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Summary. We present a consistent pure-exchange general equilibrium model
where agents may not be able to foresee all possible future contingencies. In
this context, even with nominal assets and complete asset markets, an
equilibrium may not exist without appropriate assumptions. Speci®c exam-
ples are provided.

An existence result is proved under the main assumption that there are
su�ciently many states that all the agents foresee. An intrinsic feature of the
model is bankruptcy, which agents may involuntarily experience in the
unforeseen states.

JEL Classi®cation Numbers: D4, D52, D81, D84.

1 Introduction

In existing general equilibrium models all agents are assumed to perceive
uncertainty as being represented by the same all-inclusive `objective' state
space, say S. If one imagines occurrence of each s 2 S as being determined by
the truth value of a set of facts ± the sources of uncertainty ± the above
assumption amounts to supposing that all agents take into account all
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relevant facts in making their plans. This paper presents a pure exchange,
two-period model in which this assumption is dropped, so that an agent h
perceives uncertainty as represented by the subjective space which he can
construct on the basis of the facts which he can think of, i.e. of which he is
aware [cfr. Modica-Rustichini (1994a, b) for a discussion of a modal logic
analysis of the concept; a di�erent version, with set theoretic methods, is in
Dekel, Lipman, Rustichini (1997)].

For example, suppose there are two sources of uncertainty, W � ``there is
war'' and E � ``a new source of energy is discovered '', so that the objective S is
the four-state space S � f�W;E�; �W; notE�; �notW;E�; �notW; notE�g. If the
possibility of the discovery of a new energy source is out of agent h's mind, he
will only think in W=notW terms, and his subjective space will be fW; notWg.
To relate this space to S, we suppose that the agent unconsciously attributes a
truth value to the facts of which he is not aware and the states he perceives
correspond to the real states under those values ±a subset Sh � S±, so that he
will perceive any function de®ned on S (like endowments, prices or assets) as its
restriction to Sh. In the above example, wemay imagine agent hperceivingwhat
in fact are the two real states under ``notE''. Then in one-to-one correspondence
with h's subjective space fW; notWg there is Sh � f�W; notE�; �notW; notE�g;
and if f is a map de®ned on S, he will perceive it as the map ~f de®ned on
fW; notWg by ~f �W� � f �W; notE�; ~f �notW� � f �notW; notE�. In other
words, he will perceive the vector � f �s��s2S as the vector � f �s��s2Sh .

This is in particular true of assets. The J nominal assets of this paper, the j-th
being aj : Sÿ!R, are meant to mimick dividends of (unmodelled) ®rms. They
are not traded as contingent contracts, but simply as random variables; traders
sign no contract. The distinction is immaterial when Sh � S all h, but here it is
important. When agent h sells to h0 asset j in exchange for asset j0, h thinks he
has sold the income stream �aj�s��s2Sh in exchange for the stream �aj0 �s��s2Sh ,
and h0 thinks he has bought �aj�s��s2Sh0 for �aj0 �s��s2Sh0 . In this way they im-
plement income transfers across subjective states, and the `role of securities' in
this context is to economize not only on contingent goods' markets (Arrow,
1953; Kreps, 1982) but also on not-easy-to-write ®nancial contingent contracts
among people aware of di�erent things. In such setting of course there is no
guarantee that things will go as the agents expect; and it must be said that
although they may know this, in the present model agents are assumed to do
nothing about it (that is, we do not consider subjective space revision).

On his subjective space agent h will perceive #Sh (not S) budget con-
straints, one for each s 2 Sh; and the assumption on h's `conditionally cor-
rect' perception amounts to perfect foresight on Sh, which is e�ectively (i.e. in
one-to-one correspondence with) the space on which h makes plans. So if
s 2 Sh occurs, agent h will simply carry out his plans. If on the other hand an
unforeseen scenario s 62 Sh materializes he will have to re-optimise, taking as
given his period-zero ®nancial trades (incidentally, we may contrast the
position of this agent h with that of a fully aware agent assigning probability
zero to s 2 SnSh, who unlike h makes complete plans for all s 2 S in advance;
cfr. section 2.1).
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In particular, at s 2 Sh agent h's debts and credits (together with en-
dowments and prices) are exactly as anticipated in period zero. In such states
h is assumed to always honour his debts (for example because a court would
impose large penalties if it discovered that the agent is bankrupt). But by
de®nition he does not take into account the consequences of his period-zero
actions in the unforeseen scenarios s 62 Sh. Therefore he may involuntarily be
bankrupt in those states. By the same token, at any s 2 S there may be
agents who go bankrupt; so agent h must anticipate that in s 2 Sh his credits
may not be entirely repaid; and this must be part of the equilibrium. In
comparing the present model with the bankruptcy models of Dubey-Ge-
anakoplos-Shubik (1988) and Zame (1993), one may notice that in the latter
bankruptcy is voluntary and with penalty, and it must be so (it cannot be
involuntary with full awareness, and once voluntary there must be a pen-
alty); in the present model it is only involuntary, and the `only' part is for
simplicity.

The equilibrium concept retains as much ¯avour of the traditional ra-
tional expectations concept as it can; and the proof follows the main lines of
Werner (1985), with the main complication that while in his case there is a
sequence of truncations of a ®xed price space, converging to the latter, in our
case the sequence is one of truncations of a sequence of price spaces, con-
verging to the limit price space. For existence it is critical to assume that there
be enough states which all agents foresee (precisely no less than J ),
assumption C below, which reminds of that of agreement among agents'
expectations in temporary equilibrium theory (Grandmont, 1982). For
existence, stating that there be a in the intersection of the supports of all
agents' assumption C is critical because there may not exist equilibrium in
economies satisfying all the assumptions of our existence theorem but that
one; and this implies in particular that if there are no more than J states the
model need not be consistent except under full awareness, and hence that in
the presence of unawareness the `domain of consistency' of the model is a set
of economies where markets are incomplete.

Section 2 contains the formal description of the model and de®nition of
equilibrium; a proof of existence of an equilibrium is in sect.3. In section 4 we
sketch an alternative existence proof, which also demonstrates a degree of
indeterminacy of equilibrium asset prices; a last section collects comments
and examples.

Miscellaneous notation

For x; y 2 RN we write x � y if xi � yi; i 2 f1; . . . ;Ng � N ; x > y if x � y and
x 6� y; x� y if xi > yi; i 2 N . RN

� � fx 2 RN : x � 0g; RN
�� � fx 2 RN :

x� 0g. jxj �PN
i�1 jxij. u � 1 � �1; . . . ; 1�, in each occurrence of the appro-

priate dimension.
A matrix A 2 RM�N has element An�m� in row m, column n;m 2

f1; . . . ;Mg � M ; n 2 N ; An (resp. A�m�) denotes column n (row m). For any
T � M , AT is the T � N -matrix with rows AT �m� � A�m� for m 2 T .
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We de®ne the operation 
 : RM�N �RM�N ÿ!RM�N as elementwise
multiplication, i.e. taking the matrices A;B to the matrix A
 B de®ned by
�A
 B�n�m� � An�m�Bn�m�; m 2 M ; n 2 N :

Standard notation is used from topology and convex analysis. For
X � RN , cl X , int X , ri X , conv X and a� X are resp. X 's closure, interior,
relative interior, convex hull and a�ne hull, and cone X is the cone generated
by X , i.e. the set of points of the form

Pk
i�1 kixi with k a positive integer, the

xi's in X and the ki's nonnegative. Recall that if X is convex, cone X �
R�X � ftx : t 2 R�; x 2 Xg (Rockafellar 1970, p. 14). Another result we use
is that for any ®nite set fx1; . . . ; xkg � RN ; ri conv fx1; . . . ; xkg �
fPN

i�1 kixi :
PN

i�1 ki � 1; ki > 0 8 ig (easily proved using Rockafellar 6.4).
Finally, from p. 50 of Rockafellar we use the fact that if X is convex,
ri cone X � R��riX � ftx : t 2 R��; x 2 riXg.

2 The model

The model is built on the standard two-period pure exchange general equi-
librium setup, with uncertainty in the second period (e.g. Magill-Shafer
1991). There are two periods, 0 and 1, and in the second period one state
s 2 f1; . . . ; Sg � S is determined. We also view the ®rst period as state zero
and write s 2 f0; 1; . . . ; Sg. There are L consumption goods indexed by
` 2 f1; . . . ; Lg � L in the ®rst period and in each state in the second; and J
assets, indexed by j 2 f1; . . . ; Jg � J , denominated in units of accounts, with
return matrix a � �aj�s�� 2 RS�J . In the ®rst period there is trade in goods
and assets and goods' consumption; in the second there is collection of assets'
(net) returns and goods' consumption.

Consumers are indexed by h 2 f1; . . . ;Hg � H . Sh � S is the set of states
which re¯ects h's awareness. Consumer h's consumption set as seen from period
zero is RL�1�Sh�

� , and he gets utility uh�x�0�; �x�s��s2Sh� from the plan
�x�0�; �x�s��s2Sh� 2 RL�1�Sh�

� . In s 62 Sh, he has consumption set RL
� and utility

uh
s �x�s�� fromthebundlex�s� 2 RL

�. Thereare endowmentsof goods,denotedby
eh�s� 2 RL

�; s 2 f0; 1; . . . ; Sg. We let zh�s� � xh�s� ÿ eh�s�; s 2 f0; 1; . . . ; Sg.
To ease notation it is assumed that assets are in zero initial endowment.

As we mentioned, the model could also be cast in the numeÂ raire asset
framework, in which assets in state s pay o� in a ®xed commodity bundle.
The proof that we construct is ¯exible enough to accomodate this case as
well. Details are presented in a special section.

The portfolio of agent h is composed by asset purchases /h �
�/hj�j2J 2 RJ

� and asset sales wh � �whj�j2J 2 RJ
�. We use hh � /h ÿ wh for

net holdings.
Prices are denoted as follows: for s 2 f0; 1; . . . ; Sg, p�s� 2 RL

� is the price
vector of the goods in state s, and p � � p�0�; � p�s��s2S�. Assets' prices are
q 2 RJ

�.
Agents will be assumed to be forced to honour their debts in the states

they foresee, but they may be unable to do so in the other ones; hence in any
s 2 S only a fraction of the total debts will be repaid. The way losses are
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distributed among the creditors may vary in di�erent institutional arrange-
ments. To prove existence of an equilibrium only two things are needed: that
the total amount of default equals the amount of losses of creditors; and that
the allocation of this amount is done in a continuous way. The rule which we
adopt re¯ects anonymous trade as in Dubey-Geanakoplos-Shubik (1988),
and is such that in any given state, each debtor repays in the same proportion
the debts he has in the various assets (the proportion being equal to the ratio
of his total receipts to his total debts); and all creditors of any one asset
obtain the same fraction of their credits (the fraction being the ratio of total
repayments to total debts on the asset).

Thus in any given state, the exigible fraction of credits on a given asset
depends on how much the debtors can pay; but of course this in turn depends
on the repayments they get on their own credits. Formally, portfolios
�/h;wh�h2H , prices � p�s��s2S and an S � J matrix of repayment fractions
K � �Kj�s�� 2 �0; 1�S�J generate an S � J matrix j � b�� p�s��s2S ;
K; �/h;wh�h2H � (b standing for book-keeping map) de®ned as follows. Let

Mh�s� p�s�;K�s�;/h;whÿ � � min p�s�eh�s� � �a
 K��s�/h; a�s�wh� 	
;

Mh�s� for short (it is the minimum between h's receipts and his debts in state
s); and let

i�h; s� �
Mh�s�
a�s�wh if a�s�wh > 0

1 otherwise .

8><>:
Then we de®ne

jj�s� �

X
h

i�h; s�aj�s�whj

X
h

aj�s�whj
if

X
h

aj�s�whj > 0

�0; 1� otherwise .

8>>>>><>>>>>:
(BK)

Notice that since repayment rate on asset j in state s is a fraction of the
total debts on that asset, it is not well de®ned if total debts are zero. We
have for convenience de®ned it to be the whole interval �0; 1� in that case.
This makes b a correspondence. In equilibrium when total debts are zero
so are total credits, so which number we de®ne as repayment rate is ir-
relevant.

