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NOTES AND COMMENTS

SHARING BELIEFS: BETWEEN AGREEING AND DISAGREEING

BY ANTOINE BILLOT, ALAIN CHATEAUNEUF, ITZHAK GILBOA,
AND JEAN-MARC TALLON1

1. INTRODUCTION

WHEN IS IT PARETO OPTIMAL for risk averse agents to take bets? Under what conditions
do they choose to introduce uncertainty into an otherwise certain economic environ-
ment? One obvious case is where they do not share beliefs. As in the classical
Ž .theoretical example of horse lotteries, people who do not agree on probability assess-
ments do find it mutually beneficial to engage in uncertainty-generating trade.

If the agents involved are Bayesian expected utility maximizers and strictly risk averse,
it is not hard to see that disagreement on probabilities is the only way that betting,
understood as trade of an uncertain asset, may be Pareto improving when starting from a
full insurance allocation. On the other hand, any such disagreement induces betting. Put

Ždifferently, Pareto optimality dictates either that there be no betting in case beliefs are
. Ž .common to all agents or that there be betting in case of disagreement . This is

somewhat puzzling, because there is no lack of allocation-neutral, ‘‘sunspot’’ sources of
uncertainty in the world around us. If every disagreement on probabilities of states of the
world suggests a Pareto improving trade, one might have expected to see much more
betting taking place.

Rather than believing that people who do not bet necessarily share probabilistic beliefs
Žabout anything they do not bet on or, to be precise, share these beliefs up to some slack

.allowed by transaction costs , we tend to take the relative rarity of bets as a piece of
empirical evidence against the Bayesian model. It seems that often people do not bet
because they are uncertainty averse, and they therefore tend to avoid uncertainty that
they know little about. It follows that a person’s willingness to bet will increase with her
subjective confidence in her information and in her likelihood assessments. It is worth

Ž .emphasizing that Bewley’s 1986 motivation for his work on Knightian decision theory
was partly this absence of observed widespread betting.

While we do not attempt to argue that the full complexity of betting behavior can be
explained by the type of models we study here,2 we are led to ask, how much can be
explained by these models if we relax some of the more demanding assumptions of the
Bayesian model. Specifically, we consider maxmin expected utility with a nonunique prior
Ž Ž .. Ž Ž ..Gilboa and Schmeidler 1989 that captures Knightian uncertainty Knight 1921 .
Assume that such uncertainty averse agents who are also risk averse, give rise to an
economy in which there is no aggregate risk. When does there exist full insurance, i.e.,
no-bet allocations that are also Pareto optimal? When is it the case that all Pareto

1 We thank participants of the Erasmus conference at Tilburg University and two referees for
useful comments.

2 ŽIn particular, we ignore the social aspects of betting as well as the strategic ones see, e.g.,
Ž ..Milgrom and Stokey 1982 .
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optimal allocations are full insurance? Is any betting due to different beliefs, and,
conversely, does a difference in beliefs always trigger some betting?

In the multiple prior model an individual is characterized by a utility function and a
nonempty, closed, and convex set of probability measures. The individual evaluates every
act by its expected utility according to each possible probability measure, and chooses an
act whose minimal expected utility is the highest. The family of preference relations
described by this model strictly contains the relations described by Choquet expected

Ž Ž ..utility with a convex capacity see Schmeidler 1989 .
Consider now a pair of agents conforming to the multiple prior model. It is an easy

extension of the expected utility analysis to show that these agents will not bet against
one another if they share at least one prior. Moreover in a general framework with more
than two agents and complex bets possibly involving several of them, it is easy to show,

Ž .following Dow and Werlang 1992 early intuition, that Pareto optimal allocations are
indeed full insurance allocations whenever agents’ sets of priors have a nonempty

Ž Ž . Ž ..intersection see, e.g., Tallon 1998 , Dana 1998 .
The question of whether the converse to this result holds arises naturally: is common-

ality of beliefs, in the sense of agents sharing a prior in common, exactly what is needed
to explain, within the framework of the multiple prior model, the absence of betting on
the many possible sources of ‘‘extrinsic’’ uncertainty? Differently put, is the observation
of a Pareto optimal allocation that is immune to sunspots enough to tell us something
about the intersection of agents’ sets of priors?

