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Abstract

We axiomatize in the Anscombe-Aumann setting a wide class of preferences, called rank-
dependent additive preferences that includes most known models of decision under uncer-
tainty as well as state-dependent versions of these models. We prove that aggregation is
possible and necessarily linear if and only if (society’s) preferences are uncertainty neutral.
The latter means that society cannot have a non-neutral attitude toward uncertainty on a
subclass of acts. A corollary to our theorem is that it is not possible to aggregate multiple
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1 Introduction

Harsanyi (1955) celebrated result shows that it is possible to aggregate von Neumann-Morgenstern
(vNM) expected utility maximizers: the social utility is a convex combination of the agents’ util-
ities. Extending this result to more general settings turns out to be difficult. For instance, when-
ever agents are expected utility maximizers but entertain different beliefs, aggregation becomes
impossible.

In this paper, we take up this issue, widening considerably the set of preferences consid-
ered, that encompasses many well-known models of decision under uncertainty (subjective ex-
pected utility, multiple prior model of Gilboa and Schmeidler (1989), Choquet expected utility of
Schmeidler (1989) and more generally c-linear biseparable preferences of Ghirardato and Mari-
nacci (2001), as well as state-dependent versions of these preferences).1 Our main result takes
the following form. Assume agents and society have preferences of this sort on a given set of
acts.2 Assume furthermore that this set of acts is rich enough so that a diversity condition on
preferences holds. Then, aggregating (some) agents’ preferences is possible if and only if they
possess a form of uncertainty neutrality, to be discussed momentarily, and leads to linear aggre-
gation. In particular, if an agent has some kind of non neutral attitude towards uncertainty, then
either he is a dictator (society’s preferences place a zero weight on all other agents) or he gets a
zero weight in the society’s preferences. A particular case of interest is when agents conform to
the multiple prior model of Gilboa and Schmeidler (1989), in which an agent evaluates an act by
taking its minimal expected utility with respect to a set of priors. Then, a corollary of our result
is that aggregation of such agents is impossible unless they are actually expected utility agents
(in which case the set of priors is a singleton.) One crucial point behind the impossibility result
is the assumption that there exists a set of acts on which individuals are uncertainty neutral (for
instance, constant acts for the multiple prior model) which is also a set of acts on which society
is uncertainty neutral. Relaxing this assumption points to a way of restoring aggregation.

The result complements several previous results in the literature. Hylland and Zeckhauser
(1979), Seidenfeld, Kadane, and Schervish (1989), and Mongin (1995) showed that aggregation of
subjective expected utility agents was not possible as soon as they have different beliefs. Mongin
(1998) showed that expanding the class of preferences to state-dependent preferences would
yield a possibility result but argued against this way of restoring the possibility of aggregating
preferences. He showed in particular that as soon as one pins down the beliefs of the agents
then state-dependence is of no help. Chambers and Hayashi (2006) showed that eventwise
monotonicity (P3) and weak comparative probability (P4) are incompatible with the Pareto
axiom. Relaxing these axioms while keeping the sure-thing principle leads to state-dependent
expected utility preferences, for which they show a possibility result in a Savage setting. Our

1A limitation is that we adopt Anscombe and Aumann (1963) approach.
2We follow Harsanyi’s approach by imposing the same rationality requirements on the agents’ and the society’s

preferences.
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setting allows for state-dependence preferences from the beginning and our impossibility theorem
applies to state-dependent preferences as well. Gilboa, Samet, and Schmeidler (2004) showed
in a subjective expected utility setting, that imposing the Pareto axiom on issues for which
agents are unanimous (have identical beliefs) implies that the society’s beliefs have to be an
affine combination of agents’ beliefs and, similarly, that the society’s vNM utility function has
to be a linear combination of agents’ vNM utility functions (note that this does not imply that
society’s overall utility function is a convex combination of the agents’.) A corollary to our main
result is that in the multiple prior model, aggregation is impossible even in the case when all
agents have the same set of priors. Thus, restricting the Pareto axiom has no bite here. Finally,
Blackorby, Donaldson, and Mongin (2004) showed, in a somewhat different framework (that of
ex ante-ex post aggregation), that aggregation was essentially impossible in the rank dependent
expected utility model.

As we mentioned, we want to allow for state dependence while at the same time allowing
for all kinds of attitudes toward uncertainty. There is no decision model in the literature that
achieves this goal. A first contribution of the present paper is hence to develop a fairly general
model of preferences under uncertainty, allowing for state-dependence. Then, assuming agents
conform to this decision model, we show that it is impossible to aggregate agents’ preferences
into a well-defined preference relation at the social level that would also conform to this model
unless agents have uncertainty neutral preferences, where uncertainty-neutrality is defined in
the spirit of Gilboa and Schmeidler (1989) as indifference to mixing indifferent acts.

As argued in Gilboa, Samet, and Schmeidler (2004), the relevance of this literature is partly
due to the rhetoric of decision making in a democracy. Quoting these authors,

“(...) the theoretical conclusion that aggregating tastes and beliefs is impossible, is
troubling. If there is, indeed, no way to aggregate preferences of all individuals, then
a ruling party or a president may feel exempted from seeking to represent society
in its entirety even if elected by an incidental majority. (...) However, we argue
that the impossibility results cannot be cited as an indirect justification of ignoring
minority views, because they rely on a counterintuitive assumption. By contrast, a
more intuitive version of this assumption necessitates aggregation of preferences.”
Gilboa, Samet, and Schmeidler (2004),p.935.

The counterintuitive assumption they refer to is the Pareto axiom that says that if all
individuals in society agree on preferences between two alternatives, so should society. As we
mentioned, they replace it by a weaker Pareto condition that applies only when all individuals
have identical beliefs or, dually, when they have identical tastes. A consequence of our result is
to show that their possibility result hinges on the fact that all individuals are Bayesian expected
utility maximizers. If, however, some of these individuals do not conform to expected utility,
for instance because they do not have precise (subjective) probabilities, but rather a range of
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probabilities, their result no longer holds. Indeed, the present paper shows that a wide variety
of models, allowing for some type of Knightian uncertainty, give rise to the impossibility result
even if the Pareto condition is restricted to identical “beliefs”. In this sense, we are back to the
troubling theoretical conclusion that a ruling party or president might be entitled to act in a
dictatorial way, since there is no reasonable way to aggregate preferences when individuals differ
both in utilities and in beliefs.

The paper is divided into six sections and three appendices. Section 2 introduces the decision
theoretic setup needed, while Section 3 contains a new representation result. The main result of
the paper is in Section 4. Section 5 provides a discussion of why known arguments used in the
literature to restore the possibility of aggregation fail here, as well as some thoughts on ways
to relax some of our assumptions that would allow for some (non linear) aggregation. Section 6
concludes. Appendix A contains three models illustrating the decision theoretic part developed
in Sections 2 and 3. Appendix B contains the proof of the representation result given in Section
3, while Appendix C contains the proof of the aggregation result.

2 Setup

We consider a society made of a finite number of agents N ′ = {1, . . . , n}. Let N = {0, 1, . . . , n}
where 0 refers to society. Uncertainty is represented by a set S and an algebra of events Σ. We
adopt Anscombe and Aumann (1963)’s framework: Let X be a non-empty set of consequences
and Y be the set of distributions over X with finite support. Let A be the set of acts, that
is, functions f : S → Y which are measurable with respect to Σ. Since Y is a mixture space,
one can define for any f, g ∈ A and α ∈ [0, 1], the act αf + (1 − α)g in A which yields
αf(s) + (1− α)g(s) ∈ Y for every state s ∈ S.

We model the preferences of an agent i ∈ N ′ on A by a binary relation %i, and, as customary
we denote by ∼i and Âi its symmetric and asymmetric components. Society’s preferences are
denoted %0. The first axiom is usual, will be maintained throughout, and states that preferences
are a complete, transitive, and continuous relation. It is enough to show that there exists a
representation of % on A.

Axiom 1 For all f, g, h ∈ A,

1. f % g or g % f ;

2. if f % g and g % h then f % h;

3. if f Â g and g Â h, then there exist α, β ∈ (0, 1) such that αf + (1 − α)h Â g and
g Â βf + (1− β)h.

We will almost exclusively be interested in the properties of preferences on a small domain
of acts on which they have some structure. We next define the notion of regular acts from
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which this domain will be constructed, as the relevant domain will consist of binary acts whose
components are regular.3

For an event E and two acts f and g, denote fEg the act giving f(s) if s ∈ E and g(s) if
not. For F ⊂ A and E ∈ Σ, let B(F , E) = {fEg |f, g ∈ F } that is, binary acts on the event E

whose components belong to a subset of acts F . When there is no possible confusion about the
reference set F , we will simply call such acts binary acts.

Definition 1 Let E ∈ Σ. A set of acts R ⊂ A is E -regular with respect to % if it satisfies the
following conditions:

1. R is a mixture set: For all f, g ∈ R and α ∈ (0, 1), αf + (1− α)g ∈ R;

2. Binary R-independence: For all h ∈ R, for all f, g ∈ B(R, E), α ∈ (0, 1], f % g ⇔
αf + (1− α)h % αg + (1− α)h;

3. Weak sure-thing principle for R-binary acts: For all acts f , g, h, h′ in R, fEh Â gEh ⇒
fEh′ % gEh′.

Note that for any event E the whole set A is E-regular for subjective expected utility (both
state-independent and state-dependent).4

Condition 1 requires that the set of E-regular acts be closed under the mixture operation.
Condition 2 is in the spirit of C-independence of Gilboa and Schmeidler (1989) with the dif-
ference that it applies only to R-binary acts. It means that E-regular acts cannot be used to
hedge against R-binary acts. Condition 2 also entails that the independence axiom holds when
restricted to acts in R. Thus, preferences on E-regular acts are uncertainty neutral on the event
E5 and will be of the vNM type. Condition 3 is a weak version of the sure-thing principle,
again restricted to R-binary acts. Note that this weak property is not violated in Ellsberg kind
of experiments. In the multiple prior model of Gilboa and Schmeidler (1989), this condition is
satisfied, being a consequence of monotonicity.6

3This definition, as well as the definitions and results in the next section are illustrated in Appendix A
on three decision models: c-linear biseparable preferences of Ghirardato and Marinacci (2001) and Ghirardato,
Maccheroni, and Marinacci (2005), a state dependent version of the so-called α-MMEU model of Jaffray (1989)
and Ghirardato, Maccheroni, and Marinacci (2004), and the smooth model of ambiguity aversion of Klibanoff,
Marinacci, and Mukerji (2005), which, although not cast in an Anscombe and Aumann (1963) setup, can be
partially linked to results in this paper.

4Whenever A is a E-regular, then condition 3 in the definition can be disposed of since it is implied by condition
2.

