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Abstract
The final step in the proof of Proposition 1 (p.311) of Mukerji and Tallon (2003) may not hold

in general because ε > 0 in the proof cannot be chosen independently of w, z. We point out by a
counterexample that the axioms they impose are too weak for Proposition 1. We introduce a modified
set of axioms and re-establish the proposition.

JEL classification: D81

1. Introduction

Say that a decision maker (DM) exhibits portfolio inertia for an asset if she strictly prefers a
zero position to taking a short or long position under a non-degenerate price interval. Portfolio
inertia has been attributed to ambiguity by several literature, which rely on particular functional
forms, for example, maximin expected utilities. In a non-parametric setting, Proposition 1 in
Mukerji and Tallon (2003) claims that Ellsberg-type ambiguity averse behavior implies portfolio
inertia.

As is known, however, smooth ambiguity preferences can accommodate the Ellsberg Para-
dox. 1 This smooth model suggests that ambiguity aversion does not necessarily imply portfolio
inertia, because portfolio inertia means that preference has a kink at the origin (zero position).

In this note, we provide as a counterexample to Proposition 1 in Mukerji and Tallon (2003) a
smooth ambiguity preference satisfying all the assumptions, but exhibiting no portfolio inertia.
To reestablish the proposition, we introduce three additional axioms and show that, under those
axioms, their original assumptions and axioms are sufficient for subjective portfolio inertia. The
additional axioms do not a priori preclude most of smooth, convex, and monotonic preferences.
The counterexample turns out to be a knife-edge case. The key axiom introduced to re-establish

∗Corresponding author. Address Université Paris I, 106-112 bd de l’Hopital, 75647 Paris Cedex 13, France.
+33 1 44 07 82 04, jmtallon@univ-paris1.fr.

1An axiomatic foundation of the smooth ambiguity model is provided by Klibanoff, Marinacci and Mukerji
(2003).
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the proposition is Axiom 4, which we have called Persistence. The axiom allows the DM to
persist in prefering a risky act to an ambiguous act even as payoffs (passing to the limit) vanish to
zero. The axiom is arguably of interest in of itself, as a property of preferences that accomodate
ambiguity sensitive behavior. It provides a simple test, based on verifiable/observable behavior
between two prominent classes of preferences that accomodate ambiguity: the MEU/CEU class
of preferences and smooth ambiguity preferences. The final section of the note expands on these
points.

2. Model

The following is a brief summary of the setting of Mukerji and Tallon (2003). Consider two
urns. Urn 1 consists of red and black balls with known 50-50 proportion, while urn 2 consists
of red and black balls with unknown proportion. The state space S is defined by

S ≡ {s1 ≡ (R,R), s2 ≡ (R,B), s3 ≡ (B,R), s4 ≡ (B,B)},

where (R,B) means a red ball is drawn from urn 1 and a black ball is drawn from urn 2, and
so on. Let F ≡ R4 be the set of all real-valued Savage acts, f : S → R. Preference % is defined
on F .

Mukerji and Tallon (2003) consider the following axioms on % and claim in Proposition 1
that those axioms and some other assumptions are sufficient for subjective portfolio inertia.

Axiom 1 (Local Invariance) For all f, g ∈ F , c ∈ R, and λ̄ > 0, if λ(f + c) � λ(g + c) for
any λ ∈ (0, λ̄), then there exists λ̄′ > 0 such that λf � λg for any λ ∈ (0, λ̄′).

A1 Let w, z ∈ X ⊆ R, w 6= z. Then,


w
w
z
z

 �


w
z
w
z

,


z
z
w
w

 �


z
w
z
w

.

A2 Let w, z ∈ X ⊆ R, w 6= z. Then,


w
w
z
z

 ∼


z
z
w
w

 .

A1 captures ambiguity averse behavior in the Ellsberg experiment. A2 reveals that the
decision maker considers the events {s1, s2} and {s3, s4} are equally likely.