It turns out that we can answer this question affirmatively and that the result in the
Bayesian model has a conceptually identical counterpart in the multiple prior model.
Under the same nontriviality conditions, there exists a Pareto optimal full insurance
allocation if and only if all Pareto optimal allocations provide full insurance, and this
holds if and only if all agents share a prior probability on the states of the world. In other
words, commonality of beliefs is the necessary and sufficient condition to explain the
absence of betting. Whereas in the Bayesian model ‘‘sharing a prior’’ could only mean
‘‘having an identical prior,’’ in the multiple prior model this phrase may be read as
‘‘having at least one prior in common.’’ With this grammatical convention in place, the
result holds verbatim.

Bayesian agents either agree on probability assessments, or disagree enough to bet
against each other. By contrast, uncertainty averse agents can be in a ‘‘grey area’’
between agreeing and disagreeing: they may not agree in the sense of having the same set
of possible priors, yet not disagree in the sense of being willing to bet against each other.

Finally, we emphasize another contribution of this note. In showing that commonality
of beliefs is the minimal assumption explaining the absence of bets, we prove a
separation theorem for n convex sets that might be of interest on its own.

The rest of this paper is organized as follows. Section 2 provides the set up of the
model. In Section 3 we state the main result and the separation theorem. Proofs are
relegated to an Appendix.

2. SET-UP

The economy we consider is a standard two-period pure-exchange economy with
uncertainty in the second period, but for agents’ preferences. The state space is S, and S

Ž .is a s-algebra of subsets of S, so that S, S is a measurable state space. There are n
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Ž .agents indexed by subscript i. We assume i that there is only one good, which can be
Ž .interpreted as income or money; and ii that there is no aggregate uncertainty. Trading

Ž .an uncertain asset is thus interpreted as betting rather than as hedging. Let B S, S be
the Banach space of real-valued, bounded, and measurable functions on S, endowed with

Ž . Ž .the sup-norm. Let ba S, S be the space of bounded finitely additive measures on S, S
endowed with the weakw-topology. Agent i’s consumption C , is a positive element ofi
Ž . Ž . Ž .B S, S , that is, C s is the consumption of agent i in state s. Denote by wgB S, Si

the constant-across-states aggregate endowment, and assume that w)0. An allocation
Ž . n Ž .Cs C , . . . , C is feasible if Ý C sw. An allocation is interior if C s )0 for all i,1 n is1 i i

for all s.
In the multiple-prior approach, each agent i is endowed with a utility index U : R ªRi q

and a set PP of probability distributions over S. U is defined up to a positive affinei i
transformation, and is taken to be differentiable, strictly increasing, and strictly concave.

Ž . 3PP is a convex and closed set of ba S, S . We assume that all priors in PP are s-additive.i i
Note that PP is compact in the weakw-topology since it is a weakw-closed subset of thei
set of finitely-additive probability measures on S, which is compact in the weakw-topol-

Ž Ž .. Ž .ogy see, e.g., Dunford and Schwarz 1958 . The norm-dual of B S, S which is
Ž . wŽ .isometrically isomorphic to ba S, S will be denoted B S, S .

Ž .The overall utility function V defined over B S, S then takes the following form:i

Ž . Ž .V C s min E U C .i i p i i
pgPPi

We assume throughout that:

Ž . Ž .;AgS , ; i , j, ;p gPP , ;p gPP , p A s0mp A s0.i i j j i j

This assumption essentially says that all agents agree on ‘‘null events.’’
The last definition we need is that of a full insurance allocation. An allocation C is

Ž .said to be full insurance if it is constant apart from a set AgS that has p A s0 fori
Ž .some and therefore, by the assumption of mutual absolute continuity, for all p gPPi i

and i.4

3. THE MAIN RESULT

The following theorem states that the set of Pareto optimal allocations and the set of
full insurance allocations are either identical or disjoint. Moreover, they are identical if
and only if the agents share at least one prior.

