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Abstract

This paper assesses the quantitative impact of ambiguity on historically observed finan-
cial asset returns and growth rates. The single agent, in a dynamic exchange economy,
treats the conditional uncertainty about the consumption and dividends next period
as ambiguous. We calibrate the agent’s ambiguity aversion to match only the first mo-
ment of the risk-free rate in data and measure the uncertainty each period conditional
on the actual, observed history of (U.S.) macroeconomic growth outcomes. Ambigu-
ity aversion accentuates the conditional uncertainty endogenously in a dynamic way,
depending on the history; e.g., it increases during recessions. We show the model im-
plied time series of asset returns substantially match the first and second conditional
moments of observed return dynamics. In particular, we find the time-series properties
of our model generated equity premium, which may be regarded as an index measure
of revealed uncertainty, relates closely to those of the macroeconomic uncertainty in-
dices developed recently in Jurado, Ludvigson, and Ng (2015) and Carriero, Clark, and
Marcellino (2017).

J.E.L. Codes: G12, E21, D81, C63
Keywords: Ambiguity aversion, Asset pricing, Equity premium puzzle, Time-

varying uncertainty, Uncertainty shocks.



1 Introduction

This paper seeks to assess the quantitative impact of ambiguity on financial asset
returns and prices, in particular, their dynamic paths conditioned on observed historical
growth rates. Ambiguity refers to uncertainty about the “true” probability distribution
governing future consumption and dividend outcomes. The decision maker’s ambiguity
attitude determines how and to what extent such uncertainty affects his choices. Our
goals are two-fold: to connect the macroeconomic uncertainty as it obtained on the
path of history to the movements in asset returns and prices along that path and to
assess, quantitatively, the role of ambiguity sensitivity in that connection. To serve
these goals we incorporate two components in our analysis. One, we only consider
conditional uncertainty at information sets adapted to the path of observed historical
macroeconomic growth rates, as opposed to counterfactual, simulated sample paths.
Two, our model of agent’s preferences departs from standard expected utility solely by
allowing for sensitivity to ambiguity; take that away, and the agent’s preferences reduce
to standard expected utility. These two components, together with the demonstration
that they alone are sufficient to substantially explain a range of asset return dynamics,
distinguish the contribution in this paper.

Ambiguity-averse agents are inclined to choose actions whose consequences are more
robust to the perceived ambiguity, e.g., a portfolio position whose (ex-ante) value is
relatively less affected by the uncertainty about probability distribution governing the
future payoffs.1 An important reason why ambiguity may be pervasive in economic
and financial decision making is model uncertainty. For example, a typical professional
investor may have different forecasting models for the same variable or different param-
eter estimates for the same model, all of which are plausible on the basis of historical
data. If the models make distinct (probabilistic) forecasts about key variables of inter-
est, it is natural to seek a portfolio that accounts for differences in the agent’s outcome
across the range of forecasts rather than optimizing exclusively to the forecast from a
single model as argued, e.g., in Hansen (2007).

This paper considers a standard single agent, Lucas-tree, pure-exchange economy
with two less standard assumptions. First, the agent’s belief about the consumption
and dividend process is ambiguous, i.e., in each period, he is uncertain about the
exact probability distribution governing the realization of consumption and dividends
in the following period. Furthermore, this belief is dynamic, evolving as the agent

1See Dow and Werlang (1992), Epstein and Wang (1994), Mukerji and Tallon (2001), Caballero and
Krishnamurthy (2008), Chen, Ju, and Miao (2014), Gollier (2011), Boyle, Garlappi, Uppal, and Wang
(2011), Hansen and Sargent (2010), Maccheroni, Marinacci, and Ruffino (2013) and Uhlig (2010),
inter alia .



learns from history. Second, the agent’s preferences are ambiguity-sensitive, modeled
using the smooth ambiguity model of Klibanoff, Marinacci, and Mukerji (2005, 2009)
(henceforth KMM2005, KMM2009).

The assumed source of the ambiguity in the agent’s beliefs is the occurrence of
periodic, temporary changes in the probability distribution governing next period’s
growth outcome due to the effect of the business cycle. These transient deviations are
assumed to be governed by an auto-regressive (AR(1)) latent variable. The agent is,
however, unsure about the value of the persistence parameter of the AR(1) process
since, even with a large sample of growth rates, it is difficult to distinguish the case
where the latent growth state is highly volatile but moderately persistent, from the case
where the state is less volatile but highly persistent. Uncertainty about persistence, in
turn makes it harder to estimate the evolving location of the latent variable precisely.
Furthermore, depending on the observed history, the imprecision of the estimate of the
location will vary over time, making the uncertainty about the probability distribution
governing next period’s growth vary over time.

The ambiguity-averse agent’s robustness concerns generate, endogenously, doubt
and pessimism , to use the language of Abel (2002). The portfolio choice of the
ambiguity-averse agent in the model may be understood as that of an expected utility
agent with an “as if” (probabilistic) belief that is more uncertain and pessimistic than
the one obtained by objective inference, in the standard fashion, from data. Moreover,
the endogenous accentuation of doubt depends on the observed history and the level of
ambiguity aversion, making the severity of the effect of uncertainty endogenously time-
varying . For instance, after a negative shock that follows a series of “normal” ones, the
agent behaves as if the uncertainty is more severe and more persistent than what is
implied by pure Bayesian inference (and the opposite, if it were a positive shock that
broke the normal sequence). The level of ambiguity aversion is calibrated to match
the average risk free rate (no other moment is used); all other parameters are either
inferred/estimated from the history or fixed at values widely used in the literature.

We present two kinds of results on model implied conditional moments of rates
of return and price-dividend ratio: (time–) averages of the moments over the sample
period (1978-2011) and time series of the moments over the same sample period, all
based on conditional uncertainty at information sets reconcilable with historical growth
data. This is important in models such as ours since the growth rate dynamics allow for
sufficient persistence in growth rates that predictions from equilibrium models, which
average across counterfactual growth paths, might be very different from what was
genuinely experienced by investors. We compare the level, volatility and dynamics of
the model implied rates of return and price-dividend ratio to their counterparts in U.S.
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data.
The model generated conditional equity premium is a measure of conditional macro-

economic uncertainty as revealed by the behavior of the agent in the model. We show
its time-series properties match that of the purely statistical index of macroeconomic
uncertainty, recently developed in Jurado, Ludvigson, and Ng (2015) and Carriero,
Clark, and Marcellino (2017). Our model gives a theory of why an agent makes deci-
sions following a positive shock that (endogenously) underplays the uncertainty and its
persistence, while following a negative shock, behaves as if a more severe and a more
persistent shock were in play, thus explaining a key feature of the index and related
findings of the recent literature on uncertainty shocks . In particular, the counter-
cyclical persistence of equity premium and (revealed) uncertainty speaks directly to
the mechanism of ambiguity aversion in our model.

Altogether, our contribution is to demonstrate that model/parameter uncertainty
and learning coupled with ambiguity aversion, by themselves, create a quantitatively
plausible and intuitively meaningful mechanism for explaining the relationship between
macroeconomic uncertainty and the dynamics of equity prices and returns. The time-
averaged conditional moments predicted by the model match data moments as well as
the best matches in the literature (e.g., in Collin-Dufresne, Johannes, and Lochstoer
(2016) and papers cited therein). Our more distinctive results are those on the predicted
time series of conditional moments statistics. Two key stylized facts our model matches
are the counter–cyclicality of conditional equity premium and the pro-cyclicality of
conditional (excess) return volatility. Models in the literature have found it hard to
explain these facts without introducing at least one of the following elements: (a) some
exogenously time varying uncertainty, such as, time dependent, stochastic volatility;
(b) aversion to later resolution of risk via an intertemporal elasticity of substitution
(IES) that is significantly greater than unity; (c) habit formation; all elements that are
not part of our mechanism.2 A reason to be interested in the mechanism posited in the
present paper alongside these “best performing” alternatives in the recent literature is
that the alternatives rest on assumptions that have been empirically questioned and
hence cannot be regarded as the “last word” on the subject. At the same time, the
first findings on the estimation and calibrations of ambiguity aversion in the context
of asset pricing are promising.

The route of relying on exogenously posited stochastic volatility of aggregate con-
2Bansal and Yaron (2004) incorporate (a) and (b); Campbell and Cochrane (1999) have (c); Drech-

sler (2013) incorporates model uncertainty, learning, ambiguity aversion (a) and (b); Collin-Dufresne,
Johannes, and Lochstoer (2016), model uncertainty, learning and (b); Ju and Miao (2012) and Hansen
and Sargent (2010) incorporate model uncertainty, learning, ambiguity aversion and (b). We discuss
more details of this related literature in Section 5.
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sumption has been questioned because “the evidence for heteroskedasticity in aggregate
consumption is fairly weak,”(Campbell (2000)). In a similar vein, Lettau and Ludvig-
son (2010) and Ludvigson (2012) in their surveys argue that the evidence for stochastic
volatility suggests it has neither the inter-temporal shape nor the size required for mod-
els based on stochastic volatility to fit facts about inter-temporal variation in return
moments. A more fundamental difference between stochastic volatility based asset
pricing models and ours is that in the former there is no explanation, as such, of the
variation in volatility: in those models agents are more uncertain when they believe
they are in a state where future economic shocks are assumed (exogenously) to be more
volatile. In contrast, our model gives a theory why an agent makes decisions following
a positive shock that underplays the inferred uncertainty and, after a negative shock
that follows a series of “normal” ones, behaves as if the uncertainty is more severe and
persistent, than pure Bayesian inference would suggest.

It is well documented that the empirical evidence on whether IES is greater than 1
is very mixed (see discussions, e.g., in Beeler and Campbell (2012) and Bansal, Kiku,
and Yaron (2012).) Furthermore, recently, Epstein, Farhi, and Strzalecki (2014) argue
using a calibration exercise, that the IES>1 values applied in the recent asset pricing
literature imply a very implausible premium for early resolution of uncertainty. While
we do not know of conclusive direct evidence for or against habit formation, there
is some evidence against the key underlying mechanism. Neither in data (nor in the
model in the present paper) does lagged consumption growth predict the future price-
dividend ratio, while in the habit-formation model it predicts the future price-dividend
with an R2 of over 40%.

A recent study, Gallant, Jahan-Parvar, and Liu (2015), which uses macroeconomic
and financial data to estimate the size of ambiguity aversion (as a parameter in a
consumption-based asset pricing model based on an elaborated version of the smooth
ambiguity model), finds that the estimate “suggests ample scope for ambiguity aversion”
to explain asset pricing facts. In the present paper, we conduct a calibration exercise
to argue that the size of the ambiguity aversion parameter we apply has very plausible
implications for uncertainty premia.

We view the preceding discussion about alternative models and ours as not an
argument for considering the approach taken here to be the best, but as showing that
it merits careful study and development. The rest of the paper is organized as follows.
Section 2 introduces the relevant details of smooth ambiguity preferences, describes
and analyzes the amended Lucas tree economy, assuming a general form of beliefs.
In a subsection, we describe and motivate the specific model of ambiguous beliefs we
adopt. Section 3 first outlines the numerical solution method we employ, then identifies
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the key qualitative mechanisms at work in our model and finally presents and explains
the quantitative implications of our model for asset prices and returns in the light of
the mechanisms identified. In Section 4, using a thought experiment, we show that a
decision maker with preferences and beliefs calibrated to match those of our agent’s
will demand a total uncertainty premium (for the Lucas tree) that is well within the
bounds of the amounts widely considered as plausible. Section 5 discusses the more
closely related literature. A final section concludes. The Appendix gathers several
items, including, details of parameter values used in the model, details of the model
including the specification of beliefs, how they are updated, and the formulae for rates
of return.

2 The Model

2.1 Agent’s preferences: recursive smooth ambiguity

We follow KMM2009, which develops a dynamic, recursive version of the smooth am-
biguity model in KMM2005. In KMM2009 the basis of the dynamic model is the
state space, the set of all observation paths generated by an event tree, a graph of
decision/observation nodes. The root node of the tree, s0, branches out into a set of
immediate successor nodes, s1 ≡ (s0, s1) where s1 ∈ S1, the set of possible observations
at time t = 1; and, so on. The decision maker (DM) chooses between consumption
plans f , each of which associates a payoff to a node st in the event tree. The DM is
uncertain about which stochastic process governs the probabilities on the event tree.
The domain of this uncertainty is given by a parameter space Θ 3 θ, the set of un-
observable parameters, over which the DM makes inference at each st. We denote by
πθ (st+1 | st) the probability under likelihood distribution πθ that the next observation
will be st+1, given that node st is reached. The decisions maker’s prior on Θ is denoted
by µ. KMM2009 give assumptions such that recursive smooth ambiguity preferences
over plans f at a node st are updated and represented as:

Vst (f) = u
(
f
(
st
))

+ βφ−1

[ˆ
Θ

φ

(ˆ
St+1

V(st,st+1) (f) dπθ
(
st+1|st

))
dµ
(
θ | st

)]
, (1)

where Vst (f) is a recursively defined (direct ) value function, u characterizes attitude to
risk, β is a discount factor, φ is a function characterizing the decision maker’s ambigu-
ity attitude, while µ (· | st) denotes the Bayesian posterior. A concave φ characterizes
ambiguity aversion, which is defined to be an aversion to mean preserving spreads
in the distribution over expected utility values. In general, the model does not im-
pose reduction between the second-order belief µ and the first-order probabilities πθ’s;
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reduction only applies when φ is linear, representing an ambiguity neutral Bayesian
expected utility maximizer.

Ambiguity aversion in this model is equivalent to the DM behaving as more risk
averse when choosing between bets on θ than when choosing between objective lotteries.
That is, the DM strictly prefers a lottery which yields a unit payoff with objective
probability m (and 0 with probability 1 − m) to a (same stakes) bet on an event
T ⊂ Θ, where µ (T ) = m and also strictly prefers the complementary lottery to the
bet on the complementary event.3 The behavior is exactly analogous to the modal
behavior in the Ellsberg two-urn example: preference for betting on a draw from the
urn with a known 50:50 mix over betting on a draw from the urn with unknown mix.
Hence, the second-order measure µ cannot be calibrated with a lottery; behaviorally, µ
is not treated as an objective probability. The standard interpretation is that the DM
views his belief about events such as T to be less reliable than an objective probability.

2.2 A Lucas-tree economy and Euler equations with general
beliefs

There is an infinitely-lived agent, with recursive smooth ambiguity preferences, con-
suming a single good. He can trade in a short lived risk-free asset, whose holding and
price at time t are denoted bt and P f

t respectively. There is also an asset (whose quan-
tity is normalized to 1 unit) that yields a stochastic dividend at each period, Dt. The
asset with uncertain dividend (the “risky” asset) has a price Pt at time t, and its holding
is denoted et. Consumption at time t is denoted Ct. As in Bansal and Yaron (2004)
and Campbell (1996) we will assume that dividend and consumption follow different
stochastic processes, thus departing from the original Lucas tree economy. The gap
between consumption and dividend is due to some (exogenously given) labor income
lt.4 Equilibrium will require that at each time Ct = lt +Dt.