5This notion is formally defined in Definition 3 below.
6Monotonicity requires that if f(s) % g(s) for all s, then f % g.
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3 Rank-dependent additive preferences

3.1 Representation result

As explained above, we will be concerned only with the properties of the preference relation on
the domain of R-binary acts. We thus define a notion of representation, which is affine with
respect to E-regular acts.

Definition 2 Let E ∈ Σ and R ⊂ A. A function V : B(R, E) → R is an R-affine representation
of % on B(R, E), if

1. for all f, g ∈ B(R, E), f % g if and only if V (f) ≥ V (g);

2. for all f ∈ B(R, E), h ∈ R, and α ∈ (0, 1), V (αf + (1− α)h) = αV (f) + (1− α)V (h).

We now characterize preferences that admit an E-regular set of acts for some event E,
generalizing results known for the class of c-linear biseparable preferences. This representation
will be key to establish under which conditions aggregation is possible.

Proposition 1 Let E ∈ Σ and % be a binary relation on A that satisfies Axiom 1. Assume
that there exists a set R ⊂ A which is E-regular with respect to % and, furthermore, that %
is not degenerate on R (i.e., there exist f, g ∈ R such that f Â g.) Then, there exists an R-
affine representation of % on B(R, E) V : B(R, E) → R, which is unique up to a positive affine
transformation.

Furthermore, for any R-affine representation V of %,

1. there exist four linear functions V E , V Ec , V E , V Ec from R to R such that for all f, g ∈ R

V (fEg) = V E(f) + V Ec(g) if f % g

= V E(f) + V Ec(g) if f - g

2. there exists kE ∈ R such that for all f, g ∈ R,

V (fEg) + V (gEf)− V (f)− V (g) = kE |V (f)− V (g)| . (1)

Preferences that satisfy the requirements of Proposition 1 will be called rank-dependent
additive (with respect to R) in the following. Existence of an R-affine representation is straight-
forward and well-known (it follows from vNM like arguments). The first property establishes
that the evaluation of binary acts fEg with f, g ∈ R can be decomposed in a rank-dependent
additive manner, the decomposition being dependent on the ranking of the two acts. The second
property can be seen as a way to identify the agent’s attitude toward uncertainty attached to
an event, which we will define and characterize in the following section.
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Most models of decision under uncertainty cast in the Anscombe-Aumann framework are
rank-dependent additive. Rank-dependent additive preferences can accommodate state-dependence.
This is why, contrary to c-linear biseparable preferences, “beliefs” do not appear explicitly in the
functional. Indeed, were we to make them explicit, we would get back to the usual problem that,
when allowing for state-dependence, beliefs cannot be uniquely pinned down. We will discuss
this in more details in Section 5.

3.2 Uncertainty neutral rank-dependent additive preferences

Gilboa and Schmeidler (1989) defined uncertainty aversion as a preference for mixing: for any
acts f, g, f ∼ g ⇒ αf + (1− α)g % f . We will here limit the domain of application to a smaller
set of acts. Furthermore, we define a notion of uncertainty neutrality rather than uncertainty
aversion, as the important distinction for us will be between agents that are neutral toward
uncertainty and agents that have a non neutral attitude toward uncertainty (uncertainty averse
or seeking). Based on the intuition underlying this definition we propose the following definition
of uncertainty neutrality on an event with respect to a set of acts.7

Definition 3 Let E ∈ Σ and D ⊂ A. Say that % is uncertainty neutral on E with respect to
D if for all f, g ∈ B(D, E) such that f ∼ g and all α ∈ (0, 1), αf + (1− α)g ∼ f .

Obviously, a preference relation that satisfies the independence axiom over the whole set
of acts will be uncertainty neutral on any event. The next claim proves that rank-additive
preferences with kE = 0 are uncertainty neutral on E.

Proposition 2 Under the representation of Proposition 1, % is uncertainty neutral on event E

with respect to R if and only if kE = 0.8

In the following, we argue that in the class of preferences considered, uncertainty neutrality
is the crucial property that delimits the frontier between the possibility and impossibility of
linear aggregation.

3.3 Betting attitudes

Although it is difficult to define “beliefs” in our model, in particular because it allows for state-
dependence, we can define a notion of betting preference and more precisely, give meaning to
the idea that two rank-dependent additive decision makers have the same betting preference on
an event E.

Definition 4 Let E ∈ Σ and let %i and %j be preferences satisfying the assumptions of Propo-
sition 1. Say that i and j have the same betting preferences on E if there exist α, β ∈ (0, 1),
f, g ∈ Ri, f ′, g′ ∈ Rj such that f Âi g and f ′ Âj g′ and

7See also Ghirardato, Maccheroni, and Marinacci (2004).
8When kE = 0, the representation can be additively decomposed since V̄E = V E .

7



(i) fEg ∼i αf + (1− α)g and f ′Eg′ ∼j αf ′ + (1− α)g′, or

(ii) f ∼i αfEg + (1− α)g and f ′ ∼j αf ′Eg′ + (1− α)g′, or

(iii) g ∼i αfEg + (1− α)f and g′ ∼j αf ′Eg′ + (1− α)f ′, or

and

(i’) gEf ∼i βg + (1− β)f and g′Ef ′ ∼j βg′ + (1− β)f ′, or

(ii’) g ∼i βgEf + (1− β)f and g′ ∼j βg′Ef ′ + (1− β)f ′, or

(iii’) f ∼i βgEf + (1− β)g and f ′ ∼j βg′Ef ′ + (1− β)g′.

In this definition, we use mixing to calibrate the betting behavior of the decision makers on
event E, as is customary in an Anscombe and Aumann (1963) setting. Condition (i) says that
both agents evaluate fEg as if they were placing a weight α on E. The next two conditions would
be irrelevant in a state-independent setting. However, in our setting, it is possible for instance
that f Âi g but fEg Âi f . The other three conditions use the same calibrating technique to
assess the agents’ betting behavior on Ec. The weight β could be greater or smaller than 1−α.

The next proposition shows that the notion of identical betting preferences is captured, in
the representation of Proposition 1, by the fact that the two agents have the same coefficient
kE .

Proposition 3 Let E ∈ Σ and let %i and %j be preferences satisfying the assumptions of
Proposition 1. If i and j have the same betting preferences on E then kE

i = kE
j .

This characterization will be useful when we discuss the extension of our main theorem to
situations in which agents have identical betting attitudes, in relation to Gilboa, Samet, and
Schmeidler (2004) argument.

4 Aggregation of rank-dependent additive preferences: an im-
possibility result

For the aggregation problem to be interesting, one needs to impose some diversity among the
preferences that one seeks to aggregate. The next definition provides one such condition (see
Mongin (1998)).

Definition 5 The n binary relations {%i}i∈N ′ satisfy the Independent Prospects Property on a
set D ⊂ A if for all i ∈ N ′, there exist h?

i , h?i ∈ D such that:

h?
i Âi h?i and h?

i ∼j h?i ∀j ∈ N ′ \ {i}.
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On the other hand, it seems natural to impose for the society’s preference to comply with
any unanimous agreement among individuals: If everybody agree that some alternative f is
strictly better than some other alternative g, so should society. This requirement is formally
stated in the following Pareto Axiom.

Axiom 2 (Pareto) For all f, g ∈ A, [∀i ∈ N ′, f Âi g ⇒ f Â0 g].

We can now state our main theorem.

Theorem 1 Let E ∈ Σ. Let {%i}i∈N be binary relations on A and {Ri}i∈N be non-empty
subsets of A. Assume that

1. for all i ∈ N , %i satisfies Axiom 1;

2. for all i ∈ N , Ri is E-regular with respect to %i;

3. {%i}i∈N ′ satisfy the Independent Prospects Property on ∩i∈NRi.

Then, Axiom 2 holds if and only if,

(i) there exist an Ri-affine representation Vi of %i on B(Ri, E) for all i ∈ N , unique weights
(λ1, · · · , λn) ∈ Rn

+ \ {0}, µ ∈ R such that

∀f ∈ B(∩i∈NRi, E), V0(f) =
∑

i∈N ′
λiVi(f) + µ;

(ii) ∀i, j ∈ N ′, i 6= j, λi × λj 6= 0 ⇔ ∀E ∈ Σ, kE
i = kE

j = 0.

We next provide an illustrative example and then move on to a discussion of the theorem.

Example 1 Let N ′ = {1, 2}, S = {α, β} and X = {x, y}. Assume both agents have multiple
prior preferences with the simplex as the set of priors: Vi(f) = mins∈S ui(f(s)) where ui is
linear. Assume u1(x) = 0, u2(x) = 1, u1(y) = 1, u2(y) = 0, where x (resp. y) is the degenerate
lottery yielding x (resp. y) for sure. Assume that constant acts are regular for both agents and
society. Then, part (i) of the theorem yields that V0 is a weighted sum of the individuals’ utility:
V0 = λV1 + (1− λ)V2.

Then, V0(x, x) = λV1(x, x)+(1−λ)V2(x, x) = 1−λ and V0(y, y) = λV1(y, y)+(1−λ)V2(y, y) =
λ.

Assume the society is also of the multiple prior type. Then, u0(x) = V0(x, x) = 1 − λ and
u0(y) = V0(y, y) = λ. Thus, V0(x, y) ≥ min(u0(x), u0(y)) = min(λ, 1 − λ). But note that
V0(x, y) = λV1(x, y) + (1− λ)V2(x, y) = 0.
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In words the theorem says that, under the assumptions that individuals and society’s pref-
erences are “well behaved” on a subset of acts –and notably satisfy the independence axiom
on this subset–, either society’s preferences are a linear aggregation of uncertainty neutral indi-
viduals’ preferences or there is a dictator. It cannot be the case that society’s preferences are
the result of the aggregation of an uncertainty averse agent with any other type (uncertainty
averse, loving or neutral) of agent. A consequence is that if society’s preferences display a non
neutral attitude toward uncertainty (of the limited kind corresponding to the fact that it is not
uncertainty neutral on some event with respect to R0), then it must be dictatorial. Remark that
the theorem is in a sense stronger than Harsanyi’s since uncertainty neutrality of the preferences
is a consequence and not an assumption of the theorem.9

While we will discuss in the next section variations around this theorem, it is important to
notice here that it applies even if we restrict all agents to have the same betting preferences on
E. It is enough to observe that nothing in the assumptions of the theorem prevents the fact
that all agents have the same coefficient kE . Thus, we have the following corollary.

Corollary 1 Let E ∈ Σ. Let {%i}i∈N be binary relations on A and {Ri}i∈N be non-empty
subsets of A. Assume that the condition of Theorem 1 holds and that all agents have the same
betting preferences. Then, the conclusion of Theorem 1 holds as well and it is impossible to
aggregate preferences unless they are all uncertainty neutral.