3 Ž .Note that the axiomatization of Gilboa and Schmeidler 1989 delivers only finitely additive
probability distributions.

4 It is straightforward to check that C is of full-insurance if and only if ; i, C is constant aparti
Ž . Žfrom a set A gS that has p A s0 for some and therefore, by assumption of mutual absolutei i i

.continuity, for all p gPP .i i
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THEOREM 1: Under the maintained assumptions, the following assertions are equï alent:
Ž .i There exists an interior full insurance Pareto optimal allocation.
Ž .ii Any Pareto optimal allocation is a full insurance allocation.
Ž .iii E¨ery full insurance allocation is Pareto optimal.
Ž . niv F PP /B.is1 i

Ž .The intuition for the proof and the role of some assumptions is as follows. We prove
Ž . Ž . Ž . Ž . Ž . Ž .that iv « ii « iii « i « iv . If there is a common prior iv , one can use strict

concavity to show that a risk bearing allocation is Pareto dominated by the full insurance
Ž . 5allocation that equals its expectation at every state, proving ii . This step uses the

mutual absolute continuity assumption, as well as the assumption that the probability
Ž .measures we deal with are s-additive rather than only finitely additive . Observe that

Ž . Ž .with finitely additive measures the implication iv « ii does not hold, even in a
Bayesian set-up. This is so because the integral of a function with respect to a finitely
additive measure may be strictly smaller than each of the values the function assumes.
Therefore individuals who hold assets that they view as uncertain may not benefit from
smoothing them across states. If every Pareto improving allocation provides full insur-

Ž . Ž .ance ii , the converse iii also holds, since no two full insurance allocations can be
6 Ž .Pareto ranked, and it follows trivially that there is at least one such allocation i .

Finally, the crucial step and the main contribution of the theorem is that the existence of
Ž . Ž .a full insurance Pareto optimal allocation i implies that there is a common prior iv .

This step does not require concavity of the utility index.7 In proving this last part we
make use of the following theorem, which generalizes the standard separating hyperplane
theorem, and may be of interest on its own. In the Appendix we also comment on the
geometric interpretation of this result, which may be viewed as a separation theorem
among n convex sets.

THEOREM 2: Let X be a locally con¨ex linear topological space and let PP :X, 1F iFn,i
be con¨ex, nonempty, and compact. Then, the following are equï alent:

Ž . ni F PP sB.is1 i
Ž . � 4 Ž .ii There exist I: 1, . . . , n , I/B and pgco D PP and for each igI, there exists aig I i

continuous linear functional h : XªR such that:i

Ž . Ž .a ; igI , h qyp )0 for all qgPP ,i i

Ž .b Ý h s0.ig I i

An immediate corollary of Theorem 2 is that, under the same assumption, if Fn PPis1 i
sB, there exist continuous linear functionals h , is1, . . . , n, and a point p such thati
Ž . Ž . Ž . n Ž .a9 h qyp G0 for all qgPP , for all i, b9 Ý h s0, and c9 there exist i, i9 such thati i is1 i

Ž .the inequality in a9 is strict.
It is worthy of note that a similar result, developed independently and with a rather

Ž .different motivation, is to be found in Samet 1998 , for subsets of a finite dimensional

5 This implication follows the logic of similar results for Choquet expected utility in Chateauneuf,
Ž .Dana, and Tallon 1998 .