Proposition 1. Assume that events {s1, s2} and {s3, s4} are unambiguous events and that %
is weakly risk averse on the unambiguous acts Fua. Suppose % satisfies A1 and A2 for X = R.
Then, for any w, z ∈ R with w 6= z, there exists an ε-neighborhood of p ≡ (w+z)/2, Nε(p), such
that, for any p ∈ Nε(p) and λ > 0,

0
0
0
0

 � λ


w − p
z − p
w − p
z − p

 and


0
0
0
0

 � λ


p− w
p− z
p− w
p− z

 .
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3. A Counterexample

The final step in the proof of Proposition 1 (p.311) of Mukerji and Tallon (2003) may not hold
in general because ε > 0 in the proof cannot be chosen independently of w, z. More explicitly,
we provide the following counterexample of the proposition: Consider following spreference %
on F represented with a second-order probability a:

U(f) =
∫ 1

0
ϕ

(
1
4
f(s1) +

1
4
f(s2) +

q

2
f(s3) +

1− q

2
f(s4)

)
dq, (1)

where ϕ(x) = −e−x. Since U is smooth, it does not exhibit portfolio inertia. As shown below,
however, U satisfies all the assumptions and axioms of Proposition 1.

• Probabilistic Sophistication on the set of unambiguous acts Fua: we can verify that

A = {∅, {s1}, {s2}, {s1, s2}, {s3, s4}, {s1, s3, s4}, {s2, s3, s4}, S}

is the set of unambiguous events and that % is probabilistically sophisticated on Fua

with π({s1}) = π({s2}) = 1/4, π({s1, s2}) = π({s3, s4}) = 1/2, and π({s1, s3, s4}) =
π({s2, s3, s4}) = 3/4.

In order to verify {s1, s3} is an ambiguous event, let A = {s2}, B = {s4}, T c \ (A∪B) = ∅,
T = {s1, s3}, x = 100, x∗ = 0, z = 0, and z′ = 100 in the definition of unambiguous
events. Since ϕ is strictly concave, this combination violates the definition. Similarly, in
order to verify {s3} is an ambiguous event, let A = {s2}, B = {s4}, T c \ (A ∪ B) = {s1},
T = {s3}, h = 100, x = 100, x∗ = 0, z = 0, and z′ = 100. The symmetric argument works
for the other cases.

• Weak Risk Aversion on Fua: for any f ∈ Fua, let π ◦ f−1 denote the distribution of π
induced by f . Since U(f) = ϕ(E[π ◦ f−1]), E[π ◦ f−1] ∼ f .

• Axiom 1 (Local Invariance): since

U(λ(f + c)) =
∫ 1

0
−e−( 1

4
λ(f(s1)+c)+ 1

4
λ(f(s2)+c)+ q

2
λ(f(s3)+c)+ 1−q

2
λ(f(s4)+c))dq

= e−λc

∫ 1

0
−e−( 1

4
λf(s1)+ 1

4
λf(s2)+ q

2
λf(s3)+ 1−q

2
λf(s4))dq

= e−λcU(λf),

we have U(λ(f + c)) > U(λ(g + c)) ⇔ e−λcU(λf) > e−λcU(λg) ⇔ U(λf) > U(λg), for any
λ ∈ (0, λ̄). Hence, the same λ̄ works.

• A1 for X = R: let f ′ ≡


w
w
z
z

 and f ≡


w
z
w
z

. Since

∫ 1

0

(
1
4
w +

1
4
z +

q

2
w +

1− q

2
z

)
dq =

1
2
w +

1
2
z,
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strict concavity of ϕ implies

U(f ′) = ϕ

(
1
2
w +

1
2
z

)
>

∫ 1

0
ϕ

(
1
4
w +

1
4
z +

q

2
w +

1− q

2
z

)
dq = U(f).

• A2 for X = R: take f ′ ≡


w
w
z
z

 and f ≡


z
z
w
w

. Then, U(f ′) = ϕ
(

1
2w + 1

2z
)

= U(f).

