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a b s t r a c t

This paper extends decision theory under imprecise probabilistic information to dynamic settings. We
explore the relationship between the given objective probabilistic information, an agent’s subjectivemul-
tiple priors, andupdating. Dynamic consistency implies rectangular sets of priors at the subjective level. As
the objective probabilistic information need not be consistent with rectangularity at the subjective level,
agents might select priors outside the objective probabilistic information while respecting the support
of the given set of priors. Under suitable additional axioms, the subjective set of priors belongs to the
rectangular hull of the objective probabilistic information.
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1. Introduction

Economic decisions are often made with imprecise knowledge
of the statistical properties of the environment, i.e., in a situation
of Knightian uncertainty. This Knightian uncertainty need not be
absolute, however, as some information about possible probability
distributions is usually available. In one of the famous (Ellsberg,
1961) experiments, for example, the agent knows that the prob-
ability of drawing a red ball is one-third whereas the probability
of drawing a yellow ball is anything between zero and two-thirds.
Under such conditions, the agent is faced with a bet (or act) that
depends on the outcome of the experiment and some imprecise
information about possible probability distributions that can be
described by an information set (of second order) that contains all
objectively possible distributions.

Gajdos et al. (2008) (henceforth GHTV) adapted the basic anal-
ysis of Gilboa and Schmeidler (1989) (who focus solely on uncer-
tain acts without considering information about possible proba-
bility distributions) to such uncertain environments. In this paper,
we extend the axiomatic analysis of preferences under Knightian
uncertainty with imprecise probabilistic information to dynamic
settings.

According to GHTV, an agent who is confronted with an in-
formation set of possible priors selects a subjective set of priors
and computes the worst expected utility of an act over this set
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of selected priors. These selected priors are consistent with the
given information in the sense that their support is included in the
support of objective information.

In dynamic environments, agents need to update their expec-
tations upon the arrival of new information. Epstein and Schnei-
der (2003) have shown that it is possible to maintain dynamic
consistency for preferences over acts in a multiple-prior setting if
agents update their priors in a Bayesian manner prior by prior and
if the subjective set of priors is stable under pasting conditional and
marginal probabilities from different priors to the original set (or,
as Epstein and Schneider call it, rectangular).

In contrast to Epstein and Schneider’s setting, an agent is faced
with objective yet imprecise information about possible probabil-
ity distributions in our setting. Ex ante, there is no reason to assume
that this information is given by a rectangular set of priors. It is thus
not clear howan agent should process such information orwhether
it is possible to maintain dynamic consistency at all.

We show here that utility functionals in the form of GHTV are
dynamically consistent if the subjective set of priors is selected and
updated in a suitable way. In the first place, as in GHTV’s static
analysis, the support of the selected set of priors has to be included
in the support of the information set (i.e., the objectively known
set of possible priors). In the second place, the initially chosen set
has to be stable under pasting, and once the initial set of priors has
been chosen, agents update their beliefs prior by prior.

An important element of our analysis is the fact that the sub-
jective set of priors can be larger than the exogenously given set of
possible priors because the agent does notwant to exclude possible
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conditional beliefs ex ante yet alsowants to be dynamically consis-
tent. The potential ‘‘overselection’’ of priors is an important – albeit
necessary – feature of our model.

The overselection should not be too arbitrary, though. In ad-
dition to the natural requirement that the selected sets of priors
be consistent with the support of objective information, we adapt
two further axioms from GHTV to our dynamic setting, namely
Reduction (under precise information) and Local Dominance. Local
Dominance applies GHTV’s dominance concept locally at each
node to the next time step. When two acts are resolved in the
next period and if one act is preferable to another under every
element of the information set, the ranking is unchanged under the
whole information set. The reduction axiom states that when the
objective information consists of a single prior and this single prior
is consistent with the given state of the world in that it puts mass
one on the currently observed event, then the agent selects exactly
this prior to evaluate acts.

The two axioms of Reduction and Local Dominance force the
selected priors to be contained in the rectangular hull of the
information set, i.e., the smallest rectangular set containing the
initially given probabilistic information. As a first consequence, the
overselection of priors does not occur in situations in which the
probabilistic information is already rectangular. In other words,
the overselection only emerges when the probabilistic informa-
tion and the filtration are not ‘‘well-adapted’’ to each other. This
overselection can thus be seen as an attempt on the agent’s part
to deal with discrepant sources of information. Second, requiring
the subjective set of priors to be in the rectangular hull of the
objectively given set of priors implies that Bayesian updates of the
initial set of subjective priors belong to updates to the information
set. In this sense, no further overselection arises at conditional
stages.

Overselection is a sign of the ambiguity-averse decision maker
sophistication when one is confronted with a potential conflict
among sources of information that would lead to dynamically in-
consistent choices. Recognizing the dynamic consistency problem,
the decision maker minimally adapts his or her ex-ante prefer-
ences so as not to face consistency problems later on yet does not
dismiss the ambiguous nature of the situation altogether.

There is usually a tension between dynamic consistency and
deviations from expected utility. In fact, Epstein and LeBreton
(1993) have shown that in order to maintain dynamic consistency
along all possible information flows, it is necessary to fall back on a
model of probabilistic sophistication that precludes any sensitivity
to ambiguity. When the information flow is given, however, it is
possible to maintain dynamic consistency for multiple priors and
other ambiguity-averse models. Epstein and Schneider (2003) (see
also Riedel, 2004) have shown that multiple prior preferences are
dynamically consistent if each prior is updated in a Bayesian way
and the set of priors is rectangular or stable under pastingmarginal
and conditional probabilities. Maccheroni et al. (2006) and Föllmer
and Penner (2006) have generalized dynamic consistency to varia-
tional preferences by characterizing the suitable penalty functions
for this large class of ambiguity-averse preferences.

Pires (2002) is able to consider updating for arbitrary events by
weakening the notion of dynamic consistency. Siniscalchi (2011)
considers a version of Strotz’s (1955) Consistent Planning in which
inconsistent agents play a dynamic game against themselves.
Hanany and Klibanoff (2007) maintained both Dynamic Consis-
tency and Relevance1 but allowed dynamic preferences and up-
dated sets of priors to depend on the set of feasible plans of actions,
some particular optimal plan of actions within this set, and the

1 What we call Relevance is sometimes referred to as Consequentialism in the
literature. It requires the preference between two acts to only depend on the
outcomes of these acts that remain possible given the information flow.

event that is observed. Hill (2016) observed that the incompatibil-
ity between Dynamic Consistency and Relevance only holds over
‘‘objective trees’’ and does not preclude their compatibility over
‘‘subjective trees’’. By exploiting this idea, he developed a dynamic
extension of the multiple prior model in which the ex-ante set
of priors is updated on subjective contingencies in a dynamically
consistent and relevant way.

