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Summary. In a multiple priors model à la Gilboa and Schmeidler (1989), we
provide necessary and sufficient behavioral conditions ensuring the countable ad-
ditivity and non-atomicity of all priors.
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1 Introduction

Decision theorists have often debated whether to use countably or finitely additive
probabilities to model decision makers’ subjective beliefs. The two most notable
advocates of finite additivity were de Finetti and Savage, who argued that countable
additivity is a purely technical property devoid of a clear behavioral content and
whose assumption prevents the analysis of significant phenomena (see Savage,
1954; Finetti 1931, 1970).

On the other hand, countable additivity is a very convenient property, which
leads to many important results in probability theory like, for example, the classic
limit laws. As a result, its use is pervasive in mathematical economics and finance.
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For a decision theorist the problem is to understand whether the added analytic
power of countable additivity offsets its supposed shaky behavioral underpinning.

Arrow (1970) provided an important contribution to this issue by identifying the
precise behavioral conditions under which subjective beliefs can be represented by a
countably additive probability. Building on Villegas (1964), Arrow (1970) obtained
a subjective expected utility representation with a countably additive probability by
adding the following monotone continuity axiom to a set of standard Savage-type
axioms.

Axiom 1 (Monotone Continuity) Given any acts f � g in L, consequence x in
X , and sequence of events {En}n≥1 in Σ with E1 ⊇ E2 ⊇ ... and

⋂
n≥1 En = ∅,

there exists n̄ ≥ 1 such that[
x if s ∈ En̄

f (s) if s /∈ En̄

]
� g and f �

[
x if s ∈ En̄

g (s) if s /∈ En̄

]
.

Arrow showed that monotone continuity is the behavioral condition which un-
derlies the use of countably additive probabilities in subjective expected utility
theory. The question is, therefore, whether or not monotone continuity is also a
sensible behavioral property. It is not, however, our purpose to expatiate on this,
ultimately subjective, issue.1

In contrast, our aim is to study the implications of monotone continuity for
the multiple priors model, a popular generalization of subjective expected utility
theory axiomatized by Gilboa and Schmeidler (1989). In this model the decision
makers’beliefs are represented by a set C of priors in order to capture the vagueness
of beliefs (also called ambiguity), and acts are ranked according to the minimum
expected utilities with respect to C or, more generally, according to a weighted
average of the minimum and the maximum expected utilities with respect to C.
Conventional subjective expected utility theory is the special case in which the
set of priors C is a singleton, modelling in this way a situation where there is no
vagueness.

Not surprisingly, countable additivity turns out to be a very convenient property
in applications of the multiple priors model. For example, the recent applications
in economics and finance of Epstein and Wang (1994, 1995), Billot, Chateauneuf,
Gilboa, and Tallon (2000), Delbaen (2002), and Chen and Epstein (2002) critically
depend on the countable additivity of the probabilities forming the decision makers’
set of priors, and on some compactness properties of such a set.

It is natural to wonder whether such a convenient property has its behavioral
counterpart in the monotone continuity of preferences. Theorem 1 below shows
that, fortunately, this is indeed the case. In particular, a preference relation having
a multiple priors representation is monotone continuous if and only if the set of
priors is a relatively weak compact subset of countably additive probabilities.

As well-known, the subjective probability derived in Savage (1954) is convex
ranged. This is another convenient property, which recently has been used in a

1 The reader may find interesting this quotation from Arrow (1970) “the assumption of Monotone
Continuity seems, I believe correctly, to be the harmless simplification almost inevitable in the formal-
ization of any real-life problem.”
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multiple priors setting (see Nehring, 2001; Amarante, 2002, 2003). Theorem 2
below extends another classic result of Villegas (1964) by showing that a simple
atomlessness property of preferences is a necessary and sufficient condition for the
range convexity of all the priors in C. All proofs are relegated to the Appendix.

2 Set-up

2.1 Mathematical preliminaries

Throughout the paper, Σ is a σ-algebra of subsets of a space S. Subsets of S are
understood to be in Σ even where not stated explicitly.

We denote by ba (Σ) and ca (Σ), respectively, the vector spaces of finitely addi-
tive and countably additive bounded real-valued set functions on Σ; we call charges
the elements of ba (Σ) and measures the elements of ca (Σ). Clearly, ca (Σ) is a
vector subspace of ba (Σ). In particular, both ca (Σ) and ba (Σ) become Banach
spaces when equipped with the variation norm. An element µ of ca (Σ) is non-
atomic if, for all A ∈ Σ with µ (A) �= 0, there exists B ∈ Σ such that B ⊆ A
and µ (A) �= µ (B) �= 0; non-atomic elements of ca (Σ) form a closed subspace
of ca (Σ).