Next, we derive Euler equations that define equilibrium prices in this economy. At
a node {Cτ , Dτ}tτ=1, let µt denote the second-order belief, on parameters in Θ defining
first-order probability distributions on immediate successors (Ct+1, Dt+1). Beliefs are
updated as a function of the observed realizations of the consumption and dividend
signals according to Bayes law. Wealth at time t+1 isWt+1 = (Pt+1+Dt+1)et+bt+lt+1,
and the budget constraint in period t is given by Ct = Wt − Ptet − P f

t bt. The agent’s
maximization problem may be described in terms of a recursive Bellman equation given

3See section D in the Appendix for details.
4It is thus equivalent to derive the stochastic process followed by Ct from the assumed processes

for Dt and lt as we do in this section or to assume directly a stochastic process for Ct and Dt, leaving
the process for lt implicit.
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by:
J(Wt, µt) = max

Ct,bt,et
u(Ct) + βφ−1[Eµt(φ(Eπθ(J(Wt+1, µt+1))))], (2)

subject to the budget constraint and the law of motion of the two “state” variables
(wealth and beliefs), where J(Wt, µt) denotes a recursively defined indirect value func-
tion (as opposed to the direct value function in eq. (1)). An equilibrium of this economy
is given by

{
(Pτ , P

f
τ , eτ , bτ , Cτ )

}∞
τ=1

such that the consumption and asset holding pro-
cesses solve the maximization program and the market clears, i.e., et = 1, bt = 0,
Ct = Dt + lt at each t. First order conditions are given by:

βΥtEµt [ξt(θ)Eπθ (u′(Ct+1))] = P f
t u
′(Ct) (3)

βΥtEµt [ξt(θ)Eπθ ((Pt+1 +Dt+1)u′(Ct+1))] = Ptu
′(Ct) (4)

where Υt = Eµt [φ′(Eπθ(J(Wt+1, µt+1)))]× (φ−1)′ [Eµt (φ(Eπθ(J(Wt+1, µt+1))))] and

ξt(θ) =
φ′(Eπθ(J(Wt+1, µt+1)))

Eµt [φ′(Eπθ(J(Wt+1, µt+1)))]
. (5)

The function ξt is a Radon–Nikodym derivative effecting a node specific change
of measure, or “distortion”, on the posterior µt, akin to martingale distortions arising
in robust control problems considered by Hansen and Sargent. The distortion is a
function of the continuation expected values obtained at successor nodes. In this
paper we assume φ(x) = − exp(−αx)/α, where the parameter α represents ambiguity
attitude. This specification simplifies the expressions significantly, since we now have
Υt = 1. It is also assumed that u(x) = x1−γ

1−γ . With these specifications, the Euler
equations are as follows:

βRf
tEµt [ξt(θ)Eπθ [exp (−γgt+1)]] = 1 (6)

βEµt [ξt(θ)Eπθ [Rt+1 exp (−γgt+1)]] = 1 (7)

⇔ βEµt

[
ξt(θ)Eπθ

[(
exp (zt+1) + 1

exp (zt)

)
exp (dt+1 − γgt+1)

]]
= 1 (8)

where zt = ln
(
Pt
Dt

)
, gt+1 = ln

(
Ct+1

Ct

)
, dt+1 = ln

(
Dt+1

Dt

)
, the logarithm of price-dividend

ratio, rates of growth of consumption and dividend, respectively, while Rf
t = 1

P ft
,

Rt+1 = Pt+1+Dt+1

Pt
denote the risk-free and risky rates of return.

Remark 1 Observe, these Euler equations look identical to ones obtained in a standard
Bayesian model except for the inclusion of the distortion function, ξt. The distortion,
in the case of ambiguity aversion, increases the (posterior) weight on likelihoods πθ
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with lower expected continuation values, Eπθ(J(Wt+1, µt+1). One could splice together
the one-period ahead predictive distributions, [ξt(θ)× µt (θ)]⊗ πθ (gt+1, dt+1), and con-
struct an overall “as if ” unconditional probability distribution over the event tree which
could be reinterpreted as coming from a Bayesian model. However, seen by itself, the
constructed as if distribution cannot be linked to the given set of likelihoods {πθ}θ∈Θ;
indeed, typically, it is not possible to obtain the constructed distribution by starting at
the initial node with a different prior µ′1 6= µ1 on Θ with µ′t, t > 1, obtained by updat-
ing in the usual way. Hence, an understanding of the role of ambiguity aversion in the
modeling exercise is that it provides a link between the subjective as if distribution and
a specification of beliefs about possible data generating the processes

(
{µt}t , {πθ}θ∈Θ

)
;

beliefs which, in principle, can be objectively reconciled with data.

Remark 2 If φ(· ) were different from an exponential, e.g., a power function, then
Υt 6= 1, in general, and hence in such a case the difference between these Euler equa-
tions and the standard set would not simply be the change of measure term ξt(θ). Thus
it is down to our choice of the specification of φ(· ) and of u(· ) that we may inter-
pret our Euler equations as arising from an agent we see in standard macro-finance
models (with the preference over consumption given by a power function who has non-
standard (though Savage-Bayes rational) beliefs which may be justified by appealing to
robustness/model uncertainty concerns. This way we can embed our model within that
standard literature and, very much in terms of that literature, motivate and explain its
point of departure and intuition. Given the specification, the point of departure is just
the non-standard beliefs that can be motivated entirely in terms of robustness concerns,
arguably very reasonable, even normatively compelling, given the model and parameter
uncertainty faced by a typical agent in the real world. Furthermore, the fact that the
(non-standard part of) beliefs is entirely shaped by the history dependent ξt(θ) is the
key that will allow us to make transparent (as will be seen in Section 3.2) the two key
mechanisms driving the results, the higher time averages and the endogenously dynamic
fluctuation of returns.

A drawback of this specification is that our value function misses a homogeneity
property; note the dependence on (Wt) in (2) and, equivalently, on (Ct) in (10). Thus,
the curse of dimensionality makes numerical analysis of the decision maker’s dynamic
programming problem more complicated. Numerically, we already have a relatively
high dimension problem. If we were to use a power function specification for ambiguity
preference, wealth in (2) and consumption level in (10) will be factored out. This
will not only reduce the dimension by 1, consumption level will drop out of all pricing
equations.

Our modeling choice reflects our belief that the two advantages of the adopted spec-
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ification in providing economic motivation and intuition, outweigh the disadvantage of
the ensuing numerical complication. Furthermore, dispensing with homogeneity, a de-
parture from standard practice, required us to be innovative with our numerical method;
these innovations might prove useful in future research.

2.3 Beliefs and how they are applied in the evaluation of the
Lucas tree

2.3.1 Description

We now describe the specific belief about the Lucas tree economy that we apply in
our analysis. It is assumed the agent believes the growth rate of consumption (gt) and
dividends (dt) are partly driven by a common latent state, xt, which evolves according
to an AR(1) process with persistence ρ. While it is assumed there is a single persistence
parameter operating through history, the agent is unsure what it is, believing there are
two possible values of the parameter, high (ρh) or low (ρl). At time t the agent puts
probability ηt on persistence being low and (1 − ηt) on persistence being high. Each
possible process is:5

xk,t+1 = ρkxk,t + σxkεxk,t+1

dk,t+1 = d̄+ ψxk,t+1 + σdkεdk,t+1 = d̄+ ψ (ρkxk,t + σxkεxk,t+1) + σdkεdk,t+1

gk,t+1 = ḡ + xk,t+1 + σgkεgk,t+1 = ḡ + ρkxk,t + σxkεxk,t+1 + σgkεgk,t+1

(9)

where (εgk,t+1, εdk,t+1, εxk,t+1)′ ∼ N (0, I), for k = l, h. We denote using, ḡ, d̄ the
long-run growth rate of consumption and dividend, respectively. The shock xk,t is
the temporary deviation from the trend (identified by the long-run growth rate). The
interpretation is that the mean of the distribution on growth is partly fixed by the
long-run trend and partly by a temporary shock to productivity due to the business
cycle. The business cycle effect on the productivity across the economy is not ob-
served directly. Though an innovation in each period, today’s business cycle shock is,
naturally, related to previous period’s shock, and, so, is modeled by a auto-regressive
latent variable. The factor ψ accounts for the empirically observed greater volatility of
dividend relative to that of consumption.6 Note, there is a different tuple of volatility
parameters (σgk , σdk , σxk) associated with each possible value of persistence, ρk.

The agent is assumed to know the values of parameters
(
ḡ, d̄, σgk , σdk , σxk , ψ

)
. The

agent observes, contemporaneously, the consumption and dividend growths. Given
xk,t, ρk and the current node {(Cτ , Dτ )}tτ=0 the probability distribution over the im-
mediate successor nodes, identified by (gt+1, dt+1), is the product of two conditionally

5When η0 = 0, the model reduces to the CASE I in Bansal and Yaron (2004).
6This modeling device was introduced in Abel (1999) and is followed widely in the finance literature

and may be interpreted as the “leverage ratio” on (expected) consumption growth.
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independent, given xk,t and ρk, Normal distributions,

gk,t+1 ∼ N
(
ḡ + ρkxk,t, σ

2
gk

+ σ2
xk

)
and dk,t+1 ∼ N

(
d̄+ ψρkxk,t, σ

2
dk

+ σ2
xk

)
.

This product distribution is the typical first-order distribution, the object πθ(· | st)
in the abstract KMM formulation, with (ρk, xk,t) playing the role of the unobserved
parameter “θ” . (Note, since the volatilities σgk , σdk , σxk may vary with k, the parameter
fixes both mean and variance.)

Thus, the domain (i.e., the support) of the second-order uncertainty at time t is an
union of two component sets, {ρlxl,t | xl,t ∈ R} ∪ {ρhxh,t | xh,t ∈ R}. The agent’s prior
belief ascribes a measure to each component set: the measure on the first component
is given by η0 ⊗ N (0, σ2

0) and that on the second by (1 − η0) ⊗ N (0, σ2
0). The agent

updates beliefs using Bayes rule, based on the history of growth realizations and the
presumption that the economy conforms to one of the two processes described in (9).
Let x̂k,t ≡ E[xk,t|gk,1, . . . , gk,t, dk,1, . . . , dk,t] denote the expectation of xk,t conditional
on the history of growth rates up to t if the beliefs were updated assuming ρ = ρk

is the data generating process. The filtered latent state corresponding to process k,
x̂k,t, is obtained by applying the (steady state) Kalman filter that takes the process
with ρ = ρk as the “true” data generating process. The agent’s posterior belief then
ascribes a measure on the first component set given by ηt⊗N (x̂l,t,Ωl) and that on the
second by (1− ηt)⊗N (x̂h,t,Ωh), where Ωk, k = l, h, denotes the steady state variance
associated with the Kalman filter based on the process with ρ = ρk and ηt shows the
posterior belief on ρl. Hence, the agent’s posterior may be summarized by the tuple,
(x̂l,t, x̂h,t, ηt).7

We now turn to the evaluation of the Lucas tree with the specified beliefs. Denote
by x̂

(i)
k,t+1, i = l, h, k = l, h, the agent’s forecast for the (one period ahead) update

using a Kalman filter which takes the model with ρ = ρk as the data generating
process, when the data is actually generated by the ρ = ρk model. Correspondingly,
η

(l)
t+1 (respectively η

(h)
t+1) is the posterior probability that the low persistence process

is the correct model when the low (high) persistence model is the data generating
process. The direct continuation value is a function of the current node but does not
distinguish between two histories which have the same current consumption and same
current belief, summarized by (x̂l,t, x̂h,t, ηt). The function is defined by the following
recursion:

V (Ct; x̂l,t, x̂h,t, ηt) = u(Ct) + βφ−1 (Vt+1, ) (10)
7See section B in the Appendix for further details about the updating.
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where

Vt+1 ≡ηtEx̂l,t

[
φ

(
Exl,t

[
V
(
Ct exp (gl,t+1) , x̂

(l)
h,t+1, x̂

(l)
l,t+1, η

(l)
t+1

)])]

+ (1− ηt)Ex̂h,t

[
φ

(
Exh,t

[
V
(
Ct exp (gh,t+1) , x̂

(h)
h,t+1, x̂

(h)
l,t+1, η

(h)
t+1

)])]
.

To see how the KMM representation is being implemented, we note the following.
The argument of a φ (·) is an expectation of the continuation value/utility at succes-
sor nodes, where the expectation Exk,t is taken with respect to the typical first-order
distribution described earlier, defined by fixing the “parameter pair” (ρk, xk,t). The
measure on (ρk, xk,t) is given by ηt,k ⊗ N (x̂k,t,Ωk) and we calculate the expectation
of the functions φ (.) by applying this measure, which corresponds to the second-order
measure µt in the KMM representation.

2.3.2 Motivation for the beliefs model and parameter choice

Hamilton (1989) pioneered the idea of modeling consumption growth as an auto-regres-
sive process, with parametric shifts occurring through Markovian transitions on latent
states. That paper also showed that the idea was a particularly good fit for the U.S.
growth experience through the improved facility of capturing the effect of business
cycles. Hence, the basic functional form of (9) with a given ρk, is a plausible starting
point for describing the beliefs of an investor for whom the key source of uncertainty
is the business cycle.

Adding uncertainty about ρk to (9) is empirically justified and improves it as a
framework for understanding and quantifying ambiguity about macroeconomic growth;
this enables (9) to encapsulate a theory of why it is difficult to precisely estimate the
probability distribution of growth, and of why and how that imprecision will vary
with history. The key is that the two uncertainties, about persistence ρk, and about
xk,t, which controls the mean of the distribution, go hand in hand: they interact and
reinforce each other to make the belief about the “true” growth distribution unreliable
and inference about it imprecise. Shephard and Harvey (1990) explains that it is
very difficult (in that it would take an inordinately long series of observations) to
determine whether the true growth process is a very persistent process where the
persistent component has a small volatility or whether it is a moderately persistent
process with a persistent component that has a large volatility. Thus, uncertainty
about the volatility of the latent variable makes the persistence parameter difficult to
estimate. Indeed, even after almost a century of data the learning, far from settling
down on one value of ρk, produces posteriors ηt that have varied continually between
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0.3 and 0.7. In turn, the uncertainty about ρk degrades the inference on the evolving
latent variable xk,t. The expectation of this variable is tracked by the Kalman filter,
but the specification of the Kalman filter is determined by the value of the persistence
parameter. Since that is not reliably known, the Kalman forecast is imprecise.

This understanding of the uncertainty described by (9) motivates how it is repre-
sented in the different parts of the KMM preference functional. Given (ρk, xk,t), the
uncertainty about the parameters of the distribution on growth is almost objective
since the other parameters fixing the distribution may be reliably estimated given this
knowledge and the run of data. On the other hand, the uncertainty about (ρk, xk,t),
though probabilistically represented, may be viewed as a deeper uncertainty, far less
reliably estimated and more variable. Thus, the former uncertainty appears as a first-
order belief in the KMM functional (i.e., “inside” the φ) whereas the latter uncertainty
is treated as a second-order uncertainty (i.e., “outside” the φ).

There are two reasons for choosing a two point support for the uncertainty about
persistence. One is computational limitation (with more than two points the number
of “state variables” in the dynamic problem that we have to solve goes beyond the state
of art capabilities, as we not only need to introduce other persistence parameters, but
also to keep track of the updated latent variable in each regime). The second is that a
two-point support is an efficient way of capturing Shephard and Harvey (1990)’s key
insight that the crucial empirical confound underlying the uncertainty is the confound
between a high persistence combined with low volatility parameters on one hand and
low persistence combined with larger volatility parameters, on the other.

We were guided in part by findings in the literature, and in part by our own empirical
investigations, in choosing the values of ρk. One substantial strand of literature (the
long run risk literature, pioneered in Bansal and Yaron (2004)) argues there is strong
justification, based on asset pricing moments, for assuming a high value of ρ. Another
strand points out that pure consumption growth data suggests a more moderate value.
It is generally agreed the estimates are quite fragile. Using annual data, we set ρh =

0.85 as the standard case (and 0.90 for robustness checks), which correspond to the
endpoints of the interval of (annualized) values suggested by this literature,8 and ρl =

0.30, motivated by studies in Beeler and Campbell (2012) and Constantinides and
8For example, Bansal and Yaron (2004) calibrate ρ for a monthly frequency which corresponds to

the .85 annualized value. We used annual series rather than monthly/quarterly to enable us to include
the Great Depression in the agent’s memory (through the time series estimates of the parameters and
evolution of η). Findings of Pohl, Schmedders, and Wilms (2015) show that price-dividend ratio is
approximately log-linear for persistence below .95. For higher level of persistence (such as for monthly
data), important non-linear effects appear. Thus our results might be missing some of these effects
that appear at higher frequency.
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Ghosh (2010).9 Our own investigations found, setting ρl = 0.3 and ρh = 0.85, ηt
is approximately 50% in 1977, the beginning of the model evaluation period, and is
consistently in the interval [0.3, 0.7] throughout the period 1978-2011, demonstrating
how difficult it is to separate the two persistence models on the basis of growth data.10

In our model, the domain of ambiguity consists of the x’s and ρ’s. It is evident
from the first line of (9) the x’s are Markovian states. So, the agent would never learn
the contemporary x and this part of the ambiguity persists even in the steady state.
However, the uncertainty about ρ will not last in steady state, the true value will be
learnt eventually. In practice, because of the problem pointed out by Shephard and
Harvey, learning does not occur fully even with long runs of data (as we see in our
sample and even in Hansen and Sargent (2010), which applies a quarterly series from
1947). Having a Markovian process for the persistence would be better to the extent
that the entire ambiguity then will persist in the steady state and our analysis would
be a full steady state analysis. However, for the moment this proves to be technically
intractable since we lose the linear updating formulation the present model allows.