The remainder of the paper is organized as follows: Section 2
briefly reviews the GHTV preferences and representation in a static
decision environment. Section 3 describes the dynamic decision
environment. It first presents a conditional version of Relevance
and Dynamic Consistency and their characterization within dy-
namic GHTV preferences. It then introduces the axioms of Reduc-
tion and Local Dominance and shows how they impose restrictions
on the overselection of priors. All proofs are gathered in the Ap-
pendix.

2. The framework

2.1. Objects of choice

Consider twononempty sets, the outcome spaceX and the state
space S. The state space S is assumed to be finite. Let ∆X denote
the set of all lotteries with finite support on X . An act is a function
f : S → ∆X . Let F stand for the set of all acts. A constant act with
f (s) = l for all s ∈ S and for some lottery l ∈ ∆X is also denoted by
l.

Imprecise probabilistic information is modeled by a nonempty
closed and convex set P of probability measures on S. A typical
element of P will be denoted by p. Let P stand for the set of all
nonempty, closed, and convex sets of probability measures on S.
For P ∈ P , we let supp P be the support of P which contains all
states s ∈ S such that there exists p ∈ P with p(s) > 0. For a
real-valued function g : S → R and a probability measure p on S,
we denote by

Ep(g) =

∑
s∈S

p(s)g(s)

the expectation of g under p.
Following GHTV, we consider uncertain acts in conjunction

with imprecise probabilistic information as the basic objects of
choice. Thus, an agent has a preference relation≿ defined onP×F ,
the set of pairs of imprecise probabilistic information and acts. For
P,Q ∈ P and f , g ∈ F , the preference ranking (P, f ) ≿ (Q , g)
means that the agent prefers act f under probabilistic information
P to act g under probabilistic information Q .

2.2. Static representation

We recall the static representation result of GHTV for a prefer-
ence relation ≿ on P × F . Consider the following list of axioms.

Order ≿ is complete and transitive. As usual, ≻ denotes the strict
preference relation derived from≿, and∼ the indifference relation.

Act Continuity For any P ∈ P and f , g, h ∈ F , if (P, f ) ≻ (P, g) ≻

(P, h), there exists α, β ∈ (0, 1) such that (P, αf + (1 − α)h) ≻

(P, g) ≻ (P, βf + (1 − β)h).

Outcome Preference For every P,Q ∈ P and l ∈ ∆X , (P, l) ∼

(Q , l).

Nontriviality There exist P ∈ P and l,m ∈ ∆X such that (P, l) ≻

(P,m).

C-independence For any P ∈ P , f , g ∈ F , l ∈ ∆X and λ ∈ (0, 1), if
(P, f ) ≿ (P, g), then (P, λf + (1 − λ)l) ≿ (P, λg + (1 − λ)l).
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Uncertainty Aversion For any P ∈ P , f , g ∈ F and λ ∈ (0, 1), if
(P, f ) ∼ (P, g), then (P, λf + (1 − λ)g) ≿ (P, f ).

Monotonicity For P ∈ P and f , g ∈ F , if (P, f (s)) ≿ (P, g(s)) for all
s ∈ supp P , then (P, f ) ≿ (P, g).

A binary relation ≿ on P × F is said to be imprecision averse
or GHTV if it satisfies the axioms Order, Act Continuity, Outcome
Preference, Nontriviality, C-independence, Uncertainty Aversion
and Monotonicity.

The representation theorem states that an imprecision averse
decision maker uses a function ϕ : P → P which chooses for an
objectively given set of possible distributions P a set of prior ϕ(P)
that the agent uses to evaluate the outcomes.

Definition 1. A mapping ϕ : P → P is support-preserving if
suppϕ(P) ⊆ supp P holds for all P ∈ P .

Theorem 1 (Gajdos et al., 2008). A binary relation ≿ on P × F is
ghtv if and only if there exist a nonconstant linear utility function
u : ∆X → R and a support-preserving mapping ϕ : P → P such
that, for any P,Q ∈ P and f , g ∈ F :

(P, f ) ≿ (Q , g) ⇐⇒ min
p∈ϕ(P)

Ep(u ◦ f ) ≥ min
p∈ϕ(Q )

Ep(u ◦ g). (1)

In this representation, u is unique up to positive affine transforma-
tions, and ϕ is unique.

Theorem 1 provides a decision-theoretic foundation to the idea
that the set of priors is fully determined as a function ϕ of the
objective probabilistic information. In the static setting, the only
restriction that ϕ must satisfy is the support-preserving property;
that is, only states that are deemed possible by the probabilistic
information can be also deemed possible by the set of priors that
the agent selects.

3. Updating and dynamic representations

3.1. Time and information flow

We consider a discrete time framework with points in time t =

0, . . . , T . The information flow is given by a sequence of partitions
(πt)t=0,...,T on S where πt+1 refines πt for any t = 0, . . . , T −1.We
assume that π0 = {S}. For a state s ∈ S and a time t = 0, . . . , T ,
we denote by πt (s) the unique set in πt which contains s. We
assume that the true state of the world is revealed at time T . Thus,
πT (s) = {s} for any s ∈ S.

The following example illustrates our dynamic choice frame-
work under imprecise probabilistic information; it will be used
throughout the paper.

Example 1. Consider the following dynamic variant of the Ellsberg
(1961) experiment. The state space is S = {r, b, g} for three
possible distinct outcomes ‘‘red’’, ‘‘blue’’, ‘‘green’’. Objective infor-
mation takes the form of a set of probability measures Pa,b =

{(1/3, p, 2/3 − p): a ≤ p ≤ b} for some a, b with 0 ≤ a ≤

b ≤ 2/3. The agent thus knows that the probability for ‘‘red’’ is
1/3, but she has imprecise information about the odds for ‘‘blue’’
resp.‘‘g ’’. There are three points in time. Ex ante, the agent has no
information. At the interim stage, the agent will be told whether
the outcome is ‘‘green’’ or not. In the last stage, all information is
revealed. Thus, the information flow is determinedby the sequence
of partitions π0 = {S}, π1 = {E, F}, with E = {r, b} and F = {g},
and π2 = {{r}, {b}, {g}}.