Actual repayment rates must be a ®xed point of (BK), i.e. must satisfy
jj�s� 2 bj�s�� p�s�; j�s�; �/h;wh�h2H � for all j; s. We note in passing that in
(BK) the aj�s�'s simplify; they are left there for clarity.

Next the budget sets which agent h faces. In period zero

Bh�p; q; j� �
n

x�0�; �x�s��s2Sh ;/;w
ÿ � 2 RL�1�Sh�

� �RJ
� �RJ

� :

p�0� x�0� ÿ eh�0�ÿ �� q�/ÿ w� � 0;

p�s��x�s� ÿ eh�s�� � �a
 j��s�/ÿ a�s�w; s 2 Sh; /w � 0
o
:
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So agent h cannot go bankrupt in s 2 Sh. Notice that if s 2 \h2H Sh, for any
�� p�s��s2S ; j; �/h;wh�h2H � such that �/h;wh�h2H satisfy the budget constraints
at � p; q; j� one has bj�s�� p�s�; j; �/h;wh�h2H � � 1 or [0,1] for all j 2 J .

Note also that we are imposing that the agents cannot at the same time
buy and sell the same asset (condition /w � 0, which given nonnegativity is
equivalent to /jwj � 0 all j). This extra constraint never hurts any agent and
helps in the existence proof (since agents' asset purchases and sales appear
separately in the book-keeping map, in the sequence of the nth-stage ®xed
points which will converge to equilibrium ± section 3.5 ± we need to ensure
that both sales and purchases, not just their di�erence, converge). In period
1, if s 62 Sh materializes, agent h may be bankrupt, in which case he gets zero
income:

Bh
s p�s�; j�s�;/;w� � � x�s� 2 RL

� :
�
p�s��x�s� ÿ eh�s�� � �a
 j��s�/ÿMh�s�	 s 62 Sh :

The constraint may be written as: p�s�x�s� � maxf0; p�s�eh�s�
��a
 j��s�/ÿ a�s�wg. Thus h's problems are:

CP h� p; q; j� :max uh x�0�; �x�s��s2Sh

ÿ �
s:to x�0�; �x�s��s2Sh ;/;w
ÿ � 2 Bh� p; q; j�

CP h
s � p�s�; j�s�;/;w� :max uh

s �x�s��
s:to x�s� 2 Bh

s p�s�; j�s�;/;w� �

2.1 De®nition An equilibrium is an array of prices � p; q�, repayment rates j
and actions �xh�0�; �xh�s��s2S ;/

h;wh�h2H such that

(i) �xh�0�; �xh�s��s2Sh ;/h;wh� solves CP h� p; q; j�; h 2 H
(ii) xh�s� solves CP h

s � p�s�; j�s�;/h;wh�; s 62 Sh; h 2 H
(iii)

P
h2H xh�s��Ph2H eh�s�, h 2 H , s 2 f0; 1; . . . ; Sg andPh2H �/hÿwh� � 0

(iv) j is a ®xed point of (BK).

Notice that at equilibrium each agent h correctly anticipates prices and
repayment rates in Sh. If Sh � S for all h 2 H there is no bankruptcy and the
model and equilibrium concept reduce to the standard ones.

We assume that there are no less states than assets, J � S. It is checked
that this entails no loss of generality in section 3.7. We denote by C � S the
set of the ®rst J states. Thus f1; . . . ; Jg � C as a set of states, even though the
set in brackets is called J when seen as the set of assets. Assumption C below
implies J � #Sh � S.

2.2. Theorem An equilibrium exists under the following assumptions:
P : a� 0
U : uh and uh

s are continuous, strictly increasing and strictly concave for all
h 2 H and s 62 Sh

E. eh�s� � 0 for all h 2 H ; s 2 f0; 1; . . . ; Sg
C. C � Sh for all h 2 H
FR. aC is nonsingular.
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An equilibrium may not exist in an economy satisfying all the stated as-
sumptions except C.

2.1 Two remarks

We discuss two issues related to the above theorem and model in the context
of a simple (complete market) structure with two agents, two states,
S � fs1; s2g and two Arrow-securities:

1 0
0 1

� �
:

Unawareness with complete markets. If we let Sh � S; h � 1; 2 we obtain an
Arrow-Debreu economy in which equilibrium exists under U ;E. If we in-
troduce unawareness by taking for example S1 � fs1g and S2 � fs2g (both
agents perceive no uncertainty), assumption C is violated. Agent 1 sees an
asset giving 1 for sure (a1) and one giving zero for sure (a2); symmetrically for
agent 2. As long as endowments are positive, no equilibrium can exist in this
economy, no matter how one completes its speci®cation. For: in equilibrium
portfolios would be ®nite, so since endowments are positive it should be
j� 0; but for such j at any �q1; q2� at least one agent sees arbitrage (at
�q1; q2� � 0 both do), hence his problem has no solution.

Thus with unawareness equilibrium may not exist even with complete
markets.

Unawareness versus zero-probability. It will be clear from the formulation of
the agents' optimization problems that the behaviour of an agent who does
not foresee some of the states is di�erent from that of an agent who gives
zero probability to those states. Something stronger is true: it is not possible
to interpret a model where some agents do not foresee some states as a model in
which they give zero probability to those states. To see this we show how
unawareness and zero probability have di�erent equilibrium implications, by
contrasting the last non-existence example with the case where agents are
fully aware, have von Neumann-Morgenstern utilities, and h's belief has
support fshg; h � 1; 2. We obtain again a standard Arrow-Debreu economy
(with non strictly increasing utilities due to zero-probability events), in which
again an equilibrium exists under classical assumptions.

In concrete terms, let us assume that there is one good in each state, so we
may let p�0� � p�1� � p�2� � 1. If we look at agent 1's position in the zero-
probability case, since his utility is independent of x1�2�, clearly he will want
to give away his endowment in state 2 by selling asset 2, and buy asset 1 to
increase consumption in state 1. Hence his budget constraints become:

x1�0� � q1/
11 ÿ q2w

12 � e1�0�
x1�1� � e1�1� � /11

x1�2� � e1�2� ÿ w12
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and he will set w12 � e1�2�; x1�2� � 0. Agent 2 will be quite willing to accept
such trade at the `right' prices, for he is interested in exactly the opposite
operations.

With unawareness agent 1 sees asset 1 as giving 1 (times repayment rate)
for sure while asset 2 as giving zero for sure, so he too will want to sell asset 2
and buy 1. But his budget constraints are

x1�0� � q1/
11 ÿ q2w

12 � e1�0�
x1�1� � e1�1� � j1�1�/11

so by selling asset 2 and buying asset 1 with the sale's revenue he can make
x1�1� as large as he wants as long as j1�1� > 0 (he will go bankrupt in state 2,
but he is not aware of that). Hence no solution to his problem exists if
j1�1� > 0 (but in equilibrium it should be j1�1� > 0, so no equilibrium
exists). Similar is agent 2's position.

We emphasize that the di�erent form of the budget constraint in the two
cases is more than a convention. Two of us have provided (see Modica and
Rustichini, 1996) a decision theoretic model, which generalizes the classical
Anscombe Aumann theory, where bankruptcy plays the role of a very bad
prize (in the formal sense that all other prizes are preferred to it), and where
the maximization problem of the agent has a formulation with budget
constraint equal to the ®rst presented in this section. In light of this model,
we can summarize the situation as follows.

It is clear that in a standard general equilibrium model (Arrow-Debreu-
McKenzie) there must be a penalty for people who violate the budget con-
straints.More than that, this penaltymust be in®nite: because if it is ®nite, there
will be a tradeo� between the penalty and the utility of consuming additional
goods; so typically the budget constraint will be violated. The situation be-
comes more complicated when we want to model agents who, under uncer-
tainty, give zero probability to some event; or (alternatively) are not aware of it.

What do we do when an agent gives zero probability to an event? Here we
have a situation of zero (probability) times in®nity (the disutility of the
penalty). What is the product of the two terms? Clearly in standard analysis
the question itself is not very clear. In non-standard analysis it is a very clear
question, and has a very simple answer (see Modica and Rustichini, 1996).
Here we report, informally, the main result. We will think of the zero
probability as in®nitesimally small, and of the large penalty as in®nitely
large. Two cases are now possible.

If the product of the two terms in the expected utility evaluation is in®-
nite, then the concern about the bankruptcy prevails, and the agent who
gives in®nitesimally small probability to an event will not go bankrupt in it.
But then his behavior will be di�erent from the person who is not aware of an
event, because this second person will go bankrupt in that event, simply
because he ``did not think'' of it.

In the second case the product is in®nitesimally small. Then the utility of
additional consumption prevails, and the person who gives in®nitesimally
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small probability will go bankrupt, by arbitrarily large amount (since he does
not care about the penalty). In this case of course an equilibrium typically
will not exist. Note that again, his behavior will be di�erent from the person
who is not aware, because this second will go bankrupt only by a ®nite
amount, determined by how much he spends in the states that he can think
of. Also, equilibrium exists in this case, under two technical assumptions.
This is the main existence result of this paper.

We ®nally report that partial awareness and zero probability may have
di�erent equilibrium implications when the assumption of strictly positive
endowments is relaxed. Indeed, in the structure under discussion, with non
strictly positive endowments there are cases where equilibrium exists with
partial awareness (namely, Sh � fshg; h � 1; 2; e1�0� � e2�0� � e1�2� �
e2�1� � 0� and cases where equilibrium does not exist with full awareness and
zero probability (e1�0� � e2�0� � 0 and logarithmic utility).

3 Model consistency

The proof of existence of an equilibrium goes through the following steps:
truncate the price spaces along a sequence, indexed by n; get a ®xed point for
each n; note that prices and repayment rates converge (along a subsequence);
show that a subsequence of excess demand for goods converges, and that this
implies that a subsequence of demand for assets converges; show that the
limit is an equilibrium. The rest of this section presents the details.

The proof of the last assertion is contained in point 2 of the concluding
section.

3.1 The set of no-arbitrage prices

Take j 2 �0; 1�S�J and h 2 H . We denote by QSh�j� the set of no-arbitrage
(asset) prices for agent h when he faces repayment rates j. Formally for any
T � S one has

QT �j� � q 2 RJ : 6 9 �/;w� 2 R2J
� s.t.

ÿq�/ÿ w�
�a
 j�T /ÿ aT w

� �
> 0

� �
:

3.1.1 Lemma QT �j� � fq 2 RJ
�� : 9 k 2 RT

�� s.t. k�a
 j�T � q � kaTg:
Proof. Letting

A � ÿq q
�a
 j�T ÿaT

� �
; y � �/;w�

q permits arbitrage i� 9 y � 0 s.t. Ay > 0, that is i� 9 0 < y 2 R2J ;
0 < v 2 RT�1 s.t. Ay ÿ Iv � 0 where I is the unit �T � 1� � �T � 1� matrix;
that is, i�

9 0 � �y; v� 2 R2 J�T�1 s.t.
A ÿI

01�2 J 11��T�1�

� � �y; v� � 0�T�1��1
1

� �
;
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where subscripts denote dimensions. The alternative, by Gale (1960) theorem
2.6 is that 9 x 2 RT�1; g 2 R which solve

xA� g0 � 0
ÿIx� g11��T�1� � 0
g < 0

8<:
that is 9 x 2 RT�1 s.t. xA � 0 and x � ÿg1� 0, equivalently 9 0� k 2
RT s.t. �1; k�A � 0. This is just what is asserted. (

As is clear from the above expression, QSh�j� is a cone. Next we wish to
have conditions under which QSh�j� is open. For A;B 2 RT�J with
0 � A � B, we let

Co�A;B� � q 2 RJ
� : 9 k 2 RT

�� s.t. kA � q � kB
� 	

:

By the previous lemma, QSh�j� � Co��a
 j�Sh ; aSh�. We now state two
useful characterizations of Co�A;B�. Given A;B 2 RT�J with 0 � A � B, let

�A;B� � D 2 RT�J : Aj�s� � D j�s� � Bj�s�; s 2 T ; j 2 J
� 	

:

Notice that if A and B are 1-row matrices, i.e. vectors in RJ , the symbol �A;B�
does not denote a segment but a rectangle.