We denote by B (Σ) the set of all bounded and Σ-measurable functions ϕ :
S → R. The vector space B (Σ) is a Banach space with respect to the supnorm ‖·‖s.
The standard duality between ba (Σ) and B (Σ) endows ba (Σ) and its subsets of
a weak∗ topology.2

Finally, ba1 (Σ) and ca1 (Σ) denote, respectively, the sets of probabilities in
ba (Σ) and ca (Σ); we reserve the letter P for elements of ba1 (Σ) and ca1 (Σ).

2.2 Decision-theoretic preliminaries

States of nature and events are represented by the pair (S, Σ), while X is the space
of consequences. An act is a map f : S → X and it is simple when it is finite
valued; L0 denotes the set of all simple Σ-measurable acts. The decision maker has
a preference relation � on L0, which in turn induces a preference over X , obtained
in the standard way by identifying consequences with constant acts.

A binary relation � on L0 is an α-maximin expected utility (α-MEU) preference
relation if there exist a utility index u : X → R, a non-empty set C ⊆ ba1 (Σ)
and a constant α ∈ [0, 1] such that � is represented by the preference functional
V : L0 → R defined by

V (f) = α inf
P∈C

∫
u(f(s)) dP (s) + (1 − α) sup

P∈C

∫
u (f (s)) dP (s) (2.1)

for all f ∈ L0. When C = {P} is a singleton, α-MEU preferences collapse to the
Subjective Expected Utility (SEU) case V (f) =

∫
u(f(s)) dP (s).

2 See, e.g., Aliprantis and Border (1999), p. 457.
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We assume that the range u (X) of u is not a nowhere dense subset of R, that
is, the interior of the closure u (X) is non-empty. This is obviously the case when
u (X) is an interval of R; for instance, when X is a convex set and u is non-constant
and affine, or when X is a connected topological space and u is non-constant and
continuous. This assumption implies that X has to be at least countably infinite.

Notice that, given any set of priors C ⊆ ba1 (Σ) and denoted by cow∗
(C) its

weak∗ closed convex hull, we have

V (f) = α min
P∈cow∗ (C)

∫
u(f(s)) dP (s) + (1−α) max

P∈cow∗ (C)

∫
u (f (s)) dP (s) .

(2.2)

For this reason the set C itself is often assumed to be convex and weak∗ closed.
Axiomatic characterizations of this kind of preferences for α = 1 (MEU) can

be found in Gilboa and Schmeidler (1989), Casadesus-Masanell, Klibanoff, and
Ozdenoren (2000), and Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2003),
while the general case of α ∈ [0, 1] is considered in Ghirardato, Maccheroni, and
Marinacci (2003) and Kopylov (2002).

Let L be the set of all acts f : S → X that are both preference measurable,
i.e., {s ∈ S : f (s) � x} and {s ∈ S : f (s) � x} belong to Σ for all x in X , and
preference bounded, i.e., there exist x and x in X such that x � f (s) � x for all
s ∈ S. Since for all f ∈ L we have u ◦ f ∈ B (Σ), the natural extension of the
functional V defined by (2.1) from L0 to L allows to extend � from L0 to L too;
the extensions of V and � to L are still denoted by V and �.

3 Monotone continuity

We can now state our main result.

Theorem 1 Let � be an α-MEU preference relation on L, with a set C of priors.
Then, the following conditions are equivalent:

(i) � is monotone continuous.
(ii) C is a relatively weak compact subset of ca (Σ).

If, in addition, C is weak∗ closed, then (i) is equivalent to:

(iii) C is a subset of ca (Σ).

This theorem generalizes the aforementioned results of Arrow and Villegas,
who dealt with singleton sets of priors. It is also related to some other results in the
literature. Schmeidler (1972) p. 220 noticed that the core of a continuous exact game
is a weak sequentially compact subset of ca1 (Σ), while Epstein and Wang (1995)
p. 44 showed that the set of priors is a weak sequentially compact subset of ca (Σ)
when the MEU functional minP∈C

∫
u (f) dP is continuous at certainty. Finally,

Marinacci (2002) showed that C is included in ca (Σ) whenever � is monotone
continuous.

The Eberlein-Smulian Theorem, Theorems IV.9.1 and IV.9.2 of Dunford and
Schwartz (1958), and Lemmas A.3 and A.4 provide several topological conditions
equivalent to (ii).
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4 Range convexity

By using bets, the preference � on L induces in a well-known way a likelihood
ordering �l on the event σ-algebra Σ, which takes the form A �l B if and only if

α inf
P∈C

P (A) + (1 − α) sup
P∈C

P (A) ≥ α inf
P∈C

P (B) + (1 − α) sup
P∈C

P (B) .