3.2. Basic pointwise representation

We consider a family of preference relations
(
≿t,s

)
t=0,...,T ,s∈S on

P × F . For P,Q ∈ P , f , g ∈ F , t = 0, . . . , T and s ∈ S, the
preference ranking (P, f ) ≿t,s (Q , g) means that the agent prefers
act f under probabilistic information P to act g under probabilistic
information Q conditional upon the event πt (s) that she observes
at time t and state s.

As usual for dynamic models of preferences, one can think of
each preference relation in the family

(
≿t,s

)
t=0,...,T ,s∈S in different

ways. First, each ≿t,s can be understood as a revealed preference
observed from choicesmade at time t and information setπt (s). An
analyst can indeed elicit the various ≿t,s as long as the elicitation
experiments are repeated at any of the various states s. Second,
each ≿t,s can represent the preference the agent verbally reports
to the analyst he expects to have at (t, s). In a more normative
perspective, each ≿t,s represents the preference the agent expects
for himself to have at (t, s).

There is a natural naive way of specifying conditional prefer-
ences

(
≿t,s

)
t=0,...,T ,s∈S in our framework when an ex ante prefer-

ence ≿ is given. Consider a set P ∈ P . Fix t ∈ {0, . . . , T } and s ∈ S.
If there exists p ∈ P such that p(πt (s)) > 0, then we consider the
set of Bayesian updates

Pt (s) = {p(·|πt (s)) : p ∈ P, p(πt (s)) > 0} ∈ P.

For any P,Q ∈ P and f , g ∈ F , and for any t = 0, . . . , T and
s ∈ S such that there exist p ∈ P and q ∈ Q with p(πt (s)) > 0 and
q(πt (s)) > 0, we define a conditional preference relation as

(P, f ) ≿t,s (Q , g) ⇐⇒ (Pt (s), f ) ≿ (Qt (s), g). (2)

We shall see that this naive way of updating generally leads to
dynamically inconsistent preferences.

We will use the following axioms.
GHTV For t ∈ {0, . . . , T } and s ∈ S, the binary relation≿t,s onP×F
is ghtv.
Adaptedness For t ∈ {0, . . . , T } and s, s′ ∈ S, if πt (s) = πt (s′), then
≿t,s = ≿t,s′ .

From the axiom GHTV and Theorem 1, we obtain a family
(ϕt,s)t=0,...,T ,s∈S of support-preserving functions ϕt,s : P → P
and a family of nonconstant, linear (Bernoulli) utility functions
(ut,s)t=0,...,T ,s∈S such that the preference relation ≿t,s can be rep-
resented by the utility function

Ut,s(P, f ) = min
p∈ϕt,s(P)

Ep(ut,s ◦ f ).

The axiom Adaptedness requires preferences at time t and
state s to only depend upon s through the event πt (s) which the
agent observes. Thus, if the agent observes the same event at two
different states, the corresponding preferences at that time must
be the same. A collection of functions (ϕt,s)t=0,...,T ,s∈S from P to P
is said to be adapted if, for t ∈ {0, . . . , T } and s, s′ ∈ S such that
πt (s) = πt (s′), we have ϕt,s = ϕt,s′ .

Thus, for an adapted family, (ϕt,s)t=0,...,T ,s∈S , the priors selected
at time t and state s only depend upon the event which the agent
observes at (t, s), as well as the available probabilistic information.

We also require that the preferences over sure acts do not
change over time and states.
Stable Tastes For t, t ′ ∈ {0, . . . , T }, s, s′ ∈ S, P,Q ∈ P and l,m ∈

∆X , we have (P, l) ≿t,s (Q ,m) if and only if (P, l) ≿t ′,s′ (Q ,m).
As a consequence of the axiom ‘‘Stable States’’, the (Bernoulli)

utility functions at the various times and states are positive affine
transformations of each other. We can thus choose one common
(Bernoulli) utility function which we simply denote by u. More-
over, note that the set ϕ0,s(P) of priors selected ex ante at any state
s ∈ S is independent of s by Adaptedness and the triviality of π0.
We use the notation ϕ(P) to refer to any of the ϕ0,s(P) for s ∈ S.
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3.3. Conditional Relevance

It is natural to require that the agent’s preferences do not
depend on states which can be excluded at some given point in
time. At time t and state s, the agent knows that the event πt (s)
happened. Given some probabilistic information, shemust then be
indifferent between any two acts that agree with each other on
πt (s).

For any P ∈ P and A ⊆ S, we say that A is P-negligible if we
have p(A) = 0 for all p ∈ P .

Conditional Relevance For t ∈ {0, . . . , T } and s ∈ S, P ∈ P ,
and f , g ∈ F: if πt (s) is not P-negligible and f (s′) = g(s′) for all
s′ ∈ πt (s), then (P, f ) ∼t,s (P, g).

We then obtain that the agent chooses only probability distri-
butions which put full mass on the current information set πt (s) in
the sense of the following definition.

Definition 2. A collection (ϕt,s)t=0,...,T ,s∈S of mappings from P to P
is said to be conditionally relevant if, for t ∈ {0, . . . , T }, s ∈ S , and
P ∈ P such that πt (s) is not P-negligible, we have p(πt (s)) = 1 for
all p ∈ ϕt,s(P).

To understand why we restrict Conditional Relevance to situa-
tionswhere the observed eventπt (s) is not P-negligible, suppose to
the contrary that πt (s) is P-negligible. Then, supp P ⊆ S \ πt (s). By
the support-preserving property, wemust also have suppϕt,s(P) ⊆

S \ πt (s). This implies p(πt (s)) = 0 for all p ∈ ϕt,s(P) and would
contradict the unrestricted versions of both Conditional Relevance
and Definition 2. This shows that we need to restrict the agent’s
preferences only when the two sources of information are not
contradictory and justifies that Conditional Relevance has bite only
when these two sources are compatible.

To have amore concise language later on, we give the following
names to the list of properties for preferences and collections
(ϕt,s)t=0,...,T ,s∈S of mappings from P to P .

Definition 3. Wecall a family (≿t,s)t=0,...,T ,s∈S of binary relations on
P×F that satisfies ghtv, Adaptedness, Conditional Relevance, and
Stable Tastes a Conditional Imprecision Averse Preference Family. We
call a family (ϕt,s)t=0,...,T ,s∈S of support-preserving, adapted, and
conditionally relevant mappings from P to itself a prior selection
family.

Theorem 4 in the Appendix explains in detail the relationship
between Conditional Imprecision Averse Preference Families and
prior selection families.