4. Modification

In order to reestablish Proposition 1, we introduce additional axioms as follows:

Axiom 2 (Local Convexity) If f % (0), there exists λ′ > 0 such that λf % (0) for any
λ ∈ (0, λ′).

Axiom 2 always holds if the upper contour set of % at 0 is convex.

Axiom 3 (Monotonicity) For all f, g ∈ F , if f(s) ≥ g(s) for all s, then f % g.

The next axiom roughly says that in a neighborhood at 0 the valuation of s2 is not identical
with one of s3.

Axiom 4 (Persistence) There exist w 6= 0 and ε > 0 such that, for all λ ∈ (0, 1],

λ


w
w

−w
−w

 � λ


w + ε

−w + ε
w + ε

−w + ε

 .

Notice that Axiom 4 does not a priori exclude most of smooth preferences. Any utility
representation U : F → R which is smooth at 0 satisfies Axiom 4 as long as U2(0) does not
coincide with U3(0), where Ui(0) is the partial derivative at 0 with respect to coordinate i. 2

Hence, any SEU decision maker with a smooth utility u and a subjective probability π such that
π2 6= π3 satisfies Persistence. CEU decision makers might or not satisfy the axiom, depending
on the capacity. The axiom is discussed at length in the next section.

2Let fλ = λ


w
w

−w
−w

 and gλ = λ


w + ε

−w + ε
w + ε

−w + ε

. By the Taylor expansion at 0, U(fλ)−U(gλ) = λ(2w(U2(0)−

U3(0))− ε
∑

i Ui(0)) + o(fλ)− o(gλ), where o(fλ) and o(gλ) are residual functions. As long as U2(0) 6= U3(0), we
can choose w 6= 0 so as to make the term 2w(U2(0) − U3(0)) positive. Thus, there exist ε > 0 and λ̄ > 0 small
enough such that U(fλ) > U(gλ) for any λ ∈ (0, λ̄). Thus, redefining w, ε if necessary, any smooth representation
with U2(0) 6= U3(0) satisfies Local Disagreement.
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The function (1) satisfies Local Convexity and Monotonicity, but violates Persistence. In-
deed, taking into account Ui(0) = ϕ′(0)/4 for all i, the same argument in footnote 2 implies, for
any w 6= 0 and ε > 0,

U(fλ)− U(gλ) = λ
(
2w(U2(0)− U3(0))− ε

∑
Ui(0)

)
+ o(fλ)− o(gλ)

= −λεϕ′(0) + o(fλ)− o(gλ).

For all λ > 0 small enough, U(fλ) < U(gλ), hence U violates Persistence.
Under these new axioms, we can reestablish Proposition 1.

Proposition 1′. Consider preference % satisfying Local Convexity, Monotonicity, and Persis-
tence. Assume events {s1, s2} and {s3, s4} are unambiguous events and that % is weakly risk
averse on Fua. Suppose % satisfies A1 and A2 for X = R. Then, for all w, z with w 6= z,
there exists a subjective portfolio inertia interval Nε̄ (p∗) ≡ (p∗ − ε̄, p∗ + ε̄) , ε̄ > 0, such that for
all p ∈ Nε̄(p∗) and all λ > 0,

0
0
0
0

 � λ


w − p
z − p
w − p
z − p

 and


0
0
0
0

 � λ


p− w
p− z
p− w
p− z

 .

Two remarks are in order regarding Proposition 1′. First, p∗ in the subjective portfolio
inertia interval Nε̄(p∗) may not be the mean price p ≡ (w + z)/2 unlike the original proposition.

Second, Proposition 1′ implies that most of smooth preferences, that is, representations U
with U2(0) 6= U3(0), which satisfy Local Convexity, Monotonicity and A2, are inconsistent with
the Ellsberg-type behavior A1. The counterexample (1) turns out to be a “knife-edge” case.
Indeed, once U is slightly perturbed in terms of the second-order probability, it must violate
A1. For example, consider an ε-perturbed representation

U ε(x) ≡
∫ 1

0
ϕ

((
1
4

+ ε

)
f(s1) +

(
1
4
− ε

)
f(s2) +

q

2
f(s3) +

1− q

2
f(s4)

)
dq,

where ϕ : R → R is a smooth, strictly increasing, and strictly concave function. Now U ε satisfies
Persistence because U2(0) = ϕ′(0)(1/4− ε) 6= ϕ′(0)/4 = U3(0). It satisfies also Local Convexity,
Monotonicity and A2, and hence, from Proposition 1′, violates A1.