Thus, what’s driving the impossibility result is not heterogeneity in betting attitudes. To
make this point clear in models where a notion of beliefs have been defined, consider the class
of c-linear biseparable preferences and let Ac denote the set of constant acts. If for all i ∈ N ,
%i are c-linear biseparable and not uncertainty neutral on E, and the Independent Prospects
Property holds on Ac, then Axiom 2 holds if and only if there exists j ∈ N ′ such that %0=%j .
This is a direct consequence of the fact that Ac is regular for c-linear biseparable preferences
and as we establish in the Appendix, that these preferences are not uncertainty neutral with
respect to that set.

Two important particular cases covered are when agents and society have multiple prior
preferences and when they have Choquet expected utility preferences of Schmeidler (1989).
Hence, for instance, it is not possible to aggregate multiple prior preferences into a multiple
prior social preferences, irrespective of the fact that the sets of priors are identical among agents.
Whereas in an expected utility setting it is possible to aggregate agents with the same beliefs,
this does not generalize to non-expected utility settings.

The proof of the theorem is divided into two distinct parts. The first one is a direct appli-
cation of Proposition 2 in De Meyer and Mongin (1995). It states that, given the underlying

9This was already the case in Blackorby, Donaldson, and Mongin (2004) study of the aggregation of rank
dependent expected utility agents. As they put it “the EU-like conditions are to be found here in the conclu-
sion, whereas Harsanyi put them in the assumption; apparently, he did not realize the logical power of his own
framework.”
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convex structure (recall we are in an Anscombe-Aumann setting), the Pareto axiom implies that
V0 is a weighted sum of the Vis. Hence, aggregation has to be linear. The second part can itself
be divided in two.

First, the Independent Prospects Property on ∩i∈NRi states that for any i, there exist h?,
h? in ∩i∈NRi such that h? Âi h? and h? ∼j h?, ∀j ∈ N ′ \{i}. Using these acts for any i, one can
establish that for any agent i that has a non zero weight λi, kE

i = kE
0 for any event E. Thus,

all agents that are taken into account in V0 must have the same attitude toward uncertainty.
Second, we prove that kE

0 = 0 as soon as there are two agents with non zero weights. Assume
for simplicity that only agent 1 and 2 have non zero weight. The argument relies on the fact that,
using the Independent Prospects Property and mixing acts, one can find two acts f, g ∈ ∩i∈NRi

such that f Â1 g and f ≺2 g, while f ∼0 g. The uncertainty neutrality of the preferences can
then be established by computing V0(fEg)+V0(gEf)−V0(f)−V0(g) in two different ways. The
first one is direct and establishes that this quantity is zero since f ∼0 g. The second one is to
compute it decomposing V0 as the sum of λ1V1 and λ2V2. Using the fact that kE

1 = kE
2 = kE

0 ,
this last part establishes that kE

0 = 0.

5 Restoring possibility

In this Section, we provide a discussion of the assumptions made to obtain our result. We first
start by reviewing known arguments to restore possibility in the expected utility setting and
show how they fail to apply in our setting. We also show that our impossibility result extends to
smooth ambiguity averse decision makers. In the next subsection, we show that dropping some
requirement at the society level might restore the possibility of aggregation.

5.1 What does not work...

5.1.1 Weakening the Pareto axiom

Gilboa, Samet, and Schmeidler (2004) taking stock of the existing impossibility results under
expected utility whenever agents have different beliefs Mongin (1995) suggested to weaken the
Pareto principle to acts on which the agents have the same beliefs.10 They established then
that it is possible to aggregate linearly and separately tastes and beliefs. Such a way to restore
possibility would not work in our context. As we argued, even if agents have the same betting
attitudes (which, under expected utility amounts to same beliefs), aggregation is impossible
under uncertainty non neutrality. In the multiple prior model for instance one can identify, for
the sake of the argument, “beliefs” with the set of priors. Then, as we have shown, aggregation is
not possible even when agents all have the same “beliefs”. Thus weakening the Pareto principle
to acts on which agents have the same betting attitudes does not appear to be a solution here.

10Identical beliefs are defined in their paper in terms of the representation rather than in terms of the preferences.
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5.1.2 State dependence

As shown by Mongin (1998) and Chambers and Hayashi (2006) (in a Savage setting) a way to
circumvent the impossibility of aggregating subjective expected utility agents when they have
different beliefs is to enrich the possible domain for society’s preferences. Specifically, they
allowed for state-dependence in society’s preferences (while remaining in the subjective utility
class). Since state-dependent preferences are already included in our class of preferences, our
result embeds their possibility result. However, it also shows that such a way of restoring the
possibility of aggregation will not work when preferences are not uncertainty neutral.

5.1.3 Impossibility with smooth preferences: an example

We provide here an example in which the class of preferences considered is of the “smooth
ambiguity averse” type à la Klibanoff, Marinacci, and Mukerji (2005) and in which aggrega-
tion is not possible. Consider two agents, 1 and 2, and denote society as above by 0. Let
Vi(fEg) = ϕ−1

i [pi(E)ϕi (Ui(f)) + (1− pi(E))ϕi (Ui(g))] for i = 0, 1, 2, where pi is a unique
subjective probability distribution, Ui is a vNM utility function on Ac and ϕi is the second
level utility function which captures attitude toward ambiguity. Assume ϕi, i = 1, 2 is strictly
concave, reflecting ambiguity aversion. Assume furthermore that the Independent Prospects
Property holds on Ac. Since Harsanyi’s conditions are satisfied on these acts, it has to be the
case that U0 = α1U1 + α2U2, for some α1, α2 ∈ R+. Assume without loss of generality that
α1 ≥ α2. Let E be an event and assume for the sake of simplicity that p1(E) = p2(E) = 1/2.

From the Independent Prospects Property, there exist three constant acts x, y, and z such
that 1 prefers x to y and 2 prefers y to x, while z is indifferent to y for 1 and to x for 2.

U1 U2 U0

x 1 0 α1

y 0 1 α2

z 0 0 0

Construct now the three constant acts h, k, and ` as follows:

h =
1
8

(
1− α2

α1

)
x +

1
4
y +

(
5
8

+
1
8

α2

α1

)
z,

k =
1
8

(
1 +

α2

α1

)
x +

(
7
8
− 1

8
α2

α1

)
z;

` =
1
8
x +

1
8
y +

3
4
z.

These three acts are constructed so that society is indifferent among them, while 1 and 2 have
opposite preferences on them, namely k Â1 ` Â1 h and h Â2 ` Â2 k Indeed, direct computation
yields the following table:
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U1 U2 U0

h 1
8(1− α2

α1
) 1

4
α1+α2

8

k 1
8(1 + α2

α1
) 0 α1+α2

8

` 1
8

1
8

α1+α2
8

Since society is indifferent among these three constant acts, it cannot exhibit any uncertainty
attitude with respect to, for instance, the binary act of the kind hEk. In particular, hEk is
indifferent from the society view point to `. Hence, it will fail to capture the uncertainty non
neutrality of agents 1 and 2. We now make this more precise.

Observe that V0(hEk) = ϕ−1
0 [p0(E)ϕ0 (U0(h)) + (1− p0(E))ϕ0 (U0(k))] = α1+α2

8 = V0(`).
Hence, society is indifferent between ` and hEk. Let’s now show that Vi(`) > Vi(hEk) for
i = 1, 2 thus establishing a violation of the Pareto axiom

By construction V1(`) = ϕ−1
1

[
1/2ϕ1

(
1
8

)
+ 1/2ϕ1

(
1
8

)]
= 1

8 , and similarly, V2(`) = 1
8 .

Furthermore, V1(hEk) = ϕ−1
1

[
1/2ϕ1

(
1
8(1− α2

α1
)
)

+ 1/2ϕ1

(
1
8(1 + α2

α1
)
)]

. Given that ϕ1 is
assumed to be strictly concave, one has

V1(hEk) < ϕ−1
1

[
ϕ1

(
1/2

(
1
8
(1− α2

α1
)
)

+ 1/2
(

1
8
(1 +

α2

α1
)
))]

=
1
8
.

In a similar fashion, it is easy to establish that

V2(hEk) < ϕ−1
1

[
ϕ1

(
1/2

(
1
4

)
+ 1/2 (0)

)]
=

1
8
.

We then get the contradiction to the Pareto axiom we were after, namely V1(hEk) < V1(`)
and V2(hEk) < V2(`) while V0(hEk) = V0(`). Observe that the argument in the example follows
closely the one of the proof of Theorem 1 (see the intuition given page 11). Note also that
we do not need to specify the distortion function ϕi and hence that this example shows that
aggregation fails even when agents have the same attitude toward ambiguity.

This example, which is not pathological, shows that it is not possible to prove an aggregation
result concerning ambiguity averse agents à la Klibanoff, Marinacci, and Mukerji (2005). As
we show in Appendix A, these preferences fail to satisfy Ac-independence, but do satisfy the
weak sure-thing principle, while they obviously satisfy the independence axiom on Ac (being of
the vNM type on this domain). This, we conjecture, might be enough to show a more general
impossibility result, namely that if preferences satisfy the independence axiom on {Ri}i∈N and
the weak sure-thing principle for {Ri}i∈N -binary acts, then the conclusion of Theorem 1 holds,
that is, it is not possible to aggregate uncertainty non neutral agents. This however would
require to have a more general decision theoretic model in which binary independence does not
hold. Klibanoff, Marinacci, and Mukerji (2005) is one such model but a rather specific one and
a general characterization remains to be done.
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5.2 What might work...

We now explore what type of result is achievable relaxing the independent prospects property,
binary independence and the weak sure-thing principle.

5.2.1 Same risk preferences

Embedded in the assumptions of the Theorem is the fact that social preferences has a rich
set of regular acts. Conditions 2 and 3 indeed entail that there exists a set on which binary
R-independence holds for all preferences and such that, on this set, the Independent Prospects
Property hold. One might wonder what would happen, were one to relax this assumption.
Assume that there is a set R which is E-regular for the society and for all individuals. Assume
that all individuals have the same preferences on R, which means that Independent Prospects
fails to hold. Then, Axiom 2 holds if and only if there exists an affine representation V0 on
B(R, E) of %0 which is a linear aggregation of the individuals’ affine Vi’s.

Hence, if all agents have the same risk preferences (i.e., their preferences on R) but different
betting preferences, then aggregation is possible and amounts to linear aggregation.

Note also that if all individuals have the same preferences on a set R which is E-regular for
them, then Axiom 2 implies that society’s preferences are the same as the individuals’ on R and
therefore satisfy the independence axiom on this set. In that case, V0 coincides with the Vi’s on
R. On the other hand, R is not necessarily E-regular for the society and R-independence might
fail.

5.2.2 Diversity and R-independence

The preceding subsection shows that the diversity condition is critical to obtain our result. This
condition is a joint condition on individuals’ and society’s preferences. One might wonder if
diversity restricted to individuals’ preferences alone implies a form of impossibility theorem.
As we have explained above, if the diversity condition is imposed on individuals’ preferences,
then Axiom 2 imposes only that the society’s preferences satisfy the independence axiom on
subsets of the intersection of the individuals’ E-regular sets where all individuals have the same
preferences. Besides this fact, there is nothing in our approach that constrains ∩i∈N ′Ri to be
E-regular for the society.11 In this case, our theorem does not apply and aggregation might be
possible. Take for instance, V0(f) = mini Vi(f). This represents a preference for the society,
that respects the Pareto axiom. But it is not clear what axioms this preference obeys besides
Axiom 1.