6 Ž . Ž . Ž . Ž .The fact that iv implies ii and iii also appears in Dana 1998 but in a finite set-up.
7 Ž .Dana 1998 shows that if there is a full insurance competitive equilibrium in this economy with

finitely many states, then agents share a prior in common. Her proof, however, uses the concavity of
the utility index and relies on the existence of a competitive equilibrium.
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simplex. Samet’s result is weaker in the sense that it guarantees the existence of linear
functionals as in our case, but does not guarantee that the separating hyperplanes will
intersect at one point p in the convex hull of the sets, and therefore does not yield itself
to a straightforward geometric interpretation. Further, Samet’s result can be easily
derived from the corollary above specialized to subsets of the simplex. It does not appear
that Samet’s argument could easily be amended to get ours.

Theorem 1 has two immediate corollaries. First, in the Choquet expected utility model
with convex capacities, nonempty core intersection is equivalent to some, or all, Pareto
optimal allocations being full insurance. Second, in the expected utility case, where the
sets of priors are reduced to one point, some, or all, Pareto optimal allocations are full

Ž .insurance allocations if and only if agents have the same beliefs i.e., the same prior .
Note that even though we cast the argument in the multiple prior model, it should be

Ž .clear from the proof that a similar result holds for the Bewley 1986 approach. In
Bewley’s approach, agents are also endowed with a set of priors and move away from a
Ž .exogenously defined status quo situation only if the new situation is better than the
status quo for all the probability distributions in their set of priors. While Bewley
characterizes a partial order over acts, a proposed bet will be preferred to a certain status
quo if and only if this preference holds in the multiple prior model of Gilboa and
Schmeidler.8

Our analysis is conducted for an economy with one good. However, the only use we
make of this assumption is in arguing that all full insurance allocations are Pareto
optimal. Indeed, one can generalize our results to an economy with m goods, with the
slight modification that full insurance allocations that are considered for optimality be
assumed Pareto optimal in each state.
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APPENDIX

Ž . Ž .PROOF OF THEOREM 1: We first prove iv « ii Assume to the contrary that there exists an
Ž� < Ž . 4. Ž� < Ž .agent, say, agent 1, such that for every p gPP and every cgR , p s C s -c qp s C s )1 1 q 1 1 1 1

4.c )0.

8 Ž .Bewley 1989 contains a similar no-trade result for agents whose preferences are given by
Ž .partial orders as in Bewley 1986 . His proof is very similar to Samet’s, and his result is weaker than

Theorem 2 in the same sense that Samet’s is.
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Let pgF PP and define C sE C for all i. Abusing notation, let C also denote the constanti i i p i i
Ž .allocation giving C to agent i in all states. Cs C is a feasible allocation since Ý C sÝ E C si i i i i i p i

Ž .E Ý C sE w1 sw. Now,p i i p S

Ž . Ž . Ž .V C s min E U C FE U C .i i w i i p i i
wgPPi

Furthermore,

Ž . Ž Ž .. Ž . Ž .E U C FU E C sU C sV Cp i i i p i i i i i

for all i since U is concave.i
Since p belongs to PP , one gets thati

Ž� < Ž . 4. Ž� < Ž . 4.p s C s -C qp s C s )C )0.1 1 1 1

Ž� < Ž . 4. Ž� < Ž . 4.Furthermore, p s C s -C s0 is impossible, for then p s C s )C )0, implying by s-ad-1 1 1 1
Ž . Ž� < Ž . 4.ditivity of p that E C )C , a contradiction. Hence, p s C s -C )0 and, similarly,p 1 1 1 1

Ž� < Ž . 4.p s C s )C )0.1 1
Ž . Ž .It follows that V C -V C since U is strictly concave. Therefore, the allocation C Pareto1 1 1 1 1

dominates C, a contradiction.
Ž . Ž . Ž .To see that ii implies iii , let C be a full insurance allocation. Assume, contrary to iii , that it is

not Pareto optimal, and is dominated by another allocation C9. By the same argument as above, C9

is at least as desirable as C9 for every agent. By transitivity of Pareto domination, C9 Pareto
dominates C. But this is a contradiction since both provide full insurance and there is only one good
in the economy.