The time-series parameters of the model (except for the persistence parameters
ρk, and the leverage-ratio parameter ψ) were estimated using maximum likelihood on
annual U.S. data from 1930 to 1977 (see section A in the Appendix for details about
the data set and the parameter values.) The remaining years in the data set, 1978-
2011, were used in the evaluation of the model. Our aim was to have the longest run of
data for the evaluation of the model. Parameter estimates change significantly through
the 70s because of the macroeconomic events. By starting the evaluation at 1978, the
maintained assumption that the agent behaves as if he knows the parameter values
of the model becomes more credible.11 Turning to preference parameters, in all cases
the ambiguity aversion parameter α was calibrated to produce a real risk-free rate

9Constantinides and Ghosh (2010) provide a GMM estimate (based on the years 1931-2006) of
ρ = 0.32 (see their Table 4). Though we set ρl = 0.30, (we found) values between 0.25 and 0.40 have
virtually identical posteriors (and implications for rates of returns).

10Interestingly, Bidder and Dew-Becker (2016) also provides a case for embedding the LRR model
into an ambiguity setting:

“A criticism of the long-run risk model has always been that it depends on a process for
consumption growth that is difficult to test for. We turn that idea on its head and argue
that it is the difficulty of testing for and rejecting long-run risk that actually makes it a
sensible model for investors to focus on.”

11This sample split is the benchmark split and our results everywhere in the paper are based upon
this, unless stated otherwise. Table 3 reports on the robustness of our results to alternative learning
assumptions that would be implied by splitting the sample differently. Different sample splits imply
the learning is different because the parameter estimate the agent learns is potentially different due
to being based on a different sample and furthermore, the different estimates imply different filtered
values of x and updates of η because the formula of the Kalman filter is a function of these estimates
(see equations (21) to (26).)
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of 1.5%, averaged over t = 1978, ..., 2011, which is the average observed rate in that
period. Appendix 4 discusses whether the calibrated level is plausible for an individual
agent. No other moments were used in the choice of α. Choice of the other preference
parameters follows the standard practice in the literature.

3 Implications of the model for asset returns and prices

3.1 Solution Method

We pursue the following methodology to numerically solve our model. We solve the
model using a projection method, which allows us to express asset prices as a function
of the state variables. We then evaluate the state variables at the observed exogenous
variables (the history of GDI and dividend growths), which allows us to generate a
time-series of predicted asset prices.12 Using this, we are able to match the equity
premium, the risk-free rate and the price-dividend ratio. We now give more detail on
how the solution method works.

An approximate solution to the model is obtained by using the minimum weighted
residuals method proposed by Judd (1992).We compute two approximation functions:
one for the risky rate, R, and one for the value function, V , which is required to
compute the belief distortion. Both are approximated by a parametric function of the
form

Φy(Xt) = exp

 ∑
ic,ih,i`,iη∈I

θyic,ih,i`,iηHic(ϕc(Ct))Hih(ϕh(x̂h,t))Hi`(ϕ`(x̂`,t))Hiη(ϕη(ηt))


where Xt ≡ (Ct, x̂h,t, x̂`,t, ηt) denotes the vector of state variables and y ∈ {V,R}.
We use a complete basis of orthogonal polynomials, such that the set of indices I is
defined13 by

I = {iz = 1, . . . , nz; z ∈ {C, h, `, η}|ic + ih + i` + iη 6 max(nc, nh, n`, nη)}

Because the model is not homogeneous, we could not deflate the variables, and the
support for the approximation is potentially non bounded from above. We therefore
rely on Hermite polynomials which are defined over R+. Accordingly, Hι(·) denotes
a Hermite polynomial of order ι and ϕz(·) is a strictly increasing function that maps

12Hence, we evaluate the model on the actual, observed, history. If we chose to simulate history,
we would need to present results based on simulations of two sets of histories, generated by assuming
the true persistence to be H and L , respectively.

13In our application, we use (nc, nxh
, nx`

, nη) = (5, 2, 2, 2) for the value function and
(nc, nxh

, nx`
, nη) = (3, 3, 3, 3) for the interest rate. We use 8 nodes in each dimension (4096 nodes).
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R into R. This function is used to map Hermitian nodes into values for the vector
of state variables, Xt ≡ (Ct, x̂h,t, x̂`,t, ηt).14 The parameters θy, y ∈ {V,R}, are then
determined by a minimum weighted residuals method. More precisely, θy corresponds
to the vector of parameters that solve the projection equation of the residuals15 of,
respectively, the Bellman equation, RR(θV ;Xt), and Euler equation, RR(θR, θV ;Xt)

on Hermite polynomials.16 More precisely, we solve17

〈RV (θV ;Xt)|H(Xt)〉 =

ˆ
RV (θV ;Xt)H(Xt)Ω(Xt)dXt = 0

〈RR(θR, θV ;Xt)|H(Xt)〉 =

ˆ
RR(θR, θV ;Xt)H(Xt)Ω(Xt)dXt = 0

where H(Xt) ≡ Hic(ϕh(Ct))Hih(ϕh(x̂
h
t ))Hj(ϕ`(x̂

`
t))Hk(ϕη(ηt)) with ic + ih + i` + iη 6

max(nc, nh, n`, nη) and Ω(Xt) ≡ ω(ϕh(Ct))ω(ϕh(x
h
t ))ω(ϕ`(x

`
t))ω(ϕη(ηt)) where ω(x) =

exp(−x2) is the appropriate weighting function for Hermite polynomials. This system
of equations is solved by means of a Gauss-Newton algorithm.

This problem involves computing various integrals. These integrals are approxi-
mated using a monomial approach whenever we face a multidimensional integration
problem (inner integrals in the computation of expectations and projections) and a
Gauss Hermitian quadrature approach when dealing with uni-dimensional integrals
(outer integrals in the computation of expectations).18 The number of nodes used in
the uni-dimensional quadrature method used in the outer integral involved in the com-
putation of expectations is set to 12. In the case of the multidimensional integrals, we
use a degree 5 rule for an integrand on an unbounded range weighted by a standard
normal.

We follow Judd (1992) and assess the accuracy of our approximation by looking at
the Euler equation error

E(Xt) =
u′−1(βEt+1)

Ct
− 1

Since we are mostly interested in the empirical properties of the model, we mainly
evaluate the accuracy of the solution for the data. This measure then gives us the

14We use this function in order to be able to narrow down the range of values taken by the state
variables, such that the approximation performs better when evaluated on the data. The transform
functions ϕ(·) are assumed to be linear ϕz(x) = κzx where κz, z ∈ {c, h, `, η} is a constant chosen
such that the focus of the approximation is put on values of state variables taken in the data. More
precisely, we set κc = 2.0817, κh = 40, κ` = 350 and κη = 1.

15See online appendix for more details on these residuals.
16Note that while the Bellman equation only depends on the parameters θV , the Euler equation

depends both on θR and θV , through the belief distortion. We therefore first solve the value function
approximation problem, and use the result vector of parameters θV to solve for the risky rate problem.

17It should be clear to the reader that the integral refers to a multidimensional integration problem,
as we integrate over C, xh, x` and η.

18See Judd (1998), chapter 7.
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error an agent would make by using the approximate solution for the risky rate as
a rule of thumb for deciding investing one additional dollar as asset holding. This
quantity is computed for each value of the state variables in the data. Then three
measures, formerly proposed by Judd (1992) are considered

E1 = log10(E(|E(Xt)|)), E2 = log10(E(E(Xt)
2)), and E∞ = log10(sup |E(Xt)|)

The first measure corresponds to the average absolute error, the second one corresponds
to the quadratic average of the error, while the last one reports the maximal error an
agent would make using the rule of thumb. All measures are expressed in log10 terms,
which furnishes a natural way of interpreting the accuracy measure. For instance, a
value of E1 equal to -4 indicates that an agent who uses the approximated decision
rule would make –on average– a mistake of 1 dollar for each $10000 invested in the
risky asset. These measures are evaluated using the data, and therefore outside the grid
points that are used to compute the approximation. Since our ultimate goal is to assess
the quantitative relevance of the model, we need to make sure that our approximation
performs well for the data we use. Results for both models are reported in Table 1 and
show that the approximation is accurate.

Known persistence Unknown Persistence
γ α E1 E2 E∞ α E1 E2 E∞
2.0 11.51 -4.98 -8.18 -4.52 17.75 -3.63 -5.63 -3.34
2.5 7.24 -5.54 -9.29 -5.09 11.35 -4.07 -6.50 -3.77
3.0 4.21 -8.66 -15.59 -8.05 6.65 -5.78 -9.93 -5.48

Table 1: Accuracy of the Numerical Solution: This table reports the measure of
accuracy for the Euler equation. In each case, α was set such that the model generates
a risk–free rate of 1.5%.

Let us first consider a special case of our model where ηt = 0, “known persistence”,
that is the agent acts as if he knew the persistence parameter ρ were equal to .85.
In this case, taking γ = 2 for example, an agent who uses the approximate solution
based on consumption claims would make, on average, a 1 dollar mistake for every
$95,500 invested in the assets, while the maximal error would be of the same order.
In the general case of the model, with unknown persistence, the performances of the
approximation slightly deteriorate. This accuracy loss is essentially due to the structure
of the problem. When persistence is known, the model is almost log–linear, and our
approximation performs remarkably well. In the full model, the quasi log–linearity
is lost as we have to compose probabilities of each model. Increasing the degree of
the polynomials yields some (marginal) improvements but (i) leave the results almost
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unchanged and (ii) comes at a substantial computational cost. We therefore kept the
degrees of the polynomials as they are.

3.2 Understanding the mechanism of ambiguity aversion

A good way to understand the key channels through which ambiguity aversion affects
asset returns in our model is by understanding how the distortion function, ξ, shown
in eqn (5) shapes the “as if” belief of the agent, i.e., the (probabilistic) belief which
supports the action chosen by the agent in equilibrium. We identify two main mech-
anisms. The first works through the endogenous pessimism and added doubt that
the “as if” belief embodies, at any one point in time, compared to the belief of an
agent with rational expectations based on the processes underlying the specified belief
model. The second mechanism is an endogenous accentuation of the cyclical variation
in uncertainty.

3.2.1 Endogenous pessimism and doubt

The intuition behind the first channel can be more transparently understood in the
special case of the model of beliefs where there is no uncertainty about the persistence
(e.g., η0 = 0). Under this assumption the argument (xl,t, ηt) drops out of the value
function described in (10), and the distortion is given as (suppressing “k” subscripts);19

ξt(xt | Ct, x̂t;α) ≡ exp (−α(Ext(V (Ct+1; x̂t+1))))

Ex̂t [exp (−α(Ext(V (Ct+1; x̂t+1))))]
. (11)

The effect of ξt is to create an “as if” posterior, i.e., a distorted posterior, µ̃t ≡
ξt(xt) ⊗ N(x̂t,Ω). In the case of ambiguity aversion, i.e., α > 0, it is evident from
eq. (11) that µ̃t puts relatively greater probability mass (compared to µt) on xt’s that
generate probability distributions associated with lower expected continuation values,
Ext(V (Ct+1; x̂t+1)). The distorted posterior gives rise to an “as if” conditional one-step-
ahead distribution on growth which we call the twisted (predictive) distribution

gt+1 ∼ ξt(xt)⊗N(x̂t,Ω)⊗N
(
ρxt + ḡ, σ2

x + σ2
g

)
. (12)

When ξt(xt) = 1 the formula (12) describes the belief of a Savage-Bayes rational (or,
equivalently, ambiguity neutral) agent, a useful benchmark. Such an agent, whom we
dub “Bayesian,” is uncertain about xt with belief about growth described by a mixture
of normals. The twisted distribution, on the other hand, describes the predictive “as
if” belief of an ambiguity-sensitive agent.

19Henceforth, we shall write ξt as a function of direct continuation value V (.) instead of the indirect
value, J(Wt+1, µt+1). In a single agent economy consumption is exogenously determined, and so it
is possible to solve for the continuation value at any node on the event tree without solving for the
equilibrium prices first.
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Model with known persistence

Figure 1: Beliefs and “as-if” beliefs: The agent’s “as-if” belief about the conditional
distribution of consumption growth with no uncertainty about the latent state (R.E.),
with uncertainty about the latent state but without ambiguity aversion (Bayesian)
and with ambiguity aversion about the uncertainty of the latent state (Twisted). The
distributions were computed using ρ = 0.85, and the level of consumption and latent
state as the average over 1978–2011.

Another useful benchmark is the predictive belief of an agent with “rational ex-
pectations”, narrowly defined. This distribution, N

(
ρx̂t + ḡ, σ2

x + σ2
g

)
, arises from a

posterior that is degenerate on x̂t. As Figure 1 shows, compared to the rational ex-
pectations distribution, the twisted distribution has a lower mean and a larger spread.
Abel (2002) argues that one can account for the observed equity premium and the
risk-free rate by invoking pessimism and doubt in an otherwise standard asset pricing
model. Pessimism is deemed, by Abel, as a subjective distribution on growth that is
first order stochastically dominated by the “objective” distribution; doubt, corresponds
to a subjective distribution that is a mean preserving spread of the objective distri-
bution. Evidently, an ambiguity-averse agent’s conditional (“as if”) beliefs, in effect,
incorporate endogenously both these elements while the Bayesian agent only incorpo-
rates the doubt. These observations will be the key to understanding our results on
time averages of conditional returns moments.

3.2.2 Endogenous accentuation of cyclical variation in uncertainty

To understand the second mechanism we return to the beliefs model without the re-
striction of η0 = 0. Learning about persistence leads to time-varying mixing of the two
processes through ηt. This produces a posterior predictive belief about consumption
growth which is heteroskedastic across time, even though in each process (with a given
persistence) the growth distribution is homoskedastic. The mean and variance of the
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mixture distribution on the latent state are,

x̂t =ηtx̂l,t + (1− ηt)x̂h,t, (13)

V art(xt) =ηtΩl + (1− ηt)Ωh + ηt(1− ηt)(x̂h,t − x̂l,t)2. (14)

It is as if the agent has two forecasting models. When the history is such that both
models explain that history just as well, i.e., ηt is close to 0.5 and yet their core forecasts
markedly disagree, i.e., (x̂h,t − x̂l,t)2 is large, the uncertainty, as shown by the variance,
rises. In contrast in the case with η0 = 0, what happens over time to the posterior is
that its mean x̂t may change but not its variance, ensuring a homoskedastic predictive
distribution.20

The endogenously time varying uncertainty in our model, due to learning about
the persistence, creates a potential for uncertainty shocks , sudden sharp increases in
uncertainty about consumption growth. One way an uncertainty shock can come about
is as follows. A sequence of moderately positive growth realizations, being quite con-
sistent with high and low persistent processes, brings ηt close to 1/2. If one or more
negative realizations arise after such a sequence, (x̂h,t − x̂l,t)2 increases, thus increas-
ing V art(xt). Ambiguity aversion exacerbates the time-variation of the Savage-Bayes
uncertainty by endogenously accentuating that uncertainty asymmetrically between
positive and negative shocks, creating “as if” uncertainty shocks that are far sharper
than what is reflected by the dynamics of V art(xt).

To see how, consider the following. The distorted posterior is a mixture of two
component distorted posteriors, ξkt ⊗ ηt ⊗ N (x̂k,t,Ωk) for k = h, l, where ξkt is as in
eq. (28) in Section B.1.2 in the Appendix. Let x̃k,t denote the mean of a distorted
component posterior, ξkt ⊗ N (x̂k,t,Ωk). Due to the greater persistence, the aggregate
uncertainty around x̂h,t – captured by Ωh – is larger than that around x̂l,t. Since
the distortion function is proportional to a negative exponential, it has more bite
on a distribution which has more probability mass on the left tail by whipping up
that mass even more; hence, we have x̂h,t − x̃h,t > x̂l,t − x̃l,t. Which means that
(x̂h,t − x̂l,t)2 > (x̃h,t − x̃l,t)2 when x̂h,t > x̂l,t (as would be, following a positive shock)
and (x̂h,t − x̂l,t)2 < (x̃h,t − x̃l,t)2 when x̂h,t < x̂l,t (following a negative shock). Hence,
when x̂h,t < x̂l,t, the components of the mixture yielding the “as if” posterior are
further apart compared to the components of the Bayesian posterior (and, conversely,
when x̂h,t > x̂l,t). This has two implications. One, Ṽ art(xt), the variance of the
distorted posterior21 understates that of the Bayesian posterior following a positive

20The time-varying heteroskedasticity generated endogenously in our model is a forecast uncertainty,
of beliefs, empirically driven by the history of growth outcomes and consistent with a stationary
volatility of consumption shocks.