3.1.2 Lemma (i) Co�A;B� � fq 2 RJ
� : 9 �k;D� 2 RT

�� � �A;B� s.t. q � kDg
(ii) Let Ai;Bi 2 RTi�J with Ai � Bi; i � 1; 2, and let A � ÿ A1

A2

�
; B � ÿ B1

B2

�
,

both in R�T1�T2��J . Then Co�A;B� � Co�A1;B1� � Co�A2;B2�:
Proof. (i) That the set on the right is contained in Co�A;B� is clear; con-
versely, suppose q is s.t. for a k 2 RT

��; kA � q � kB. For each j we have
kAj � qj � kBj; then denote for any a 2 �0; 1�; D�a�j � Aj � a�Bj ÿ Aj�. We
have fkD�a�j : a 2 �0; 1�g � �kAj; kBj�, so that for some aj 2 �0; 1�;
kD�aj�j � qj. Now let D � �D�a1�1; . . . ;D�aJ �J �.

(ii) q 2 Co�A;B� i� 9k 2 RT1�T2�� ; D � ÿ D1

D2

� 2 �A;B� s.t. q � kD; i�
9 �k1; k2� 2 RT1�� �RT2��; Di 2 �Ai;Bi� s.t. q � k1D1 � k2D2; i� q 2 Co�A1;
B1� � Co�A2;B2�. (

The set of asset prices at which no agent sees arbitrage opportunities
given j is denoted by Q�j�:

Q�j� �
\
h2H

QSh�j�

3.1.3 Lemma If C and FR hold and jC � 1, then QSh�j� is open for all h 2 H ,
and Q�j� is open.
Proof.

QSh�j� � Co �a
 j�Sh ; aSh

ÿ � � Co
aC

�a
 j�ShnC

 !
;

aC

aShnC

 !
� Co�aC; aC� � Co �a
 j�ShnC; aShnC

� �
:

From assumption FR Co�aC; aC� is open, hence so is QSh�j�. (
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The map �T ; j�ÿ!QT �j� has the following monotonicity properties.
3.1.4 Lemma Let T ; T1; T2 2 S; j; j1; j2 2 �0; 1�S�J .

(i) if j1 � j2, then QT �j2� � QT �j1�
(ii) if T1 � T2 and QT1�j� is open, then QT1�j� � QT2�j�.

Proof.

(i) QT �j2� � [ Co�D;D� : D 2 �a
 j2�T ; aT
� �� 	

� [ Co�D;D� : D 2 �a
 j1�T ; aT
� �� 	 � QT �j1� :

(ii) QT2�j� � Co��a
 j�T2 ; aT2� � Co
�a
 j�T1
�a
 j�T2nT1

 !
;

aT1

aT2nT1

 ! !
� Co �a
 j�T1 ; aT1

� �
� Co �a
 j�T2nT1 ; aT2nT1

� �
� QT1�j� � QT2nT1�j�
� QT1�j� if QT1�j� is open (easy to see) : (

3.2 Truncation of the set of ®rst period prices

A main step in the proof of Werner is to construct a sequence of truncations
of the price set, converging to the full set, such that at each step the truncated
price set is compact; we will do the same, with the complication that the (full)
set of no-arbitrage asset prices varies along the sequence, since repayment
rates vary. Our n-th stage truncated asset price set will be a compact subset of
the n-th stage no-arbitrage price set, converging to the limit set of no-
arbitrage prices. We start with asset prices, then consider the totality of ®rst
period prices (goods and assets). Second period spot prices are no problem,
the truncation will be as in Werner (1985).

The idea of the truncation is the following. For each j and each aware-
ness set Sh take the intersection of the closure of QSh�j� with the simplex DJ ,
and get a convex set. In fact, this convex set is generated by a ®nite set of
points (which correspond to the ®nitely many generators of QSh�j��. Now
shrink this set, making sure that the set which is obtained is contained in the
relative interior of the original set. Then take the cone generated by this
smaller set: its closure stays in the interior of the set QSh�j�. On this smaller
cone the consumers' problems are well de®ned, and we can derive a demand
function de®ned on the set. We then have the basic element to get the ®xed
point at the n-th stage of the sequence.

We present here the shrinking by a d 2 �0; 1�; in the n-th stage of the
sequence it will be d � 1ÿ 1=n.

To go on with the details, ®x ®rst j 2 �0; 1�S�J and s 2 S, and consider the
rectangle ��a
 j��s�; a�s�� in RJ . It has 2J vertices vi; i � 1; . . . ; 2J (actually
vi � vi�s; j�; we are suppressing dependence on �s; j� momentarily), not
necessarily distinct (in fact if e.g. j�s� � 1 so that �a
 j��s� � a�s�, all ver-
tices coincide). Each vertex vi has j-th coordinate equal to �a
 j�j�s� or to
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aj�s�; formally the 2J vertices are the elements of the set �J
j�1f�a
 j�j

�s�; aj�s�g. Now list them in any order such that v1 � �a
 j��s� (the closest
to the origin). For any i � 2, for at least one j; vj

i � aj�s� > 0, so jvij > 0 and
thus vi=jvij 2 DJ is well de®ned. Then let

Gs�j� � vi�s; j�
jvi�s; j�j : i � 2; . . . 2J
� �

(in the example with j�s� � 1; Gs�j� � fa�s�=ja�s�jg�.
Now for T � S, de®ne GT �j� � [fGs�j� : s 2 Tg. GT �j� is a ®nite subset

of DJ , which (since properly ordered) can also be viewed as a vector in
RJ�2Jÿ1�T . The context should make clear which interpretation is appropriate.
For example, viewing GT �j� as a vector one clearly has that
3.2.1 Lemma For every T � S, the function j# GT �j� is continuous on
�0; 1�S�J .

The next result is that cone GT �j� � cl QT �j�. First we write the latter set
in a convenient way, then prove the equality.

3.2.2 Lemma For T � S,

cl QT �j� � q 2 RJ
� : 9 k 2 RT

� s.t. k�a
 j�T � q � kaT
� 	

:

Proof. Exactly as in Lemma 3.1.2(i) one proves that the set on the right is
equal to fq 2 RJ

� : 9 �k;D� 2 RT
� � ��a
 j�T ; aT � s.t. q � kDg, which is

clearly equal to clfq 2 RJ
� : 9 �k;D� 2 RT

�� � ��a
 j�T ; aT � s.t. q � kDg �
cl QT �j�, the last equality from Lemmas 3.1.1 and 3.1.1(i). (

3.2.3 Lemma For any T � S and j 2 �0; 1�S�J ; cl QT �j� � cone GT �j�.
Proof. First we prove the inclusion �. From the proof of the last lemma we
know that q 2 cl QT �j� i� there is �k;D� 2 RT

� � ��a
 j�T ; aT � such that
q � kD. Also, if D�s� � 0 for some s 2 T we can ignore it in the sum giving q,
so we may assume that D�s� 6� 0 8 s 2 T . Take an s 2 T and de®ne
�a � maxfa 2 R : aD�s� � a�s�g. Note that �a � 1, and that for some j 2 J it
is �aD j�s� � a j�s�. Since �aD�s� 2 ��a
 j��s�; a�s�� we can write

�aD�s� �
X2J

i�1
livi�s; j�; for some li � 0;

X2J

i�1
li � 1; l1 � 0 :

The last restriction can be imposed because �aDj�s� � aj�s� for a j 2 J ; in fact
one could impose li � 0 whenever v j

i �s; j� � �a
 j�j�s�. To see this observe
that �aD�s� is in the cube

�a
 j�1�s�; a1�s�
h i

� � � � � faj�s�g � � � � � �a
 j�J �s�; aJ �s�
h i

;

whose extreme points are contained in the set of vertices vi�s; j� with
v j

i �s; j� � aj�s�.
For each s 2 T ®nd �a�s� and the corresponding li�s�; then since D�s� �

�a�s�ÿ1P2J

i�2 li�s�vi�s; j�, we may write
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q �
X
s2T

ksD�s�

�
X
s2T

X2J

i�2
ks

li�s�
�a�s� jvi�s; j�j

� �
vi�s; j�
jvi�s; j�j

2 cone GT �j� :
For the reverse inclusion, let q 2 cone GT �j�. Then

q �
X
s2T

X2J

i�2
m�s; i� vi�s; j�

jvi�s; j�j ; m�s; i� � 0

�
X
s2T

ks

X2J

i�2

m�s; i�
jvi�s; j�j k

ÿ1
s vi�s;j�

� �
where ks �

P2J

i�2
m�s;i�
jvi�s;j�j � 0; s 2 T . Since, for each s 2 T ; ks multiplies a point

in ��a
 j��s�; a�s��, the result is established. (

Now we shall shrink the set conv GT �j� generating cl QT �j� �
cone GT �j� � cone conv GT �j� and take as truncated asset price space the
cone generated by the shrunk set. With assumption C and the budget sets in
mind, we assume in the rest of the present subsection that

T � C; jC � 1 and FR holds :

With these assumptions, for all s 2 C; Gs�j� � fa�s�=ja�s�jg, so, recalling
that C � f1; . . . ; Jg,

conv GT �j� � conv
a�1�

zja�1�j ; . . . ;
a�J�
ja�J�j ;

[
s2TnC

vi�s; j�
jvi�s; j�j : i � 2; . . . ; 2J
� �8<:

9=;
� conv g�1�; . . . ; g�J�; g�J � 1�; . . . ; g�N�f g

say, where g�s� � a�s�=ja�s�j for s 2 C. To do the shrinking we take the
barycenter �g of the ®rst C � J points, �g � Jÿ1

PJ
s�1 g�s�, and for d 2 �0; 1�

de®ne

gd�i� � dg�i� � �1ÿ d��g; i � 1; . . . ;N

(we have taken the barycenter of only the ®rst J points to have it independent
of T and j and ease notation; nothing substantial is involved).

3.2.4 Lemma Let g�1�; . . . ; g�J�; . . . ; g�N� 2 DJ be s.t. g�1�; . . . ; g�J� are
linearly independent. Then �g 2 ri convfg�1�; . . . ; g�J�; . . . ; g�N�g.
Proof. �g 2 ri convfg�1�; . . . ; g�J�g� ri convfg�1�; . . . ; g�J�; . . . ; g�N�g since
a� conv fg�1�; . . . ; g�J�g � aff convfg�1�; . . . ; g�J�; . . . ; g�N�g � DJ . (

3.2.5 Lemma For g�1�; . . . ; g�J�; . . . ; g�N� 2 DJ as in the previous lemma and
any d 2 �0; 1�, conv fgd�i� : i � 1; . . . ;Ng � ri convfg�i� : i � 1; . . . ;Ng.
Proof. Take x 2 convfgd�i� : i � 1; . . . ;Ng; then for some ki � 0;PN

i�1 ki � 1,
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x �
XN

i�1
kigd�i� �

XN

i�1
ki dg�i� � �1ÿ d��g� �

� d
XN

i�1
kig�i� � �1ÿ d��g :

But
PN

i�1 kig�i� 2 convfg�i� : i � 1; . . . ;Ng and by the previous lemma
�g 2 ri conv fg�1�; . . . ; g�N�g; then apply Rockafellar 6.1. (

Now de®ne Gd
T �j� � fgd�i� : i � 1; . . . ;Ng, �Qd

T �j� � cone Gd
T �j� and let

the truncated cone of no-arbitrage prices be

�Qd�j� �
\
h2H

�Qd
Sh�j� :

Note that �Q1
T �j� � cl QT �j�, and (since the interiors have nonempty in-

tersection) �Q1�j� � cl Q�j�. The wanted inclusion is the following:

3.2.6 Lemma For any d 2 �0; 1�; �Qd
T �j� � QT �j�.

Proof. Take q 2 �Qd
T �j� and note that q=jqj 2 conv Gd

T �j�. By the previous
lemma q=jqj 2 ri conv GT �j�, hence (Rockafellar p. 50) q 2 ricone conv
GT �j� � ri cone GT �j� � ri cl QT �j� � ri QT �j� � QT �j�, using lemmas
3.2.3 and 3.1.3. (

Next we have to ensure that the correspondences j 7! �Qd
T �j� and

j 7! �Qd�j� are well behaved for d � 1.