5. More on Axiom 4

In this section we discuss Axiom 4 in more details. In particular, we show how Axiom 4
provides a neat dividing line between two classes of ambiguity sensitive preferences, the smooth
ambiguity preferences and MEU/CEU preferences. To interpret the axiom, we consider pref-
erences satisfying A1: hence, SEU decision makers are excluded because they are inconsistent
with A1. But, a class of smooth ambiguity preferences (second-order probability model) is still
consistent with A1.

Assume that % satisfies A1 for X = R.
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Axiom 4 (Persistence): There exist w 6= 0 and ε > 0 such that, for all λ ∈ (0, 1],

λ


w
w

−w
−w

 � λ


w + ε

−w + ε
w + ε

−w + ε

 .

To understand the spirit of the axiom (and, indeed, why we call it “persistence”) take the
negation of Axiom 4.

Axiom 4’ (Preference Reversal for Small Payoffs): For all w 6= 0 and ε > 0, there exists
λ ∈ (0, 1) such that

λ


w + ε

−w + ε
w + ε

−w + ε

 % λ


w
w

−w
−w

 . (2)

Take any w 6= 0. A1 implies


w
w

−w
−w

 �


w

−w
w

−w

. As long as preference satisfies continuity,

there exists a small ε > 0 such that
w
w

−w
−w

 �


w + ε

−w + ε
w + ε

−w + ε

 . (3)

This ranking means that certain payoff ε > 0 is not enough for the DM to undertake the
ambiguous act. Axiom 4’ requires that, if all payoffs are diminishing proportionally to zero,
ranking (3) is always reversed. That is, any small payoff ε is a sufficient compensation for the
ambiguous act if all payoffs are close to zero. Presumably, this is because the DM perceives
that the numbers of red and black balls in urn II are identical, that is, {s1, s3} and {s2, s4} are
equally likely events when payoffs are negligible. In this case, the expected payoff of the first
act in (2) is λε, while that of the second act is zero. That is why ranking (3) is reversed if λ is
sufficiently small.

Notice that A1 and Axiom 4’ capture the characteristic of the DM with smoothly ambiguous
preferences. She may exhibit ambiguity averse behavior if two acts are sufficiently different, but
not when payoffs are arbitrarily close to zero, making the two acts ”virtually” the same. In
other words, she is “locally” an SEU decision maker, that is, she simply calculates the expected
utility with respect to a base prior (mean prior) to evaluate the acts whose consequences are
sufficiently close to zero.

Now the meaning of Axiom 4 is clear. It requires that there exists w 6= 0 and ε > 0 such
that ranking (3) is not reversed no matter how the payoffs get small. In other words, for some
w 6= 0 and ε > 0, certain payoff λε is not enough for the DM to take the ambiguous act. She
persists in exhibiting ambiguity aversion, i.e., a preference for the risky act as compared to
the ambiguous act. (A risky (respectively, ambiguous) act is an act measurable with respect
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to a partition of the state space consisting of unambiguous (ambigous) events.) Hence, while
A1 captures ambiguity aversion, together with A1, Axiom 4 captures how strongly the DM
exhibits ambiguity aversion. For some w 6= 0 and a certainty payoff ε > 0, the DM persistently
prefers the risky act to the ambiguous act even when all payoffs are negligibly small.

Next we show that there are MEU preferences that satisfy both A1 and Axiom 4.
Let ∆ ⊂ R4 be the 3-dimensional unit simplex. Since there are identical numbers of red and

black balls in urn I, we pay attention to MEU representations with sets of priors

M ⊂ ∆I ≡ {π ∈ ∆ |π1 + π2 = π3 + π4 = 1/2}. (4)

Thus {s1, s2} and {s3, s4} are equally-likely unambiguous events. Let

∆II
I ≡ {π ∈ ∆I |π1 + π3 = π2 + π4 = 1/2}.