3.4. Dynamic consistency

We now need to connect the priors selected at each state s and
time t to one another. We thus introduce Dynamic Consistency to
that effect and discuss its consequences in our model.

Dynamic Consistency For t ∈ {0, . . . , T − 1} and s ∈ S, for
P ∈ P such that πt (s) is not P-negligible, and for f , g ∈ F: If
(P, f ) ≿t+1,s′ (P, g) for all s′ ∈ πt (s), then (P, f ) ≿t,s (P, g).

The key insight Dynamic Consistency captures is the following
one: at any time t < T and state s, if the possible future preferences
at t + 1 unanimously rank an alternative above another one, then
preferences at (t, s) must also rank the former one above. But
note that we only require this in situations when πt (s) is not P-
negligible; that is, when the realized event and the probabilistic
information are coherent with each other.

Dynamic consistency ofmultiple prior representations has been
studied extensively in recent years; after the basic insight of Sarin

and Wakker (1998) of the role of rectangularity in a two pe-
riod example, Epstein and Schneider (2003) characterize dynamic
consistency for intertemporal consumption choice problems, and
Delbaen (2002) and Riedel (2004) achieve the same for dynamic
risk measures.

Consider a probability measure p on S. Fix t ∈ {0, . . . , T } and
s ∈ S. If p(πt (s)) > 0, then, define pt (s) = p(· |πt (s)), which is
another probability measure. We can also view pt (·) as a transition
kernel on S. Moreover, for t < T , define p+1

t (s) as the restriction of
pt (s) to the algebra generated by πt+1.

Consider a set P ∈ P . Fix t ∈ {0, . . . , T } and s ∈ S. If πt (s) is not
P-negligible, then we define:

Pt (s) = {pt (s) : p ∈ P, p(πt (s)) > 0} ∈ P and
P+1
t (s) = {p+1

t (s) : p ∈ Pt (s)}.

Definition 4. Fix t ∈ {0, . . . , T − 1} and s ∈ S. For probability
measures p, q on S, define the pasting p ◦t,s q of p and q after (t, s)
as follows. If q(πt+1(s)) = 0, set p ◦t,s q = p. Otherwise, we set for
s′ ∈ S

p ◦t,s q(s′) =

{
q(s′|πt+1(s)) p(πt+1(s)) if s′ ∈ πt+1(s)
p(s′) else.

For P,Q ∈ P , we define their pasting after (t, s) to be

P ◦t,s Q =
{
p ◦t,s q : p ∈ P, q ∈ Q

}
.

Wecall a family (Pt,s)t=0,...,T ,s∈S of sets of priors Pt,s ∈ P stable under
pasting (or rectangular) if for all t = 0, . . . , T −1 and s, s′ ∈ S such
that s′ ∈ πt (s) we have

Pt,s ◦t,s′ Pt+1,s′ = Pt,s.

Similarly, we call a prior selection family (ϕt,s)t=0,...,T ,s∈S stable
under pasting if for all t = 0, . . . , T − 1, all s ∈ S such that πt (s) is
not P-negligible and all s′ ∈ πt (s)

ϕt,s(P) ◦t,s′ ϕt+1,s′ (P) = ϕt,s(P).

The pasting p ◦t,s q of p and q after (t, s) describes a probability
distribution whose Bayesian update on πt+1(s) agrees with that
of q. But its Bayesian update on S \ πt+1(s), as well as its one-
step-ahead restriction to {πt+1(s), S \ πt+1(s)}, agrees with those
of p. Such pasting can be extended to sets of probability measures.
It is always possible to close a given family (Pt,s)t=0,...,T ,s∈S under
pasting; we call the resulting family of priors the rectangular
hull of (Pt,s)t=0,...,T ,s∈S and denote it by (rectt,s(P))t=0,...,T ,s∈S . More
precisely, for any s ∈ S, let δs be the degenerate measure assigning
a probability of 1 to state s. We then define rectt,s(P) recursively for
all t = 0, . . . , T , s ∈ S and P ∈ P such that πt (s) is not P-negligible
by setting

rectT ,s(P) := PT (s) = {δs}, and

rectt,s(P) :=

{∫
S
p(s′) · dm(s′) : m ∈ Pt (s)+1,

p(s′) ∈ rectt+1,s′ (P)
}

.

Theorem 2.

1. A Conditional Imprecision Averse Preference Family
(≿t,s)t=0,...,T ,s∈S satisfies Dynamic Consistency if and only if
there exist a nonconstant linear utility function u : ∆X → R
and a prior selection family (ϕt,s)t=0,...,T ,s∈S that is stable under
pasting such that ≿t,s is represented by the utility function

Ut,s(P, f ) = min
p∈ϕt,s(P)

Ep(u ◦ f ). (3)

u is unique up to positive affine transformations; (ϕt,s)t=0,...,T ,s∈S
is unique.
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2. When the equivalent conditions of part 1. hold true, the follow-
ing additional properties are satisfied.

(a) (Dynamic Programming) For any t ∈ {0, . . . , T−1}, s ∈ S,
P ∈ P such that πt (s) is not P-negligible, and any f ∈ F ,

Ut,s(P, f ) = min
m∈ϕt,s(P)+1

{

∫
S
Ut+1,s′ (P, f ) · dm(s′)}. (4)

(b) (Full Bayesian Updating) For any t ∈ {0, . . . , T −1}, s ∈ S
and P ∈ P such that πt (s) is neither P-negligible nor ϕ(P)-
negligible,

ϕt,s(P) = ϕ(P) | πt (s)
≡ {p(.|πt (s)) : p(πt (s)) > 0 and p ∈ P} . (5)

A dynamically consistent agent selects priors at time t and state
s according to ϕt,s. The priors selected at (t, s) only deem as pos-
sible states that are already deemed possible by the probabilistic
information itself. Moreover, they only depend on the probabilistic
information and the event which she observes at (t, s).

Theorem 2 characterizes Dynamic Consistency for Conditional
Imprecision Averse Preference families in terms of the stability
under pasting of the prior selection family. Eq. (4) shows that
Dynamic Consistency leads to value functions {Ut,s, t = 0, . . . , T ,
s ∈ S} with a recursive structure. This property lies at the heart of
dynamic programmingmethods as it ensures the equality between
backward induction solutions and ex-ante optimal plans.