3.2.7 Lemma Let the function j # c�j� � �c1�j�; . . . ; cN �j�� 2 �DJ �N be
continuous on �0; 1�S�J . Then

(i) the correspondence j # conv fc1�j�; . . . ; cN �j�g is compact-, convex-
valued and continuous

(ii) the correspondence j # conefc1�j�; . . . ; cN �j�g is convex-valued,
closed and lower hemicontinuous (lhc for short).

Proof. (i) denote by H the given correspondence. It is clear that H is
compact- and convex-valued. To prove that it is continuous it then su�ces
(lemma p. 33 in Hildenbrand) that it is closed and lhc. H is closed: let
�qn; jn� ! �q; j� with qn 2H�jn�; then qn �

PN
i�1 ln;ici�jn�; the sequence

flng is in the simplex DN , so it has a convergent subsequence lnk
! l; then

qnk !
PN

i�1 lici�j� � q, whence the claim. H is lhc: let jn ! j and

q �PN
i�1 lici�j� 2H�j�; then H�jn� 3 qn �

PN
i�1 lici�jn� ! q.

(ii) denote by F the given correspondence. F is closed: let �qn; jn� !
�q; j� and qn �

PN
i�1 ln;ici�jn� 2F�jn� (with ln;i � 0 for all n; i ). For each

i � 1; . . . ;N it is supn ln;i <1 (if not there would be an i0 and a sequence
lnk ;i0 !1 as k !1; but then jqnk j � jlnk ;i0ci�jnk �j � lnk ;i0 !1, con-
tradicting jqnk j ! jqj). Then on a convergent subsequence lnk

! l one has

qnk �
XN

i�1
lnk ;ici jnk� � !

XN

i�1
lici�j� 2F�j� :
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F is lhc: let jn ! j and q �PN
i�1 lici�j� 2F�j�. Then

qn �
PN

i�1 lici�jn� ! q, and qn 2F�jn� for all n. (

3.2.8 Corollary For every d 2 �0; 1�,
(i) The correspondence j # �Qd is closed and lhc
(ii) �Qd�j� is a closed cone for every j 2 �0; 1�S�J .

Proof. (i) By the previous lemma, for each h 2 H the correspondence �Qd
Sh is

convex-valued, closed and lhc. Moreover for any j the �Qd
Sh�j�'s have inte-

riors with nonempty intersection. Then the result follows from Hildenbrand
(1974) problem 6, (2) p. 35. (ii) the set is an intersection of closed cones. (

We now pass to ®rst period assets and goods prices. For d 2 �0; 1� let
P d � � p; q� 2 DL�J : p` � 1ÿ d; ` � 1; . . . ;L

� 	
P d�j� � � p; q� 2 P d : q 2 �Qd�j�� 	

3.2.9 Lemma For each d 2 �0; 1�, the correspondence j # P d�j� is compact-
convex-valued and continuous.

Proof. Each P d�j� is the intersection of two convex sets; one compact �P d�,
the other closed �RL

� � �Qd�j��. To prove continuity we show that P d is closed
and lhc, then invoke the lemma on p. 33 of Hildenbrand.

Closedness: let � pn; qn; jn� ! � p; q; j� with � pn; qn� 2 P d�jn�. It is
pn;` � 1ÿ d for all n; `, so p` � 1ÿ d for all ` 2 L; � p; q� 2 DL�J since each
� pn; qn� 2 DL�J ; and q 2 �Qd�j� by corollary 3.2.8.

Lower hemicontinuity: let jn ! j and � p; q� 2 P d�j�. From corollary
3.2.8 there is a sequence ~qn ! q with ~qn 2 �Qd�jn� for all n; also
qn � �~qn=j~qnj�jqj 2 �Qd�jn� (because �Qd�jn� is a cone), and qn ! q. Now let
� pn; qn� � � p; qn�, and notice that for every n; j� pn; qn�j � 1 and pn;` � 1ÿ d
for all ` 2 L. (

3.3 n-th stage correspondence and ®xed point

Following is the list of price spaces which will be used. As usual, T � S.

P � � p; q� 2 RL
� �RJ

� :
XL

`�1
p` �

XJ

j�1
qj � 1

( )
� DL�J

R � p 2 RL
� :

XL

`�1
p` � 1

( )
� DL

QT �j� � q 2 RJ
�� : 9 k 2 RT

�� s.t. k�a
 j�T � q � kaT
n o

(as before)

Q�j� �
\
h2H

QSh�j�(as before)

P �j� � � p; q� 2 P : q 2 Q�j�f g
P n � � p; q� 2 P : p` � 1=n; ` � 1; . . . ; Lf g
Rn � p 2 R : p` � 1=n; ` � 1; . . . ; Lf g
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Qn
T �j� � �Q

1ÿ1
n

T �j�
Qn�j� �

\
h2H

Qn
Sh�j�

P n�j� � � p; q� 2 P n : q 2 Qn�j�f g
Now ®x n. We look for a ®xed point in the space

P n � �Rn�S � f1gJ�J � �0; 1��SÿJ��J � RL�1�S�
� �RJ �RJ

� �H

of the correspondence de®ned as the product of three correspondences:

ln : RL�1�S�
� �RJ �RJ

� �H
�f1gJ�J � �0; 1��SÿJ��J ÿ! P n � �Rn�S

�~zh;n�h2H : P n � �Rn�S � f1gJ�J � �0; 1��SÿJ��J �RJ �RJ

ÿ! RL�1�S�
� �RJ �RJ

� �H

~bn : �Rn�S � f1gJ�J � �0; 1��SÿJ��J � RJ �RJÿ �H ÿ! f1gJ�J � �0; 1��SÿJ��J

Here ln is the market maker correspondence; �~zh;n�h2H is the vector of
excess demands; and ~bn is (part of) the book-keeping map. The price spaces
are of course truncated. Moreover, the domain of repayment rates is
restricted to 1 instead of �0; 1� on C; this will make excess demands well
behaved, and at the end we will check that 1 is in fact the value of the full
book-keeping map on C. Of course �RL�1�S�

� �RJ �RJ �H is not compact;
but it will be reduced to a compact set in the usual way. We now describe the
three correspondences in detail.

The market maker correspondence

Let z�s� �Ph2H zh�s�; s 2 f0; . . . ; Sgandh �Ph2H �/h ÿ wh�. An array
��zh�s��s2f0g[S , /h;wh�h2H � j is ®rst mapped into �z; h; j� 2 RL�1�S� �RJ�
f1gJ�J � �0; 1��SÿJ��J , and then into�ÿ

p�0�; q; � p�s��s2S

� 2 P n�j� � �Rn�S such that

p�0�z�0� � qh � max
� p0;q0�2P n�j�

p0z�0� � q0h

p�s�z�s� � max
p02Rn

p0z�s�; s 2 S
�
:

The correspondence P n is continuous and compact-valued by lemma
3.2.9 (the truncation was designed with the main purpose of making that
lemma hold). Hence the market maker problem is well de®ned and we can
state that:

3.3.1 Lemma The correspondence ln is nonempty- compact- convex-valued
and upper hemicontinuous (uhc).
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The book-keeping map

We de®ne ~bn �
�

1J�J
b�SÿJ��J

�
, where b � b p�s�� �s2S ;K; �/h;wh�h2H

ÿ �
is the book-

keeping map de®ned in section 2. That is, �~bn�j�s� � 1 for all j 2 J ; s 2 C for
any point in �Rn�S � f1gJ�J � �0; 1��SÿJ��J � �RJ �RJ �H , and equal to the
`true' book-keeping map for s 2 SnC.
3.3.2 Lemma ~bn is convex-valued and uhc on its domain.

Proof. Convex-valuedness follows from the de®nition. For upper hemicon-
tinuity, it su�ces to prove that b is uhc on all of �Rn�S � �0; 1�S�J�
�RJ �RJ �H .

First, i�h; s� is continuous. It is clearly so when a�s�wh > 0, i.e. when
wh > 0. Points such that wh � 0 have neighbourhoods in which Mh�s� �
a�s�wh (since p�s�eh�s� > 0), i.e. in which i�h; s� � 1, the value it takes if
wh � 0.

So bj�s� is a continuous function when
P

h2H aj�s�whj > 0, i.e. whenP
h2H whj > 0. Otherwise whj � 0, in which case bj�s� � �0; 1� hence trivially

uhc (for this purpose it was de®ned thus). (

The excess demand correspondence

To verify that �~zh;n�h2H is well behaved requires more work. We must es-
tablish the analogues of Werner's lemmas 1 and 2, with three additional
di�culties: one, the consumers' problems do not have solution for all prices
in the domain (which typically contains arbitrage prices) so we have to en-
sure that demand can be continuously extended from the domain where it is
well de®ned to the whole price space; two, ®rst period's budget sets are not
convex due to the constraint /hwh � 0; three, we have to keep track of the
states s 62 Sh for h 2 H , and be careful about the non-minimum income
condition in states s 62 [h2H Sh.

We start with period zero. For each h 2 H , the set�
p�0�; q; p�s�� �s2S ; j
ÿ � 2 P n � Rn� �S� 1f gJ�J� 0; 1� ��SÿJ��J : q 2 Qn

Sh�j�
	
;

on which h's problem surely has solution, is closed (easy consequence of
lemma 3.2.7). On this set de®ne the correspondence �nh;n;/h;n;wh;n� taking
� p�0�; q; � p�s��s2Sh ; j� to the set of solutions of CP h�� p�0�; q; � p�s��s2Sh ; j�.
We prove that, under our assumptions, on a superset of the above closed set
the solution is unique and the resulting maximum-value function is contin-
uous. Thus it will be possible to extend �nh;n;/h;n;wh;n� (continuous on a
closed subset of a compact set) continuously to all of P n � �Rn�S � f1gJ�J�
�0; 1��SÿJ��J . The extension will be the ®rst-period part of the ~zh;n map,
denoted by �~nh;n; ~/h;n; ~wh;n�. Next we consider the second period.

An h 2 H is ®xed. We write � p; q� for � p�0�; q; � p�s��s2Sh�. Actually in
period zero everything concerning agent h only depends on s 2 Sh. Some-
times we write the full vectors, to simplify notation. Preliminarily we study
the budget correspondence.
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3.3.3 Lemma (i) The correspondence � p; q; j�# Bh� p; q; j� is closed on
P � �R�Sh � �0; 1�S�J .

(ii) Under C and FR, Bh� p; q; j� is compact for all � p�0�; � p�s��s2Sh�
� 0; q 2 QSh�j� and j 2 �0; 1�S�J .

(iii) Under assumption E, the correspondence � p; q; j�# Bh� p; q; j� is lhc
on P � �R�Sh � �0; 1�S�J .

Proof. (i) is clear.
(ii) Bh� p; q; j� is clearly closed, so it su�ces to show that it is bounded.

The proof is a minor modi®cation of the argument in Werner (lemma 1(ii)).
Since q 2 QSh�j�, there exists a k such that:

k�a
 j�Sh � q � kaSh :

Now multiply the budget constraint in each state s 2 Sh by the corresponding
element of the vector k, and add over the states in the second period and over
the two periods. From the previous equation we derive that

k�a
 j�Sh/ÿ kaShw � q�/ÿ w� ;

and from this inequality it follows that the set of feasible allocations and
portfolios is bounded, by the assumptions C and FR.

(iii) Let �Bh� p; q; j� be the set obtained from Bh� p; q; j� by substituting
strict inequalities for weak ones. This set is nonempty. In fact recall that from
assumption E, eh�s� � 0 so for any p�s� 2 R � DL; p�s�eh�s� > 0. Now if
p�0� > 0, then x�0� � 0;/ � w � 0; x�s� � 0 8 s 2 Sh is in �Bh. If p�0� � 0,
then q > 0 so x�0� � 0;/ � 0; x�s� � 0 8 s 2 Sh and a w� 0 (so that qw > 0)
but so small that 8 s 2 Sh a�s�w > ÿp�s�eh�s� is a plan in �Bh.

The conclusion now follows as in Werner (lemma 1(iii)): take
� pi; qi; ji� ÿ! � p; q; j� and �x�0�; �x�s��s2Sh ;/;w� 2 �Bh� p; q; j�. The constant
sequence of actions equal to the given one is eventually in �Bh� pi; qi; ji� which
is thus lhc. Bh � cl �Bh is then lhc too. (

3.3.4 Corollary Assume C;E and FR. Then � p; q; j�# Bh� p; q; j� is a con-
tinuous correspondence for � p�0�; �p�s��s2Sh� � 0; q 2 QSh�j� and any j.