21See section B.1.1 in the Appendix for an analytical expression.
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shock, and exaggerates it following a negative shock, making it more pronouncedly
counter-cyclical than V art(xt). Two, the distorted posterior demonstrates a significant
negative skewness compared to the Bayesian posterior in recessionary periods, but not
in good times.

The left panel in Figure 2 shows how x̂h,t and x̂l,t have moved with the business
cycle. The right panel compares the variance of the posterior and the variance of the
distorted posterior showing that the latter greatly amplifies movements in the former,
especially at downturns. Figure 2 also shows that in 1992 x̂h,t < x̂l,t while in 1999
x̂h,t > x̂l,t, though |x̂h,t − x̂l,t| were similar in these two years. Figure 3 demonstrates
how much more significant the effect of the distortion was on the posterior in the latter
year.

x̂h,t , x̂l,t, c̃t Ṽ ar(xt), V ar(xt), c̃t.

Figure 2: Explaining time-varying ambiguity:The left panel shows the filtered
latent variables assuming that the high (x̂h,t) and low (x̂l,t) persistence as the DGP.
The right panel graphs the conditional variance of the latent state variable (V art(xt))
and the “as if” conditional variance (Ṽ art(xt)). In both panels the gray line shows the
HP–filtered consumption growth, indicating the business cycle.

x
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-0.2 -0.1 0 0.1 0.2

1992

Bayesian
Distorted
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t

-0.2 -0.1 0 0.1 0.2
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Figure 3: Time-varying distortion: The two panels plot beliefs about the latent
state without ambiguity aversion (Bayesian) and with ambiguity aversion. The left
panel shows a “bad” year where x̂h,t < x̂l,t, and the right panel shows a “good” year
where x̂h,t > x̂l,t.

The following argument focused on the uncertainty about ρk offers another, and
perhaps pithier, intuition. The ambiguity-averse agent behaves as if he forecasts con-
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sumption growth putting more weight (compared to the Bayesian posterior) on the
“worst case” persistence, i.e., the ρk that minimizes the expected continuation utility.
When consumption growth is below the mean, the worst case persistence parameter
is ρh, suggesting that we will remain below the mean for a long time. In contrast,
when consumption growth is above the mean, the worse case is that the persistence is
ρl, so we revert quickly to the mean. Thus, the ambiguity-averse agent, endogenously
behaves as if the uncertainty is more persistent and severe following negative shocks
than in normal times (even though ηt ' 1/2). These insights about the asymmetric
reaction to good and bad news will be key to understanding how ambiguity aversion
affects conditional returns and their variation over time, in particular, over the business
cycle.

3.3 Comparing model implications with data

We use annual data on real per-capita consumption Ct and estimates of x̂k,t correspond-
ing to the filtration imposed by the observed history of growth of real consumption and
of real dividends to obtain a time series of model implied conditional moments of the
annual rates of return using our numerical solution technique (see section E in the Ap-
pendix.) We compute the model implied price-dividend ratio applying the relationship

Rt+1 =
exp (pt+1 − dt+1) + 1

exp (pt − dt)
exp (dt+1 − dt) (15)

where dt is taken from the historical data, Rt+1 and pt+1 are computed from the model,
and the recursion is started from the actual price-dividend ratio in 1977 (t = 0).
Throughout the exercise, the level of ambiguity aversion was calibrated so that the
average risk-free rate was 1.5%.

We present and discuss two kinds of results on model implied conditional moments
of rates of return and price-dividend ratio: averages of the moments over the sample
period, 1978-2011 in section 3.3.1, and time series (and time series properties) of the
moments over the same sample period in section 3.3.2. In section 3.3.3 we compare
the time-series of our model implied equity premium with the leading macroeconomic
uncertainty index in the literature.

3.3.1 Time averages of moments

Table 2 reports the model implied conditional moments of returns and price-dividend
ratio, time averaged over the sample period.22 The panels in Figure 4 show the compar-
ative statics of ambiguity aversion and risk aversion on the conditional rates of return.

22When trying to infer how ambiguity aversion affects returns/prices from the entries in Table 2,
bear in mind α is calibrated so that rf is equal to 1.5%. So, when γ is changed, α does too to ensure
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The model’s match of the first moments of returns is quite perfect and second moments
are predicted to a large extent.

Table 3 reports on some further robustness checks. In particular, it checks for the
consequences from alternative learning assumptions that would be implied by splitting
the sample differently. As was explained, our benchmark calculations are obtained
by splitting the 1930-2011 sample between a “learning period”, 1930-1977, where the
time-series parameters were estimated, and the remaining period where the model was
evaluated, i.e., the benchmark split is (1930-1977;1978-2011). Table 3 considers three
alternative splits: (1930-1968; 1969-2011), (1930-1959; 1960-2011), (1930-1950; 1951-
2011). In addition, the Table 3 allows for alternative pairs of values of high and low
persistence parameter. As we can see, findings on average of conditional moments of
rates of return are remarkably robust to alternative learning assumptions implied by
the different sample splits.

To help us understand these results (which were obtained numerically) we consider
analytical approximations23 for the rates of return for the case where persistence is
known, e.g., with ηt = 0. The risk-free rate is approximated as:

rft = − ln β + γg + γρx̃t −
γ2

2

(
σ2
x + σ2

g + ρ2Ṽ art(xt)
)

(16)

where x̃t is the mean of the distorted posterior at time t.
An increase in ambiguity aversion, α, decreases x̃t making the agent behave as

if he were expecting a lower endowment income in future states. Implying, a rise
in demand for the risk-free asset (a “flight to quality”, as termed by Caballero and
Krishnamurthy (2008)) driving up its equilibrium price and lowering the risk-free rate.
The accentuation of doubt, working through Ṽ art(xt) reinforces the effect. This is a
key effect of ambiguity aversion. Note, when α > 0 the term γρx̃t acts to dampen the
effect of γg, making the comparative static of γ on the risk free rate very different,
qualitatively and quantitatively, depending on whether α > 0 or α = 0, as a comparison
of the middle and right panels of Figure 4 shows. Hence, it is not possible to replicate
the effect of ambiguity aversion by turning it off and simply varying γ.

The first moment of the risky rate is approximated as

Etrt = Const1 + ρ (γ − ψ) x̃t + ψρx̂t −
ρ2

2

[
(γ − ψ)2Const2

]
Ṽ art(xt) (17)

where Et ≡ Ex̂tExt describes the conditional expectation of a Savage-Bayes rational
observer/analyst who observes these prices and uses the same information as the agent

calibration. From Table 2, if one wants to infer anything about a change in ambiguity aversion alone,
then one can compare what happens in the Bayesian case (γ = 2.5 and α = 0) with our benchmark
case (γ = 2.5, α = 11.3).

23See Appendix C for details of the derivation.
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Returns and Volatility

γ α E(r) E(r − rf ) σ(rf ) σ(r) σ(r − rf )

Data 8.08 6.68 2.20 16.5 16.1

1.0 31.5 6.61 5.08 1.20 22.2 22.2
2.0 17.8 7.36 5.85 2.58 23.0 23.0
2.5 11.3 7.97 6.46 3.29 23.55 23.6
3.0 6.65 8.66 7.14 3.96 24.17 24.2

Robustness Checks

ρh = 0.90 2.5 7.30 7.88 6.36 3.83 23.5 23.6
ρl = 0.25 2.5 11.1 7.98 6.48 3.05 23.7 23.7
ψ = 2.50 2.5 11.3 7.58 6.07 3.15 23.6 23.5
β = 0.965 2.5 13.0 9.15 7.62 3.44 23.8 23.8
β = 0.97 2.5 12.2 8.56 7.05 3.36 23.7 23.7
Bayesian 2.5 ≈ 0 7.62 0.62 1.70 23.1 23.2

Price-Dividend Ratio

γ α E(P/D) σ(P/D) E(p− d) σ(p− d) AC1 AC2

Data 45.513 19.954 3.724 0.445 0.803 0.759

1.0 31.5 29.3 4.34 3.37 0.15 0.51 0.48
2.0 17.8 32.3 5.92 3.46 0.19 0.65 0.60
2.5 11.3 44.0 14.5 3.73 0.34 0.85 0.78
3.0 6.65 52.9 22.2 3.88 0.43 0.88 0.81

Robustness Checks

ρh = 0.90 2.5 7.30 42.9 13.7 3.71 0.33 0.84 0.78
ρl = 0.25 2.5 11.1 44.3 14.8 3.74 0.35 0.85 0.78
ψ = 2.5 2.5 11.3 39.6 11.1 3.64 0.29 0.82 0.75
β = 0.965 2.5 13.0 59.9 28.1 3.98 0.49 0.89 0.82
β = 0.97 2.5 12.2 51.3 20.6 3.86 0.42 0.88 0.81
Bayesian 2.5 ≈ 0 40.0 11.5 3.65 0.30 0.82 0.75
Bayesian, β = .97 2.5 ≈ 0 46.3 16.5 3.77 0.37 0.86 0.79

Table 2: The top panel contains the average of the predicted conditional moments
of rates of return (on dividend claim) for different values of γ and calibrated α. Im-
mediately below is a series of robustness checks where the parameter in the left-most
column was changed from the basic specification (ρh = 0.85, ρl = 0.3 ψ = 3, β = 0.975),
taking γ = 2.5 as part of the baseline specification. The bottom panel contains the
time-averaged model implied price/dividend ratio statistics over the period 1978–2011.
AC1 and AC2 denote the first and second order autocorrelation of p− d.

23



Returns and Volatility

(ρl, ρh) γ α E(r) E(r − rf ) σ(rf ) σ(r) σ(r − rf )

Data 8.08 6.68 2.20 16.5 16.1

1969-2011 evaluation period
(0.30,0.85) 2.00 17.100 7.475 5.981 2.398 23.056 23.056
(0.30,0.85) 3.00 6.400 8.775 7.277 3.699 24.352 24.329
(0.30,0.85) 2.50 10.900 8.084 6.575 3.061 23.661 23.653
(0.25,0.85) 2.50 11.050 8.096 6.602 2.937 23.766 23.730
(0.30,0.90) 2.50 7.390 8.036 6.534 3.420 23.881 23.842
1960-2011 evaluation period
(0.30,0.85) 2.00 15.050 7.064 5.555 2.276 24.412 24.409
(0.30,0.85) 3.00 5.535 8.196 6.690 3.430 25.845 25.815
(0.30,0.85) 2.50 9.500 7.592 6.089 2.863 25.088 25.074
(0.25,0.85) 2.50 9.150 7.634 6.128 2.671 25.244 25.204
(0.30,0.90) 2.50 6.030 7.630 6.121 3.105 25.401 25.354
1951-2011 evaluation period
(0.30,0.85) 2.00 24.270 6.270 4.763 4.612 27.183 27.464
(0.30,0.85) 2.50 15.100 6.888 5.389 5.594 28.150 28.490
(0.30,0.85) 3.00 8.695 7.587 6.085 6.473 29.254 29.634
(0.25,0.85) 2.50 15.100 6.957 5.456 4.738 28.327 28.538
(0.30,0.90) 2.50 7.840 7.075 5.574 3.859 28.711 28.760

Table 3: Robustness of returns moments to the sample split
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Figure 4: Comparative statics : In the left panel, α varies with γ fixed at 2.5. In the
middle panel, α was fixed at 11.3 and γ varies. The average comparative statics are
constructed by first computing the comparative statics for each year using the filtered
values x̂t and then averaging across t = 1978, . . . 2011. The right panel depicts the
Bayesian case, i.e., with α ≈ 0. (The graphs correspond to our model with unknown
persistence.)
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to predict dividend at t+1. Const1 and Const2 collect terms which are constant across
time and not affected by ambiguity aversion. An increase in α has two countervailing
effects. The first effect, given by ργx̃t, was also present in the expression for the risk-
free rate; the intuition here is analogous. The second effect is in the term −ρψx̃t. As
α increases x̃t decreases, hence decreasing the (“as if”) expected future dividend payoff
from the asset causing the agent to want to pay less for the asset. With γ ≤ 3 and
ψ = 3, as we have here, the second effect dominates (very slightly) and equilibrium
risky rate varies positively (but quite minimally) with ambiguity aversion.

The approximation for the equity premium may be written as

Etrt − rft = Const3 + ψρ (x̂t − x̃t) +
ρ2

2

[
γ2 − (ψ − γ)2Const2

]
Ṽ art(xt). (18)

where we have explicitly left the two terms which are affected by ambiguity aversion,
(x̂t − x̃t) and Ṽ art(xt). The first term shows that the premium increases with ambigu-
ity aversion (the difference (x̂t− x̃t) increases when α is increased) and the magnitude
of this effect is accentuated by persistence and leverage. A doubt factor also comes
into play (principally) through its effect on the risk free rate, discussed earlier. Since,
the risk free rate is conditionally non-stochastic, the conditional volatility of equity
premium coincides with that of the risky rate. The overwhelming factor fixing the
(average) conditional volatility of risky return is the volatility of the dividend claim,
in turn determined by the volatility of the latent state multiplied by ψ and ρ.

To summarize, ambiguity aversion gets the first moment of equity premium right by
holding the risk free rate down while affecting the risky rate only very marginally. The
volatility comes from two sources, the uncertainty about the latent state accentuated
by the uncertainty about the persistence and the leverage factor.

3.3.2 Time series profiles of conditional rates of return and price-dividend
ratio

Perhaps the more distinctive results of the analysis in this paper concerns the time
series of conditional moments. These are largely driven by dynamics of the “as if”
belief explained in section 3.2.2. Figure 5 demonstrates this quite vividly in the case of
the equity premium. Studies have estimated conditional moments of equity premium
on historical data, notably Whitelaw (1994) and Lettau and Ludvigson (2010). The
former summarizes a key finding as follows (pp 526; in the quote “expected return” is
the conditional first moment of equity returns in excess of risk free rate) :

The expected return seems to reach a maximum at the trough of the
business cycle and reach a minimum before, or at, the peak of the business
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cycle. Expected returns appear to decrease during economic expansions
and increase during economic contractions. In contrast, the conditional
volatility appears to reach a maximum earlier in the business cycle, at or
slightly after the peak in the cycle, and to reach a minimum just after the
business cycle trough.

(a) known persistence (b) unknown persistence
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Figure 5: Movements in variance and model implied equity premium: Panel
(a) shows the conditional equity premium and the conditional variance of the “as-if”
posterior from the model with known persistence, ρ = 0.85. Panel (b) shows the
same as well as the variance of the undistorted posterior for the model with unknown
persistence. Vertical dashed lines indicate years featuring a recession.

Figures 5(b) and 6(a) show how well the series predicted by our model match
the above quote. Equity premium, as predicted by the model, is counter-cyclical; its
correlation with H-P filtered consumption growth is -0.59. Whitelaw (1994) estimates
the contemporaneous correlation between the first and second (conditional) moments
(of equity premium) to be -0.34; based on the data considered for this paper, which
pertains to a different time period and frequency, the correlation of the same two
statistics in our model is -0.86.

(a) Conditional Variance of (excess) Returns (b) Covt(zt+1, dt+1)
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Figure 6: The two panels depict the conditional variance of (excess) returns and
Covt(zt+1, dt+1), implied by the model, demonstrating the close link between the dy-
namics of the two. Vertical dashed lines indicate years featuring a recession.

What accounts for the pro-cyclical volatility of returns in our model? Starting from
the standard approximation for the risky rate (eqn. 33 in section C in the Appendix),
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its variance may be seen to be composed as:

V art(rt) ' κ2
1V art(zt+1) + V art(dt+1) + 2κ1Covt(zt+1, dt+1).