Furthermore, Theorem 2 establishes the Full Bayes updating
rule as a consequence of Dynamic Consistency: given some objec-
tive information P , the priors that are selected at (t, s) consist of
the Bayesian updates on the available event πt (s) of all the priors
selected ex ante under P . Thus, it is still true, as in Theorem 4,
that the priors selected at (t, s) only depend on the probabilistic
information P and the available event πt (s). Eq. (5) clarifies that
these priors only depend on P through the set ϕ(P) of priors
selected ex ante. In this sense, the priors selected at (t, s) can also
be seen as fully determined by the ex-ante priors (under the same
objective information) and the available event.

Theorem 2 leaves a lot of freedom for the choice of ϕ(P). In
light of GHTV’s Theorem 2, one might expect the ex-ante prior
selection process to satisfy the following property: ϕ(P) ⊆ P
for any P ∈ P . GHTV call this the selection property. It would
mean that the agent selects her ex-ante priors within the available
objective information. But the next example shows that this is
too restrictive as it sometimes implies neutrality to ambiguity, an
undesirable feature.

Example 2. Using the notations from Example 1, fix aE, bE,m,m ∈

[0, 1] possibly depending on a and b with aE ≤ bE and m ≤ m.
Define

ϕE(Pa,b) = {(p, 1 − p, 0) : aE ≤ p ≤ bE} and
ϕF (Pa,b) = {(0, 0, 1)},

ϕ0(Pa,b) =

{((
1
3

+ m
)
p,
(
1
3

+ m
)
(1 − p),

2
3

− m
)

:

aE ≤ p ≤ bE, m ≤ m ≤ m
}

.

The collection {ϕ0(Pa,b), ϕE(Pa,b), ϕF (Pa,b)} is stable under pasting
for any a, b, consistently with Theorem 2.2

It might be tempting to choose aE, bE,m,m ∈ [0, 1] so as to
have ϕ0(Pa,b) ⊆ Pa,b for any a, b. However, for any mappings ϕ0, ϕE

2 We abuse slightly notation here. Note that time is here always t = 0 or t = 1.
By Stable Tastes, ϕ0,s is independent of s, and denoted ϕ(P). By Adaptedness, ϕ1,s is
constant over E (resp. F ), and denoted ϕE (resp. ϕF ).

andϕF such that {ϕ0(Pa,b), ϕE(Pa,b), ϕF (Pa,b)} is stable under pasting
and ϕ0(Pa,b) ⊆ Pa,b, we have that ϕ0(Pa,b) is a singleton. Indeed,
suppose that (1/3, p, 2/3 − p) and (1/3, q, 2/3 − q) belong to
ϕ0(Pa,b). Then, by stability under pasting,(

1
3 + p
1 + 3q

,
3q( 13 + p)
1 + 3q

, 2/3 − p

)
= (1/3, p, 2/3 − p) ◦E (1/3, q, 2/3 − q) ∈ ϕ0(Pa,b) ⊆ Pa,b.

But then (1/3 + p)/(1 + 3q) = 1/3 and, therefore, p = q. Hence,
imposing that the selected priors be a subset of the set P has the
overly strong implication in this example to impose that the agent
is neutral to the ambiguity of the situation captured by the fact that
P is not a singleton.

In general, sets of priors P contain a rectangular subset if
and only if they have a nonempty interior in the appropriate
parametrization given by marginal and conditional probabilities.
We illustrate this fact within our example. Every probability mea-
sure p on S can be represented by a pair (c, d) ∈ [0, 1]2, where
c = p({b, g}) and d = p({b}|{b, g}). Likewise, any set P ∈ P can be
represented by a subset A(P) ⊆ [0, 1]2. It is easy to see that a subset
P ∈ P is stable under pasting if and only if A(P) = [c, c] × [d, d],
for some c, c, d, d ∈ [0, 1].

Suppose now that objective information is given by a set P ∈

P such that A(P) has empty interior in [0, 1]2. Then, if Q ∈ P
is stable under pasting and included in P , A(Q ) must necessarily
have an empty interior and thus be of the form {c} × [d, d] or
[c, c] × {d}. This does not force a full neutrality to ambiguity as in
the Ellsberg example above, but nonetheless requires one of the
likelihood of {b, g} or the likelihood of {b} conditional on {b, g}

to be unambiguous. Thus, imposing Dynamic Consistency while
requiring selected priors to be contained in objective information
proves again to be too restrictive.

Ambiguity is typically attributed to the ‘‘poor’’ quality of the
probabilistic information that an agent has. Thus, one could inter-
pret the fact that the selection property implies ambiguity neutral-
ity in cases where the objective information P does not contain
nontrivial rectangular subsets as meaning that these sets P rep-
resent information of ‘‘good’’ quality, or are ‘‘falsely ambiguous’’.
This interpretation however is not satisfactory, as such sets P can
still be very dispersed. In the example, P0, 23 contains no nontrivial
rectangular subset but is still imprecise enough and generates
ambiguity as demonstrated by the Ellsberg (1961) paradox itself.

In light of this discussion, one could think of the following
procedure: when faced with a set P that is not rectangular, the
decision maker first ‘‘rectangularizes’’ the set, and then selects
from it. This would impose the condition ϕ(P) = ϕ(rect(P)) for
any P ∈ P; the inclusion ϕ(P) ⊆ P would be required only for sets
P ∈ P that are already rectangular. In this way, the agent always
‘‘rectangularizes’’ the given objective information in order to adapt
it to the structure of the information flow. In particular, this pro-
cedure only implies that ϕ(P) is always contained in rect(P) and
thus allows for nontrivial rectangular sets ϕ(P) of selected priors.

However this procedure has the non-desirable feature that it
does not allow to capture some (imprecision averse) behavior. To
illustrate this, fix a single partition π . Fix P,Q ∈ P . In the spirit of
GHTV’s Definition 2, we say P is conditionally more precise than Q
with respect to π if the following conditions hold:

(i) P ⊆ Q ,
(ii) For all p ∈ P , q ∈ Q and E ∈ π , p(E) = q(E) > 0,
(iii) For all E ∈ π , {p(·|E) : p ∈ P} = {q(·|E) : q ∈ Q }.

If P andQ satisfy these conditions, they have the same rectangu-
lar hull, that is, rect(P) = rect(Q ).Wewould then obtain ϕ(P) =

ϕ(Q ). In turn, given the representation obtained in Theorem 2, this
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implies that (P, f ) and (Q , f ) must be indifferent for any f . Thus,
imposing that ϕ(P) = ϕ(rect(P)) for any P ∈ P implies that the
decisionmaker is indifferent to imprecision (in the sense of GHTV’s
Axiom 10) within the filtration defined by π .