11Arguments along the line of Diamond (1967), Sen (1970), Epstein and Segal (1992) might give a justification
for the fact that ∩i∈N′Ri is not E-regular for society.
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5.2.3 Dropping the weak sure-thing principle

The next result shows that linear aggregation is possible if one is willing to drop the weak
sure-thing principle at the society’s level. In other words, defining V0 as

∑
i λiVi is an aggre-

gation procedure that satisfies the Pareto axiom. Furthermore, V0 hence defined satisfies the
independence axiom with respect to mixing with acts in ∩i∈NRi. However, it violates the weak
sure-thing principle.

Proposition 4 Let E ∈ Σ. Let {%i}i∈N be binary relations on A and {Ri}i∈N be non-empty
subsets of A. Assume that

1. for all i ∈ N , %i satisfies Axiom 1;

2. for all i ∈ N ′, Ri is E-regular with respect to %i;

3. {%i}i∈N ′ satisfy the Independent Prospects Property on ∩i∈NRi;

4. For all f ∈ ∩i∈NRi, for all g, h ∈ A, α ∈ (0, 1], g %0 h ⇔ αg +(1−α)f %0 αh+(1−α)f .

Then, Axiom 2 holds if and only if, there exists an Ri-affine representation Vi of %i for all
i ∈ N , unique weights (λ1, · · · , λn) ∈ Rn

+ \ {0}, µ ∈ R such that

∀f ∈ B(∩i∈NRi, E), V0(f) =
∑

i∈N ′
λiVi(f) + µ.

This way of aggregating preferences has the same pros and cons as those identified in the
discussion of Harsanyi’s theorem (see Weymark (1991) and Mongin (2002) for instance). In
particular, if one wants to use this theorem as an operational means to identify society’s pref-
erences, then one is forced to adopt some extra assumptions bearing on inter-personal welfare
comparisons (via cardinalization of the preferences for instance).

What are the consequences of abandoning the weak sure-thing principle for binary acts for
the society? When it is relaxed, it is not possible to define conditional preferences any longer.
Thus, it is not possible to construct ex ante preferences from a notion of conditional preferences.
At best, an incomplete notion of conditional preferences (f DE

0 g if and only if fEh %0 gEh for
all h ∈ R) can be defined.

The important consequence of this technical remark is that dominance reasoning is hence not
possible at the society’s level. In the multiple prior example, even if one obtains a vNM utility
function u0 for the society, it is not possible to conclude that an act that yields higher utility to
another act state by state is preferred to that latter act. If one considers that dominance is a
property that individuals’ preferences should satisfy, then linear aggregation is here possible at
the cost of assuming that the society’s preferences do not satisfy the same “rationality” criteria
as individuals.
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6 Concluding remarks

We have explored in detail the (im)possibility of aggregating preferences under uncertainty and
have established that under rather weak requirements, expected utility over the entire domain
is actually a necessary condition to obtain a possibility result. For decision makers who have
expected utility over lotteries, there is no scope for any non neutral attitude toward uncertainty
if one wants to be able to construct a social preference (that also respect expected utility over
lotteries). Thus, for instance, the notion of a representative multiple prior agent does not make
much sense (even in the particular case in which all agents have the same set of priors).

We also identified the conditions that are at the heart of the impossibility results. Dropping
a monotonicity requirement (the weak sure-thing principle on binary acts) at the society’s level
restores the possibility of aggregation à la Harsanyi. As we argued in the previous section,
this comes at a cost since a consequence of dropping this requirement is that society’s condi-
tional preferences are not well-defined, in the sense that they do not form a complete order,
and therefore dominance arguments become irrelevant. However, one could proceed with this
incompleteness, and also assume that society’s ex ante preferences be incomplete. We leave this
exploration for further research. Another research avenue would be to conduct a systematic
study of what kind of aggregation result is allowed when one drops the requirement that social
preferences match the individuals’ indifference to mixing on a rich set of acts, as alluded to in
section 5.2.2.
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Appendix A: Examples

In this Appendix, we provide three illustrations of our decision theoretic constructs.

A1. c-linear biseparable preferences

For any subset F of A, let B(F) = {fEg |f, g ∈ F and E ∈ Σ}.
% is c-linear biseparable if it can be represented by a function V : A → R, such that:

(i) for f, g ∈ Ac, f º g, V (fEg) = ρ(E)u(f) + (1− ρ(E))u(g) where ρ is a capacity;

(ii) V (αf + (1− α)g) = αV (f) + (1− α)V (g) for all f ∈ B(Ac) and g ∈ Ac.

Claim 1 Ac is E-regular for c-linear biseparable preferences for any event E.

Proof. Let E ∈ Σ be an event. That such preferences satisfy binary Ac-independence is a
direct implication of the fact that V (αf +(1−α)g) = αV (f)+ (1−α)V (g) for all f ∈ B(Ac, E)
and g ∈ Ac.

Let’s now check that these preferences satisfy the weak sure-thing principle for Ac-binary
acts as well. Let f, g, h, h′ be constant acts. Assume for instance that f % h and h % g, (other
cases can be dealt with in a similar manner). Note that this implies that f % g. Assume finally
that fEh Â gEh. This implies:

ρ(E)u(f) + (1− ρ(E))u(h) > (1− ρ(Ec))u(g) + ρ(Ec)u(h).

We now check that fEh′ % gEh′ for any h′ ∈ Ac. Three cases must be considered.

Case 1 : f % h′ and g % h′.
In this case,

fEh′ % gEh′ ⇔ ρ(E)u(f) + (1− ρ(E))u(h′) ≥ ρ(E)u(g) + (1− ρ(E))u(h′)

⇔ u(f) ≥ u(g),

which is the case by assumption.

Case 2 : f % h′ and h′ % g.
In this case,

fEh′ % gEh′ ⇔ ρ(E)u(f) + (1− ρ(E))u(h′) ≥ (1− ρ(Ec))u(g) + ρ(Ec)u(h′)

⇔ ρ(E)u(f) + (1− ρ(Ec))u(h′) ≥ ρ(E)u(h′) + (1− ρ(Ec))u(g),

which is the case since u(f) ≥ u(h′) ≥ u(g).

Case 3 : h′ % f and h′ % g.
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In this case,

fEh′ % gEh′ ⇔ (1− ρ(Ec))u(f) + ρ(Ec)u(h′) ≥ (1− ρ(Ec))u(g) + ρ(Ec)u(h′)

⇔ u(f) ≥ u(g),

which is the case by assumption.

Claim 2 c-linear bi-separable preferences are rank-dependent additive with respect to Ac for any
event E.

Proof. Define V E(f) = ρ(E)u(f) and V Ec = (1 − ρ(E))u(g), and observe that, when
f Â g, V (fEg) = ρ(E)u(f) + (1 − ρ(E))u(g). The decomposition for g % f is done in a
similar fashion. Note finally that if f % g, V (fEg) + V (gEf) − V (f) − V (g) = ρ(E)u(f) +
(1− ρ(E))u(g) + ρ(Ec)u(f) + (1− ρ(Ec))u(g)− u(f)− u(g) = (ρ(E) + ρ(Ec)− 1)(u(f)− u(g)).
Defining kE = ρ(E) + ρ(Ec)− 1 yields the desired result (property 2 in the proposition).

Claim 3 c-linear bi-separable preferences fail in general to be uncertainty neutral on an event
E with respect to Ac.

Proof. Let f, g, h, ` ∈ Ac be such that f Â g and ` Â h. Let α ∈ (0, 1) and assume w.l.o.g.
(αf + (1− α)h) Â (αg + (1− α)`). Then,

V (αfEg + (1− α)hE`) = V ((λf + (1− λ)h)E(λg + (1− λ)`))

= αV (fEg) + (1− α)[ρ(E)u(h) + (1− ρc(E))u(`)].

Therefore, these preferences are uncertainty neutral on an event E with respect to Ac if, and
only if ρ(E) = 1− ρ(Ec), which does not hold in general.

A2. State dependent α-MMEU

% is a state-dependent α−MMEU preference if it can be represented by

V (f) = α min
p∈C

Epus(f(s)) + (1− α)max
p∈C

Epus(f(s)),

where us is an affine function on Y for all s ∈ S.

Claim 4 Let E ∈ Σ. The set Acv = {f ∈ A s.th. ∀s, t us(f(s)) = ut(f(t))} of constant utility
acts is E-regular for state-dependent α−MMEU preferences.
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Proof. Notice first that Acv is a mixture set. Second, it is also easy to establish that
V (αf + (1 − α)g) = αV (f) + (1 − α)V (g) for all f ∈ B(Acv, E) and g ∈ Acv. Third, we check
that condition 3 of Definition 1 holds as well. Remark that for all f, h ∈ Acv, one has:

V (fEh) = α minp∈C(p(E)V (f) + (1− p(E))V (h)) + (1− α) maxp∈C(p(E)V (f) + (1− p(E))V (h))

=
{ (

αp(E) + (1− α)p(E)
)
V (f) +

(
α(1− p(E)) + (1− α)(1− p(E))

)
V (h) if V (f) ≥ V (h)(

αp(E) + (1− α)p(E)
)
V (f) +

(
α(1− p(E)) + (1− α)(1− p(E))

)
V (h) if V (f) ≤ V (h)

where p(E) = minp∈C p(E) and p(E) = minp∈C p(E).
Now, for all f, g, h ∈ Acv, it is straightforward, using the expression obtained for V (fEh)

and looking at all the possible ranking of V (f), V (g), V (h), to check that V (fEh) ≥ V (gEh) if
and only if V (f) ≥ V (g), thus establishing that property 2 holds.

Claim 5 State-dependent α-MMEU are rank-dependent additive for event E with respect to Acv

Proof. Recall that

V (fEh) ={ (
αp(E) + (1− α)p(E)

)
V (f) +

(
α(1− p(E)) + (1− α)(1− p(E))

)
V (h) if V (f) ≥ V (h)(

αp(E) + (1− α)p(E)
)
V (f) +

(
α(1− p(E)) + (1− α)(1− p(E))

)
V (h) if V (f) ≤ V (h)

where p(E) = minp∈C p(E) and p(E) = minp∈C p(E).
To conclude that state-dependent α-MMEU are rank-dependent additive with respect to

Acv, it is enough to identify the functions V E , V Ec , V E , and V Ec by looking at the expression
obtained for V (fEh).

Claim 6 Let E ∈ Σ. State-dependent α−MMEU fail in general to be uncertainty neutral for E

with respect to the set of constant utility acts Acv = {f ∈ A s.th. ∀s, t us(f(s)) = ut(f(t))}.