If M ⊂ ∆II
I , {s1, s3} and {s2, s4} are also unambiguous events for any MEU decision maker

with (u, M). Notice that any π ∈ ∆II
I can be rewritten as (1/4− δ, 1/4 + δ, 1/4 + δ, 1/4− δ) for

some δ ∈ R.

Claim 1. Assume that a payoff function u : R → R is strictly increasing and smooth at zero.
An MEU representation (u, M) with M ⊂ ∆I satisfies Axiom 4 if and only if M 6⊂ ∆II

I .

Proposition 3 of Mukerji and Tallon (2003) shows that, Under A1, {s1, s3} and {s2, s4} are
ambiguous events whenever {s1, s2} and {s3, s4} are unambiguous events. Thus, Claim 1 implies
that any MEU preferences satisfying A1 and the natural restriction (4) automatically satisfies
Axiom 4. In other words, Axiom 4 is innocuous for this class of preferences.

A CEU decision maker with the capacity

ν(s1, s2) = ν(s3, s4) = 1/2, ν(s1, s3) = ν(s2, s4) = ν(si) = 1/8, i = 1, · · · , 4,

satisfies Axiom 4. To see this, notice that the same preference admits the MEU representation
with the set of priors

core(ν) ≡ {π ∈ ∆|π(E) ≥ ν(E), for all event E}.

Any π ∈ core(ν) satisfies π1 + π2 = π3 + π4 = 1/2. Moreover, the belief (π∗1, π
∗
2, π

∗
3, π

∗
4) =

(3/8, 1/8, 3/8, 1/8) ∈ core(ν) satisfies π∗1 + π∗3 6= π∗2 + π∗4. From Theorem 1, this MEU represen-
tation satisfies Axiom 4.

For a smooth preference, the gradient at 0 can be interpreted as the DM’s probabilistic belief.
Since urn I contains identical numbers of red and black balls, we assume that U1(0) + U2(0) =
U3(0) + U4(0).

Claim 2. Assume that U : R4 → R is strictly increasing and smooth at zero, and U1(0)+U2(0) =
U3(0) + U4(0). Then, U satisfies Axiom 4 if and only if U1(0) + U3(0) 6= U2(0) + U4(0).

That is, the DM with a smooth preference satisfies Axiom 4 if and only if {s1, s3} and {s2, s4}
are not equally likely in terms of the belief at 0.

Corollary 1. Assume that a payoff function u : R → R is strictly increasing and smooth at
zero. An SEU representation (u, π) with π1 + π2 = π3 + π4 satisfies Axiom 4 if and only if
π1 + π3 6= π2 + π4.
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4. Conclusion

Ambiguity aversion can be explained by several models. Especially, there exist two different
models, MEU model and second-order probability model. A question is how those two models
are distinguished by observable behavior. 3

In the model of Ellsberg’s two-color experiment, the following restrictions seem plausible:

(i) MEU Model: (1) any π ∈ M satisfies π1 + π2 = π3 + π4, and (2) there exists π∗ ∈ M such
that π∗1 + π∗3 6= π∗2 + π∗4 (because urn II is ambiguous).

(ii) A Smooth Ambiguity Preference Model: the mean prior π̄ of the second-order prob-
ability µ satisfies π̄i = 1/4 for all i (because of the symmetric nature of the model).

Suppose that % satisfies A1. This decision maker could be an MEU agent or a second-order
probability agent (or something else). From Theorem 1 and Theorem 2, we conclude that

MEU ⇒ Axiom 4

2nd-order Prob. ⇒ Axiom 4’

That is, to distinguish MEU from smooth ambiguity preference, we can check whether the deci-
sion maker exhibits preference reversal for small payoffs. Moreover, together with the modified
version of Proposition 1,

MEU ⇒ portfolio inertia
2nd-order Prob. ⇒ no portfolio inertia

This is a testable implication.