Villegas (1964)’s results imply that for a standard monotone continuous SEU or-
dering �, the single probability measure P that represents �l is non-atomic if and
only if �l satisfies the following condition.

Axiom 2 (Downward Atomlessness) If A �l ∅, there exists B ⊆ A such that
A �l B �l ∅.

In the standard SEU case, in which C is a singleton, downward atomlessness
is equivalent to:

Axiom 3 (Upward Atomlessness) If A ≺l S, there exists B ⊇ A such that
A ≺l B ≺l S.

For α ∈ (0, 1), downward and upward atomlessness always coincide; for
α ∈ {0, 1}, some further conditions are needed (see Lemma A.7). The next result
shows that downward atomlessness is the appropriate non-atomicity requirement
for 0-MEU preferences, upward atomlessness is the appropriate one for 1-MEU
preferences, and either one works for α-MEU preferences when α ∈ (0, 1).

Theorem 2 Let � be a monotone continuous α-MEU preference relation on L,
with a set C of priors. If α �= 1 (α �= 0, resp.), the following conditions are
equivalent:

(i) � is downward atomless (upward, resp.),
(ii) all priors P in C are non-atomic.

A Proofs and related material

A.1 Compactness

The following result - essentially due to Bartle, Dunford and Schwartz (1955) -
shows a noteworthy relation existing between compactness in the weak and weak∗

topologies of ca (Σ). It can be proved by standard Banach lattice techniques.3

Lemma 3 Let C be a subset of ca (Σ). Then, the following statements are equiv-
alent:

(i) C is weak∗ closed and relatively weak compact.
(ii) C is weak∗ closed and norm bounded.
(iii) C is weak∗ compact.

3 See, e.g., Aliprantis and Burkinshaw, 1985, Chapter 4, and especially Section 13.
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(iv) C is weak compact.

Moreover, if C ⊆ ca1 (Σ) is convex and (i) holds, then there exists P0 ∈ C
such that for all P ∈ C we have P (A) = 0 whenever P0 (A) = 0.

Another useful lemma, which is essentially Theorem IV.9.1 of Dunford and
Schwartz (1958).

Lemma 4 Let C be a subset of ca (Σ). The following facts are equivalent:

(i) C is relatively weak compact.
(ii) C is bounded and supµ∈C |µ (An)| → 0 whenever An ↓ ∅.

A.2 Monotone continuity

If f, g ∈ L and A ∈ Σ, we set

fAg (s) =
{

f (s) s ∈ A
g (s) s ∈ Ac .

Clearly, fAg ∈ L.

Lemma 5 Let � be an α-MEU preference relation on L, with a set C of priors. If
� is monotone continuous, then C is a relatively weak compact subset of ca (Σ).

Proof. Let α �= 1. Choose y, z ∈ X such that y � z and there exists a se-
quence {zk}k≥1 of consequences such that zk � zk+1 � z for all k ≥ 1, and
limk→∞ u (zk) = u (z). W.l.o.g., set u (y) = 1 and u(z) = 0. If En ↓ ∅, by
monotone continuity, for all k ∈ N there exists n̄ ∈ N such that yEn̄z ≺ zk.
That is, α infP∈C P (En̄) + (1 − α) supP∈C P (En̄) < u (zk). As the sequence
α infP∈C P (En) + (1 − α) supP∈C P (En) is decreasing, this implies

lim
n→∞

(
α inf

P∈C
P (En) + (1 − α) sup

P∈C
P (En)

)
< u (zk) .

Passing to the limit for k → ∞, we get

lim
n→∞

(
α inf

P∈C
P (En) + (1 − α) sup

P∈C
P (En)

)
= 0. (A.3)

As 0 ≤ infP∈C P (En) ≤ α infP∈C P (En) + (1 − α) supP∈C P (En), by (A.3)
limn→∞ (infP∈C P (En)) = 0. Therefore,

0 = lim
n→∞

(
α inf

P∈C
P (En) + (1 − α) sup

P∈C
P (En)

)
= α lim

n→∞ inf
P∈C

P (En) + (1 − α) lim
n→∞ sup

P∈C
P (En)

= (1 − α) lim
n→∞ sup

P∈C
P (En) ,
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and we can conclude

lim
n→∞ sup

P∈C
P (En) = 0. (A.4)

Hence, for all En ↓ ∅ and all Q ∈ C, 0 ≤ Q (En) ≤ supP∈C P (En) implies
Q (En) ↓ 0, so that C ⊆ ca (Σ). Eq. (A.4) yields relative weak compactness by
Lemma 4.