(In our data, κ1 = 0.98.) It turns out the time averaged variance is completely swamped
by the term V art(dt+1) (V art(rt) = 0.0555,V art(dt+1) = 0.0541 and V art(zt+1) =

1.17e− 4). However, as seen from Figure 6, the dynamics of V art(rt) are very largely
determined by Covt(zt+1, dt+1). To see an intuition why this covariance is negative
and even more so in recessionary times, note, belief about dt+1 is determined by the
Bayesian posterior, with mean x̂t, while zt+1 is guided by x̃t, the mean of the distorted
posterior. As explained in section 3.2.2, x̃t is below x̂t, and even more so and less
mean reverting (i.e., more persistent) than x̂t in recessions. Hence, in recessions there
is a bigger measure of events where dt+1 realizes above its mean while zt+1 stays below
its mean. The price-dividend ratio is function of the agent’s view of the longer term
prospects while the dividend is just the outcome in the next period; the former may
remain relatively downbeat and sluggish, especially in recessionary times, despite a
positive outcome of the latter.
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Figure 7: Returns and Price–Dividend Ratio: Panel (a) contains a plot of the
model-implied excess return along with the actual excess return. Panel (b) shows the
model-implied risk-free rate along with the actual real risk-free rate. Panel (c) contains
the actual and model implied price-dividend ratios. Panel (d) shows the time-series

of Vt(Rt+1) ≡
√
Et (Rt+1 − ERt+1)2 and stock market volatility index constructed in

Bloom (2009). For comparison purposes, both the Bloom index and Vt(Rt+1) are
normalized by their respective mean levels. So, on the vertical axis, we measure the
(signed) percentage deviations from the respective means.
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Together, the countercyclical variation of the mean and the increase in volatility
during recessions leads to countercyclical variation of the conditional Sharpe ratio,
Et(r − rf )/σt(r − rf ). The Sharpe ratio rises from the peak to the trough of every
completed business cycle in the data and in our model implied series. Lettau and Lud-
vigson (2010) investigate how leading, established asset pricing models explain this
time-series behavior of the conditional Sharpe ratio. They find that neither the Bansal
and Yaron model nor the standard model with constant relative risk aversion and time-
varying consumption volatility matches the dynamic behavior of the empirical Sharpe
ratio: the models predict a conditional Sharpe ratio that is negatively correlated with
the empirical Sharpe ratio, “because both models are linear functions of the consump-
tion volatility, which itself is negatively correlated with the Sharpe ratio for the U.S.
stock market”. The prediction of our model is very similar to Campbell and Cochrane’s
Habits model, it has the right shape over time and in relation to business cycles but
amplitudes are less pronounced than in data. However, different from Campbell and
Cochrane, ours has a lower and more realistic autocorrelation.

While equity premium is not directly observed, we do observe the realized risky
rate, risk free rate, the realized excess return (the difference between the two) and the
price-dividend ratio. Figure 7 plots these and the corresponding series implied by the
model (each point shows the value of the variable forecast by the model at a date given
the information set at that date).24 This sets out a stark, stiff test for the model. The
predictions are evidently good, especially for returns but reasonably good too for the
price-dividend ratio. The correlation of the realized risky rate and excess return with
x̂t is -0.08 and -0.1 in data compared to -0.07 and -0.21, respectively, in the model
prediction. The instantaneous correlation between R and (p−d) is positive in the data
(0.54) and in the model 0.66. The correlation of the linearly detrended (in logs), HP-
filtered (in logs) and unfiltered predicted price-dividend ratio and the correspondingly
treated price-dividend observed in data are 0.67, 0.77 and 0.83, respectively. However,
the prediction does not match the data in the period between 1995 and 2000 which
corresponds to the dot-com bubble (see, e.g., Kraay and Ventura (2007)). This is only
to be expected in our model, where prices are determined in general equilibrium entirely
based on the stochastic evolution of real output. In this respect, it is significant that
the predicted price-dividend returns to the actual path following the collapse of the
bubble.

Panel (d) of Figure 7 plots the model implied times series of the (square root of)
conditional expectation of the deviation of the rate of return from its unconditional25

24The fact that we use annual data inevitably makes the time alignment across variables rather
imperfect, which needs to be taken into account when reading the graphs.

25More precisely, the unconditional mean ERt+1 ≡ T−1
∑T
t=1Rt, where Rt is as implied by the
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mean. One may consider this a measure of variability of risky returns and as shown, it
is a good match with Bloom (2009)’s measure of stock market volatility (the correlation
between the two is 0.38).

Excess returns tend to mean revert over long horizons. Applying a statistic used in
the literature (see, e.g. Guvenen (2009)) that aggregates consecutive autocorrelation
coefficients of excess returns from the U.S. data in our 1978-2011 sample, we find a
strong pattern of mean reversion, shown in the second row in Table 4. The third row
displays the model counterparts of this measure of mean reversion, which are consistent
with the signs and rough magnitudes of these statistics in the data. Such mean reversion
is a clear departure from the martingale hypothesis of returns and is sometimes linked
to the predictability of returns. Table 5 allows a comparison, between the data and
the model implications, of coefficients from predictive regressions of annual returns
on lagged price-dividend ratio. The estimated coefficients match sign and while the
model implied coefficients are smaller they are within the 95% confidence interval of
the corresponding estimates in the data.26

Cumulative Autocorrelation

Lag, in years 1 2 3 4 5

Data -0.16 -0.30 -0.32 -0.79 -0.33
Model implied returns -0.54 -0.35 -0.58 -0.76 -0.52

Table 4: Mean reversion of returns:Autocorrelation structure of excess returns
in the data and as implied by the model (baseline specification). The cumulative
autocorrelation is defined as

(∑j
i=1 Corrl((Rt −Rf

t ), (Rt−i −Rf
t−i))

)
.

Thus there is suggestive but not strong evidence of stock return predictability by
p − d ratio in our model. However, it is worth noting that stock return predictability
is not always visible in subsamples (see Goyal and Welch (2008)). As Koijen and
Van Nieuwerburgh (2011), p.8, remarks, “significant instability over time (. . . ) in
other words, for thirty year sample ending in between 1965-1995, there was evidence
for stock return predictability but this evidence disappeared after 1995. It was absent
for pre-war period as well.” Nevertheless, a significant part of the literature gives return
predictability a status of stylized fact (see Cochrane (1999) and Cochrane (2008) who
argue it’s hard to make sense of the time series properties otherwise.) We take the

model given the observed history growth outcomes up to t.
26The estimates of coefficients from model implied values are fragile since the nature of the exercise

limits us to historical sample points and hence very few observations. In the literature, predictability
regressions are typically run on data obtained from model simulations; Beeler and Campbell (2012),
e.g., use a million such data points.

29



view, given the short period of model evaluation, it is difficult for the model to really
address stock return predictability.

We turn now to some other indicators that shed light on the question whether
the model implies the right variation in expected stock returns and expected dividend
growth rates. Too little persistence in the p− d ratio is usually taken as a sign of too
little variation in expected stock returns. However, as shown in Table 6 the model
implied p− d has a high persistence that matches the data very well. Does the model
generate too much predictability in dividend growth rates by the p− d ratio? Table 7
reports results of running a regression of dividend growth on the lagged p− d ratio at
various horizons and compares the outcomes to the data, and demonstrates, if anything,
the model implications have slightly less predictability than in the data. Consistent
with this lack of dividend growth predictability is the evidence from a Campbell-Shiller
variance decomposition that the estimate of proportion of variation in model implied
p − d explained by variation in dividend is about as much as it is in data (for an 8-
year horizon, along our sampled history, in the model it is 21% and in the data 29%,
approximately). However, the evidence is not conclusive because the standard errors
of the estimates are quite high. Relatedly, as shown in Table 7, consumption growth
too is unpredictable in data and in our model, unlike in the Bansal and Yaron (2004)
model, for example, which implies significant predictability of consumption growth by
price-dividend ratios. This excess predictability, which has been seen as a weakness of
long-run risk models (see Beeler and Campbell (2012)), is not present when there is
uncertainty about the persistence parameter and learning. Finally, as Table 8 shows,
price-dividend ratio is not predicted by consumption growth, neither in data nor in
our model, drawing a sharp distinction with the implication of habit formation models
(e.g., Campbell and Cochrane (1999)) where consumption growth strongly predicts
price-dividend ratio.

3.3.3 Equity premium and macro-uncertainty measures

In this section we show one more way to assess the model’s performance in matching
historical data. The model implied equity premium is the conditional expectation of
the model implied return of a share of the equity in excess of the (model implied) risk
free return. The risk free return may be understood as the return under the assump-
tion the asset delivers the conditionally expected (or, the forecasted) payoff for sure .
The premium is the compensation for the uncertainty that the equity may deliver a
payoff different from what is forecasted, hence a compensation for possible forecast
error. Since the taste parameters (e.g., attitudes toward time and uncertainty) have
been held fixed across time in the model, we may interpret the movements in equity
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∑N
n=1 rt+n = θ0 + θp(p− d)t + εt+n

Data Model

N θp 95% C.I. θp

3 -0.56 [-1.30;0.18] -0.07
5 -1.03 [-2.03;-0.02] -0.14

Note: standard errors are robust to heteroskedasticity and autocorrelation.

Table 5: Predictability Regression Coefficients (1978–2011): The table reports
coefficients from predictive regressions of annual returns on lagged price-dividend ratios
over the sample period, 1978-2011, in the data and in the time-series implied by the
model. The third column shows the 95% confidence interval on the estimated regression
coefficient.

P/D in Level P/D in Logs.

k 1 2 4 1 2 4

Data 0.84 0.76 0.58 0.80 0.76 0.64
Model 0.82 0.72 0.59 0.85 0.78 0.66

Table 6: Price/Dividend Ratio, autocorrelation

Dividend Growth Consumption Growth

Data Model Data Model

k R2 p-value R2 p-value R2 p-value R2 p-value

Price/Dividend in Logs.
1 0.19 0.0096 0.09 0.0911 0.06 0.1558 0.00 0.8484
2 0.55 0.0000 0.29 0.0050 0.11 0.1509 0.00 0.9608
4 0.57 0.0000 0.35 0.0108 0.28 0.0404 0.14 0.3212
8 0.69 0.0001 0.52 0.0092 0.54 0.0059 0.30 0.2675

Price/Dividend in Levels
1 0.15 0.0215 0.09 0.0875 0.07 0.1302 0.00 0.9598
2 0.46 0.0001 0.21 0.0258 0.13 0.1111 0.01 0.9156
4 0.48 0.0006 0.26 0.0602 0.22 0.1152 0.13 0.3828
8 0.61 0.0011 0.54 0.0062 0.53 0.0074 0.36 0.1343

Table 7: Predictability Regressions: This table reports the R2 and the p-value of
the global significance test of the regression yt = α0 +

∑k
i=1 αiPDt−i, y = d, g, where

H0 : αi = 0 ∀i = 1 . . . k. PDt−i is the i-th lag of the price dividend ratio.
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Data Model

L p-val. R2 p-val. R2

1 0.5432 0.01 0.3394 0.03
2 0.8190 0.01 0.5921 0.03
4 0.9493 0.02 0.7784 0.06
8 0.9968 0.04 0.9675 0.08

Table 8: Price-Dividend Ratio and Backward Consumption Growth: This
table reports results for the regression (p − d)t+1 = α0 +

∑L
j=1 αjgt+1−j + ut+1. p-

val denotes the p-value associated to the joint significance test of H0 : αj = 0 for
j = 1 . . . L. Predictability is rejected at any lag.

premium to be driven by coincident movements in the perceived macroeconomic un-
certainty. Thus, the model generated conditional equity premium is an index measure
of the conditional macroeconomic uncertainty revealed by equilibrium behavior, the
perceived uncertainty. Thus, how well the model predicted historical perceived uncer-
tainty matches actual indices of such uncertainty available in the literature presents a
test of the model.

Jurado, Ludvigson, and Ng (2015) (henceforth JLN) construct an index of macroe-
conomic uncertainty by averaging the (conditional) uncertainty of the forecast errors
of 132 variables selected to represent broad categories of macroeconomic time series:
ranging from real output, employment, real retail, labor compensation, price indexes
to financial market indexes. The conditional uncertainty in each variable is a moment
measure: the conditional volatility of the unforecastable component of the future value
of the series, with the property that if the conditional expectation of the squared error
in forecasting the future value rises, uncertainty in the variable increases. The av-
erage of these uncertainties captures the common variation in uncertainty across the
many series, and hence the macro-uncertainty. Note, since the measure accounts for
the endogenous economic response to uncertainty (of endogenous price and quantity
variables) it is a measure of perceived uncertainty. Hence, it is comparable to our com-
puted equity premium, which is also a measure of endogenous perceived uncertainty
revealed through equilibrium asset prices. Actually, in footnote 2, JLN speculate that
their measure could be a result of Knightian uncertainty, “in which agents are uncertain
about the probability distribution itself”.

As panels (a) and (b) of Figure 8 shows, JLN’s conjecture is largely vindicated since
the JLN index and our model implied conditional equity premium are closely related:
the correlation is 0.58 for both levels and differences.27 Contrastingly, the conditional

27The JLN uncertainty measure is available monthly, whereas our conditional equity premium is an
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JLN’s Uncertainty index (12 month, avg)
(a) Levels (b) Differences

CCM’s Macro-Uncertainty index
(c) Levels (d) Differences

1980 1985 1990 1995 2000 2005 2010
-0.5

0

0.5

1

1980 1985 1990 1995 2000 2005 2010
-1

-0.5

0

0.5

1

Uncertainty index , Model’s equity premium.

Figure 8: Comparing time-series (levels in panels (a) and (c) and differences in panel (b)
and (d)) of Model implied Equity Premium and Uncertainty Indices. For comparison
purposes, both the uncertainty index and the equity premium are normalized by their
respective mean levels. So, on the vertical axes, we measure the (signed) percentage
deviations from the respective means. The (dashed) vertical bars indicate years with
at least one NBER declared recession episode.
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Persistence in years p-value Level of
w/ recession w/o recession Test Significance

(1) (2) (1)-(2)

Model Cond. Eqty. Prm. 0.90 0.64 0.007 99%
(0.16;5.12) (0.13;5.12)

JLN Uncertainty index 0.95 0.56 0.15 85%
(0.20;4.77) (0.16;3.46)

Bayes case Eq Prm (α ' 0) 0.66 0.67 0.83 –
(0.14;4.82) (0.14;4.80)

Table 9: Counter-cyclical Persistence: Columns 2 and 3 show estimates, corre-
sponding to the time-series indicated in column 1, of the AR(1) parameter and between
parenthesis its standard deviation and the associated Student-t statistic in years with
and without recessionary episodes, respectively; the final columns show the p–value of
the test for statistical significance of the difference in estimates in columns 2 and 3 and
the associated level of significance. The final row of the table shows these numbers for
the series obtained from the model with ambiguity neutrality (i.e., α ' 0).

equity premium implied by the Bayesian case (i.e., by setting α ' 0) yields correlations
of −0.02 and 0.11, for levels and differences, respectively. We have already noted the
pronounced counter-cyclicality of the model implied conditional equity premium (a
correlation of -0.61 with the Kalman filtered latent variable). The JLN index is similarly
counter-cyclical, with a correlation of -0.60 with the filtered value of our latent variable.
Another salient feature is persistence: both series are persistent but the persistence is
significantly greater in years with recessionary episodes , as the numbers reported in
the first two rows of Table 9 show. The final row of the table shows, in contrast, that
the model generated conditional equity premium in the Bayesian case demonstrates no
significant difference in persistence across the business cycle.

Figure 9 demonstrates the close dynamic relationship between price dividend ratio
and the JLN uncertainty index both in the data and in the model implied series. The
interpretation of the graphs is simple. For example, a high uncertainty today (i.e.,
high JLNt, t = 0) is foreshadowed in a lower price dividend ratio with a lead of up to
three periods ((p − d)t+k, k = 0,−1,−2,−3); and, it depresses prices with a lag of up
to 6 periods (k = 1, ..., 6). However, prices are not adversely affected by anticipation
of uncertainty at horizons of four and more years, both in our model and in the data.

JLN emphasize in their concluding remarks that the key features of macroeconomic

annual measure. We compare the equity premium to the trailing 12 month average of the monthly
JLN measure. This is done to facilitate a more realistic alignment of when data is made available to
market participants. However, the adjustment is far from perfect. Our equity premium variable, by
construction, is based on the annual GDP growth report, and hence effectively shows the uncertainty
lagged by about a year. This is worth bearing in mind when looking at the graphs.
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Figure 9: Dynamic Correlations of (log) Price/Dividend ratio with JLN Uncertainty
Index
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Note: The graphs report the correlations corr(JLNt, (p − d)t+k), for k = −8, . . . , 8, where
JLNt is the JLN uncertainty index and (p− d)t+k is the log of the price/dividend ratio (in
data and model implied) evaluated at various leads and lags.

uncertainty are its counter-cyclicality and its persistence during recessions. These two
features speak directly to the mechanism at work in our model. As we showed, the
Bayesian uncertainty does increase, if minimally, following a shock; but that increase
is symmetric with respect to the sign of shock. It is ambiguity aversion that is respon-
sible for the asymmetric behavioral response to good and bad news and for increasing
the (“as if”) belief on high persistence in recessionary periods, the key mechanism in
our model. Could these features obtain in a model with stochastic volatility but no
ambiguity aversion? As discussed earlier, investigations have shown that the evident
consumption volatility in data has neither the right variation over time nor the size
needed to explain the observed time variation in equity premium and the Sharpe ratio.