A Proofs

Proof of Proposition 1′. Fix w 6= z ∈ R. Assume w > z. 4 Since A1 holds for X = R, we
have, for all p > 0 and the given w and z:

w − p
w − p
z − p
z − p

 �


w − p
z − p
w − p
z − p

 and


z − p
z − p
w − p
w − p

 �


z − p
w − p
z − p
w − p

 . (5)

Take p̄ = w+z
2 ; then (5) implies,

w−z
2

w−z
2

z−w
2

z−w
2

 �


w−z

2
z−w

2
w−z

2
z−w

2

 and


z−w

2
z−w

2
w−z

2
w−z

2

 �


z−w

2
w−z

2
z−w

2
w−z

2

 . (6)

3Axiomatic foundations of those models would make this separation possible. Though the second-order proba-
bility model is axiomatized by KMM, their primitives are different from those of the standard Savage or Anscombe-
Aumann setting. The comparison does not seem immediate.

4The symmetric argument works even when w < z.
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Now, {s1, s2} and {s3, s4} are unambiguous events and therefore


w−z

2
w−z

2
z−w

2
z−w

2

 and


z−w

2
z−w

2
w−z

2
w−z

2

 are

unambiguous acts. Let π be a probability measure such that % is probabilistically sophisticated
with π on the set of unambiguous acts. Then A2 implies π ({s1, s2}) = π ({s3, s4}) = 1/2, since
{s1, s2}∪ {s3, s4} = Ω. Therefore these two acts have zero expected value under the probability
π. Hence, by (weak) risk aversion, it is the case that

0
0
0
0

 %


w−z

2
w−z

2
z−w

2
z−w

2

 and


0
0
0
0

 %


z−w

2
z−w

2
w−z

2
w−z

2

 . (7)

Thus, taking (6) and (7) together,
0
0
0
0

 �


w−z

2
z−w

2
w−z

2
z−w

2

 and


0
0
0
0

 �


z−w

2
w−z

2
z−w

2
w−z

2

 .

Up to here it has simply been the old proof. The following is the reconstructed argument.
The reasoning led above is true for all w, z and hence we do know for p̄ =

(
w+z

2

)
that the

following is true for all λ > 0
0
0
0
0

 � λ


w − p̄
z − p̄
w − p̄
z − p̄

 and


0
0
0
0

 � λ


p̄− w
p̄− z
p̄− w
p̄− z

 .

From Persistence, there exist w∗ 6= 0 and ε > 0 such that λ′


w∗

w∗

−w∗

−w∗

 � λ′


w∗ + ε

−w∗ + ε
w∗ + ε

−w∗ + ε


for all λ′ ∈ (0, 1]. First consider the case of w∗ > 0. Weak risk aversion for unambiguous acts

implies


0
0
0
0

 % λ′


w∗

w∗

−w∗

−w∗

, and hence


0
0
0
0

 � λ′


w∗ + ε

−w∗ + ε
w∗ + ε

−w∗ + ε

. Let λ∗ ≡ 2w∗

w−z > 0.

Then,


w∗

−w∗

w∗

−w∗

 = λ∗


w − p̄
z − p̄
w − p̄
z − p̄

. Hence, for all λ ∈ (0, λ∗],


0
0
0
0

 � λ


w − p̄ + ε′

z − p̄ + ε′

w − p̄ + ε′

z − p̄ + ε′

,

where ε′ ≡ ε
λ∗ . Let ε̄ ≡ ε′

2 and p∗ ≡ p̄ − ε̄. By Monotonicity,


0
0
0
0

 � λ


w − p
z − p
w − p
z − p

 for all

p ∈ Nε̄(p∗) and λ ∈ (0, λ∗].
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In order to show the same ranking for all λ > 0, suppose otherwise. Then, there exist λ̄ > 0

and p ∈ Nε̄(p∗) such that λ̄


w − p
z − p
w − p
z − p

 %


0
0
0
0

. By Local Convexity, there exists a non-

degenerate interval (0, ν ′), such that for any ν ∈ (0, ν ′), νλ̄


w − p
z − p
w − p
z − p

 %


0
0
0
0

. For ν small

enough, νλ̄ < λ∗ and hence this would contradict the fact that


0
0
0
0

 � λ


w − p
z − p
w − p
z − p

 for all

λ ∈ (0, λ∗].