If α = 1, define f �′ g iff g � f to obtain a monotone continuous 0-MEU
preference on L with set of priors C (and utility index −u). ��

Lemma 6 Let � be an α-MEU preference relation on L, with a set C of priors. If
C is a relatively weak compact subset of ca (Σ), then � is monotone continuous.

Proof. Let f, g ∈ L with f � g, x ∈ X , and Σ � En ↓ ∅. For all ε > 0,

An = {s ∈ S : |u (f (s)) − u (xEnf (s))| > ε}
= En ∩ {s ∈ S : |u (f (s)) − u (x)| > ε} ↓ ∅.

Then, by Lemma 4, limn (supP∈C P (An)) = 0. Hence, there exists n ε ∈ N such
that P (An) < ε for all n ≥ n ε and all P ∈ C. Let M = ‖u ◦ f − u (x)‖s. It
holds:

∫
|u ◦ f − u ◦ (xEnf)| dP =

∫
An

|u ◦ f − u ◦ (xEnf)| dP

+
∫

Ac
n

|u ◦ f − u ◦ (xEnf)| dP ≤ Mε + ε

for all n ≥ n ε and all P ∈ C. Then
∫

u ◦ (xEnf) dP → ∫
u ◦ fdP uniformly

with respect to P ∈ C. Whence

inf
P∈C

∫
u ◦ (xEnf) dP → inf

P∈C

∫
u ◦ fdP and

sup
P∈C

∫
u ◦ (xEnf) dP → sup

P∈C

∫
u ◦ fdP,

and so

V (xEnf) → V (f) > V (g) .

Analogously, V (xEng) → V (g) < V (f), as desired. ��
Lemmas 3, 5, and 6 immediately yield Theorem 1.
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A.3 Range convexity

Proof of Theorem 2. By Lemma 3, there exists P0 ∈ cow∗
(C) such that P � P0

for all P ∈ cow∗
(C).

Let α �= 1 and let �l be downward atomless. We show that P0 is non-atomic.
Suppose, per contra, that A is an atom for P0. Then P0 (A) > 0, A �l ∅,4 and
for all B ⊆ A, either P0 (B) = 0 or P0 (B) = P0 (A). In the former case,
P (B) = 0 for all P ∈ C, so that B ∼l ∅; in the latter case, P0 (A − B) = 0,
so that P (A) = P (B) for all P ∈ C, and so B ∼l A. This is a contradiction,
since �l is downward atomless. Therefore, P0 is non-atomic. As a consequence
any P ∈ C is non-atomic since P � P0 (see, e.g., Marinacci, 1999, p. 360).

Conversely, let A ∈ Σ be such that A �l ∅. Then supP∈C P (A) > 0, so that
P0 (A) > 0. Since P0 is non-atomic, there exists a decreasing sequence B′

n ↓ B′

such that B′
n ⊆ A for all n ∈ N and P0 (B′

n) = 1
2n P0 (A). Then, the sequence

Bn = B′
n − B′ decreases to ∅, with Bn ⊆ A for all n ∈ N, and P0 (Bn) =

1
2n P0 (A). Thus supP∈C P (Bn) ↓ 0, which implies

α inf
P∈C

P (Bn) + (1 − α) sup
P∈C

P (Bn) ↓ 0,

and

α inf
P∈C

P (Bn) + (1 − α) sup
P∈C

P (Bn) ≥ (1 − α) sup
P∈C

P (Bn)

= (1 − α) max
P∈cow∗ (C)

P (Bn) ≥ 1 − α

2n
P0 (A) > 0.

For n large enough,

α inf
P∈C

P (A) + (1−α) sup
P∈C

P (A) > α inf
P∈C

P (Bn) + (1−α) sup
P∈C

P (Bn) > 0,

that is, A �l Bn �l ∅.
Let α �= 0, and consider the dual likelihood relation A �l B iff Bc �l Ac.

Set β = 1 − α ∈ [0, 1) and notice that �l is upward atomless iff �l is downward
atomless, and that

A �l B ⇔ α inf
P∈C

P (Ac) + (1 − α) sup
P∈C

P (Ac)

≤ α inf
P∈C

P (Bc) + (1 − α) sup
P∈C

P (Bc)

⇔ β inf
P∈C

P (A) + (1 − β) sup
P∈C

P (A)

≥ β inf
P∈C

P (B) + (1 − β) sup
P∈C

P (B) .