Carriero, Clark, and Marcellino (2017) (CCM henceforth) construct a measure of
macro-uncertainty based on a large vector autoregression with stochastic volatility
driven by common factors representing macroeconomic uncertainty. The index reflects
changes in both the conditional mean and volatility of the variables. An advantage
of this approach over JLN is that, the authors argue, it reduces the risk of biases
and endogeneity problems stemming from measurement errors and omitted variables.
As panels (c) and (d) of Figure 8 show, compared to the JLN measure this index
and our model implied conditional equity premium are even more closely related: the
correlation is 0.73. both in levels and in differences.

Recently, Orlik and Veldkamp (2014) have constructed a measure of macroeconomic
uncertainty which also comes with a theory why such uncertainty is more countercycli-
cal than stochastic volatility alone. In their model the agent does not know the true
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distribution of macroeconomic outcomes, but estimates its parameters in the way of
a Bayesian econometrician using real time (GDP) data. They measure uncertainty as
the conditional standard deviation of GDP growth, which captures uncertainty about
the distributions’ estimated parameters. When the forecasting model admits only
normally-distributed outcomes, they find small, acyclical changes in uncertainty. But
when the forecasting model is enlarged in a specific way, so that agents also estimate pa-
rameters that regulate skewness, uncertainty fluctuations become more pronouncedly
counter-cyclical. However, they find the uncertainty diminishes secularly and signifi-
cantly due to the learning of the parameters. To rectify this they add an exogenously
specified stochastic volatility component which, like in Bansal and Yaron (2004), has a
persistence that is independent of the business cycle. They report that their measure
has a correlation of 0.31 with the JLN uncertainty index (recall, for our model this
correlation is 0.58).

4 Assessing the calibrated value of ambiguity aver-
sion

Here we discuss a way of assessing the plausibility of the calibrated levels of ambiguity
aversion in terms of implied individual (as opposed to market) behavior.

In standard analysis of the equity premium question, the value of (relative) risk
aversion parameter is motivated by using a thought experiment; the typical question
being how much an agent would pay to avoid a given risk. Arguably, neither the
question nor the intuitive answer refers to the expected utility model, or any formal
model of decision making for that matter. We now consider as a thought experiment the
implied uncertainty premium of an individual investor with preferences and dynamic
belief evaluating a Lucas tree prospect, precisely like the agent in our model. We find
the investor is willing to pay an overall uncertainty premium (a sum of the risk premium
and the ambiguity premium) that is well within the bounds of what is regarded as
intuitively plausible per the standard intuition and analysis.

Our thought experiment consists of an offer at time t to our Lucas economy agent,
with preference parameters (γ, α, β), to replace the uncertain consumption prospect he
faces with a fixed consumption in each period, now and for ever. Define the consump-
tion certainty equivalent , c? (γ, α, β; ct), to be the c? that makes the agent indifferent,
given information at t, between the plan (c?, c?, c?, ...) and his endowed stochastic con-
sumption plan (ct, ct+1, ...). Hence, c? (γ, α = 0, β; ct) is the certainty equivalent for the
Bayesian agent and c? (γ = 0, α = 0, β; ct) is the discounted expected sum. The risk
premium is R(γ, 0, β; ct) ≡ c? (0, 0, β; ct)− c? (γ, 0, β; ct), and the ambiguity premium
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is A(γ, α, β; ct) ≡ c? (γ, 0, β; ct)− c? (γ, α, β; ct). Then, the total uncertainty premium
paid by our agent with preference parameters (γ, α, β) is given by

U (γ, α, β; ct) ≡ R(γ, α, β; ct) +A(γ, α, β; ct) ,

hence, when α = 0, U (γ, , β; ct) = R(γ, , β; ct).

β = 0.975 β = 0.965

γ 2.0 2.5 3.0 2.5
α 17.75 11.35 6.65 13.00
γ? (γ, α, β) 3.48706 3.51019 3.52078 3.76367

Table 10: Uncertainty premia in the thought experiment: We report the time-
average of γ? (γ, α, β; ct) computed at each t on the sample path.

Finally, define γ? (γ, α, β; ct), to be the value of the relative risk aversion parameter
which solves the following equation:

R (γ?, α = , β; ct) = U(γ, α, β; ct)⇔ c? (γ?, 0, β; ct) = c? (γ, α, β; ct). (19)

On the left hand side of the first equality in (19) we have, effectively, the uncertainty
premium of an ambiguity neutral agent facing the same uncertain prospect as the am-
biguity averse agent whose total premium is shown on the right. Table 10 reports
calculations with γ = 2, 2.5, 3 and α set to the corresponding calibrated values used in
our model. Hence, our agent is calibrated to pay as much uncertainty premium (in to-
tal ) as a standard expected utility agent with relative risk aversion around 3.5. Almost
every equity premium study in the literature considers this amount of uncertainty pre-
mium very much within the range of plausibility in the context of a financial economy
(Mehra and Prescott (1985), e.g., had argued on this basis that γ 6 10 was plausible).
In this sense, the calibrated uncertainty attitude parameters, taken together , make a
plausible preference configuration for an individual DM in a financial economy.

The fact that our ambiguity averse agent is paying the same overall uncertainty
premium as an expected utility maximizer with risk aversion 3.5 may seem odd given
how large the average model implied equity premium we find. Note however, that the
(conditional) equity premium is calculated, as is standard, by taking the expectation of
risky rate (implied by the model) with respect to the posterior predictive distribution,
as a Savage-Bayes ambiguity neutral outside observer would evaluate it. If we were
to compute Er − rf as our ambiguity averse agent would, it would be much smaller
given the pessimism of his evaluation functional. Thus the equity premium the agent
perceives he is paying is consistent with the uncertainty premium values implied by
the values of γ? in the Table 10.
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5 Related literature

We describe next how the analysis here relates to other explanations in the litera-
ture (of the observed behavior of equity premium) based on aggregate uncertainty in
representative agent frameworks.

Bansal and Yaron (2004) pioneered the use of the (basic) model of beliefs we apply
to show how long run risk (LRR) and aversion to such risk (while allowing a Kreps
and Porteus (1978)/Epstein and Zin (1989)/Weil (1989) like separation of IES from
risk aversion) could explain aspects of the observed equity premium. The changes we
introduce are: (1) letting the belief about the latent state be the full Bayes posterior,
instead of degenerate, probability-one-belief on the filtered state; (2) letting the agent
be uncertain about the value of the persistence parameter; (3) letting the agent prefer-
ences treat (1) and (2) as ambiguity without separation of IES from risk aversion. We
show these changes are sufficient to yield a model of beliefs where the (endogenously
accentuated) uncertainty varies enough over time, without resorting to an exogenously
specified stochastic volatility. Bansal and Yaron’s Case II model assumes an exoge-
nous stochastic volatility. In our model notice the volatilities, σxk , σdk , σgk , are different
conditional on the value of persistence, ρk. Our agent is agnostic about the value of per-
sistence and never puts probability one on either value, k = h, l. However, as has been
explained in Section 3.2.2, depending on history, and because of ambiguity aversion,
the agent amplifies the posterior probability mass on one or the other value, there-
fore creating an endogenously accentuated stochastic volatility, that is, the uncertainty
about the value of σs are accentuated endogenously.

In Hansen and Sargent (2010), countercyclical risk prices are driven by a repre-
sentative investor’s robust model averaging and a preference for early resolution of
uncertainty. The investor carries along two difficult-to-distinguish models of consump-
tion growth, one asserting i.i.d. log consumption growth, the other asserting that the
growth in log consumption is a process with a slowly moving conditional mean. The in-
vestor uses observations on consumption growth to update a Bayesian prior over these
two models, starting from an initial prior probability of .5. Each period, the agent
expresses his specification distrust by pessimistically exponentially twisting a poste-
rior over the two baseline models. That leads the investor to interpret good news as
temporary and bad news as persistent, causing him to put countercyclical uncertainty
components into the equilibrium price of risk.

Our framework is inspired by Hansen and Sargent (2010). Where we depart is the
role of ambiguity in the driving mechanism and in the quantitative match obtained.
Their agent believes the economy evolves according to a model like we have here but
processes belief differently, by applying two “risk-sensitivity operators”. The first op-
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erator, which may be interpreted as a Kreps and Porteus (1978) style preference for
earlier resolution of risk, applies to the evaluation (of the consumption plan) condi-
tional on each of the two values of ρ. The other operator may be interpreted as a
KMM2005 style smooth ambiguity aversion transformation where the agent’s second
order uncertainty is a two point (Bernoulli) belief, where each point in the support is
the conditional evaluation given a ρ. Hence, while uncertainty about the two values
of ρ is treated as ambiguity, the uncertainty about the latent state, given ρ, is not
processed as ambiguity, unlike in our model. Thus the results they obtain have their
origin both in ambiguity aversion and an IES>1.28

Ju and Miao (2012) use a modified smooth ambiguity framework to assess the effect
of ambiguity on dynamics of asset prices. In the model of beliefs there the latent state
variable driving the (mean) growth rate in the economy may take only two possible
values. The preference model also incorporates an IES effect, in addition to ambiguity
aversion, with the IES parameter set at 1.5. They produce statistics on unconditional
moments of returns and prices, by averaging across simulated, counter-factual paths,
which match data well. They also report, using graphs, model implied conditional
returns and prices along the observed, historical sample path; here, their model is
evidently less successful. As panel B in their Figure 3 shows, throughout the post-war
period the (second-order) belief has been almost completely stuck (virtually Dirac) on
the same latent (high-growth) state. Hence, the results we obtain about predicted time
series of moments of conditional returns (even counter-cyclical equity premium) could
not be obtained in their model if actual history were applied.29

The part of Collin-Dufresne, Johannes, and Lochstoer (2016) most closely related to
ours applies model/parameter uncertainty and Bayesian learning in a framework where
the beliefs about the growth process is anchored to an uncertainty about whether the
true process is LRR or i.i.d. They show that even a small probability of the LRR
model being the true model leads to significant increase in the risk premium compared
to the case in which consumption growth is known to be i.i.d. They also show that
this uncertainty creates counter-cyclical fluctuations in the equity premium. However,

28We implemented, on our data set, an amended version their preference model with simply the
second (KMM style) operator on the two point belief but excluding the other, Krep-Porteus style
operator. We find the predicted time-averaged equity premium (conditional on actual history) is
about 0.6% and that the conditional equity premium has a negative correlation with the JLN index.

29Recently, Strzalecki (2013) has shown that it is theoretically possible that recursive ambiguity
frameworks have some preference for early resolution inseparably mixed in with ambiguity aversion
–see also Bidder and Dew-Becker (2016) who argue that having two layers of uncertainty, as we do, is
similar to introducing Epstein-Zin type of preferences. Compared to the model in the present paper
what is different about the preferences in Ju and Miao (2012) and Hansen and Sargent (2010) is that
those include separate components explicitly adding preference for early resolution above and beyond
what may be already mixed in with ambiguity aversion.
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as we underlined in the introduction, the driving force in the agent’s preferences is an
IES>1 (they consider values 1.5 and 2, together with a relative risk aversion of 10).
The mechanism at work is thus different from ours, as ambiguity aversion plays no
role in their model. Drechsler (2013) introduces ambiguity aversion alongside model
uncertainty and an IES>1. He obtains good matches of time average returns moments.
He uses a maxmin approach in which the set of priors, that represents uncertainty,
varies over time in an exogenous way calibrated to an uncertainty index. Bidder and
Dew-Becker (2016) is similar, in that they model ambiguity aversion using a worst case
scenario, à la Gilboa and Schmeidler’s maxmin expected utility model. The worst case
model is literally the homoskedastic version of Bansal and Yaron’s (2004) long-run risk
model. They also apply an Epstein and Zin style IES effect, in addition to ambiguity
aversion.

Veronesi (1999) constructs and theoretically analyzes a dynamic, rational expec-
tations, expected utility representative agent model of asset pricing where beliefs are
based on two hidden states (each specifying a mean growth rate) and shows that it
implies time-varying expected returns and prices. However, it is a theoretical exercise
and does not show what actual values and magnitudes are implied along information
paths based on observed history. David and Veronesi (2013) studies time varying un-
certainty but not the equity premium per se. In their model, agents must learn which
regime the economy is in through signals about growth and inflation. The learning
mechanism relies on (possibly small) money illusion. Gollier (2011) shows analytically,
using a (static) smooth ambiguity model, that an increase in ambiguity aversion may
not, in general, increase the equity premium, thereby making a good case for empirical
investigation of the question. Abel (2002), Cecchetti, Lam, and Nelson (2000), Gior-
dani and Soderlind (2006), Jouini and Napp (2006), show that exogenously introducing
pessimism and doubt in beliefs can generate a realistic equity premium and risk-free
rate. Our results are driven by similar elements of pessimism and doubt, but in our
framework these arise endogenously. Barro (2006), and Weitzman (2007) show that
rare risks and/or heavy tails may contribute to the large equity premium and low risk-
free rate observed in the data. Our contribution focuses on “common” uncertainty near
the current growth rate rather than on “rare” uncertainty, and so is easier to relate
to observed consumption data. Constantinides (1990) and Campbell and Cochrane
(1999) study models with habits in consumption which can match the level, variation
and counter-cyclicality of the equity premia. Habits effectively allow the risk aversion
to vary endogenously over the business cycle. The crucial difference to our paper is
that we have constant aversion (to ambiguity and risk) but our agent faces time-varying
uncertainty and it is variation in that uncertainty, rather than variation in the aversion

40



to it, which causes the returns and premia to vary.

6 Concluding remarks

Our model applied uncertainty and learning about persistent hidden states describ-
ing the cyclical component, and about the level of persistence; treating both these
uncertainties as ambiguous and incorporating a level of ambiguity aversion calibrated
to match the average risk-free rate. The uncertainty and learning compatible with
a Bayesian agent (but not with rational expectations), explain quite substantially the
average volatility of returns and prices, and also the level of risky rate. Ambiguity aver-
sion was important in explaining the levels of risk free rate and equity premium, and
for shaping the dynamics of all the variables, especially the first and second moments
(conditional) equity premium through the channel of an endogenously accentuated “as
if” uncertainty.

Our results show that observed levels and movements of moments of asset returns
can be explained on the basis of aggregate macroeconomic risk, conditional on the
actual history of aggregate output growth reports. That both first and second mo-
ments of conditional excess returns have the cyclical properties that match the data
is a significant finding. As was the finding that the model implied conditional equity
premium matches the time series properties of the JLN macroeconomic uncertainty
index, thereby giving a theory of uncertainty shocks and the counter cyclical nature
of their severity and persistence. Thus, consistent with JLN’s conjecture, we do find
that Knightian uncertainty can provide a good explanation of dynamics of macroeco-
nomic uncertainty. Finally, it is worth appreciating the minimality of the departure
from expected utility that was sufficient to capture so many aspects of returns data.
These observations are very suggestive of the potential for this approach in domains of
macro-finance research where effects of endogenously time-varying uncertainty are of
interest.

In terms of future work, an interesting next step would be to replace the exchange
economy with a production economy. Such a model would allow us to explore at least
two important issues. First, it would allow us to understand the effect of ambiguity
on output decisions (rather than just asset prices). Secondly, in turn, this would
shed light on how uncertainty shocks, when they are endogenously accentuated by
ambiguity aversion, contribute to the business cycle properties of the economy (see
Backus, Ferriere, and Zin (2015) for a first discussion of these issues.)
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A Data and estimation of parameters of the stochas-
tic models

Equity returns are computed using the CRSP value-weighted index. Dividend growth
is imputed using the difference in the returns on the value-weighted index with and
without dividends multiplied by the market value. The risk-free rate was taken from
Ken French’s data library. Consumption is defined as the sum of services and non-
durable consumption and was taken from BEA Table 1.1. Population was taken from
BEA Table 2.2. Both per-capita consumption growth and dividend growth were con-
verted to real terms using the average CPI for the year taken from the BLS. Annual
data was available from 1930 until 2011, a total of 82 observations.

Turning to preference parameters, in all cases the ambiguity aversion parameter α
was calibrated to produce a real risk-free rate of 1.5%, averaged over t = 1978, ..., 2011,
which is the average observed rate in that period. No other moments were used in
the choice of α. The relative risk aversion parameter γ was allowed to range between
1 (log utility) and 3, regarded as plausible in macroeconomic models (Ljungqvist and
Sargent, 2004, pg. 426); the “baseline” calibration set γ = 2.5.30 The discount factor
β was set to 0.975, which corresponds to the discount rate used in BY. To check for
robustness we varied a number of the key non-estimated parameters, including ρ = 0.9,
β ∈ {.965, .97, .98} and ψ = 2.5.