On the other hand, by Monotonicity,


0
0
0
0

 � λ


p− w
p− z
p− w
p− z

 for all p ∈ Nε̄(p∗) and λ > 0.

Hence, for all w 6= z ∈ R, it follows that for all λ > 0, and for all p ∈ Nε̄(p∗),
0
0
0
0

 � λ


w − p
z − p
w − p
z − p

 and


0
0
0
0

 � λ


p− w
p− z
p− w
p− z

 .

If w∗ < 0, let λ∗ ≡ 2w∗

z−w > 0. The similar argument implies


0
0
0
0

 � λ


p− w + ε
p− z + ε
p− w + ε
p− z + ε



for all λ ∈ (0, λ∗]. Let ε̄ ≡ ε
2 and p∗ ≡ p̄ + ε̄. By Monotonicity,


0
0
0
0

 � λ


p− w
p− z
p− w
p− z

 for

all p ∈ Nε̄(p∗) and λ ∈ (0, λ∗]. By the same argument above, this ranking holds for all λ > 0.

Finally, Monotonicity implies


0
0
0
0

 � λ


w − p
z − p
w − p
z − p

 for all p ∈ Nε̄(p∗) and λ > 0. �

Proof of Claim 1:
(if part) For w 6= 0, λ > 0 and ε > 0, let fλ = λ(w,w,−w,−w) and gλ = λ(w + ε,−w +

ε, w + ε,−w + ε). We want to show that there exist w 6= 0 and ε > 0 such that U(fλ) > U(gλ)
for all λ ∈ (0, 1]. By assumption, there exists a belief π∗ ∈ M such that π∗1 + π∗3 6= π∗2 + π∗4.

For all w 6= 0, λ > 0, and ε > 0, notice that

U(fλ) = min
π∈M

∑
πiu(fλ(i)) =

1
2
u(λw) +

1
2
u(−λw), (8)
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because π1 + π2 = π3 + π4 = 1/2 for any π ∈ M . On the other hand, by definition,

(π∗1 + π∗3)u(λ(w + ε)) + (π∗2 + π∗4)u(λ(−w + ε)) ≥ min
π∈M

∑
πiu(gλ(i)) = U(gλ). (9)

From (8) and (9), it is enough to show that there exist w, λ̄, ε such that, for all λ ∈ (0, λ̄],

1
2
u(λw) +

1
2
u(−λw) > (π∗1 + π∗3)u(λ(w + ε)) + (π∗2 + π∗4)u(λ(−w + ε)). (10)

By the Talor expansion at 0,

1
2
u(λw) +

1
2
u(−λw)− ((π∗1 + π∗3)u(λ(w + ε)) + (π∗2 + π∗4)u(λ(−w + ε)))

=
1
2
u(0) +

1
2
λwu′(0) +

1
2
u(0)− 1

2
λwu′(0)

−
(
(π∗1 + π∗3)u(0) + (π∗1 + π∗3)λ(w + ε)u′(0) + (π∗2 + π∗4)u(0) + (π∗2 + π∗4)λ(−w + ε)u′(0)

)
+o(λ)

= −λu′(0)
(
w((π∗1 + π∗3)− (π∗2 + π∗4)) + ε

)
+ o(λ), (11)

where o(λ) is the residual function. Since π∗1 + π∗3 6= π∗2 + π∗4, we can find w 6= 0 and ε > 0
satisfying w((π∗1 + π∗3) − (π∗2 + π∗4)) + ε < 0. Since u′(0) > 0 and o(λ)/λ → 0 as λ → 0, there
exists λ̄ such that (11) is positive for any λ ∈ (0, λ̄]. That is, we can find w 6= 0, λ̄ > 0, ε > 0
such that (10) holds for any λ ∈ (0, λ̄]. Finally, let w∗ ≡ λ̄w and ε∗ ≡ λ̄ε. The pair (w∗, ε∗) is
the required object.