Proof. The lemma p. 33 in Hildenbrand cannot be invoked directly because
Bh is not convex-valued: we re®ne that argument. At any � p; q; j� as in the
statement Bh is lhc, so it remains to show upper hemicontinuity. By part (ii)
of the previous lemma Bh is compact-valued at these � p; q; j�, so the char-
acterization of upper hemicontinuity in Hildenbrand's Theorem 1 p. 24
applies. Bh is (nonempty and) closed, thus as in Hildenbrand p. 33 we have to
show that: if � pi; qi; ji� ÿ! � p; q; j�, any sequence vi � �xi�0�; �xi�s��s2Sh ;
/i;wi� 2 Bh� pi; qi; ji� is bounded. The proof is by contradiction along stan-
dard lines. Suppose in fact that the sequence vi is not bounded: dividing each
element in the sequence by the norm, and taking limits we ®nd a limit vector
of unit norm. Using the joint continuity (in the two variables) of the ®nite
dimensional inner product, it is immediate that the no arbitrage condition is
violated by q at j. But q 2 QSh�j�, a contradiction. Again, we are using here
the two assumptions C and FR. (
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We now turn to the demand correspondence.

3.3.5 Lemma Let �nh;/h;wh� denote the correspondence from P � �R�Sh�
�0; 1�S�J toRL�1�Sh�

� �R2J
� taking � p; q; j� to the set of solutions of CP h � p; q; j�.

Assume E;C;U ; FR. Then for any � p�0�; � p�s��s2Sh� � 0; q 2 QSh�j� and
any j, the correspondence �nh;/h;wh� is nonempty- compact-valued and uhc. If
moreover jC � 1, it is also single-valued.

Proof. From the previous corollary and the maximum theorem (Hilden-
brand p. 30) we get all except convex-valuedness. To conclude we show that
if jC � 1 the solution to the consumer's problem is unique.

Because of the constraint /w � 0 ±which, given/;w 2 RJ
�, is equivalent to

/jwj � 0 8 i 2 J±, Bh� p; q; j� is not convex. However, given �x�0�; �x�s��s2Sh ;
/;w� satisfying all the restrictions in Bh�p; q; j� except /w � 0, there is an
element �x0�0�; �x0�s��s2Sh ;/0;w0� 2 Bh with uh�x0�0�; �x0�s��s2Sh� � uh�x�0�;
�x�s��s2Sh�, for: suppose j is such that /jwj > 0, say /j > wj. Then
/0j � /j ÿ wj;w0j � 0 has the same cost and guarantees the same income or
higher in every s 2 Sh. In fact qj�/j ÿ wj� � qj�/0j ÿ w0j�; and 8s 2 Sh,

�a
 j�j�s�/j ÿ aj�s�wj � �a
 j�j�s��wj � /0j� ÿ aj�s�wj

� �a
 j�j�s�/0j � �a
 j�jx�s�/0j ÿ aj�s�w0j �for jj�s� � 1� :

Similarly if wj > /j > 0, the trade w0j � wj ÿ /j; /0j � 0 would be at least as
good.

Now suppose v � �x�0�; �x�s��s2Sh ;/;w� and v0 � �x0�0�; �x0�s��s2Sh ;/0;w0�
were two solutions to CP h�p; q; j�. If �x�0�; �x�s��s2Sh� 6� ��x0�0�; �x0�s��s2Sh�,
then by assumption U , v̂ � 1

2 �v� v0� is such that uh�x̂�0�; �x̂�s��s2Sh� >
uh�x�0�; �x�s��s2Sh�; but v̂ may fail to satisfy /̂ŵ � 0. However, taking
v00 2 Bh�p; q; j� such that uh�x00�0�; �x00�s��s2Sh� � uh�x̂�0�; �x̂�s��s2Sh� (we have
seen above how this can be done) enables to conclude that goods' demand is
unique. By monotonicity of uh, then also optimal asset returns in the states in
Sh are unique. But then assumptions C; FR, and jC � 1 imply that (since
�a
 j�C � aC is full rank and C � Sh) net asset demand /ÿ w is unique.
This and /jwj � 0 8j 2 J then imply that also / and w are unique (e.g. if
�/ÿ w�j � �/0 ÿ w0�j > 0, �/ÿ w�j � /j; �/0 ÿ w0�j � /0j). (

The set of prices and j's in the statement of this lemma contains the set on
which �nh;n;/h;n;wh;n� is de®ned, for goods' prices are all positive in P n and Rn

and by lemma 3.2.6 Qn
Sh�j� � QSh�j�. Thus �nh;n;/h;n;wh;n� can be extended to

the `pseudo-demand' �~nh;n; ~/h;n; ~wh;n�, continuous on P n � �Rn�S � f1gJ�J

��0; 1��SÿJ��J .
Now turn to the second period, h 2 H ; s 62 Sh. First the budget corre-

spondence again. We can write the budget set as

Bh
s p�s�; j�s�;/;w� �
�
n

x�s� 2 RL
� : p�s�x�s� � max 0; p�s�eh�s� � �a
 j��s�/ÿ a�s�w� 	
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3.3.6 Lemma (i) The correspondence �p�s�; j�s�;/;w�# Bh
s �p�s�; j�s�;/;w� is

closed on R� �0; 1�J �R2J
�

(ii) Bh
s �p�s�; j�s�;/;w� is compact for any p�s� � 0

(iii) The correspondence in (i) is lhc for any p�s� � 0.

Proof. (i) Let �pi�s�; ji�s�;/i;wi� ÿ! �p�s�; j�s�;/;w�, xi�s� 2 Bh
s ����i� and

xi�s� ÿ! x�s�. To show x�s� 2 Bh
s �����, with self-evident notation. Let `net

income' NI � p�s�eh�s� � �a
 j��s�/ÿ a�s�w, NIi along the sequence. If
NI < 0, for i large enough NIi < 0 so pi�s�xi�s� � 0 whence p�s�x�s� � 0 i.e.
x�s� 2 Bh

s �����. If NI > 0 eventually pi�s�xi�s� � NIi whence again from
p�s�x�s� � NI ; x�s� 2 Bh

s �����. If NI � 0; pi�s�xi�s�ÿ!0 so again p�s�x�s� �
lim pi�s�xi�s� � NI and x�s� 2 Bh

s �����.
(ii) This is clear, since we are working with RL

� as consumption set.
(iii) If in the de®nition of the budget set maxf0; �g > 0, do it the standard

way. If maxf0; �g � 0, then p�s� � 0 implies that Bh
s ��� � f0g 2 RL. Since

0 2 Bh
s ��� for any p�s�; j�s�;/;w�, the argument here is trivial (take the

constant 0 sequence). (

3.3.7 Corollary The correspondence � p�s�; j�s�;/;w�# Bh
s � p�s�; j�s�;/;w� is

continuous and compact-valued whenever p�s� � 0.

Proof. This correspondence is clearly convex-valued, so continuity follows
from the previous lemma and Hildenbrand p. 33. Compact-valuedness is also
clear. (

3.3.8 Lemma Let nh
s �s 62 Sh� be the correspondence from R� �0; 1�J �R2J

� to
RL
� taking � p�s�; j�s�;/;w� to the set of solutions of CP h� p�s�; j�s�;/;w�.
Assume U. Then nh

s is a continuous function at any � p�s�; j�s�;/;w� such
that p�s� � 0.

Proof. From the previous corollary, the maximum theorem (Hildenbrand
p. 30) and U (which gives single-valuedness) the conclusion is direct. (

We let nh;n
s be the restriction of the nh

s of the previous lemma to
Rn � �0; 1�J �R2J

� . We can now de®ne the �~zh;n�h2H -correspondence as having
components

~zh;n � ~nh;n�s� ÿ eh�s�
� �

s2f0g[Sh
; nh;n

s ÿ eh�s�ÿ �
s2SnSh ; ~/h;n; ~wh;n

� �
h 2 H :

The n-th stage ®xed point

3.3.9 Lemma For every n � 1, the correspondence de®ned as the product of ln;
�~zh;n�h2H and ~bn has a ®xed point, denoted by

pn; qn; jn; �zh
n�s�

ÿ �
s2f0g[S ;/

h
n;w

h
n�h2H

� �
(where �pn � �pn�0�; �pn�s��s2S�). Period-zero excess demand is equal to `true'
demand at the ®xed-point prices �pn; qn; jn�, i.e. for all h 2 H

zh
n�s� � eh�s�ÿ �

s2f0g[Sh ;/
h
n;w

h
n

� �
� nh;n�s�ÿ �

s2f0g[Sh ;/
h;n;wh;n

� �
pn; qn; jn� � :
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And ®nally, the ®xed point is such that, letting zn�s� �
P

h2H zh
n�s�;

s 2 f0g [ S and hn �
P

h2H �/h
n ÿ wh

n�, one has for all �p�0�; q� 2 P n �jn�; p 2 Rn,

p�0�zn�0� � qhn � 0 �1�
pzn�s� � �a
 jn��s�hn s 2 S �2�

(analogue of (1) and (2) of Werner).

Proof. Let Nh � RL�1�Sh�� �R2J
� be a compact convex superset of

the compact range of the function �~nh;n; ~/h;n; ~wh;n�, continuous on its compact
domain P n � �Rn�S� f1gJ�J � �0; 1��SÿJ��J .

Let Nh
2J be the compact projection of Nh into R2J

� ; restrict nh;n
s to Rn�

�0; 1�J � Nh
2J and denote by Nh

s � RL
� a compact superset of the range of this

restriction (continuous function on a now compact domain).
Now for each h 2 H take the product of Nh and �s62ShNh

s to get a compact
subset N

h
of RL�1�S�

� �R2J
� ; let N � �h2HN

h
; and ®nally, de®ne the restricted

product-correspondence on the convex compact set

P n � �Rn�S � f1gJ�J � �0; 1��SÿJ��J � N :

By lemmas 3,3.1, 3.3.2, 3.3.5 and 3.3.8 this correspondence is convex-,
compact-valued and uhc, hence Kakutani's theorem gives existence of a ®xed
point.

The assertion about excess demand follows from the de®nition of the
l-map, which puts prices in P n�jn� � �Rn�S where the consumers' problems
have solution.

Validity of the two equations in the ®nal part of the lemma follows from
Walras' laws, which we next state, and the market maker problem, in the
standard way. We return on this at the end of the next subsection, after
stating and proving Walras' laws. (

3.4 Walras' laws

3.4.1 Lemma Let �p; q; j� 2 P � RS � �0; 1�SJ . For period zero, one has

p�0�
X
h2H

zh�0� � q
X
h2H

hh � 0: WL�0�

Period 1, state s: assume that j�s� is a ®xed point of �BK�, or that j�s� � 1 and
s 2 \h2H Sh. Then

p�s�
X
h2H

zh�s� � �a
 j��s�
X
h2H

hh WL�s�

Proof. Period zero: Summing over h 2 H the individual restrictions in the
budget constraints gives �WL��0�.

Period 1, state s: summing over h 2 H the individual constraints (in Bh if
s 2 Sh, in Bh

s otherwise) one gets

p�s�
X
h2H

zh�s� � �a
 j��s�
X
h2H

/h ÿ
X
h2H

Mh�s� : �1�
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Observe that (since a� 0)
P

h2H aj�s�whj � 0 i� whj � 0 8 h 2 H , and that
a�s�wh � 0 i� whj � 0 8 j 2 J . Then from �BK� one has for any j 2 J

jj�s�
X
h2H

aj�s�whj �
X

fh:a�s�wh>0g

Mh�s�
a�s�wh aj�s�whj

(summation over an empty set is de®ned to be zero). The same equality holds
if j�s� � 1 and s 2 \h2H Sh, for in that case Mh�s� � a�s�wh all h 2 H . Sum-
ming over j one obtains LHS �Pj2J

P
h2H jj�s�aj�s�whj � P

h2H �a
 j�
�s�wh, and

RHS �
X
j2J

X
fh:a�s�wh>0g

Mh�s�
a�s�wh aj�s�whj �

X
fh:a�s�wh>0g

Mh�s� �
X
h2H

Mh�s�

(the last equality because a�s�wh � 0 implies Mh�s� � 0), i.e.X
h2H

Mh�s� � �a
 j��s�
X
h2H

wh �2�

Substituting into �1� gives �WL��s�. (

Observe that by de®nition of the map ~bn, �WL��0� and �WL��s� hold at the
®xed point of last subsection, for every n. Then equations �1� and �2� in
lemma 3.3.9 are direct consequences of the maximization on the part of the
market maker.