The long-run risk model was fit to annual data using maximum likelihood. Param-
eter estimates are shown in Table 11. All parameters, except ρ and ψ were estimated
using data 1930–1977. The mean of consumption and dividends, ḡ and d̄, respectively
were set to their values in the period 1930 – 1977. The variances of the latent state
process, consumption growth and dividend growth were estimated using the Kalman
Filter. The dividend leverage parameter, ψ, was set to 3 as in BY, although Constan-
tinides and Ghosh (2010) estimated it to be slightly lower, close to the value we use
for robustness checks (ψ = 2.5).

B Details of the model

B.1 Beliefs and the direct value function

The agent believes that the stochastic evolution of the economy follows a persistent
latent state process given by a BY type specification with either a low persistence (ρl)

30If the two smooth ambiguity preferences do not share the same risk attitude it is not necessarily
true that a more concave φ means more ambiguity aversion. Hence α is meaningfully calibrated given
a value of γ; not independent of γ.
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ψ = 3 ψ = 2.5
Parameter ρ = .25 ρ = .3 ρ = .85 ρ = .9 ρ = .3 ρ = .85

ḡ 1.92
(0.302)

1.92
(0.302)

1.92
(0.302)

1.92
(0.302)

1.92
(0.302)

1.92
(0.302)

d̄ 2.31
(2.21)

2.31
(2.21)

2.31
(2.21)

2.31
(2.21)

2.02
(2.21)

2.02
(2.21)

σ2
g 0.048

(0.016)
0.046
(0.016)

0.025
(0.010)

0.020
(0.007)

0.047
(0.017)

0.026
(0.008)

σ2
d 4.49

(0.893)
4.51

(0.892)
4.75

(0.909)
4.73

(0.902)
4.64

(0.914)
4.81

(0.918)

σ2
x 0.054

(0.013)
0.054
(0.013)

0.051
(0.019)

0.059
(0.021)

0.054
(0.013)

0.050
(0.021)

Table 11: Parameter estimates (standard errors below in parentheses) using annual
data and the long-run risk model, shown above, using data from 1930 until 1977. All
variance estimates and their standard errors have been multiplied by 100.

or a high persistence (ρh), but does not know for sure which. That is, he believes ei-
ther of the models described in equation (9) represent the true data generating process.
Define x̂k,t ≡ E[xk,t|gk,1, . . . , gk,t, dk,1, . . . , dk,t], k = l, h, to denote the filtered x at time
t conditional on the observed history of growth rates (of consumption and dividend), if
the history were interpreted and beliefs updated using a Kalman filter which takes the
model with ρ = ρk as the data generating process. At any node on the growth path,
at a time t, the agent’s beliefs may be summarized by the tuple (x̂l,t, x̂h,t, ηt), where
the first two elements show the beliefs about the latent state variable conditional on
alternative assumptions about the true data generating process (low or high persis-
tence, respectively) while the last element shows the posterior belief that the true data
generating process is the low persistence model. We denote by x̂(i)

k,t+1, i = l, h, k = l, h,

the agent’s forecast for the (one period ahead) update to his belief about the filtered x
if the growth outcome next period (along with the previous history) were interpreted
using a Kalman filter which takes the model with ρ = ρk as the data generating pro-
cess, when the data is actually generated by the i persistence model. The direct value
function obtains as follows:

V (Ct, x̂l,t, x̂h,t, ηt) = (1− β)
C1−γ
t

1− γ
(20)

− β

α
ln

[
ηt

{ˆ ∞
−∞

exp

(
−α
˚ ∞

−∞
V
(
Ct exp(gl,t+1), x̂

(l)
l,t+1(~εl,t+1),

x̂
(l)
h,t+1(~εl,t+1), η

(l)
t+1(~εl,t+1)

)
dF (~εl,t+1)

)
dF (xl,t)

}
+ (1− ηt)

{ˆ ∞
−∞

exp

(
−α
˚ ∞

−∞
V
(
Ct exp(gh,t+1), x̂

(h)
l,t+1(~εh,t+1),
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x̂
(h)
h,t+1(~εh,t+1), η

(h)
t+1(~εh,t+1)

)
dF (~εh,t+1)

)
dF (xh,t)

}]
where ~εl,t+1 = [εxl,t+1εdl,t+1εgl,t+1 ] is a 3 by 1 vector of standard normal shocks (and so
is ~εh,t+1) and ηt is the posterior probability at time t that the model with ρl is the data
generating process. F (~εl,t+1) and F (~εl,t+1) are both trivariate independent standard
normal distributions. F (xk,t), k = l, h, is a normal distribution with mean x̂k,t and
variance Ωk, where Ωk is defined below. The updates for x̂(i)

k,t+1 are obtained as follows:

x̂
(l)
l,t+1(~εl,t+1) = ρlx̂l,t +Klν

(l)
l,t+1 (21)

x̂
(l)
h,t+1(~εl,t+1) = ρhx̂h,t +Khν

(l)
h,t+1 (22)

x̂
(h)
l,t+1(~εh,t+1) = ρlx̂l,t +Klν

(h)
l,t+1 (23)

x̂
(h)
h,t+1(~εh,t+1) = ρhx̂h,t +Khν

(h)
h,t+1 (24)

where ν(i)
k,t+1, (i) = (l) or (i) = (h) and k = l, h, denote the “surprises”. For example,

when the DGP is (i) = (l) and the filter uses ρk, k = h, the surprise is defined

ν
(l)
h,t+1 =

[
gl,t+1 − ḡ − ρhx̂h,t
dl,t+1 − d̄− ψρhx̂h,t

]
=

[
ḡ − ḡ + ρlxl,t − ρhx̂h,t + σxlεxl,t+1 + σglεgl,t+1

d̄− d̄+ ψρlxl,t − ψρhx̂h,t + ψσxlεxl,t+1 + σdlεdl,t+1

]
.

The Kalman gain parameters, Kk, k = l, h, depending on whether low or high persis-
tence model is assumed to be the true model, respectively, are

Kk = ρkΩk [1 ψ] F̂−1
k , where F̂k =

[
Ωk + σ2

gk
ψΩk

ψΩk ψΩk + σ2
dk

]
Finally, Ωk, k = l, h, is defined as the solution to

Ωk = ρ2
kΩk − ρ2

kΩ
2
k [1 ψ] F̂−1

k [1 ψ]′ + σ2
xk

The Bayes update of ηt is obtained as follows :

η
(l)
t+1(~εl,t+1) =

ηtL
(
ν

(l)
l,t+1, F̂l

)
ηtL

(
ν

(l)
l,t+1, F̂l

)
+ (1− ηt)L

(
ν

(l)
h,t+1, F̂h

) (25)

η
(h)
t+1(~εh,t+1) =

ηtL
(
ν

(h)
l,t+1, F̂l

)
ηtL

(
ν

(h)
l,t+1, F̂l

)
+ (1− ηt)L

(
ν

(h)
h,t+1, F̂h

) (26)

where the likelihood is

L
(
ν

(i)
j,t+1, F̂j

)
=

1

2π|F̂j|
exp

−
(
ν

(i)
j,t+1

)′
F̂−1
j ν

(i)
j,t+1

2

 where i = l, h and j = l, h.
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B.1.1 Mean and variance of the distorted posterior

The mean of the distorted (or, “as if”) posterior is given by:

x̃t = ηt

ˆ ∞
−∞

(xl,t) ξ
(l)
t (Ct, x̂l,t, x̂h,t, ηt)dF (xl,t)+(1− ηt)

ˆ ∞
−∞

(xh,t) ξ
(h)
t (Ct, x̂l,t, x̂h,t, ηt)dF (xh,t)

(27)
and the variance, by:

Ṽ art(xt) ≡ηt
ˆ ∞
−∞

(
x2
l,t

)
ξ

(l)
t (Ct, x̂l,t, x̂h,t, ηt)dF (xl,t)

+ (1− ηt)
ˆ ∞
−∞

(
x2
h,t

)
ξ

(h)
t (Ct, x̂l,t, x̂h,t, ηt)dF (xh,t)− x̃2

t

B.1.2 The rates of return

The risky rate of return is a function of four state variables, Ct, x̂l,t, x̂h,t, ηt, just like V
and ξt. In the sequel, it should be clear that variables in t+ 1 are evaluated using the
relevant stochastic components. Let Ck,t+1 = Ct exp(gk,t+1), k = l, h. The risk rate,
Rt, will satisfy:

βηt

ˆ ∞
−∞

ξ
(l)
t (Ct, x̂l,t, x̂h,t, ηt)

(˚ ∞

−∞
Rt

(
Cl,t+1, x̂

(l)
l,t+1, x̂

(l)
h,t+1, η

(l)
t+1

)
×

(u′ (exp(gl,t+1))) dF (~εl,t+1)

)
dF (xl,t)

+β (1− ηt)
ˆ ∞
−∞

ξ
(h)
t (Ct, x̂l,t, x̂h,t, ηt)

(˚ ∞

−∞
Rt

(
Ch,t+1, x̂

(h)
l,t+1, x̂

(h)
h,t+1, η

(h)
t+1

)
×

(u′ (exp(gh,t+1))) dF (~εh,t+1)

)
dF (xh,t) = 1

where,

ξ
(l)
t (Ct, x̂l,t, x̂h,t, ηt) =

φ′
(˝∞

−∞ V
(
Cl,t+1, x̂

(l)
l,t+1, x̂

(l)
h,t+1, η

(l)
t+1

)
dF (~εl,t+1)

)
Ψ

(28)

and

ξ
(h)
t (Ct, x̂l,t, x̂h,t, ηt) =

φ′
(˝∞

−∞ V
(
Ch,t+1, x̂

(h)
l,t+1, x̂

(h)
h,t+1, η

(h)
t+1

)
dF (~εh,t+1)

)
Ψ

(29)

with

Ψ =ηt

ˆ ∞
−∞

φ′
(˚ ∞

−∞
V
(
Cl,t+1, x̂

(l)
l,t+1, x̂

(l)
h,t+1, η

(l)
t+1

)
dF (~εl,t+1)

)
dF (xl,t)

+ (1− ηt)
ˆ ∞
−∞

φ′
(˚ ∞

−∞
V
(
Ch,t+1, x̂

(h)
l,t+1, x̂

(h)
h,t+1, η

(h)
t+1

)
dF (~εh,t+1)

)
dF (xh,t)
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Then, we have

EtRt =ηt

˘ ∞

−∞
Rt

(
Cl,t+1, x̂

(l)
l,t+1, x̂

(l)
h,t+1, η

(l)
t+1

)
dF (~εl,t+1)dF (xl,t)

+ (1− ηt)
˘ ∞

−∞
Rt

(
Ch,t+1, x̂

(h)
l,t+1, x̂

(h)
h,t+1, η

(h)
t+1

)
dF (~εh,t+1)dF (xh,t)

and the risk-free rate is

Rf
t =

[
βηt

ˆ ∞
−∞

ξ
(l)
t (Ct, x̂l,t, x̂h,t, ηt)

(˚ ∞

−∞
(u′ (exp(gl,t+1))) dF (~εl,t+1)

)
dF (xl,t)

+ β (1− ηt)
ˆ ∞
−∞

ξ
(h)
t (Ct, x̂l,t, x̂h,t, ηt)

(˚ ∞

−∞
(u′ (exp(gh,t+1))) dF (~εh,t+1)

)
dF (xh,t)

]−1

and so the equity premium is EtRp
t = EtRt − Rf

t . The variance of equity premium is
computed as

σ2 (Rp
t ) = EtR

2
t − (EtRt)

2

where

EtR
2
t =ηt

˘ ∞

−∞

(
Rt

(
Cl,t+1, x̂

(l)
l,t+1, x̂

(l)
h,t+1, η

(l)
t+1

))2

dF (~εl,t+1)dF (xl,t)

+ (1− ηt)
˘ ∞

−∞

(
Rt

(
Ch,t+1, x̂

(h)
l,t+1, x̂

(h)
h,t+1, η

(h)
t+1

))2

dF (~εh,t+1)dF (xh,t)

C An analytical approximation for rates of return in
the case of known persistence model

This section develops an analytical approximation to the equilibrium rates of return
in the model with known persistence. The crucial assumption on which the following
second order approximation analysis depends is that Eµ̃t operates with respect to some
normal distribution N

(
x̃t, Ω̃

)
. As the numbers (reporting skewness and excess kur-

tosis) in Table 12 generated using the accurate numerical approximation demonstrate,
Normality is a fairly accurate description.

1 (Approximating assumption 1) µ̃t = N (x̃t,Ω) .

Recall that µ̃t ≡ ξt(xt)⊗N(x̂t,Ω) and thus has density given by

f̃ (xt) = ξt(xt | Ct, x̂t;α)
1√
2πΩ

exp

(
−(xt − x̂t)2

2Ω

)
. (30)
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Model with known persistence
xt gc,t

E σ E σ
Rat. Exp. – – 0.018 0.028
Bayesian -0.002 0.023 0.018 0.032
Twisted -0.023 0.024 -0.003 0.032

sk κ sk κ
Rat. Exp. – – 0.000 0.000
Bayesian 0.000 -0.000 0.000 -0.000
Twisted 0.000 -0.000 0.000 0.000

Model with unknown persistence
xt gc,t

E σ E σ
Bayesian -0.001 0.024 0.019 0.034
Twisted -0.022 0.028 -0.002 0.037

sk κ sk κ
Bayesian -0.003 0.013 -0.003 0.017
Twisted -0.005 -0.053 -0.038 -0.029

Table 12: Conditional moments of distributions. In each case, γ = 2.5 and α was
set such that the model generates an average risk-free rate of 1.5%. Ct, x̂`,t, x̂h,t and ηt
are set equal to their mean in the data. sk and κ denote skewness and excess kurtosis
(relative to a Gaussian distribution), respectively. The latent state variable is known
to a rational expectations agent and so the conditional distribution is degenerate.
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This assumption is thus equivalent to assuming that eq. (30) is exactly a normal
density with the same variance as the Bayesian posterior Ω but with a different mean
(x̃t instead of x̂t). Let Et ≡ Ex̂tExt ; Ẽt ≡ Eµ̃tExt ≡ Ex̃tExt . It is useful to recall, if xt
is normally distributed, then for any k ∈ R,

Et [exp (kxt)] = exp

(
kEtxt +

k2

2
V art (xt)

)
Also, Ṽ art(xt) ≡ V arµ̃t(xt) = Ω and V art(xt) = V arµt (xt) = Ω and all ε terms
have expectation zero under both Ẽt and Et since the terms have expectation zero
conditional on xt.
The first Euler equation relating to the risk-free asset may be rewritten as follows:

1 = βRf
t Ẽt [exp (−γg − γρxt − γσxεx,t+1 − γσgεg,t+1)]

= βRf
t exp

(
−γg − γρx̃t +

γ2

2

(
σ2
x + σ2

g

)
+
γ2ρ2

2
Ṽ art(xt)

)
.

Taking logs and rearranging terms we obtain an approximate solution for the risk-free
rate of return:

rft = − ln β + γg + γρx̃t −
γ2

2

(
σ2
x + σ2

g + ρ2Ṽ art(xt)
)
. (31)

The second Euler equation relating to the risky asset may then be written as:

Ẽt exp

[
ln β + ln

(
Pt+1 +Dt+1

Pt

)
− γ ln

(
Ct+1

Ct

)]
= 1 (32)

We adopt the following approximation (to the risky rate of return), proposed in Camp-
bell and Shiller (1988).

2 (Approximating assumption 2) :

rt ≡ ln

(
Pt+1 +Dt+1

Pt

)
' κ0 + κ1zt+1 − zt + dt+1 (33)

where zt = ln
(
Pt
Dt

)
and κ0 and κ1 are approximating constants.

Next, we conjecture that the log price-dividend ratio is given by

zt = A0 + A1x̃t. (34)

Our final assumption is that the mean of the distorted conditional distribution is an
affine function of the mean of the (contemporaneous) undistorted, Bayesian conditional
distribution, which holds well in our data, see Figure 10.
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Figure 10: x̃t = Eµ̃t(xt) plotted against x̂t. The level of consumption is set to the
average value between 1978 and 2011. In each case, γ = 2.50.

3 (Approximating assumption 3) x̃t = δ0 + δ1x̂t for t = 1, 2,... , δ1 > 0.

