ac

�

δu−1(a+ε(1+x−ν(A�))−t�) if s ∈ A�

for t� > 0 sufficiently small such thatf ′
�,t�

∈ L. Note thatW (f ′
�,t�

) = a +εxν(a�)−
t�.

Define t̄� = εxν(a�) and note thatW (f ′
�,t̄�

) = a.
Now, let f� = f�,ε if � /∈ L and f� = f ′

�,t̄�
if � ∈ L . Then, W (f�) = a

for all �. Letting f =
∑

� α�f�, one gets thatU (f (s)) = b for all s ∈ S , where
b = d (ε) −∑�∈L

α� t̄� < a. Hence,W (f ) < W (f�) for all �, a contradiction.
[(ii ) ⇒ (i ) ] Suppose core(ν) /= ∅. Let f� ∈ L, � = 1, . . . , r be such that

f1 ∼ . . . ∼ fr and f =
∑r

�=1 α�f� be such thatf (s) ∼ f (t) for all s, t ∈ S . Let
π ∈ core(ν). Then,

∫
U (f�)dν ≤ ∫ U (f�)dπ for all �. Hence,

r∑
�=1

α�

∫
U (f�)dν ≤

r∑
�=1

α�

∫
U (f�)dπ =

∫
U (

r∑
�=1

α�f�)dπ

=
∫

U (f )dπ =
∫

U (f )dν

and thereforef � f� for all �. �

Proof of Proposition 2

The following implications are straightforward, [(iv) ⇒ (i )], [ (i ) ⇒ (ii )], and [
(i ) ⇒ (iii )]. [(iii ) ⇒ (iv)] follows from Theorem 3.

What remains to be proved is [(ii ) ⇒ (iv)]. To that effect, supposeu is not
concave on IR+. Hence, there existsx0 ∈ IR++ such thatu”(x0) > 0, and therefore
there exista, b ∈ IR++, a < b, such thatu”(x ) > 0 on [a, b]. u is hence strictly
convex on [a, b].

Let A andAc be events with probabilityπ and 1−π such that 0< π ≤ 1−π.
Now, sinceu is strictly increasing, continuous andπ ≤ 1/2, there exists

a ′ ∈ IR+, b > a ′ ≥ a such that

πu(a) + (1− π)u(b) = πu(b) + (1− π)u(a ′)

Consider now the following two actsC1 = a1A + b1Ac andC2 = b1A + a ′1Ac .
Notice thatC1 ∼ C2.

Let α = b−a′
b−a′+b−a ∈ (0, 1). A straightforward computation gives :
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αC1 + (1− α)C2 = k1S with k =
b2 − aa ′

2b − a − a ′ ∈ IR++

But u(k ) = E (u(αC1 + (1 − α)C2)) < αE (u(C1)) + (1 − α)E (u(C2)) by
strict convexity ofu on [a, b]. E (u(C1)) = E (u(C2)) then impliesC1 � k1S , a
contradiction. ��
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