Our view is therefore that overselection of priors, when the
original set does not contain nontrivial rectangular subsets, is a
desirable feature, as it does not force the decision criterion to be
expected utility. Yet the rectangularization procedure is not a sat-
isfactory solution, as it forces a form of indifference to imprecision.
We further investigate the way the selection operates in the next
section by weakening this procedure.

3.5. Local dominance

A consequence of Theorem 2 is that an agent with preferences
satisfying Dynamic Consistency and Conditional Relevance and re-
vealing a nonneutral attitude towards ambiguity must sometimes
select her ex-ante priors outside the probabilistic information that
she disposes of. So far, the only restriction on this overselection is
the support-preserving property of the prior selection family: the
priors selected ex antemust only assign positive probabilityweight
to states already receiving a positive weight from the probabilistic
information. Any prior is thus not allowed. We now develop other
restrictions for this overselection.

The Dominance criterion employed by GHTV restricts the
agent’s choice of priors to subsets of P . We will now impose a
weaker and local version of this dominance criterion that is suited
to our dynamic framework.

Local Dominance For t ∈ {0, . . . , T − 1} , s ∈ S, P ∈ P such that
πt (s) is not P-negligible,and f , g ∈ F that are πt+1-measurable: if
({p}, f ) ≿t,s ({p}, g) for all p ∈ Pt (s), then (P, f ) ≿t,s (P, g).

Because of the role played by the Bayesian updating of the
objective information on the events in the filtration, Local Domi-
nance can be understood as a requirement of consistency between
preferences and the two sources of information, the objective
probabilistic set and the filtration. Moreover, Local Dominance can
be also seen as a criterion of internal consistency of the preference
relation ≿t,s at some pair (t, s): if act f is at least as good as act
g under the Bayesian update on πt (s) of any of the probability
distributions in P , then f must also be at least as good as g under
P . But we only require this for acts f and g are measurable with
respect to the partition of the next stage. Omitting this restriction
would lead to the inclusion ϕ(P) ⊆ P for any P ∈ P (see
GHTV’s Theorem2),which as explainedwould be too strong for our
purposes. In fact, the dominance reasoning captured in the axiom
becomes questionable when applied to nonmeasurable acts: since
the uncertainty attached to these acts is not fully resolved at the
next stage, the ambiguities perceived at the disjoint cells of the
next stage partition might hedge one another and explain failures
of the dominance reasoning. The measurability restriction is thus
meant to allow such hedging to play a role in decisions.

We will also use a version of the criterion of Reduction under
Precise Information employed by GHTV. But it requires additional
notation. Fix p ∈ ∆S and f ∈ F . Then, there is a partition
(E1, . . . , En) and a collection (l1, . . . , ln) of lotteries on X such that
f (s) = li for any s ∈ Ei and any i ∈ [1, n]. Then, define l(p, f ) ∈ ∆X
as the lottery given by

∑n
i=1p(Ei) · li. Note that this definition is

independent of the specific partition (E1, . . . , En) that is chosen to
construct l(p, f ).

Reduction For any t ∈ {0 . . . T − 1}, any s ∈ S, and for any p ∈ ∆S
such that p(πt (s)) = 1, we have ({p}, f ) ∼t,s ({p}, l(p, f )), for any
f ∈ F .

Under the Reduction axiom, whenever the objective informa-
tion consists of a single probability measure that is consistent with
the available event, the selected priors must be that measure as
captured by the following definition.

Definition 5. A prior selection family (ϕt,s)t=0,...,T ,s∈S is said to be
grounded if ϕt,s({p}) = {p} for any p ∈ ∆S such that p(πt (s)) = 1,
and any t ∈ {0, . . . , T } and s ∈ S.

The next theorem uses Local Dominance and Reduction to fur-
ther constrain the selection of priors.

Theorem 3. A Conditional Imprecision Averse Preference Family
(≿t,s)t=0,...,T ,s∈S satisfies Dynamic Consistency, Local Dominance and
Reduction if and only if the prior selection family (ϕt,s)t=0,...,T ,s∈S in
the representation (3) is stable under pasting, grounded and we have

ϕt,s(P) ⊆ rectt,s(P), (6)

for all t ∈ {0, . . . , T } , s ∈ S, and P ∈ P such that πt (s) is not P-
negligible.

In the dynamic setting, the probabilistic information P might
be given in a way that does not fit well with the structure of
the information flow of states of nature in the sense that P itself
is not stable under pasting (or rectangular) with respect to the
filtration of events. Eq. (6) shows that the agent ’’rectangularizes’’
the probabilistic information (or closes it under pasting according
to the given information flow). In other words, she chooses freely
her priors within the rectangular hull of P . Note that this is always
consistent with the support-preserving property of the prior selec-
tion family as the rectangularization itself preserves the support of
a set of measures.

Confining the additional priors within the rectangular hull of
probabilistic information has at least two advantages. First, if the
objective information P fits well the structure of the information
flow, then P is already rectangular. In particular, we obtain ϕ(P) ⊆

P . Thus, the agent is only allowed to select ex-ante priors outside
the objective information in situations where the latter is not well-
adapted to the filtration. Second, the rectangular hull of a set P
does never add new posteriors conditional on the events in the
filtration. Therefore, at any (t, s) such that πt (s) is a proper and
not P-negligible subset of S, we have ϕt,s(P) ⊆ Pt (s). Thus, all the
selected priors must be Bayesian updates on the available event
of measures in the objective information. Hence, overselection is
here the natural consequence of the decision maker’s desire to
act in a dynamically consistent manner while acknowledging the
imprecision of the information he has.

Let us come back to our example.

Example 3. With the notations from Example 1, the rectangular
hull of the sets Pa,b is given by

rectE(Pa,b) =

{(
1

1 + 3p
,

3p
1 + 3p

, 0
)

: a ≤ p ≤ b
}

and

rectF (Pa,b) = {(0, 0, 1)},

rect0(Pa,b) =

{(
1
3 + m
1 + 3p

,

( 1
3 + m

)
3p

1 + 3p
,
2
3

− m

)
:

a ≤ m, p ≤ b

}
.

Now, for any a, b, let a′, b′
∈ [0, 1], possibly depending on a and

b, be such that a ≤ a′
≤ b′

≤ b. Then, define (ϕ0(Pa,b), ϕE(Pa,b),
ϕF (Pa,b)) according to

ϕE(Pa,b) =

{(
1

1 + 3p
,

3p
1 + 3p

, 0
)

: a′
≤ p ≤ b′

}
and

ϕF (Pa,b) = {(0, 0, 1)},
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ϕ0(Pa,b) =

{(
( 13 + m)
1 + 3p

,
( 13 + m)3p
1 + 3p

,
2
3

− m

)
: a′

≤ m, p ≤ b′

}
.