Note this assumption implies trivially that x̂t = (x̃t − δ0)/δ1. Hence, we obtain a
second order approximation of the second Euler equation as follows:

1 = Ẽt exp

[
ln(β) + κ0 + κ1zt+1 − zt + dt+1 − γgt+1

]
Plugging the guess for zt and using the processes of growth rates, and using Assump-
tions 1 and 3, we obtain

1 = Ẽt exp

[
ln(β) + d− γg + κ0 + (κ1 − 1)A0 + κ1A1(δ0 + δ1x̂t+1)− A1x̃t + (ψ − γ)ρxt

+ (ψ − γ)σxεx,t+1 + σdεd,t+1 − γσgεg,t+1

]
. (35)

In the expression for x̂t+1 from the Kalman filter, let K = [Kg, Kd]. Then, we have
now an expression for x̂t+1 which is equal to (substituting dt+1 and gt+1 using their
dynamics in the model):

x̂t+1 = ρx̂t(1−Kg−ψKd)+(Kg+ψKd)ρxt+(Kg+ψKd)σxεx,t+1+Kgσgεg,t+1+Kdσdεd,t+1

Taking the log of eq. (35) and using x̂t = x̃t−δ0
δ1

. Hence,

0 = ln(β) + d− γg + κ0 + (κ1 − 1)A0 + κ1A1δ0 − δ0(κ1A1ρ(1−Kg − ψKd))

+ [κ1A1ρ(1−Kg − ψKd) + ρκ1A1δ1(Kg + ψKd) + (ψ − γ)ρ− A1]x̃t

+ ρ2(κ1A1δ1(Kg + ψKd) + ψ − γ)2Ṽ art(xt)/2

+ (ψ − γ + κ1A1δ1(Kg + ψKd))
2σ2

x/2

+ (κ1A1δ1Kd + 1)2σ2
d/2 + (κ1A1δ1Kg − γ)2σ2

g/2
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Since this approximation must be valid for any x̃t, we collect the x̃t terms, set the
expression equal to zero and we have

κ1A1ρ(1−Kg − ψKd) + ρκ1A1δ1(Kg + ψKd) + (ψ − γ)ρ− A1 = 0

which must hold for all x̃t. Hence,

A1 =
ρ(ψ − γ)

1− ρκ1(1− (1− δ1)(Kg + ψKd))
(36)

Doing the same for the constant terms, we have

(1− κ1)A0 = ln(β) + d− γg + κ0 + κ1A1δ0 − δ0(κ1A1ρ(1−Kg − ψKd))

+ ρ2(κ1A1δ1(Kg + ψKd) + ψ − γ)2Ṽ art(xt)/2

+ (ψ − γ + κ1A1δ1(Kg + ψKd))
2σ2

x/2

+ (κ1A1δ1Kd + 1)2σ2
d/2 + (κ1A1δ1Kg − γ)2σ2

g/2 (37)

Using eq. (34) and that Etx̃t+1 = δ0 +δ1Etx̂t+1 where Etx̂t+1 = ρx̂t(1−Kg−ψKd)+

(Kg + ψKd)ρEtxt = ρx̂t, we obtain

Etrt = κ0 + A0 (κ1 − 1) + κ1A1δ0(1− ρ) + d+ A1(κ1ρ− 1)x̃t + ψρx̂t (38)

and so the Equity premium is then

Etrt − rft =κ0 + A0 (κ1 − 1) + κ1A1δ0(1− ρ) + d+ A1(κ1ρ− 1)x̃t + ψρx̂t (39)

+ ln(β)− γg − γρx̃t +
γ2

2

(
σ2
x + σ2

g + ρ2Ṽ art(xt)
)

Note that when δ1 = 1, as is true in our data (see Figure 10), A1 simplifies to −ρ(ψ −
γ)/ (κ1ρ− 1).

We need values of the approximating constants, κ0 and κ1, to compute the log
price-dividend ratio. Beeler and Campbell (2012) obtain the constants as follows

z̄ =

∑
zt

N

κ1 =
exp z̄

1 + exp z̄

κ0 = ln (1 + exp z̄)− κ1z̄.

D Ambiguity of second-order beliefs

Let T be a second-order event, i.e., T ⊂ Θ, with µ (T ) = m. Consider two prospects.
One, a bet on this event, which pays x on the event and y off it, with x > y. Two,

50



a lottery, `m which pays x with probability m and y with probability 1 −m. Notice,
when φ is concave, by Jensen’s inequality,

mφ (u (x)) + (1−m)φ (u (y)) < φ (m (u (x)) + (1−m) (u (y))) (40)

The LHS of (40) is the evaluation of the bet on T while the RHS is the evaluation of
the lottery, per the smooth ambiguity model. Similarly, the bet on the complementary
event T c is dispreferred to `1−m given a concave φ. Indeed, ambiguity aversion implies
we cannot find a calibrated lottery event such that betting on that lottery event is same
as betting on T ; there is no lottery probability that is same as µ. Hence, when φ is
concave, the second-order measure µ cannot be calibrated with a lottery; behaviorally,
µ is not treated as an objective probability.

As shown formally in section 2.4 in Klibanoff, Marinacci, and Mukerji (2012), this
is the heart of the argument that establishes that ambiguity of a first-order event E
implies that non-null and non-universal second-order events concerning the probability
of E are treated as ambiguous. Hence, the smooth ambiguity model property of ex-
pected utility evaluation of second-order acts (e.g., bets on events in Θ) does not mean
that the DM treats these acts as based on unambiguous events.
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E Online Appendix – Details of the numerical solu-
tion procedure

E.1 Solution Method

This section describes the minimum weighted residuals method we use to obtain an
approximate solution for the value function and the risky rate. We then explain how
we assess the accuracy of the method.

Both the value function and the risky rate are approximated by a parametric func-
tion of the form

Φy(Xt) = exp

 ∑
ic,ih,i`,iη∈I

θyic,ih,i`,iηHic(ϕc(Ct))Hih(ϕh(x̂h,t))Hi`(ϕ`(x̂`,t))Hiη(ϕη(ηt))


where Xt ≡ (Ct, x̂h,t, x̂`,t, ηt) denotes the vector of state variables31 and y ∈ {V,R}.
The set of indices I is defined by

I = {iz = 1, . . . , nz; z ∈ {C, h, `, η}|ic + ih + i` + iη 6 max(nc, nh, n`, nη)}

Implicit in the definition of this set is that we are considering a complete basis of
polynomials.32 Hι(·) is a Hermite polynomial of order ι and ϕz(·) is a strictly increasing
function that maps R into R. This function is used to maps Hermitian nodes into
values for the vector of state variables, Xt ≡ (Ct, x̂h,t, x̂`,t, ηt),33 The parameters θy,
y ∈ {V,R}, are then determined by a minimum weighted residuals method. More
precisely, we define the residuals associated to both the direct Value function equation,
RV (θV ;Xt), and the Euler equations for risky assets (consumption claims and dividend
claims), RR(θV ;Xt), as

RV (θV ;Xt) ≡ ΦV (Ct, x̂
h
t , x̂

`
t, ηt)− (1− β)u(Ct)−

β

α
ln(Vt+1)

where

Vt+1 ≡ηt
ˆ ∞
−∞

exp

(
−α
˚ ∞

−∞
ΦV

(
C

(`)
t+1, x̂

(`)
h,t+1, x̂

(`)
`,t+1, η

(`)
t+1

)
dF (~ε`,t+1)

)
dF (x`,t)+

(1− ηt)
ˆ ∞
−∞

exp

(
−α
˚ ∞

−∞
ΦV

(
C

(h)
t+1, x̂

(h)
h,t+1, x̂

(h)
`,t+1, η

(h)
t+1

)
dF (~εh,t+1)

)
dF (xh,t)

31When persistence is known, the vector of state variables reduces to Xt = (Ct, xt) and the approx-
imant takes the simpler form Φy(Xt) = exp

(∑
ic,ix∈I θ

y
ic,ix

Hic(ϕc(Ct))Hix(ϕx(x̂t))
)
.

32See Judd (1998), Chapter 7.
33We use this function in order to be able to narrow down the range of values taken by the state

variables, such that the approximation performs better when evaluated on the data.
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and
RR(θR, θV ;Xt) ≡ u′(Ct)− βEt+1

where

Et+1 ≡ηt
ˆ ∞
−∞

(
ξ`,t

˚ ∞

−∞
u′
(
C

(`)
t+1

)
ΦR

(
C

(`)
t+1, x̂

(`)
h,t+1, x̂

(`)
`,t+1, η

(`)
t+1

) D(`)
t+1

Dt︸ ︷︷ ︸
(i)

dF (~ε`,t+1)

)
dF (x`,t)

+ (1− ηt)
ˆ ∞
−∞

(
ξh,t

˚ ∞

−∞
u′
(
C

(h)
t+1

)
ΦR

(
C

(h)
t+1, x̂

(h)
h,t+1, x̂

(h)
`,t+1, η

(h)
t+1

) D(h)
t+1

Dt︸ ︷︷ ︸
(ii)

dF (~εh,t+1)

)
dF (xh,t)

where ~εν,t+1 = {εxν ,t+1, εdν ,t+1, εgν ,t+1}, with ν ∈ {h, `} is a vector of standard normal
shocks with distribution F (~εν,t+1). (i) and (ii) are only present in the dividend claim
case. We also define

with

Ψt ≡ηt
ˆ ∞
−∞

φ′
(˚ ∞

−∞
ΦV

(
C

(`)
t+1, x̂

(`)
h,t+1, x̂

(`)
`,t+1, η

(`)
t+1

)
dF (~ε`,t+1)

)
dF (x`,t)

+ (1− ηt)
ˆ ∞
−∞

φ′
(˚ ∞

−∞
ΦV

(
C

(h)
t+1, x̂

(h)
h,t+1, x̂

(h)
`,t+1, η

(h)
t+1

)
dF (~εh,t+1)

)
dF (xh,t)

In both cases, C(ν)
t+1, x̂

(ν)
h,t+1, x̂

(ν)
`,t+1, η

(h)
t+1, ν ∈ {h, `}, are obtained using the dynamic

equations described in subsection B.1. These expressions are simplified when the agent
is certain about the persistence. This case amounts to setting ηt = 0 for all t in the
preceding expressions and consider only one process for x̂t.

The vector of parameters θV and θR are then determined by projecting the residuals
on Hermite polynomials. This then defines a system of orthogonality conditions which
is solved for θV and θR. More precisely, we solve34

〈RV (θV ;Xt)|H(Xt)〉 =

ˆ
RV (θV ;Xt)H(Xt)Ω(Xt)dXt = 0

〈RR(θR, θV ;Xt)|H(Xt)〉 =

ˆ
RR(θR, θV ;Xt)H(Xt)Ω(Xt)dXt = 0

where

H(Xt) ≡ Hic(ϕh(Ct))Hih(ϕh(x̂
h
t ))Hj(ϕ`(x̂

`
t))Hk(ϕη(ηt)) with ic+ih+i`+iη 6 max(nc, nh, n`, nη)

34It should be clear to the reader that the integral refers to a multidimensional integration problem,
as we integrate over C, xh, x` and η.

53



and
Ω(Xt) ≡ ω(ϕh(Ct))ω(ϕh(x

h
t ))ω(ϕ`(x

`
t))ω(ϕη(ηt))

where ω(x) = exp(−x2) is the appropriate weighting function for Hermite polynomials.
Note that since the knowledge of the risky interest rate is not needed to evaluate the
direct value function in equilibrium, the system can be solved recursively. We therefore
first solve the value function approximation problem, and use the result vector of
parameters θV to solve for the risky rate problem.

Integrals are approximated using a monomial approach whenever we face a mul-
tidimensional integration problem (inner integrals in the computation of expectations
and projections) and a Gauss Hermitian quadrature approach when dealing with uni-
dimensional integrals (outer integrals in the computation of expectations).35

The algorithm imposes that several important choices be made for the algorithm
parameters. The first one corresponds to the degree of polynomials we use for the
approximation. The results are obtained with polynomials of order

• (nc, nxh , nx` , nη) = (5, 2, 2, 2) for the value function when ρh = 0.85,

• (nc, nxh , nx` , nη) = (4, 2, 2, 2) for the value function when ρh = 0.90

• (nc, nxh , nx` , nη) = (3, 3, 3, 3) for the interest rate,

• (nc, nxh , nx` , nη) = (2, 4, 4, 1) for the asset prices.

The second choice pertains to the number of nodes. We use 8 nodes in each dimension
(4096 nodes). The transform functions ϕ(·) are assumed to be linear ϕz(x) = κzx

where κz, z ∈ {c, h, `, η} is a constant chosen such that the focus of the approximation
is put on values of state variables taken in the data. More precisely, we set κc = 2.0817,
κh = 40, κ` = 350 and κη = 1.

The number of nodes used in the uni-dimensional quadrature method used in the
outer integral involved in the computation of expectations is set to 12. In the case of the
multidimensional integrals, we use a degree 5 rule for an integrand on an unbounded
range weighted by a standard normal.36 Finally, the stopping criterion is set to 1e-6.

Given these parameters, the algorithm associated to each problem works as follows
35See Judd (1998), chapter 7.
36More precisely, we approximate

ˆ
Rk

F (x) exp(

k∑
i=1

x2i )dx 'a0F (0) + a1

k∑
i=1

(F (rei) + F (−rei))+

+ a2

k−1∑
i=1

k∑
j=i+1

(F (sei + sej) + F (sei − sej) + F (−sei + sej) + F (−sei − sej))
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1. Choose two candidate vectors of parameters θV and θR

2. Find the nodes, rjz , jz = 1, . . . ,mz, at which the residuals are evaluated. These
nodes corresponds to the roots of the different Hermite polynomials involved in
the approximation, then compute the values of the state variables as

Cjc = ϕ−1
c (rjc), x

h
jh

= ϕ−1
h (rjh), x`j` = ϕ−1

` (rj`), ηjη = ϕ−1
η (rjη)

3. Evaluate the residuals RV (θV ;Xt) and RR(θR, θV ;Xt) and compute the orthog-
onality conditions

< RV (θV ;Xt)|H(Xt) > and < RR(θR, θV ;Xt)|H(Xt) > .

4. If the orthogonality conditions are satisfied, in the sense the residuals are lower
than the stopping criterion ε, then the vector of parameters are given by θV and
θR. Else update θV and θR using a Gauss Newton algorithm and go back to step
1.

E.2 Computation of Returns

Given an approximate solution for the value function and the risky return, and given
a sequence {Xt}t=t2t=t1

= {Ct, x̂h,t, x̂`,t, ηt}t=tNt=t1
of annual observations of aggregate per-

capita consumption, beliefs and prior probabilities in the time periods t = t1 through
t = tN we compute the conditional nth order moment of the risky rate in period t as

En
t Rt+1 =

˘ ∞

−∞
Φ(Xt+1)ndF (−→ε t+1)dF (xt) (41)

The model average n–th order moment is then computed as

ERn =
1

t2 − t1

[
t=t2∑
t=t1

En
t Rt+1 −

(
E1
tRt+1

)n] (42)

Similarly, given a sequence {Ct, x̂h,t, x̂`,t, ηt}t=tNt=t1
, the risk-free rate can be directly com-

puted

Rf
t =

[
βηt

ˆ ∞
−∞

ξ
(l)
t (Ct, x̂l,t, x̂h,t, ηt)

(˚ ∞

−∞
(U ′ (exp(gl,t+1))) dF (~εl,t+1)

)
dF (xl,t)

+ β (1− ηt)
ˆ ∞
−∞

ξ
(h)
t (Ct, x̂l,t, x̂h,t, ηt)

(˚ ∞

−∞
(U ′ (exp(gh,t+1))) dF (~εh,t+1)

)
dF (xh,t)

]−1

where ei denotes the ith column vector of the identity matrix of order k. r =
√

1 + k
2 , s =

√
2r
2 ,

a0 = 2π
k
2

k+2 , a1 = 4−k
4(k+2)a0 and a2 = a0

2(k+2) . See Judd (1998) for greater details.
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Just as in the preceding section, integrals are approximated using a monomial approach
whenever we face a multidimensional integration problem (inner integrals in the com-
putation of expectations and projections) and a Gauss Hermitian quadrature approach
when dealing with uni-dimensional integrals (outer integrals in the computation of ex-
pectations). The n–order moments are then obtained in a similar fashion as for the
risky rate.

The (conditional) equity premium at time t, is the random variable denoted Rp
t ≡

E1
tRt+1−Rf

t . Therefore, the n–order moments of the equity premium can be computed
as in eq. (42).
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