3.5 Convergence of ®xed points

At this step the objective is to ®nd a convergent subsequence of the n-th stage
®xed points. The next and last step will be to prove that limit actions and
limit prices form an equilibrium.

Since the sequence of ®xed-point prices �pn; qn; jn� is bounded, it con-
verges (along a subsequence) to a limit ��p; �q; �j�. Note that ��p�0�; �q� 2 P and
�p�s� 2 R for all s 2 S. And �jC � 1 (for �jn�C � 1 8 n�.
3.5.1 Lemma The sequence ��zh

n�s��s2f0;...;Sg;/h
n;w

h
n�h2H �n�1 converges along a

subsequence, to a limit ���zh�s��s2f0;...;Sg; �/h; �wh�h2H �. Along this subsequence
also aggregate demands converge: zn�s� ! �z�s� �Ph2H �zh�s�; s 2 f0; . . . ; Sg
and hn ! �h �Ph2H ��/h ÿ �wh�.
Proof. We start by proving that for s 2 f0; . . . ; Sg the sequence �zn�s��n�1 is
bounded. From this, convergence of a subsequence of ��zh

n�s��h2H �n�1 fol-
lows.

Recall that equations �1�; �2� of p. 21 hold for all �p�0�; q� 2
P n�jn�; p 2 Rn, where P n�jn� � f�p; q� 2 P : p` � 1=n; q 2 \h2H Qn

Sh�jn�g; and
observe that since for any d; j; T , Gd

T �1� � Gd
T �j�, then for every jn; \h2H

Qn
Sh�1� � \h2H Qn

Sh�jn�.
Fix g 2 �0; 1�. We claim that: there exist a ~q 2 RJ

� with j~qj � 1ÿ g, a
vector m and a sequence �mn�n�1 in RS

�� with mn � m for all n � 1, such that
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~q � mn�a
 jn� 2 Qn�jn� for all n :

Assuming the claim true, let ~p`�0� � g=L; ` 2 L; ~p`�s� � 1=L; ` 2 L; s 2 S
and ~q as in the claim. Then this vector of prices is in P n�jn� � �Rn�S for n
su�ciently large; hence from �1�; �2� of p. 21 we get:

~p�0�zn�0� � mn�a
 jn�hn � 0

mn
s ~p�s�zn�s� � mn�a
 jn��s�hn

and therefore ~p�0�zn�0� �
P

s2S mn
s ~p�s�zn�s� � 0 for all n. This implies

boundedness of �zn�s��n�1, since the mn
s are bounded away from zero uni-

formly in n.
Now we prove the claim: recall ®rst that jn�s� � 1 for s � 1; . . . ;C. De®ne

mn
s � ms � �

#�SnC�jaj1
; s 2 SnC

where � is to be determined and jaj1 � maxs2S;j2J aj�s�. Then Ps2SnC ms

�a
 jn��s� � �1 for every n.
De®ne ~q � a

P
s2C a�s� where a is such that a

P
j2J

P
s2C aj�s� � 1ÿ g, so

that j~qj � 1ÿ g. We claim that for n large enough ~q 2 Qn�jn�. To see this:
~q � kaC for a k� 0, hence ~q 2 QC�1� � QT �1� 8 T � C (by lemma 3.1.3), so
~q 2 Q�1� and therefore ~q 2 Qn�1� � Qn�jn� for n large.

Now choose � so that the closed ball B�~q; �� � int Co �aC; aC�. This is
clearly possible from the de®nition of ~q (and FR). Let q�n �

P
s2SnC ms�a
 jn��s�

(� �1 aswe have seen) andwrite ~q � ~qÿ q�n � q�n. For � small enough the vector
~qÿ q�n is in B�~q; �� so there exists mC � �m1; . . . ; mJ � 2 RJ

�� such that
mn

C � �~qÿ q�n�aÿ1C � mC for all n, and the claim is proved.
To ®nish the proof we show that for each h 2 H the sequence �/h

n;w
h
n�n�1

has a convergent subsequence. Given jn � 1 all n, one has for all s 2 C; n � 1;
pn�s�zh

n�s� � a�s��/h
n ÿ wh

n�, so the sequence /h
n ÿ wh

n � aÿ1C �pn �s� � zh
n�s��s2C

converges along the same subsequence where pn�s�zh
n�s� does. But /h

n;w
h
n � 0

and /h
nw

h
n � 0 for all h 2 H ; n � 1 imply that /hj

n � maxf0;/hj
n ÿ whj

n g and
whj

n � ÿminf0;/hj
n ÿ whj

n g; hence /h
n and wh

n converge too. (

3.6 The limit is an equilibrium

We start with prices.

3.6.1 Lemma As in lemma 3.3.5, let vh � �nh;/h;wh� be the correspondence
taking �p; q; j� to the set of maximizers of CP h�p; q; j�.

(i) Under assumption E, vh is closed on P � �R�S � �0; 1�J�S .
(ii) Assume E;C;U and FR. Let �pi; qi; ji� ! �p; q; j� with �ji�C � jC

� 1; pi � 0; qi 2 QSh�ji� 8 i � 1 and �p�0�; �p�s��s2Sh� 6� 0 or q 62 QSh �j�,
and let �xi�0�; �xi�s��s2Sh ;/i;wi� 2 vh�pi; qi; ji�. Then j�xi�0�; �xi

�s��s2Sh�j ÿ!1.

Proof. (i) Take �pi; qi; ji�ÿ!�p; q; j�, �xi�0�; �xi�s��s2Sh ;/i;wi� 2 vh�pi; qi;ji�
converging to �x�0�; �x�s��s2Sh ;/;w�; to show that the latter is in vh�p; q; j�.
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First, by closedness of Bh (lemma 3.3.3) it is in Bh�p; q; j�. Take now an
arbitrary point �x0�0�; �x0�s��s2Sh ;/0;w0� 2 Bh�p; q; j�. By lower hemicontinu-
ity of Bh (lemma 3.3.3) there exists a sequence �x0i�0�; �x0i�s��s2Sh ;/0i;w

0
i�

2 Bh�pi; qi; ji� which converges to �x0�0�; �x0�s��s2Sh ;/0;w0�. Since uh�xi�0�;
�xi�s��s2Sh� � uh�x0i�0�; �x0i�s��s2Sh�, by continuity of uh then uh�x�0�; �x�s��s2Sh�
� uh�x0�0�; �x0�s��s2Sh�.

(ii) Assume not. Then �xi�0�; �xi�s��s2Sh�ÿ!�x�0�; �x�s��s2Sh� along a
subsequence. For all s 2 C one has pi�s��xi�s� ÿ eh�s�� � a�s�hi (where
hi � /i ÿ wi), so aChi converges, and by FR hi converges. Since
/iwi � 0 8 i, then also �/j

i ;w
j
i � converge, say to �/;w�. By part (i) then

�x�0�; �x�s��s2Sh ;/;w� 2 vh�p; q;j�, which is impossible because
vh�p; q; j� � ;. (

3.6.2 Lemma The limit to which the (sub)sequence of n-th stage ®xed-points
converges (see the lemma of section 3.5) is such that: �q 2 Q�j�; �p�0� � 0 and
�p�s� � 0 for all s 2 [h2H Sh; and for each h 2 H ���xh�s��s2f0g[Sh ; �/h; �wh� is
solution of CP h��p; �q; �j�.
Proof. Since excess demands converge, the assertion about prices is a direct
consequence of the previous lemma and lemma 3.2.6. The other follows from
continuity of the excess demand functions at those prices (lemma 3.3.5). (

Next we derive the analogue of Werner's equations (6) and (7), which we
too will label (6) and (7), from our equations (1), (2) of p. 21.

Equation �7� follows as in Werner, for ri R � [n�1Rn:

p�s��z�s� � �a
 �j��s��h�s� 8 p�s� 2 ri R : �7�
For equation �6� we have the usual complication given by the fact that the

n-th stage price space depends on jn. First express ri P �j� conveniently:
3.6.3 Lemma ri P �j� � f�p; q� 2 ri P : q 2 ri Q�j�g
Proof. We can write P�j� � P \ �RL � Q�j��, two sets with ri's with non-
empty intersection. Then from Rockafellar 6.5 the ri of the intersection is
equal to the intersection of the ri's, which is what is claimed. (

3.6.4 Lemma If p�0�zn�0� � qhn � 0 for all �p�0�; q� 2 P n�jn�, and zn�0� !
�z�0�; hn ! �h; jn ! �j, then

p�0��z�0� � q�h � 0 8 p�0�; q� � 2 ri P ��j� �6�
Proof. It clearly su�ces to prove that if �p�0�; q� 2 ri P ��j� then for n large
enough �p�0�; q� 2 P n�jn�. Recall that Q��j� is open. Then (see the expression
of ri P ��j� above and the de®nition of P n�jn�) it is enough to show that if
q 2 Q��j� then q 2 Qn�jn� for n large.

Take ®rst any T � C. If q 2 QT ��j� and jnÿ! �j, then q 2 Qn
T �jn� for n

large. To see this: from lemma 3.2.3 and Rockafellar p. 50, q 2 QT ��j� (open)
is equivalent to q=jqj 2 ri conv GT ��j�. Since as n!1 conv G1ÿ1=n

T
�jn�ÿ! conv GT ��j�, for n large q=jqj 2 convG1ÿ1=n

T �jn�, hence q 2 cone
conv G1ÿ1=n

T �jn� � Qn
T �jn�.
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To conclude, if q 2 Q��j�, then q 2 QSh��j� for each h 2 H , hence for n
large q 2 Qn

Sh�jn�, so q 2 \h2H Qn
Sh�jn� � Qn�jn�. (

Next we show that �6� and �7� imply ���z�s��s2f0g[h2H Sh ; �h� � 0. First ob-
serve that

3.6.5 Claim �j is a ®xed point of �BK� at the limit prices and asset demands, i.e.
�jj�s� 2 bj�s� �p�s�; �j�s�; ��/h; �wh�h2H

ÿ �
j 2 J ; s 2 S :

Proof. For s 2 C, this holds because s 2 \h2H Sh and for each h 2 H asset
demands satisfy budget constraints at �p�s� so for j such that

P
h2H

�whj > 0
one has bj�s���� � 1 � �jj�s�, while for the other j's (if any) bj�s���� is arbi-
trary hence still contains �jj�s� � 1.

For s 2 SnC, jn�s� is a ®xed point of �BK� at ®xed-point prices and asset
demands �pn; qn; �/h

n;w
h
n�h2H � for all n, by de®nition of the correspondence ~bn

(� b for such s). Then the conclusion follows from convergence of n-th stage
®xed points and closedness of b. (

Therefore, also Walras laws �WL��0� and �WL��s� hold in the limit. In
period zero, this means

�p�0��z�0� � �q�h � 0 : �8�

3.6.6 Claim (As in Werner) (6) and (8) imply �z�0� � �h � 0.

Proof. We spell out the argument.
1. �6� implies p�z�0� � 0 and q�h � 0 for all �p; q� 2 ri P�j�.
Proof of this: say there is �~p; ~q� 2 ri P �j� such that ~p�z�0� > 0. Chose any

q 2 Q�j� such that jqj � 1ÿ j~pj. Then for � small enough �1ÿ�jqjj~pj ~p; �q�
2 ri P �j�, and as � ! 0

1ÿ �jqj
j~pj ~p�z�0� � �q�h ÿ! ~p

j~pj�z�0� > 0 ;

contradicting �6�. Say now ~qh > 0 for a �~p; ~q� 2 ri P �j�. Similarly to the
previous case, we reach a contradiction by ®xing p 2 ri P such that
jpj � 1ÿ j~qj and observing that as � ÿ! 0, �p�z�0� � ��1ÿ �jpj�=j~qj�~q�h
ÿ! �~q=j~qj��h > 0:

2. Then �p�0��z�0� � �q�h � 0 (this is clear from 1 and equation �8�).
3. �z�0� � 0
Proof: p�z�0� � 0 for all �p; q� 2 ri P �j� (true from 1) implies �z�0� � 0 (in

fact if for some `, �z`�0� > 0, choose � small enough, q 2 Q�j� with jqj � �; p`0
close to zero for `0 6� `; p` close to 1ÿ � with jpj � jqj � 1 to reach a con-
tradiction). Then use �p�0� � 0 and �p�0��z�0� � 0.