(only if part) We show that U violates Axiom 4 whenever M ⊂ ∆2
I . For all w 6= 0, λ > 0,

and ε > 0,

U(gλ) = min
π∈M

∑
πiu(gλ(i)) =

1
2
u(λ(w + ε)) +

1
2
u(λ(−w + ε)), (12)

because π1 + π3 = π2 + π4 = 1/2 for any π ∈ M . From (8) and (12), it is enough to show that,
for any w 6= 0 and ε > 0, there exists λ ∈ (0, 1) such that

1
2
u(λw) +

1
2
u(−λw) <

(
1
2
u(λ(w + ε)) +

1
2
u(λ(−w + ε)

)
. (13)

By the Talor expansion at 0,

1
2
u(λw) +

1
2
u(−λw)−

(
1
2
u(λ(w + ε)) +

1
2
u(λ(−w + ε)

)
=

1
2
u(0) +

1
2
λwu′(0) +

1
2
u(0)− 1

2
λwu′(0)

−
(1

2
u(0) +

1
2
λ(w + ε)u′(0) +

1
2
u(0) +

1
2
λ(−w + ε)u′(0)

)
+ o(λ)

= −λu′(0)ε + o(λ), (14)

where o(λ) is the residual function. Since u′(0) > 0 and o(λ)/λ → 0 as λ → 0, there exists
λ ∈ (0, 1) such that (14) is negative. That is, (13) holds. �

Proof of Claim 2:
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(if part) For w 6= 0, λ > 0 and ε > 0, let fλ = λ(w,w,−w,−w) and gλ = λ(w + ε,−w +
ε, w + ε,−w + ε). We want to show that there exist w 6= 0 and ε > 0 such that U(fλ) > U(gλ)
for all λ ∈ (0, 1]. By the Talor expansion at 0,

U(fλ)− U(gλ)
= U(0) + (U1(0) + U2(0))λw − (U3(0) + U4(0))λw

−
(
U(0) + (U1(0) + U3(0))λ(w + ε) + (U2(0) + U4(0))λ(−w + ε)

)
+ o(λ)

= −λ

((
(U1(0) + U3(0))− (U2(0) + U4(0))

)
w + ε

∑
i

Ui(0)

)
+ o(λ), (15)

where o(λ) is the residual function. Since U1(0) + U3(0) 6= U2(0) + U4(0), we can find w 6= 0
and ε > 0 such that the first term of (15) is positive. Since o(λ)/λ → 0 as λ → 0, there exists λ̄
such that, for any λ ∈ (0, λ̄), U(fλ) > U(gλ). Finally, let w∗ ≡ λ̄w and ε∗ ≡ λ̄ε. Then, the pair
(w∗, ε∗) satisfies Axiom 4.

(only if part) We show that U violates Axiom 4 if U1(0) + U3(0) = U2(0) + U4(0). It is
enough to show that, for any w 6= 0 and ε > 0, there exists λ ∈ (0, 1) such that U(fλ) < U(gλ).
By the Talor expansion at 0,

U(fλ)− U(gλ)
= U(0) + (U1(0) + U2(0))λw − (U3(0) + U4(0))λw

−
(
U(0) + (U1(0) + U3(0))λ(w + ε) + (U2(0) + U4(0))λ(−w + ε)

)
+ o(λ)

= −λε
∑

i

Ui(0) + o(λ), (16)

where o(λ) is the residual function, which satisfies o(λ)/λ → 0 as λ → 0. Since ε > 0 and∑
i Ui(0) > 0, (16) is negative for all λ sufficiently small. Thus, there exists λ ∈ (0, 1) such that

U(fλ) < U(gλ). �
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