Proof. Let f, g, h, ` ∈ Ac be such that f Â g and ` Â h. Let λ ∈ (0, 1) and assume wlog
(λf + (1− λ)h) Â (λg + (1− λ)`). Let p̄(E) (resp. p(E)) be the upper (resp. lower) probability
of E in C. Then,

V (λfEg + (1− λ)hE`) = V ((λf + (1− λ)h)E(λg + (1− λ)`))

= α min
p∈C

Epus(λf(s) + (1− λ)h(s)) + (1− α)max
p∈C

Epus(λg(s) + (1− λ`(s))

= αp(E)[λV (f) + (1− λ)V (h)] + (1− α)p̄(E)[λV (g) + (1− λ)V (`)]

= λV (fEg) + (1− λ)[p(E)V (h) + p̄(E)V (`)].

Therefore, V is uncertainty neutral on E with respect to Acv only if p̄(E) = p(E), which does
not hold in general.
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A3. Smooth ambiguity aversion

% is smoothly ambiguity averse on B(Ac, E) if it can be represented by:

V (fEg) = ϕ−1 [p(E)ϕ (U(f)) + (1− p(E))ϕ (U(g))] ,

on B(Ac, E), where p is a unique subjective probability distribution, U is a vNM utility function
on Ac and ϕ is the second level utility function which captures attitude toward ambiguity.

Claim 7 Smooth ambiguity averse preferences violate binary Ac independence.

Proof. Note that for all f, g, h ∈ Ac and λ ∈ (0, 1):

V (λfEg + (1− λ)h) = ϕ−1 [p(E)ϕ (λU(f) + (1− λ)U(h)) + (1− p(E))ϕ (λU(g) + (1− λ)U(l))]

6= λV (fEg) + (1− λ)V (h) unless ϕ is linear.

In other words, this functional is not linear with respect to probabilistic combination between
Ac-binary acts and constant acts.

Claim 8 Smooth ambiguity averse preferences satisfy the weak sure-thing principle and inde-
pendence on Ac.

Proof. Since V (fEh) = ϕ−1 [p(E)V (f) + (1− p(E))V (h)], V (fEh) > V (gEh) implies
V (f) > V (g), and V (fEh′) > V (gEh′) for any h′ ∈ Ac.

Independence holds given that preferences on constant acts are vNM.

Observe that smooth ambiguity averse preferences are not rank-dependent additive.

Claim 9 Let E ∈ Σ. Smooth ambiguity averse preferences in general not uncertainty neutral
on E with respect to the set of constant acts.

Proof. Since smooth ambiguity averse preferences reduce to expected utility on constant
acts, they are uncertainty neutral with respect to Ac.

Now, let f, g, h, ` ∈ Ac and λ ∈ (0, 1). Then,

V (λfEg + (1− λ)hE`) = V ((λf + (1− λ)h)E(λg + (1− λ)`))

= ϕ−1 [p(E)ϕ (λU(f) + (1− λ)U(h))+(1-p(E))ϕ (λU(g) + (1− λ)U(l))] .

On the other hand,

λV (fEg) + (1− λ)V (hE`) = λϕ−1 [p(E)ϕ (U(f)) + (1− p(E))ϕ (U(g))]

+ (1− λ)ϕ−1 [p(E)ϕ (U(h)) + (1− p(E))ϕ (U(l))] .

Therefore, these preferences are uncertainty neutral with respect to Ac only if ϕ is linear, i.e.,
when these preferences satisfy the reduction of compound lottery axiom, in which case they are
ambiguity neutral according to Klibanoff, Marinacci, and Mukerji (2005).
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Appendix B

B1. Proof of Proposition 1

Existence of an R-affine representation follows from a usual vNM kind of proof and is omitted
here.

Next, for sake of simplicity we prove the properties 1 & 2 at the same time. Let V be any
R-affine representation of %.

For any event E and acts f, g ∈ R, say that f DE g if for all act h ∈ R, fEh % gEh. This
relation is well-defined since % satisfies the weak sure-thing principle for binary acts. Denote
BE and ≈E strict preference and indifference respectively. It can be checked that by definition
of R, DE satisfies the vNM axioms.

The proof is decomposed in two depending on whether there exist f?, f? ∈ R such that
V (f?

Ef?) + V (f?Ef?) 6= V (f?) + V (f?) or not.

Case 1.

There exist f?, f? ∈ R such that V (f?
Ef?) + V (f?Ef?) 6= V (f?) + V (f?)

As a first step, we show that either DE=DEc or DEc is a reverse order of DE , in the sense
that f DEc g if and only if g DE f , for all f, g ∈ R. In step 2, we complete the proof of properties
1 and 2.

Step 1. DE=DEc or DEc is a reverse order of DE

Suppose that f? % f?. Then, we necessarily must be in one of the following cases:

• f? BE f? and f? BEc f?,

• f? BE f? and f? DEc f?,

• f? DE f? and f? BEc f?

• f? DE f? and f? DEc f?.

This last case is not possible. Indeed, f? DE f? implies that f? % f?
Ef? and f?Ef? % f?

while f? DEc f? implies that f? % f?Ef? and f?
Ef? % f?. Thus f? % f?

Ef?, f?Ef? % f? while by
assumption f? % f? and therefore f?

Ef? ∼ f?Ef? ∼ f? ∼ f? and thus V (f?
Ef?) + V (f?Ef?) =

V (f?) + V (f?) which leads to a contradiction.
Therefore, we essentially have only two cases to consider : (a) f? BE f? and f? BEc f?, and

(b) f? BE f? and f? DEc f? (the third case being the symmetric of case (b)).

Case (a): f? BE f? and f? BEc f?.

Let us prove that DE=DEc . Assume to the contrary that there exist f, g ∈ R such that
f BE g while g DEc f . W.l.o.g, we can take these acts such that f? BE f BE g BE f? and
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f? DEc g DEc f DEc f?. Indeed, we can always exhibit two acts satisfying our conditions by
mixing f and g with either f?or f?. Then there exist a, ac, b, bc ∈ (0, 1) such that 1 ≥ a > b ≥ 0
and 1 ≥ bc ≥ ac ≥ 0 and

f ≈E af? + (1− a)f?;

f ≈Ec acf? + (1− ac)f?;

g ≈E bf? + (1− b)f?;

g ≈Ec bcf? + (1− bc)f?.

Assume a > ac. By definition of R, f ∼ (af? + (1− a)f?)E (acf? + (1− ac)f?). Hence,

V (f) = V ((af? + (1− a)f?)E (acf? + (1− ac)f?))

= V

(
a− ac

1− ac
f?

E (acf? + (1− ac)f?) +
1− a

1− ac
(acf? + (1− acf?)

)

=
a− ac

1− ac
V (f?

E (acf? + (1− ac)f?)) +
1− a

1− ac
V (acf? + (1− ac)f?)

=
a− ac

1− ac
(acV (f?) + (1− ac)V (f?

Ef?)) +
1− a

1− ac
(acV (f?) + (1− ac)V (f?))

= acV (f?) + (a− ac) V (f?
Ef?) + (1− a)V (f?) .

Since f ∈ R,

V
(

1
1+a−ac f + a−ac

1+a−ac f?Ef?
)

= 1
1+a−ac V (f) + a−ac

1+a−ac V (f?Ef?)

= 1
1+a−ac (acV (f?) + (a− ac) V (f?

Ef?) + (1− a)V (f?)) + a−ac

1+a−ac V (f?Ef?) .

But we also have by definition of R,

V
(

1
1+a−ac f + a−ac

1+a−ac f?Ef?
)

= V
((

1
1+a−ac f + a−ac

1+a−ac f?

)
E

(
1

1+a−ac f + a−ac

1+a−ac f?
))

= V
((

1
1+a−ac f + a−ac

1+a−ac f?

)
E

(
1

1+a−ac f + a−ac

1+a−ac f?
))

= V
((

1
1+a−ac (af? + (1− a)f?) + a−ac

1+a−ac f?

)
E

(
1

1+a−ac (acf? + (1− ac)f?) + a−ac

1+a−ac f?
))

= V
((

1
1+a−ac (af? + (1− a)f?) + a−ac

1+a−ac f?

)
E

(
1

1+a−ac (acf? + (1− ac)f?) + a−ac

1+a−ac f?
))

= V
((

a
1+a−ac f? + 1−ac

1+a−ac f?

)
E

(
a

1+a−ac f? + 1−ac

1+a−ac f?

))

= V
((

a
1+a−ac f? + 1−ac

1+a−ac f?

)
E

(
a

1+a−ac f? + 1−ac

1+a−ac f?

))

= a
1+a−ac V (f?) + 1−ac

1+a−ac V (f?)
= a

1+a−ac V (f?) + 1−ac

1+a−ac V (f?) .

Therefore,

(acV (f?) + (a− ac)V (f?
Ef?) + (1− a)V (f?)) + (a− ac) V (f?Ef?) = aV (f?) + (1− ac)V (f?) ,
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which is equivalent to (a− ac) (V (f?
Ef?)+V (f?Ef?)) = (a− ac) (V (f?)+V (f?)). This contra-

dicts the fact that V (f?
Ef?) + V (f?Ef?) 6= V (f?) + V (f?) and a > ac. In the case where a ≤ ac,

then either a < ac or a = ac but in this last event, b < bc and the proof can be easily adapted
in both cases. Hence, DE=DEc .

Case (b) : f? BE f? and f? DEc f?.

In this case, we show that DEc is a reverse order of DE , that is, for all f, g ∈ R, f DE g if
and only if g DEc f .

Observe first that it has to be the case that f? BEc f?. Indeed, if f? ≈Ec f?, then by
definition of R, f? ∼ f?

Ef? and f? ∼ f?Ef? and thus V (f?
Ef?) + V (f?Ef?) = V (f?) + V (f?).

Suppose DEc is not a reverse order of DE , that is, there exist f, g ∈ R , such that f BE g while
f DEc g. As in case (a), we can assume w.l.o.g that f? BE f BE g BE f? and f? DEc f DEc g

DEc f?. Then, there exist a, ac, b, bc ∈ (0, 1) with a > b and ac ≤ bc such that

f ≈E af? + (1− a)f?;

f ≈Ec acf? + (1− ac)f?;

g ≈E bf? + (1− b)f?;

g ≈Ec bcf? + (1− bc)f?.

Either a > ac, or a < ac, or a = ac and b < bc. In the case a > ac, we can replicate the argument
for case (a) to show that (a− ac) (V (f?

Ef?)+V (f?Ef?)) = (a− ac) (V (f?)+V (f?)). The proof
can be adapted to the other cases to show a similar contradiction.

Step2. Properties 1 and 2 hold when there exist f, g ∈ R such that V (fEg) + V (gEf) 6=
V (f) + V (g)

Case (a) DE=DEc .

Given that % is not degenerate on R, there exist f?, f? ∈ R such that f? Â f?.
Thus, define for any f

V E(f) =
V (f?