By construction, {ϕ0(Pa,b), ϕE(Pa,b), ϕF (Pa,b)} is stable under pasting
and satisfies Eq. (6) for any a, b, consistently with Theorem 3.
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Appendix

Proof of Theorem2. The next theorem summarizes the discussion
from Sections 3.2 and 3.3 and is given without a proof.

Theorem 4. A collection (≿t,s)t=0,...,T ,s∈S is a Conditional Imprecision
Averse Preference Family if and only if there exist a nonconstant
linear utility function u : ∆X → R and a prior selection family
(ϕt,s)t=0,...,T ,s∈S such that ≿t,s is represented by the utility function

Ut,s(P, f ) = min
p∈ϕt,s(P)

Ep(u ◦ f ). (7)

Moreover, u is unique up to positive affine transformations, and
(ϕt,s)t=0,...,T ,s∈S is unique.

Wenow turn at the proof of Theorem2. By Theorem 4, there ex-
ist a nonconstant linear utility function u : ∆X → R and a family
(ϕt,s)t=0,...,T ,s∈S of support-preserving, adapted, and conditionally
relevant mappings from P to itself such that for any t ∈ {0, . . . , T }

and s ∈ S, and for any P,Q ∈ P and f , g ∈ F:

(P, f ) ≿t,s (Q , g) ⇐⇒ Ut,s(P, f ) ≥ Ut,s(Q , g), (8)

where, for any P ∈ P and f ∈ F , we have:

Ut,s(P, f ) = min
p∈ϕt,s(P)

Ep(u ◦ f ). (9)

Now, fix t ∈ {0, . . . , T − 1}, s ∈ S and P ∈ P such that πt (s)
is not P-negligible. Moreover, fix f ∈ F . Note that it is simple to
obtain the following fact: For t ′ ∈ {0, . . . , T } and s′ ∈ S, there exists
lt ′,s′ ∈ ∆X such that (P, f ) ∼t ′,s′ (P, lt ′,s′ ). We can further assume
without loss of generality that we have lt ′,s′ = lt ′′,s′′ whenever
≿t ′,s′=≿t ′′,s′′ . Let us consider the act g ∈ F defined by g(s′) = lt+1,s′

for any s′ ∈ S. Sinceπt (s) is not P-negligible, it is also true thatπt (s′)
is not P-negligible for any s′ ∈ πt (s). We can apply Conditional
Relevance and obtain (P, g) ∼t+1,s′ (P, lt+1,s′ ) for any s′ ∈ πt (s).
This gives (P, g) ∼t+1,s′ (P, f ) for any s′ ∈ πt (s). Then, by Dynamic
Consistency, (P, g) ∼t,s (P, f ). Therefore, by Eq. (8), and using the
πt+1-measurability of g ,

minp∈ϕt,s(P)Ep(u ◦ f ) = minp∈ϕt,s(P)Ep(u ◦ g)

= minm∈ϕt,s(P)+1{

∫
S
u(lt+1,s′ ) · dm(s′)}. (10)

Meanwhile, given the definition of lt+1,s′ as well as the representa-
tion obtained in Eq. (8), we have

u(lt+1,s′ ) = minp∈ϕt+1,s′ (P)Ep(u ◦ f ). (11)

Therefore, combining Eqs. (10) and (11), we obtain:

minp∈ϕt,s(P)Ep(u ◦ f )

= minm∈ϕt,s(P)+1{

∫
S
minp∈ϕt+1,s′ (P)Ep(u ◦ f ) · dm(s′)}. (12)

Hence, we have the dynamic programming principle of Eq. (4). As
a consequence, we can now also write

minp∈ϕt,s(P)Ep(u ◦ f ) = minp∈ϕ̃t,s(P)Ep(u ◦ f ), (13)

where ϕ̃t,s(P) is the closed and convex set defined by

ϕ̃t,s(P) = {

∫
S
p(s′) · dm(s′) : m ∈ ϕt,s(P)+1, p(s′) ∈ ϕt+1,s′ (P)}. (14)

By the uniqueness part of the Gilboa and Schmeidler (1989) theo-
rem,we obtain ϕt,s(P) = ϕ̃t,s(P). As a result, for any t ∈ {0, . . . , T −

1}, s ∈ S and P ∈ P such that πt (s) is not P-negligible, we have

ϕt,s(P) = {

∫
S
p(s′) · dm(s′) : m ∈ ϕt,s(P)+1, p(s′) ∈ ϕt+1,s′ (P)}. (15)

Furthermore, for any state s′ ∈ πt (s) such that πt+1(s′) is not
ϕt,s(P)-negligible, Eq. (15) gives

ϕt+1,s′ (P) = ϕt,s(P) | πt+1(s′). (16)

We now show that the prior selection family (ϕt,s)t=0,...,T ,s∈S is
stable under pasting. Let t ∈ {0, . . . , T − 1}, s ∈ S and P ∈ P
such thatπt (s) is not P-negligible. It is sufficient to show ϕt,s(P)◦t,s′

ϕt+1,s′ (P) = ϕt,s(P) for any s′ ∈ πt (s).
First, take p ∈ ϕt,s(P). If p(πt+1(s′)) > 0, then πt+1(s′) is not

ϕt,s(P)-negligible and, by Eq. (16), we have p(.|πt+1(s′)) ∈ ϕt+1,s′ (P)
and p = p◦t,s′p(.|πt+1(s′)) ∈ ϕt,s(P)◦t,s′ ϕt+1,s′ (P). If p(πt+1(s′)) = 0.
Then, p = p ◦t,s′ q for any measure q on S. So it is sufficient to take
q ∈ ϕt+1,s′ (P) to obtain p ∈ ϕt,s(P) ◦t,s′ ϕt+1,s′ (P).

Now, take p ∈ ϕt,s(P) ◦t,s′ ϕt+1,s′ (P). So p = m ◦t,s′ q with
m ∈ ϕt,s(P) and q ∈ ϕt+1,s′ (P). Then, pmust be an element of ϕ̃t,s(P)
and, therefore, of ϕt,s(P).