As a result, if �l is upward atomless, then the argument used in the case α �= 1,
when applied to �l, shows that C consists of non-atomic measures. Conversely, if
C consists of non-atomic measures, the argument used in the case α �= 1, shows
that �l is downward atomless and �l is upward atomless. ��

4 α infP∈C P (A) + (1 − α) supP∈C P (A) = α minP∈cow∗ (C) P (A) +
(1 − α) maxP∈cow∗ (C) P (A)
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Lemma 7 Let � be a monotone continuous α-MEU preference relation on L, with
a set C of priors.

(a) If α ∈ (0, 1), then �l is downward atomless iff it is upward atomless.
(b) If α ∈ {0, 1}, then, downward and upward atomlessness coincide provided

that, for any A ∈ Σ, we have Ac ∼l ∅ if and only if A ∼l S.

Proof. A direct proof of (a), not building on monotone continuity is possible. But,
under monotone continuity the result immediately follows from Theorem 2. Next
we prove (b).

Suppose α = 1. We first show that downward atomlessness implies up-
ward atomlessness. Let infP∈C P (A) < 1. Then infP∈C P (Ac) > 0. In fact,
infP∈C P (Ac) = 0 implies Ac ∼l ∅. Then there exists Bc ⊆ Ac such that
0 < infP∈C P (Bc) < infP∈C P (Ac). But, A ⊆ B implies infP∈C P (A) ≤
infP∈C P (B) < 1. If infP∈C P (A) = infP∈C P (B), then

0 ≤ inf
P∈C

P (B − A) = inf
P∈C

(P (B) − P (A)) ≤
≤ inf

P∈C
P (B) − inf

P∈C
P (A) = 0,

so that infP∈C P ((B − A)c) = 1. In turn, this implies 1 − P (B) + P (A) = 1
for all P ∈ C, i.e., P (A) = P (B) for all P ∈ C. Hence, P (Ac) = P (Bc) for all
P ∈ C, and so infP∈C P (Ac) = infP∈C P (Bc), a contradiction.

As to the other implication, let infP∈C P (A) > 0. Then infP∈C P (Ac) < 1,
so that there exists Bc ⊇ Ac such that infP∈C P (Ac) < infP∈C P (Bc) < 1. This
implies 0 < infP∈C P (B) ≤ infP∈C P (A). If infP∈C P (A) = infP∈C P (B),
we can proceed as before (exchanging the roles of B and A) to reach a contradiction.

Suppose α = 0. Consider the dual likelihood relation A �l B iff Bc �l Ac.
Notice that,

1. A �l B ⇔ infP∈C P (A) ≥ infP∈C P (B).
2. �l is upward atomless iff �l is downward atomless.
3. �l is downward atomless iff �l is upward atomless.
4. Ac ∼l ∅ if and only if A ∼l S if and only if Ac ∼l ∅ if and only if A ∼l S.

Hence, the argument used for α = 1, when applied to �l shows that �l is
downward atomless iff �l is upward atomless at S, and the same is true for �l. ��
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(eds.) Advances in finance and stochastics. Essays in Honour of Dieter Sondermann, pp. 1–38.
Berlin Heidelberg New York: Springer 2002

Dunford, N., Schwartz, J.T.: Linear operators. Part I. New York: Interscience 1958
Epstein, L.G., Wang, T.: Intertemporal asset pricing under Knightian uncertainty. Econometrica 62,

283–322 (1994)
Epstein, L.G., Wang, T.: Uncertainty, risk-neutral measures and security price booms and crashes.

Journal of Economic Theory 67, 40–82 (1995)
Ghirardato, P., Maccheroni, F., Marinacci, M., Siniscalchi, M.: A subjective spin on roulette wheels.

Econometrica 71, 1897–1908 (2003)
Ghirardato, P., Maccheroni, F., Marinacci, M.: Differentiating ambiguity and ambiguity attitude. Journal

of Economic Theory (2003) (forthcoming)
Gilboa, I., Schmeidler, D.: Maxmin expected utility with a non-unique prior. Journal of Mathematical

Economics 18, 141–153 (1989)
Kopylov, I.: α-Maxmin expected utility. Mimeo (2002)
Marinacci, M.: Upper probabilities and additivity. Sankhya 61, 358–361 (1999)
Marinacci, M.: Probabilistic sophistication and multiple priors. Econometrica 70, 755–764 (2002)
Nehring, K.: Ambiguity in the context of probabilistic beliefs. Mimeo (2001)
Savage, L.J.: The foundations of statistics. New York: Wiley 1954
Schmeidler, D.: Cores of exact games. Journal of Mathematical Analysis and Applications 40, 214–225

(1972)
Villegas, C.: On qualitative probability σ-algebras. TheAnnal Mathematics and Statistics 35, 1787–1796

(1964)