Ef?)− V (f?)
V (f?)− V (f?)

V (f);

V E(f) =
V (f?)− V (f?Ef?)

V (f?)− V (f?)
V (f);

V Ec(f) =
V (f?Ef?)− V (f?)

V (f?)− V (f?)
V (f);

V Ec(f) =
V (f?)− V (f?

Ef?)
V (f?)− V (f?)

V (f).

Let us prove that for all f, g ∈ R,

V (fEg) = V E(f) + V Ec(g) if f % g

= V E(f) + V Ec(g) if f - g.
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Consider f, g ∈ R such that f % g and consider the case where V (f?) ≥ V (f) ≥ V (g) ≥
V (f?). We have that

f ≈E
V (f)− V (f?)
V (f?)− V (f?)

f? +
(

1− V (f)− V (f?)
V (f?)− V (f?)

)
f?,

and
g ≈Ec

V (g)− V (f?)
V (f?)− V (f?)

f? +
(

1− V (g)− V (f?)
V (f?)− V (f?)

)
f?.

By definition of R, fEg ∼ (af? + (1− a)f?)E (bf? + (1− b)f?) where a = V (f)−V (f?)
V (f?)−V (f?) and

b = V (g)−V (f?))
V (f?)−V (f?) . Thus

V (fEg) = V ((af? + (1− a)f?)E (bf? + (1− b)f?))

= bV (f?) + (a− b) V (f?
Ef?) + (1− a)V (f?)

=
(V (g)− V (f?))V (f?) + (V (f)− V (g))V (f?

Ef?) + (V (f?)− V (f))V (f?)
V (f?)− V (f?)

=
(V (f?

Ef?)− V (f?))V (f) + (V (f?)− V (f?
Ef?))V (g)

V (f?)− V (f?)
= V E(f) + V Ec(g).

In the case where V (f?) ≥ V (g) ≥ V (f) ≥ V (f?), a similar computation shows that
V (fEg) = V E(f) + V Ec(g).

In the other cases, the proof can be easily adapted to show that

V (fEg) = V E(f) + V Ec(g) if f % g

= V E(f) + V Ec(g) if f - g.

Define kE = V (f?
Ef?)+V (f?Ef?)−V (f?)−V (f?)

V (f?)−V (f?) .
If f % g,

V (fEg) + V (gEf)− V (f)− V (g) =

= V E(f) + V Ec(g) + V E(g) + V Ec(f)− V E(f)− V Ec(f)− V E(g)− V Ec(g)

= V Ec(f)− V Ec(f) + V Ec(g)− V Ec(g)

=
(

V (f?Ef?)−V (f?)
V (f?)−V (f?) − V (f?)−V (f?

Ef?)

V (f?)−V (f?)

)
V (f)−

(
V (f?Ef?)−V (f?)

V (f?)−V (f?) − V (f?)−V (f?
Ef?)

V (f?)−V (f?)

)
V (g)

= kE (V (f)− V (g)) .
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If f - g,

V (fEg) + V (gEf)− V (f)− V (g) =

= V E(f) + V Ec(g) + V E(g) + V Ec(f)− V E(f)− V Ec(f)− V E(g)− V Ec(g)

= V Ec(f)− V Ec(f) + V Ec(g)− V Ec(g)

= kE (V (g)− V (f)) .

Case (b): DEc is a reverse order of DE .

Let f?, f? ∈ R be such that V (f?
Ef?)+V (f?Ef?) 6= V (f?)+V (f?). Without loss of generality,

suppose that f? % f?, f? BE f? and f? BEc f?.
Consider V E , V E the vNM utility functions representing DE and V Ec , V Ec the vNM utility

functions representing DEc such that

• V E (f?) = V Ec (f?) = V (f?);

• V E (f?) = V Ec (f?) = 0;

• V E (f?) = V (f?) + V (f?)− V (f?
Ef?);

• V E (f?) = V (f?Ef?)− V (f?);

• V Ec (f?) = V (f?) + V (f?)− V (f?Ef?);

• V Ec (f?) = V (f?
Ef?)− V (f?).

Note that it is possible to choose this normalization for these vNM utility functions since
f? BE f? and f? BEc f? and thus

V (f?
Ef?) > V (f?) , V (f?) > V (f?Ef?),

which implies that V E (f?) > V E (f?), V E (f?) > V E (f?), V Ec (f?) > V Ec (f?) and V Ec (f?) >

V Ec (f?).
Let us prove that for all f, g ∈ R,

V (fEg) = V E(f) + V Ec(g) if f % g

= V E(f) + V Ec(g) if f - g.

Let f, g ∈ R such that f % g. Consider a first case where f? DE f DE f? and f? DE g DE f?.
Then there exist a, b ∈ (0, 1) such that

f ≈E af? + (1− a)f?;

g ≈E bf? + (1− b)f?.
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Since DEc is a reverse order of DE , we also have that

f ≈Ec af? + (1− a)f?;

g ≈Ec bf? + (1− b)f?.

Then, by definition of R, f ∼ af? + (1 − a)f? and g ∼ bf? + (1 − b)f?. Since f % g and
f? % f?, we get that a ≥ b. Thus,

V (fEg) = V ((af? + (1− a)f?)E (bf? + (1− b)f?))

= bV (f?) + (a− b) V (f?
Ef?) + (1− a)V (f?)

= aV (f?) + (1− a)(V (f?) + V (f?)− V (f?
Ef?)) + 0.b + (1− b)(V (f?

Ef?)− V (f?))

= aV E (f?) + (1− a)V E (f?) + bV Ec (f?) + (1− b)V Ec (f?)

= V E (af? + (1− a)f?) + V Ec (bf? + (1− b)f?)

= V E (f) + V Ec (g) .

Consider a second case where f DE f? and f? DE g. Then, there exist a, b ∈ (0, 1) such that

f? ≈E af + (1− a)g and f? ≈E bf + (1− b)g,

and
f? ≈Ec af + (1− a)g and f? ≈Ec bf + (1− b)g,

and f? ∼ af + (1− a)g and f? ∼ bf + (1− b)g. Thus a > b and

V (f?
Ef?) = V ((af + (1− a)g)E (bf + (1− b)g))

= bV (f) + (a− b) V (fEg) + (1− a)V (g) .

Thus
V (fEg) =

V (f?
Ef?)− bV (f)− (1− a)V (g)

a− b
.

We also have

V E (f) =
(1− b)V E (f?)− (1− a)V E (f?)

a− b
;

V Ec (g) =
bV Ec (f?)− aV Ec (f?)

b− a
.
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and thus

V E (f) + V Ec (g) =
(1− b)V E (f?)− (1− a)V E (f?)− bV Ec (f?) + aV Ec (f?)

a− b

=
(1− b)V E (f?)− (1− a)V E (f?)− bV Ec (f?) + aV Ec (f?)

a− b

=
(1− b)V (f?)− (1− a) (V (f?) + V (f?)− V (f?

Ef?)) + a (V (f?
Ef?)− V (f?))

a− b

=
V (f?

Ef?)− bV (f?)− (1− a)V (f?)
a− b

=
V (f?

Ef?)− b (aV (f) + (1− a)V (g))− (1− a) (bV (f) + (1− b)V (g))
a− b

=
V (f?

Ef?)− bV (f)− (1− a)V (g)
a− b

.

which proves that V (fEg) = V E (f) + V Ec (g).
The proof can be adapted in the cases where f DE f? and g DE f? (or f? DE g DE f?), or

f? DE g DE f? and f? DE g, or f? DE f and f? DE g.
Assume now that f? DE f DE f? and g BE f?. Then, there exist a, b ∈ (0, 1) such that

f ≈E af? + (1− a)f?;

f? ≈E bg + (1− b)f?.

Then we also have f ≈Ec af? +(1−a)f? and f? ≈Ec bg+(1−b)f?, and thus, f ∼ af? +(1−a)f?

and f? ∼ bg + (1− b)f?, which yields a contradiction to the fact that f % g.
We can prove that a similar contradiction occurs if we assume f? DE f and g BE f?.
Since V E , V E are vNM representations of DE , V Ec , V Ec are vNM representations of DEc

and since they are two reverse orders, the uniqueness conditions imply that

• V E = V (f?)−V (f?Ef?)

V (f?
Ef?)−V (f?)

(
V E − V (f?)

)
;

• V Ec = V (f?)−V (f?Ef?)

V (f?)−V (f?
Ef?)

(
V E − V (f?)

)
+ V (f?);

• V Ec =
V (f?

Ef?)−V (f?)

V (f?)−V (f?
Ef?)

(
V E − V (f?)

)
.

Note that for all f ∈ R, V (f) = V (f?)−V (f?)

V (f?
Ef?)−V (f?)

V E(f)+
V (f?

Ef?)−V (f?)

V (f?
Ef?)−V (f?)

V (f?). Let’s now check

that the representation satisfies property 2.
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If f % g,

V (fEg) + V (gEf)− V (f)− V (g) = V Ec(f)− V Ec(f) + V Ec(g)− V Ec(g)

=
(

V (f?)−V (f?Ef?)

V (f?)−V (f?
Ef?) −

V (f?
Ef?)−V (f?)

V (f?)−V (f?
Ef?)

) (
V E(f)− V E(g)

)

= V (f?)−V (f?)

V (f?
Ef?)−V (f?)

(
V E(f)− V E(g)

)

= V (f)− V (g).

If f - g,

V (fEg) + V (gEf)− V (f)− V (g) = V Ec(f)− V Ec(f) + V Ec(g)− V Ec(g)

= V (g)− V (f).

Case 2.

For all f, g ∈ R, V (fEg) + V (gEf)− V (f)− V (g) = 0.
If for all f, g ∈ R, fEg ∼ f , then for VE = V and VEc = 0, we have that V (fEg) =

VE (f) + VEc (g) which proves that properties 1 and 2 hold.
Suppose now that there exist f?, f? ∈ R such that f?

Ef? � f?. Since V (f?
Ef?) + V (f?Ef?) =

V (f?)+V (f?), we can w.l.o.g restrict our attention to two cases: (a) V (f?) > V (f?
Ef?) , V (f?Ef?) >

V (f?) and (b) V (f?
Ef?) > V (f?) > V (f?) > V (f?Ef?).

In either case, consider VE and VEc the vNM utility functions representing DE and DEc

such that VE (f?) = V (f?), VEc (f?) = 0, VE (f?) = V (f?Ef?), VEc (f?) = V (f?
Ef?) − V (f?).

Note that it is possible to choose this normalization for these vNM utility functions. Indeed,
in case (a), we have f? BE f? and f? BEc f? and the normalization proposed is such that
VE (f?) > VE (f?) and VEc (f?) > VEc (f?), while in case (b), we have f? BE f? and f? BEc f?

and the normalization proposed is such that VE (f?) > VE (f?) and VEc (f?) < VEc (f?).
Let f, g ∈ R and consider a first case where f? DE f DE f? and g is in between f? and f?

according to DEc . Then there exist a, bc ∈ (0, 1) such that

f ≈E af? + (1− a)f?;

g ≈Ec bcf? + (1− bc)f?.
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If a ≥ bc, then by definition of R and since V (f?
Ef?) + V (f?Ef?) = V (f?) + V (f?),

V (fEg) = V ((af? + (1− a)f?)E (bcf? + (1− bc)f?))