Moreover, an induction on t ∈ {0, . . . , T } relying upon Eq.
(16) finally shows the following equality: for any t ∈ {0, . . . , T },
s ∈ S and P ∈ P such that πt (s) is neither P-negligible nor ϕ(P)-
negligible,

ϕt,s(P) = ϕ(P) | πt (s). (17)

Now assume that the prior selection family (ϕt,s)t=0,...,T ,s∈S in
the representation (3) is stable under pasting. Fix t ∈ {0, . . . , T −

1}, s ∈ S and P ∈ P such that πt (s) is not P-negligible. By iterative
applications of stability under pasting, we obtain the equality
ϕt,s(P) = ϕ̃t,s(P). This entails in turn that Eq. (12) holds for any
f ∈ F . From there, dynamic consistency easily follows.

Proof of Theorem 3. First assume Dynamic Consistency,
Local Dominance and Reduction. Let u, (ϕt,s)t=0,...,T ,s∈S and
(Ut,s)t=0,...,T ,s∈S be as in Theorem 2. Let us now use Reduction to
show groundedness; that is, we show that ϕt,s({p}) = {p} for any
p ∈ ∆S such that p(πt (s)) = 1, and any t ∈ {0, . . . , T } and
s ∈ S. By Reduction and linearity, for any f ∈ F , Ut,s({p}, f ) =

Ut,s({p}, l(p, f )) = u(l(p, f )) =
∑n

i=1u(li)p(Ei) = Ep(u ◦ f ). There-
fore, by the uniqueness part of Gilboa and Schmeidler’s theorem
(1989), we obtain ϕt,s({p}) = {p}.

Now, fix P ∈ P and s ∈ S such that PT (s) ̸= ∅. We show that
ϕT ,s(P) ⊆ PT (s). Since PT (s) ̸= ∅, we have that πT (s) = {s} is not P-
negligible. Since the prior selection family is conditionally relevant,
any prior in ϕT ,s(P) puts a probability of 1 on {s}. Therefore, ϕT ,s(P)
only contains the Dirac distribution at s. Similarly for PT (s). Hence
the inclusion ϕT ,s(P) ⊆ PT (s).

Moreover, we show that, for any P ∈ P , s ∈ S and t < T
such that Pt (s) ̸= ∅, we have ϕt,s(P)+1

⊆ P+1
t (s) by means of

contradiction. Ifϕt,s(P)+1
̸⊆ P+1

t (s), then there exists p∗
∈ ϕt,s(P)+1

such that p∗
̸∈ P+1

t (s). By the separation theorem, we obtain an
πt+1-measurable function F : S → R such that:

minp∈ϕt,s(P)+1Ep(F ) ≤ Ep∗ (F ) < minp∈P+1
t (s)Ep(F ). (18)
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Without loss of generality,we assume that F is of norm less than
1. By adequately normalizing u if necessary, we can also assume
that the range of u contains [−1, 1]. So F is necessarily of the form
F = u ◦ f , for some πt+1-measurable f ∈ F . Therefore, Eq. (18)
becomes:

Ut,s(P, f ) ≤ Ep∗ (u ◦ f ) < minp∈P+1
t (s)Ep(u ◦ f ). (19)

Now, define another πt+1-measurable g = (1/2)f + (1/2)l ∈ F
where l ∈ ∆X is defined by l = l(p∗, f ) and, therefore, satisfies:

u(l) = Ep∗ (u ◦ f ). (20)

On the one hand, for any p ∈ Pt (s), we have ϕt,s({p}) = {p}. So
Ut,s({p}, g) = Ep(u ◦ g) = (1/2)Ep(u ◦ f )+ (1/2)u(l) = (1/2)Ep(u ◦

f ) + (1/2)Ep∗ (u ◦ f ) ≤ Ep(u ◦ f ) = Ut,s({p}, f ) by Eq. (19). Thus,
({p}, f ) ≿t,s ({p}, g) for any p ∈ Pt (s).

On the other hand, Ut,s(P, g) = (1/2)Ut,s(P, f ) + (1/2)u(l) =

(1/2)Ut,s(P, f ) + (1/2)Ep∗ (u ◦ f ) ≥ Ut,s(P, f ) by Eq. (19). Thus,
(P, g) ≿t,s (P, f ). But then Local Dominance is contradicted, which
finally shows that ϕt,s(P)+1

⊆ P+1
t (s).

Moreover, since Dynamic Consistency holds, we can proceed as
in the proof of Theorem 2 to obtain the equality ϕt,s(P) = ϕ̃t,s(P)
for any t ∈ {0, . . . , T − 1}, s ∈ S and P ∈ P such that πt (s) is not
P-negligible.

Now we use these facts to show by induction that for any t ∈

{0, . . . , T } and s ∈ S such that Pt (s) ̸= ∅

ϕt,s(P) ⊆ rectt,s(P). (21)

First, if t = T , we have ϕT ,s(P) ⊆ PT (s) which shows (21). If
t = T − 1, we have

ϕT−1,s(P) = ϕ̃T−1,s(P)

= {

∫
S
p(s′) · dm(s′) : m ∈ ϕT−1,s(P)+1, p(s′) ∈ ϕT ,s′ (P)}.

But we know that ϕT−1,s(P)+1
⊆ P+1

T−1(s) if PT−1(s) ̸= ∅ and
ϕT ,s′ (P) ⊆ PT (s′). Therefore, we obtain

ϕT−1,s(P) ⊆ {

∫
S
p(s′) · dm(s′) : m ∈ PT−1(s)+1, p(s′) ∈ PT (s′)}

= rectT−1,s(P). (22)

To complete the proof in the case where t < T , we proceed as in
the case where t = T − 1.

As for the necessity of the axioms, Reduction follows directly
from the fact that (ϕt,s)s∈St∈{0,...,T }

is grounded. Last, to show Local
Dominance, first note that, since Pt (s) ̸= ∅, we have ϕt,s(P) ⊆

rectt,s(P). Thus, ϕt,s(P)+1
⊆ rectt,s(P)+1

= Pt (s)+1. Now, take
f , g ∈ F that areπt+1-measurable such that ({p}, f ) ≿t,s ({p}, g) for
any p ∈ Pt (s). Sinceϕt,s({p}) = {p} (by p ∈ Pt (s) and groundedness),
Ep(u ◦ f ) ≥ Ep(u ◦ g) for any p ∈ Pt (s) and, therefore, for any
p ∈ ϕt,s(P)+1

⊆ Pt (s)+1. But then, since f , g are πt+1-measurable,
we have Ep(u◦ f ) ≥ Ep(u◦g) for any p ∈ ϕt,s(P). This finally shows
Ut,s(P, f ) ≥ Ut,s(P, f ). Hence Local Dominance.
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