4. �h � 0
Proof: we know that q�h � 0 for all �p; q� 2 ri P �j�, and �q�h � 0, with

j�qj � 1ÿ j�p�0�j 2 �0; 1�. If �h 6� 0, choose q 2 Q��j� close to �q such that q�h > 0
and 0 < jqj < 1 (which we can do since Q��j� is open), and complete to a
�p; q� 2 ri P��j� such that q�h > 0: contradiction. (
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3.6.7 Claim ���z�s���s2[h2H Sh � 0.

Proof. This follows easily from the limit �WL��s�, which given �h � 0 is

�p�s��z�s� � 0 ; �9�
equation �7� and the fact that �p�s� � 0 8 s 2 [h2H Sh. (

Lastly we consider s 62 [h2H Sh, of which no one is aware. These have to be
treated separately because since nobody's actions in period zero depend on
p�s� for such s, as pn�s� goes to the boundary of R we cannot rely on ®rst
period planned demands' explosions. We will check that in the second period
there must be at least one agent for whom the non-minimum income con-
dition is satis®ed, and his demand would then explode as pn�s� goes to the
boundary.

3.6.8 Lemma For h 2 H and s 62 Sh, let nh
s denote as in lemma 3.3.8 the cor-

respondence taking �p�s�; j�s�;/;w� to the set of solutions to
CP h�p�s�; j�s�;/;w�, and assume U .

(i) Suppose �pi�s�;ji�s�;/i;wi� ÿ! �p�s�; j�s�;/;w� with pi�s� � 0 8 i;
p�s� 6� 0 and p�s�eh�s� � �a
 j��s�/ÿ a�s�w > 0. Let xi�s� 2 nh

s �pi�s�; ji�s�;
/i;wi�. Then jxi�s�j ÿ! 1.

(ii) Take s 62 [h2H Sh. Suppose � pi�s�; ji�s�;/i;wi� ÿ! � p�s�; j�s�;/;w�
with pi�s� � 0 8 i; p�s� 6� 0, j�s� ®xed point of �BK�, and

P
h2H

�/h ÿ wh� � 0. Let xi�s� 2 nh
s � pi�s�; ji�s�;/i;wi� for all h 2 H ; i � 1. Then

jPh2H xh
i �s�j ÿ! 1.

Proof. (i) is standard, e.g. Hildenbrand p. 103. For (ii), from part (i) it
su�ces to prove that under the stated hypotheses there is an h 2 H such that
p�s�eh�s� � �a
 j��s�/h ÿ a�s�wh > 0. To see this observe that maxf0; p�s�eh

�s� � �a
 j��s�/h ÿ a�s�whg � p�s�eh�s� � �a
 j��s�/h ÿMh�s�. Add over
h 2 H , plug in equation �2� of section 3.4 and use

P
h2H �/h ÿ wh� � 0. The

result is
P

h2H maxf0; �g � p�s�Ph2H eh�s� > 0. (

The use of this lemma is clear. The sequence of n-th stage ®xed points
satis®es the conditions of part (ii), hence from boundedness of �zh

n�s��h2H we
conclude that �p�s� � 0; s 62 [h2H Sh. This implies ®rst that �xh�s� solves
CP h

s ��p�s�; �j�s�; �/h; �wh�, by continuity of nh
s (lemma 3.3.8); and second, that

�z�s� � 0 also for s 62 [h2H Sh, via Walras law �9�, equation �7� and �p�s� � 0.
This, the last three claims and the last assertion of lemma 3.6.2 above

show that � �p; �q; �j� and ���xh�s��s2f0;...;Sg; �/h; �wh�h2H constitute an equilibrium.

3.7 Redundant assets

We check here that there is no loss of generality in eliminating redundant
assets. To this end we show that to each equilibrium of the reduced economy
with a 2 RS�J there corresponds an equilibrium of the original one.

Suppose �p; q; j; �xh;/h;wh�h2H � is an equilibrium of the reduced econo-
my, obtained by removing an asset aJ�1 � al; l 2 RJ . We then verify that
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the tuple �~p; ~q; ~j; �~xh; ~/h; ~wh�h2H � we now de®ne is an equilibrium of the
original economy. Let ~p � p; ~xh � xh; h 2 H ; ~jj�s� � jj�s�; j 2 J ; ~jJ�1�s� �
j�s�l; ~/hj � /hj and ~whj � whj; h 2 H ; j 2 J ; ~/h;J�1 � ~wh;J�1 � 0 for h 2 H .
Finally, since q is an equilibrium (no-arbitrage) price, we may invoke lemmas
3.1.4 (ii) and 3.1.3 to assert that for some k 2 RS

��; D 2 �a
 j; a� it is
q � kD. And we de®ne ~q � �kD; kDl�.

To see that this is an equilibrium it su�ces to show (since markets for
goods and assets obviously clear, and ~jJ�1�s� 2 �0; 1� for all s 2 S) that each
income allocation that an agent can achieve in the original economy can also
be achieved at the same cost in the reduced economy. In fact any income
allocation

a
 j; aJ�1 
 jJ�1ÿ �
/h;/h;J�1ÿ �ÿ a; aJ�1ÿ �

wh;wh;J�1ÿ �
;

which costs kD�/h ÿ wh� � kDl�/h;J�1 ÿ wh;J�1�, can be obtained at the
same cost by the portfolio /h � l/h;J�1; wh � lwh;J�1. It is immediate to
check that the cost is the same; as for the returns, one uses the equalities
~jJ�1 � jl and �a
 j�l � al
 jl.

3.8 NumeÂraire assets

The proof we have proposed for nominal assets can easily be adapted to
prove existence for the case of numeÂ raire assets. More precisely, suppose that
assets pay o� in state s in units of a ®xed commodity bundle. Let d�s�, an L
dimensional non negative vector be that bundle. Asset j hence yields a payo�
in state s equal to aj�s�kj�s�d�s�p�s�. Now observe that if assets pay o� in
each state in terms of a byndle consisting of one unit of each commodity, so
that d�s� � �1; . . . ; 1� for all s, then asset j yields aj�s�kj�s�Pl pl�s�. Simi-
larly, if one holds asset j, one has to pay aj�s�Pl pl�s� in state s. Given the
normalization we adopted, p�s� lies in the simplex. Therefore, an agent's
budget constraint in state s can be written as

p�s� xh�s� ÿ eh�s�ÿ � � �a
 k��s�Uh ÿ a�s�Wh

which is equivalent to the one with nominal assets.
Thus, our theorem also yields existence for the case of assets paying a

bundle of one unit of each good. An alternative, more general model is
possible: in this case it is possible to adapt the proof of Chae (1988) of
existence of an equilibrium in the numeÂ raire asset case to our framework; the
adaptation required is of the same nature as the one we had to do to adapt
Werner's existence proof for nominal assets.

4 Indeterminacy of asset prices

In models of equilibria with incomplete ®nancial markets where agents are
fully aware of all possible events it is well known (Cass 1984) that for any
vector of asset prices which prevents arbitrage there is an equilibrium with
that vector as the equilibrium price for the assets.
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A similar result holds in our framework, with two natural modi®cations:
®rst, the asset prices must prevent arbitrage for all agents, and, second, since
the return of assets depends on the matrix of repayment rates j, the asset
price vector must prevent arbitrage at j.

The characterization of the maximal cone of asset prices that can be
imbedded in an equilibrium might not be easy. A subset of it can be easily
determined, and this is what we do in this section. Take any vector q in the
interior of the cone generated by the rows of the matrix aC, that we denote by
cone aC. Certainly for every agent, and for every matrix j this is a no-
arbitrage price. Any such vector may be the component of an equilibrium:

4.1 Proposition For any asset price vector q 2 int cone aC there exists an
equilibrium with q as equilibrium price vector for the assets.

Sketch of Proof. The proof is of course an alternative proof of the existence
of the equilibrium, this time along the lines of Cass (1984). Since most of the
basic steps are unchanged with respect to the previous proof, we shall only
provide the main lines.

The ®rst step is to express the ®xed vector of asset prices as an appro-
priate linear combination of the asset returns, with coe�cients that may
depend on j but in such a way to remain strictly positive for any value of the
repayment rates. This has already been done as a step in the proof of lemma
3.5.1, but here is the idea again. Take the arbitrary vector q 2 int cone aC, so
that q � mCaC for a vector mC 2 RJ

��.
Now consider the function of � and j de®ned by:

U��; j� �
"

qÿ
X

s2SnC
��a
 j��s�

#
aÿ1C :

This is clearly an uniformly continuous function and U�0; j� � mC. Hence
for some �0 small enough the function U��0; �� is strictly positive. Now de®ne
the function m from j to RS

�� by j 7! m�j� � �U��0; j�; �0; . . . ; �0�; then
q � m�j��a
 j� for every j.

Notice that here again the assumption FR plays a critical role. In fact in
the construction that we have just seen it is crucial that small perturbations
of the ®xed vector q remain in int cone aC.

Since asset prices are ®xed, we may reduce the price space to the com-
ponent of the goods prices:

P � p�0�; �p�s��s2S

ÿ � 2 D�S�1�L
n o

:

Now the proof follows again two steps. First restrict the goods price space to
the subset

P n � p 2 P : p�s� � 1

n
; s 2 f0g [ S

� �
:

Consumers face the same maximisation problems as de®ned previously (with
the ®x asset price vector q), which yield goods and asset demands, the latter
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again expressed as two separate components of positive and negative hold-
ings. The book-keeping map is unchanged, while the market maker now
solves the problem:

max
p2P n

p�0�z�0� �
X
s2S

m�j; s�p�s�z�s� :

The correspondence from the restricted set of goods prices, repayment rates,
and goods and assets demands into itself has ®xed point. The corresponding
sequence of ®xed points has a limit, and this part is identical to the one
presented above. We have now only to prove that the limit is an equilibrium.

First note that at the limit values ��p�0�; ��p�s��s2S ;�z�0�; ��z�s��s2S� we have
�p�0��z�0� �

X
s2S

m��j; s��p�s��z�s� � 0 :

This follows by adding each equality of the Walras' Law, in the special form
which holds for this model, after having multiplied each of the terms for the
second period by the corresponding coe�cient of the vector m��j�, and then
cancelling terms. It is now easy to show that the excess demand of goods are
non positive. Our assumption P that endowments of all agents are strictly
positive in all states now gives a positive income for at least one agent in at
least one state, and hence limit prices are strictly positive. It now follows that
goods market clear. Now the assumption of full rank of the matrix aC and
the previous result give that asset markets also clear (this is, obviously, one of
the main ideas in Cass (1984), and does not require any special role played by
some of the consumers (the ``Mister 1'' of the Cass trick): see for instance
Du�e 1987). (

5 Comments and examples

5.1 Assumptions E;U ; FR and P

Of none of them can we say it is made `for simplicity'. Assumption E on
positive endowments can be weakened but not much, as Werner (1985) has
shown.

Assumption U gives single-valuedness of the solution of the consumers'
problems. Without that the constraint /w � 0 (of not buying and selling one
asset at the same time) poses a problem. To see this suppose there is only one
asset and that for agent h the two choices of buying it ± say �/;w� � �1; 0� ±
and selling it ± say �/;w� � �0; 1� ± are both optimal. The points of the
segment between �1; 0� and �0; 1� have coordinates both positive, so they
violate the above constraint, hence are not feasible. So in this example, where
the solution is not single-valued, the optimal-choice correspondence is not
convex-valued. Moreover, the set f�1; 0�; �0; 1�g is not even contractible. One
might believe that if �1; 0� and �0; 1� are both optimal so are �a; 0� and �0; b�
for any 0 � a; b � 1, in which case one would recover the contractible op-
timal set f�a; 0� j a 2 �0; 1�g [ f�0; b� j b 2 �0; 1�g. We have not pursued this
point. It may be mentioned that since we have strictly positive endowments,
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equilibrium exists also under weak monotonicity of utility functions. The
argument is standard (an instance of it appears in point 2 below).