= bcV (f?) + (a− bc) V (f?
Ef?) + (1− a)V (f?)

= aV (f?) + (1− a)(V (f?) + V (f?)− V (f?
Ef?)) + 0.bc + (1− bc)(V (f?

Ef?)− V (f?))

= aV (f?) + (1− a)V (f?Ef?) + 0.bc + (1− bc)(V (f?
Ef?)− V (f?))

= aVE (f?) + (1− a)VE (f?) + bcVEc (f?) + (1− bc)VEc (f?)

= VE (af? + (1− a)f?) + VEc (bcf? + (1− bc)f?)

= VE (f) + VEc (g) .

If bc ≥ a, then by definition of R and since V (f?
Ef?) + V (f?Ef?) = V (f?) + V (f?),

V (fEg) = V ((af? + (1− a)f?)E (bcf? + (1− bc)f?))

= aV (f?) + (bc − a) V (f?Ef?) + (1− bc)V (f?)

= aV (f?) + (1− a)V (f?Ef?) + 0.bc + (1− bc)(V (f?)− V (f?Ef?))

= aV (f?) + (1− a)V (f?Ef?) + 0.bc + (1− bc)(V (f?
Ef?)− V (f?))

= aVE (f?) + (1− a)VE (f?) + bcVEc (f?) + (1− bc)VEc (f?)

= VE (f) + VEc (g) .

Consider now a second case, where f DE f? and g is in between f? and f? according to DEc .
Then there exist a, bc ∈ (0, 1) such that

f? ≈E af + (1− a)f?;

g ≈Ec bcf? + (1− bc)f?.

Therefore by definition of R,

V (f?
Eg) = V ((af + (1− a)f?)E g) ⇔ V (f?

E (bcf? + (1− bc)f?)) = aV (fEg) + (1− a)V (f?Eg)

⇔ bcV (f?) + (1− bc)V (f?
Ef?) = aV (fEg) + (1− a) (bcV (f?Ef?) + (1− bc)V (f?))

⇔ V (fEg) =
bcV (f?)+(1−bc)V (f?

Ef?)−(1−a)(bcV (f?Ef?)+(1−bc)V (f?))

a .

Using the fact that V (f?) = V (f?Ef?) + V (f?
Ef?)− V (f?), we get that

V (fEg) =
(1− a + abc)V (f?)− (1− a)V (f?Ef?) + a(1− bc)V (f?

Ef?)
a

.

We also have that

VE (f) =
VE (f?)− (1− a)VE (f?)

a
;

VEc (g) = bcVEc (f?) + (1− bc)VEc (f?) .
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Thus

VE (f) + VEc (g) =
VE (f?)− (1− a)VE (f?) + a (bcVEc (f?) + (1− bc)VEc (f?))

a

=
V (f?)− (1− a)V (f?Ef?) + a(1− bc) (V (f?

Ef?)− V (f?))
a

=
(1− a + abc)V (f?)− (1− a)V (f?Ef?) + a(1− bc)V (f?

Ef?)
a

,

and therefore V (fEg) = VE (f) + VEc (g).
In the other cases the proof can be adapted to show that V (fEg) = VE (f) + VEc (g).
Finally, remark that property 2 is satisfied with kE = 0.

B2. Proof of Proposition 2

Suppose % is uncertainty neutral on E with respect to R. Let us prove that for all f, g ∈ R,
V (fEg) + V (gEf) = V (f) + V (g) and thus that kE = 0.

Let f, g ∈ R and assume first that f ∼ g.
If f DE g and f DEc g, then f % fEg, gEf % g and thus f ∼ fEg ∼ gEf ∼ g. Therefore,

V (fEg) + V (gEf) = V (f) + V (g).
If f DE g and f CEc g, then fEg % f ∼ g % gEf . If f ∼ fEg ∼ gEf ∼ g then V (fEg) +

V (gEf) = V (f)+V (g). However, w.l.o.g let us suppose that fEg Â f . Since % is not degenerate
on R, there exists h ∈ R such that h � f . Suppose h Â f and w.l.o.g, suppose that fEg Â h Â
f ∼ g % gEf . Then

1
2
f +

1
2
h ∼ afEg + (1− a)f ∼ bgEf + (1− b)h,

where a = 1
2

V (h)−V (f)
V (fEg)−V (f) and b = 1

2
V (h)−V (f)

V (h)−V (gEf) . Since

1
2
f +

1
2
h ∼ fE (ag + (1− a)f) ∼ (bg + (1− b)h)E (bf + (1− b)h) ,

and % is uncertainty neutral on E,
(

b
a+bf + a

a+b (bg + (1− b)h)
)

E

(
b

a+b (ag + (1− a)f) + a
a+b (bf + (1− b)h)

)
∼ fE (ag + (1− a)f)

∼ 1
2f + 1

2h.

Note that
(

b
a+bf + a

a+b (bg + (1− b)h)
)

E

(
b

a+b (ag + (1− a)f) + a
a+b (bf + (1− b)h)

)

∼ (1+a)b
a+b

(
1

1+af + a
1+ag

)
+ a(1−b)

a+b h

∼ (1+a)b
a+b f + a(1−b)

a+b h.

Thus we have that

(1 + a)b
a + b

V (f) +
a(1− b)
a + b

V (h) =
1
2
V (f) +

1
2
V (h),
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which is equivalent to

1
4

(
2V (fEg)+V (h)−3V (f)

V (fEg)−V (f)

)(
V (h)−V (f)

V (h)−V (gEf)

)
V (f) + 1

4

(
V (h)−V (f)

V (fEg)−V (f)

) (
V (h)+V (f)−2V (gEf)

V (h)−V (gEf)

)
V (h)

= 1
4

(
V (h)−V (f)

V (fEg)−V (f) + V (h)−V (f)
V (h)−V (gEf)

)
(V (f) + V (h)) ,

equivalent to

(2V (fEg) + V (h)− 3V (f))V (f) + (V (h) + V (f)− 2V (gEf))V (h)
= (V (h)− V (gEf) + V (fEg)− V (f)) (V (f) + V (h)) ,

and finally to
(2V (f)− V (fEg)− V (gEf)) (V (h)− V (f)) = 0.

Since V (h) > V (f), we must have V (fEg) + V (gEf) = 2V (f) = V (f) + V (g).
The proof is similar for the other cases (f Â h or f CE g and f DEc g).
Suppose now that f Â g and consider a first case where f DE g and f DEc g and thus

f % fEg, gEf % g. First note that if f ∼ fEg, then gEf ∼ g and thus V (fEg) + V (gEf) =
V (f) + V (g).

If f Â fEg % gEf , then fEg ∼ (af + (1− a)g)E f where a = V (fEg)−V (gEf)
V (f)−V (gEf) . Since % is

uncertainty neutral on E,
(

1− a

2− a
f + (1− 1− a

2− a
) (af + (1− a)g)

)

E

(
1− a

2− a
g + (1− 1− a

2− a
)f

)
∼ fEg.

Note that
(

1− a

2− a
f + (1− 1− a

2− a
) (af + (1− a)g)

)

E

(
1− a

2− a
g + (1− 1− a

2− a
)f

)
=

1
2− a

f +
1− a

2− a
g.

We also have fEg ∼ bf + (1 − b)g where b = V (fEg)−V (g)
V (f)−V (g) . Since f Â g, b = 1

2−a ; this is
equivalent to

2− V (fEg)− V (gEf)
V (f)− V (gEf)

=
V (f)− V (g)

V (fEg)− V (g)
⇔ (2V (f)− V (gEf)− V (fEg))(V (fEg)− V (g)) = (V (f)− V (gEf)) (V (f)− V (g))

⇔ −V (f)V (g) + 2V (f)V (fEg)− V (gEf)V (fEg) + V (gEf)V (f)− V (fEg)V (fEg) +

+V (fEg)V (g)− V (f)V (f) = 0

⇔ (V (f)− V (fEg))(−V (f)− V (g) + V (gEf) + V (fEg)) = 0.

Since f Â fEg, therefore V (fEg) + V (gEf) = V (f) + V (g). The proof is similar in the case
where f Â gEf % fEg.

Conversely, suppose that kE = 0. Consider the utility functions V E , V E , V Ec and V Ec . As
shown in the proof of Proposition 1 these functions are linear with respect to mixture on R.
Note that kE = 0 implies that for all f, g ∈ R, V E(f) + V Ec(g) = V E(f) + V Ec(g).
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Let consider f, g, h, ` ∈ R such that fEg ∼ hE` and α ∈ (0, 1).

V ((αf + (1− α)h)E (αg + (1− α)`)) = V E(αf + (1− α)h) + V Ec(αg + (1− α)`)

= α
(
V E(f

)
+ V Ec(g)) + (1− α)

(
V E(h

)
+ V Ec(`))

= αV (fEg) + (1− α)V (hE`),

and thus (αf + (1− α)h)E (αg + (1− α)`) ∼ fEg.

B3. Proof of Proposition 3

Observe first that, since %i and %j satisfy the assumptions of Proposition 1, they have a repre-
sentation as in that proposition. Hence, for f and g such that Vi(f) > Vi(g), it is the case that
kE

i = Vi(fEg)−Vi(g)
Vi(f)−Vi(g) − Vi(f)−Vi(gEf)

Vi(f)−Vi(g) , and similarly for kE
j .

Let f, g ∈ Ri, f ′, g′ ∈ Rj such that f Âi g and f ′ Âj g′.
Consider first the combination of case (i) and (i’), i.e., fEg ∼i αf + (1 − α)g and f ′Eg′ ∼j

αf ′ + (1− α)g′, on the one hand and gEf ∼i βg + (1− β)f and g′Ef ′ ∼j βg′ + (1− β)f ′ on the
other hand.

Then, using the representation, (i) implies that

α =
Vi(fEg)− Vi(g)
Vi(f)− Vi(g)

=
Vj(f ′Eg′)− Vj(g′)
Vj(f ′)− Vj(g′)

,

while (i’) implies that

β =
Vi(gEf)− Vi(f)
Vi(g)− Vi(f)

=
Vj(g′Ef ′)− Vj(f ′)
Vj(g′)− Vj(f ′)

.

Hence, kE
i = α− β = kE

j .

Consider next case (i) and (ii’). Then, Vi(gEf)−Vi(f)
Vi(g)−Vi(f) = Vj(g

′
Ef ′)−Vj(f

′)
Vj(g′)−Vj(f ′)

= 1
β and hence kE

i =
α− 1

β = kE
j .