Assumption FR has force because of C, for essentially by C one gets jC � 1
so �a
 j�C � aC. Without C the last equality may fail, and then non-singu-
larity of aC would be irrelevant (what matters is always a and a
 j). We will
see that C cannot be dispensed with; on the other hand in the presence of C,
we would not know how to proceed without FR (other than perturb a).

Assumption P too seems hard to dispense with, at least this is the im-
pression we have by looking at the ®rst non-existence example of section 2.1
(in which besides P , also C and FR are violated).

5.2 Existence may fail without assumption C

In the aforementioned example it is natural to think that non-existence is due
to the fact that repayment rates cannot do their job because of the zeros in a.
In the next example we see that this is not quite so: the burden placed on
repayment rates as equilibrating force may be excessive even with a� 0.
Since the example satis®es all the assumptions of the theorem except C, it
shows that the latter is to some extent `necessary' for existence. The basic
structure is as in that example, now with

a � 1 a
a 1

� �
and 0 < a < 1. There is one good per state, e1 � e2 � �1; 1; 1�, and

u1�x1�0�; x1�1�� � ln�1� x1�1�� u12�x1�2�� � ln�1� x1�2��
u2�x2�0�; x2�2�� � ln�1� x2�2�� u21�x2�1�� � ln�1� x2�1�� :

Notice that these utilities are not strictly increasing; we will make them
satisfy this condition by perturbing them. Obviously it cannot be j � 1 in
equilibrium, otherwise at any q some agent would see arbitrage; so ®nancial
markets must be active. As long as p�0� > 0, all agents would sell eh�0� and
buy assets to transfer income to period 1: but then from
p�0�0� q�/h ÿ wh� � p�0�eh�0� > 0, summing over h 2 H one would getP

h2H �/h ÿ wh� > 0, which cannot be part of an equilibrium. Hence at
equilibrium it should be p�0� � 0. Similarly, since at equilibrium it should be
j� 0, it must also be q�/h ÿ wh� � 0 for all h (q�/h ÿ wh� < 0 would be
improved upon by buying assets and transferring income to the second pe-
riod). Thus both agents must make some ®nancial trade (not null, for j must
move away from 1) which costs zero and then yields zero (no-arbitrage).
There are only two possible situations in which this can happen:

A) Agent 1 buys asset 1 from agent 2 and sells him asset 2. Notice that in
this case j2�1� � 1 for the only debtor on asset 2 is agent 1 who sees state 1,
hence there can be no default on asset 2 in state 1. Similarly j1�2� � 1. Zero
cost and yield of agent 1's trade are:

q1/
11 ÿ q2w

12 � 0 and j1�1�/11 ÿ aw12 � 0
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from which one gets j1�1� � aq1=q2. Similarly, for agent 2 from
q2/

22 ÿ q1w
21 � 0 and ÿaw21 � j2�2�/22 � 0 one has j2�2� � aq2=q1. On the

other hand, the book-keeping condition on j1�1� is

j1�1� � i�2; 1� � 1� a/22

w21
� 1

w21
� aq1

q2
:

9>Thus the restrictions imposed on j1�1� by no-arbitrage and book-keeping
are inconsistent (it would take an in®nite amount of asset 2 sold by agent 1 to
agent 2 to make them compatible); hence no equilibrium exists in which
agent 1 buys asset 1 and sell asset 2. For the sake of curiosity, it is imme-
diately checked that book-keeping forces j2�2� � i�1; 2� � 1=w12 � aq2=q1 6�
aq2=q1.

What happens here is that any given q puts restrictions on optimal ®-
nancial trades, and these generate, via book-keeping, matrices j such that
q 62 QSh�j�.

B) It is entirely analogous to check that the same phenomenon occurs in
the other possible case, where agent 1 sells asset 1 and buys asset 2. In this
case j1�1� � j2�2� � 1. Cost and revenue for agent 1 are ÿq1w

11 � q2/
12 � 0

and ÿw11 � j2�1�a/12 � 0 so j2�1� � q2=aq1. For agent 2 we have
q1/

21 ÿ q2w
22 � 0 and ÿw22� j1�2�a/21 � 0, whence j1�2� � q1=aq2. On

the other hand from book-keeping it should be

j2�1� � i�2; 1� � 1

aw22
� q2

aq1
j1�2� � i�1; 2� � 1

aw11
� q1

aq2
;

again inconsistent with the other restrictions. Conclusion: no equilibrium
exists in this economy.

In this example the utility functions of the two agents are not strictly
increasing, so the assumption U of the theorem is not satis®ed. Adding a
dependence on ®rst period consumption would complicate computations, so
we prefer to resort to an indirect argument to prove that existence may fail in
an economy where all the assumptions of the theorem except C are satis®ed.

Consider the example we have just described, but now set

u1�x1�0�; x1�1�� � �x1�0� � ln�1� x1�1��
u2�x2�0�; x2�2�� � �x2�0� � ln�1� x2�2�� :

We claim that equilibrium does not exist for some � > 0. Suppose to the
contrary that it does for all � > 0. Take a convergent subsequence of equi-
librium prices, repayment rates, allocations and portfolios as � ÿ! 0. Since
the utility functions speci®ed above converge uniformly to the function with
� � 0 on the cube between zero and the aggregate endowments, �0; 2�3, it is
easy to show that the limit point would itself be an equilibrium; a
contradiction.
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5.3 A discontinuity and a bad-equilibrium example

In the previous example, modify endowments in the unforeseen states:

e1 � �1; 1; �1� e2 � �1; �2; 1� :
Everything is as in the previous example except that from book-keeping one
now has, respectively in cases A and B:

j1�1� � �2

w21
� aq1

q2
j2�2� � �1

w12
� aq2

q1

j2�1� � �2

aw22
� q2

aq1
j1�2� � �1

aw11
� q1

aq2

so there is no equilibrium for any �1; �2 > 0. Let �1; �2 ÿ! 0 and consider the
limit economy:

e1 � �1; 1; 0� e2 � �1; 0; 1� :
Here a continuum of equilibria appear. Essentially anything will do, pro-
vided the j's go down to eliminate arbitrage.

As before it must be p�0� � 0 and the agents must engage in `useless'
®nancial trade which costs zero and gives zero revenue (useful only to es-
tablish equilibrium). Any such trade is optimal and leaves everybody with
their endowments in the foreseen states (and bankrupt in the others). Set
q1 � q2 � 1 and let agent buy asset 1 and sell asset 2, as in case A above. Pick
any positive volume of trade v > 0 and set /11 � w21 � w12 � /22 � v, which
are feasible (from q1 � q2) market clearing plans. From the same two
equations as before we now get j1�1� � a; and now from book-keeping it
must be j1�1� � �0� a/22�=w21 � a. Similarly the two restrictions for j2�2�
are consistent, and we have an equilibrium (for each v > 0).

A weakness of the model is revealed by considering the agents' positions
in the last equilibrium. Take agent 1 for example. He is getting a certain
number of units of asset 1 ± which he originally sees as yielding 1 unit of
income for sure ± by giving away the same number of units of asset 2 which
he sees as yielding only a for sure. Nonetheless he does not think he is
making any pro®t, for he correctly believes that agent 2 is making such a bad
deal that he is not going to be able to repay his debts, so in the end asset 1 is
only worth a (just as much asset 2). The model assumes that agent 1's rea-
soning goes as far as here. On the other hand, such reasoning could continue,
for agent 1 has considered only the `dark side' of agent 2's position. Indeed
he knows that agent 2 does not see state 1, for he anticipates 2 being
bankrupt there. But agent 2 must see some other states in which he is better
o� than he is in state 1 (otherwise why would he trade?). Therefore agent 1
could go on suspecting that symmetrically in such states (unforeseen by
himself ) he might end up being worse o� than he is in state 1, perhaps
bankrupt. But then he should think twice before engaging in the (useless)
®nancial trade which he accepts in the above equilibrium; more precisely he
should ®rst consider revising his state space somehow. This is beyond of the
present model's reach.
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5.4 Space revision

Let us go back to the war-energy example we started with. If all agent h can
think of is whether or not there will be war, he is by de®nition incapable of
enlarging his fW; notWg space by adding more relevant facts. However,
these facts are relevant insofar as the relevant economic variables depend on
them; and the latter ± endowments, prices and asset returns ± are certainly
well present to h's mind. To focus on asset returns, let us suppose that
endowments are constant and price expectations in one-to-one correspon-
dence with asset returns, so that the relevant state space becomes RJ

��, the
space of asset returns. Agent h starts with what may be interpreted as his
support, namely the set a�Sh� � fa�s� j s 2 Shg � RJ

��. On RJ
�� it is mean-

ingful to talk about space extension; for h does not know which other sources
of uncertainty may be at play; but he knows their possible e�ect, that is,
return vectors not in a�Sh�. The problem is now that while h had nothing to
add to fW; notWg, on RJ

�� he has too large a choice. Indeed, it is no solution
to suggest to expand a�Sh� to all of RJ

��: for the set of possible asset returns
would become unbounded, so any non-null trade would drive him bankrupt
in some states. How to expand a�Sh� to a smaller, say bounded or ®nite,
subset of RJ

�� determined by the initial a�Sh�, by what (prices) the agent
observes in the markets and by his presumption that the others are rational is
object of current research.

References

1. Arrow, K.: Le RoÃ le des Valeurs BoursieÁ res pour la ReÂ partition la Meilleure des Risques.

Econometrie 41±47 (1953); transl.: Review of Economic Studies 31, 91±96 (1964)

2. Cass, D.: Competitive Equilibria in Incomplete Financial Markets. Working Paper 84-09,

University of Pennsylvania, CARESS (1984)

3. Chae, S.: Existence of Competitive Equilibrium with Incomplete Markets. Journal of

Economic Theory 44, 179±188 (1988)

4. Dekel, E., Lipman, B., Rustichini, A.: Standard State-Space Models Prevent Unawareness.

Econometrica (forthcoming) (1997)

5. Dubey, P., Geanakoplos, J., Shubik, M.: Default and E�ciency in a General Equilibrium

Model with Incomplete Markets. Cowles Foundation Discussion Paper 879 (1988)

6. Du�e, D.: Stochastic Equilibria with Incomplete Financial Markets. Journal of Economic

Theory 41, 405±416; Corrigendum: JET 49, 384 (1989)

7. Gale, D.: The Theory of Linear Economic Models. New York: McGraw-Hill 1960

8. Grandmont, J-M.: Temporary General Equilibrium Theory. In: Arrow, K., Intriligator, M.

(eds.) Handbook of Mathematical Economics, Vol. II. Amsterdam: North-Holland 1982

9. Hildenbrand, W.: Core and Equilibria of a Large Economy. Princeton: Princeton University

Press 1974

10. Kreps, D.: Multiperiod Securities and the E�cient Allocation of Risk: a Comment on the

Black-Scholes Option Pricing Model. In: McCall, J. (eds.) The Economics of Uncertainty

and Information. Chicago: University of Chicago Press 1982

11. Magill, M. J. P., Shafer, W. J.: Incomplete Markets. In: Hildenbrand, W., Sonnenschein, H.

(eds.) Handbook of Mathematical Economics, Vol. IV. Amsterdam: North-Holland 1991

12. Modica, S., Rustichini, A.: Awareness and Partitional Information Structures. Theory and

Decision 37, 107±124 (1994a)

13. Modica, Rustichini, S., A.: Unawareness: a Formal Theory of Unforeseen Contingencies.

CORE Discussion Paper 9404 (1994b)

Unawareness and bankruptcy 291



14. Modica, Rustichini, S.,A.: Belief Dependent Utility. CentER Discussion Paper (1996)

15. Rockafellar, T.: Convex Analysis. Princeton: Princeton University Press 1970

16. Werner, J.: Equilibrium in Economies with Incomplete Financial Markets. Journal of

Economic Theory 36, 110±119 (1985)

17. Zame, W.: E�ciency and the Role of Default when Security Markets are Incomplete.

American Economic Review 83, 1142±1164 (1993)

292 S. Modica et al.