The other cases can be dealt with in a similar fashion.

Appendix C

C1. Proof of Theorem 1

In this Appendix, we provide the proof of our main result. We decompose the proof into 4
lemmas. Although not always explicitly stated in the lemma, all the assumptions of Theorem
1 are made throughout this Appendix. The following Lemma is adapted from Weymark (1993,
Lemma 1):

Lemma 1 Let (Vi)i∈N be a collection of Ri-affine representation of %i for all i ∈ N and assume
conditions 1, 2, 3 of Theorem 1 are satisfied. Then, (V1, · · · , Vn) are affinely independent on
∩i∈NRi.
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Proof. Suppose on the contrary that (V1, · · · , Vn) are affinely dependent on ∩i∈NRi, that
is, there exists (λ1, · · · , λn) ∈ Rn and µ ∈ R such that

∑n
i=1 λiVi(f) + µ = 0 for all f ∈ ∩i∈NRi

with at least one λj 6= 0. Without loss of generality, assume that λ1 = −1. We then have:

V1(f) =
∑

i 6=1

λiVi(f) + µ, ∀f ∈ ∩i∈NRi. (2)

Let f and g in ∩i∈NRi be such that f ∼i g for all i 6= 1 and f Â1 g (such acts exist, since
{%i}i∈N ′ satisfy the independent prospects property on ∩iRi). But equation (2) implies that
V1(f) = V1(g), a contradiction.

Lemma 2 There exist f̄ , f ∈ ∩i∈NRi such that f̄ Âi f for all i ∈ N ′.

Proof. For all i ∈ N ′, let f̄i, f i
∈ ∩i∈NRi be such that f̄i Âi f

i
and f̄i ∼j f

i
for all j 6= i

(such acts exist since {%i}i∈N ′ satisfy the independent prospects property). Consider αj ∈ ]0, 1[
for j = 2, .., n and define recursively f̄ j , f j by

• f̄2 = α2f̄1 + (1− α2)f̄2, f2 = α2f1
+ (1− α2)f2

• for j = 3, .., n, f̄ j = αj f̄
j−1 + (1− αj)f̄j , f j = αjf

j−1 + (1− αj)f j
.

Since ∩i∈NRi is a mixture space, f̄n, fn ∈ ∩i∈NRi and it can be checked that f̄n Âi fn for
all i ∈ N ′.

Lemma 3 Let E ∈ Σ. Let (Vi)i∈N be a collection of Ri-affine representation of %i for all
i ∈ N and assume conditions 1, 2, 3 of Theorem 1 are satisfied. There exist unique weights
(λ1, · · · , λn) ∈ Rn

+ \ {0}, µ ∈ R, such that

∀f ∈ B(∩i∈NRi, E), V0(f) =
∑

i∈N ′
λiVi(f) + µ.

Proof. Define F : B(∩i∈NRi, E) → Rn+1 by F (f) = (V0(f), V1(f), · · · , Vn(f)) and let
Kf = co{f,∩i∈NRi} for all f ∈ B(∩i∈NRi, E). Clearly, for all f ∈ B(∩i∈NRi, E), Kf is a
convex set, ∩i∈NRi ⊆ Kf , and

⋃
f∈B(∩i∈NRi,E) Kf = B(∩i∈NRi, E).

We first prove that F (Kf ) is convex for all f ∈ B(∩i∈NRi, E). Let f be fixed, and consider
g1, g2 ∈ Kf , with g1 6= g2. Let γ = tF (g1)+(1−t)F (g2), with t ∈ (0, 1). By definition, there exist
α1, α2 ∈ [0, 1], and h1, h2 ∈ ∩i∈N ′Ri such that g1 = α1f +(1−α1)h1 and g2 = α2f +(1−α2)h2.
Let g3 = tg1 + (1 − t)g2. Let h3 = t(1−α1)

t(1−α1)+(1−t)(1−α2)h1 + (1−t)(1−α2)
t(1−α1)+(1−t)(1−α2)h2

12. It is easy to
see that g3 = [tα1 + (1− t)α2]f + [1− (tα1 + (1− t)α2)]h3. Note that ∩i∈NRi is a mixture set
and thus h3 ∈ Kf .

12Since g1 6= g2, α1 6= α2, and therefore t(1− α1) + (1− t)(1− α2) 6= 0.
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We hence have, by affinity of the Vi

Vi(g3) = [tα1 + (1− t)α2]Vi(f) + [1− (tα1 + (1− t)α2)]Vi(h3)

= [tα1 + (1− t)α2]Vi(f) +

[1− (tα1 + (1− t)α2)]
[

t(1− α1)
t(1− α1) + (1− t)(1− α2)

Vi(h1)

+
(1− t)(1− α2)

t(1− α1) + (1− t)(1− α2)
Vi(h2)

]

= t[α1Vi(f) + (1− α1)Vi(h1)] + (1− t)[α2Vi(f) + (1− α2)Vi(h2)]

= tVi(α1f + (1− α1)h1) + (1− t)Vi(α2f + (1− α2)h2)

= tVi(g1) + (1− t)Vi(g2).

Hence F (g3) = γ, which proves that F (Kf ) is convex.
By Proposition 2 in De Meyer and Mongin (1995), the convexity of F (Kf ), axiom 2 and the

existence of two acts f, g such that f Âi g for all i ∈ N ′ imply that there exist non-negative
numbers λ1(f), · · · , λn(f), not all equal to zero, and a real number µ(f) such that, for all g ∈ Kf ,

V0(g) =
n∑

i=1

λi(f)Vi(g) + µ(f).

Now, consider f1 and f2 in B(∩i∈NRi). Since ∩i∈NRi ⊆ Kf1 ∩Kf2 , for all act h ∈ ∩i∈N ′Ri,
we have: {

V0(h) =
∑n

i=1 λi(f1)Vi(h) + µ(f1)
V0(h) =

∑n
i=1 λi(f2)Vi(h) + µ(f2).

This implies that for all h ∈ ∩i∈N ′Ri,
∑n

i=1[λi(f1) − λi(f2)]ui(h) + [µ(f1) − µ(f2)] = 0.
Since by lemma 1, the Vi are affinely independent on ∩i∈N ′Ri, λi(f1) = λi(f2) i ∈ N ′ and
µ(f1) = µ(f2). Therefore, there exist n non-negative numbers, not all equal to zero, (λ1, · · · , λn)
and a number µ, such that for all f ∈ B(∩i∈NRi, E),

V0(f) =
n∑

i=1

λiVi(f) + µ.

Finally, it remains to show that the weights (λ1, · · · , λn) and µ are unique. Since the {%i}i∈N ′

satisfy the independent prospects property, there exist for all i ∈ N ′ h?
i , hi? in ∩i∈NRi such that

{
h?

i Âi hi?

h?
i ∼j hi?, ∀j ∈ N ′ \ {i}.

We have V0(h?
i ) − V0(hi?) = λi (Vi(h?

i )− Vi(hi?)) and thus λi is unique. This is true for all
i ∈ N ′. But since (λ1, · · · , λn) are unique, so is µ.

Lemma 4 Let (Vi)i∈N be a collection of Ri-affine representation of %i for all i ∈ N and assume
conditions 1, 2, 3 of Theorem 1 are satisfied. Let the weights (λ1, · · · , λn) ∈ Rn

+ \ {0}, µ ∈ R,

34



be such that
∀f ∈ B(∩i∈NRi, E), V0(f) =

∑

i∈N ′
λiVi(f) + µ.

If there exist i, j ∈ N ′ such that λi, λj > 0, then these two agents have uncertainty neutral
preferences on E.

Proof. First, remark that for any i ∈ N ′ such that λi > 0, kE
i = kE

0 . Indeed, since the
{%i}i∈N ′ satisfy the independent prospects property, there exist h?, h? in ∩i∈N ′Ri such that

{
h? Âi h?

h? ∼j h?, ∀j ∈ N ′ \ {i}.

We have that

V0(h?
Eh?) + V0(h?Eh?)− (V0(h?) + V0(h?)) = kE

0 (V0(h?)− V0(h?))

= kE
0 λi(Vi(h?)− Vi(h?)),

but also

V0(h?
Eh?) + V0(h?Eh?)− (V0(h?) + V0(h?)) = λi(Vi(h?

Eh?) + Vi(h?Eh?)− (Vi(h?) + Vi(h?)))

= kE
i λi(Vi(h?)− Vi(h?)),

and thus kE
0 = kE

i .
Suppose now that there exist i, j ∈ N ′ such that λi, λj > 0. Consider h?

i , hi?, h
?
j , hj? in

∩i∈N ′Ri such that {
h?

i Âi hi?

h?
i ∼h hi?, ∀h ∈ N ′ \ {i},

and {
h?

j Âj hj?

h?
j ∼h hj?, ∀h ∈ N ′ \ {j}.

Note that for α =
V0(h?

j )−V0(hj?)

V0(h?
i )−V0(hi?)+V0(h?

j )−V0(hj?) ∈ [0, 1], we have V0 (αh?
i + (1− α)hj?) =

V0

(
αhi? + (1− α)h?

j

)
. We also have that Vi (αh?

i + (1− α)hj?) > Vi

(
αhi? + (1− α)h?

j

)
and

Vj (αh?
i + (1− α)hj?) < Vj

(
αhi? + (1− α)h?

j

)
.

Thus,

V0

(
(αh?

i + (1− α)hj?)E

(
αhi? + (1− α)h?

j

))
+ V0

((
αhi? + (1− α)h?

j

)
E

(αh?
i + (1− α)hj?)

)

−
(
V0(αh?

i + (1− α)hj?) + V0(αhi? + (1− α)h?
j )

)
= 0,
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but it must also be the case that

V0

(
(αh?

i + (1− α)hj?)E

(
αhi? + (1− α)h?

j

))
+ V0

((
αhi? + (1− α)h?

j

)
E

(αh?
i + (1− α)hj?)

)

−
(
V0(αh?

i + (1− α)hj?) + V0(αhi? + (1− α)h?
j )

)

= λik
E
i

[
Vi (αh?

i + (1− α)hj?)− Vi

(
αhi? + (1− α)h?

j

)]

+ λjk
E
j

[
Vj

(
αhi? + (1− α)h?

j

)
− Vj (αh?

i + (1− α)hj?)
]

= kE
0

[
λi

[
Vi(αh?

i + (1− α)hj?)− Vi(αhi? + (1− α)h?
j )

]

+λj

[
Vj(αhi? + (1− α)h?

j )− Vj(αh?
i + (1− α)hj?)

]]
.

Since

[λi

[
Vi (αh?

i + (1− α)hj?)− Vi

(
αhi? + (1− α)h?

j

)]

+ λj

[
Vj

(
αhi? + (1− α)h?

j

)− Vj (αh?
i + (1− α)hj?)

]
] > 0,

we must have kE
0 = kE

i = kE
j = 0.

C2. Proof of Proposition 4

Follows from lemma 1 to 3.
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