Ž . Ž . Ž . Ž .That iii implies i is obvious, and it remains to prove that i implies iv . Suppose to the
contrary that F PP sB, and let C be an interior Pareto optimal allocation that is a full-insurancei i

Žallocation C is constant for all i apart on a set of measure zero, the latter notion being definedi
. Žunambiguously given our absolute mutual continuity assumption . By Theorem 2 where X is

wŽ . w .B S, S endowed with the weak -topology , since F PP sB, there exists a nonempty set I, ai i
wŽ .point p and functionals h gB S, S , igI, such that:i

Ž . Ž .a ; igI, h qyp )0 for all qgPP ;i i
Ž .b Ý h s0.ig I i

Ž Ž .. wRecall that see, e.g., Kelley and Namioka 1963, p. 155 every weak -continuous linear
functional on the conjugate space of a linear topological space E is the evaluation at some point of

Ž . Ž . Ž . wŽ .E. Hence, for all igI, there exists D gB S, S such that h p sp D , for all pgB S, S .i i i
ˆŽ .Construct the allocation C as follows:i is1, . . . , n

Ĉ sC , ifI ,i i

ˆ w Ž . xC sC q« D yp D 1 , igI ,i i i i S

ˆwith «)0 small enough so that C is an allocation.
We first check that this allocation is feasible:

Ž . Ž .« D y p D 1 s« D y h pÝ Ý Ý Ýi i S i i
igI igI igI igI

s« D since h s0.Ý Ýi i
igI igI

Ž . Ž . wŽ . Ž .Now, D is such that h q sq D for all qgB S, S and hence q Ý D s0 for alli i i ig I i
wŽ .qgB S, S .

Ž .To conclude that Ý D s0, suppose there exists s such that Ý D s sa, a/0. The eventig I i ig I i
� < Ž . 4s Ý D s sa is measurable because the D are measurable. Now, let q be the continuous linearig I i i

wŽ . Ž .functional in B S, S corresponding to the additive probability in ba S, S with the mass 1 on that
Ž .event. Then q Ý D s0 implies as0, a contradiction. Hence, Ý D s0.ig I i ig I i
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Now, for igI, one has:

ˆ «Ž . Ž w Ž . x.«V C sE U C q« D yp D 1 for some q gPPˆi i q i i i i S iˆ

Ž . X Ž . w « Ž . Ž .x Ž .sV C q«U C q D yp D qo «ˆi i i i i i

Ž . X Ž . w Ž « .x Ž .sV C q«U C h q yp qo «ˆi i i i i

XŽ . Ž . Ž . Ž .GV C q«U C inf h qyp qa «i i i i i
qgPPi

Ž . Ž .where a « so « r«ª0 as «ª0.
Ž . Ž .Since inf h qyp )0 by continuity of h and compactness of PP , and a « ª0, thereq g PP i i ii

exists « small enough so that the term in bracket is strictly positive.
ˆ ˆŽ . Ž . Ž .Hence, V C )V C for igI, and we found a Pareto dominating allocation C , ai i i i i is1, . . . , n

contradiction. Q.E.D.

PROOF OF THEOREM 2: We start with the following lemma:

LEMMA: Let X be a locally con¨ex linear topological space and let PP :X, 1F iFn be con¨ex,i
nonempty, and compact. Assume that F PP sB but that for all lFn, F PP /B. Then, thereiF n i i/ l i

Ž n .exist pgco D PP and a continuous linear functional h : XªR for each iFn such that:is1 i i
Ž . Ž .a ; iFn, h qyp )0 ;qgPP ;i i
Ž .b Ý h s0.iF n i

The geometric interpretation of this lemma is as follows. Assume that n convex and compact sets
have an empty intersection, but that every subset of them has a nonempty intersection. Then, we can
find a point p that is not included in any set, but that is ‘‘in the middle’’ in the following sense: one
can find, for each set PP , a hyperplane h that passes through p that is in the convex hull of thei i
union of the PP and leaves the entire PP on one side, such that the normals of these hyperplanes,i i
multiplied by appropriate positive constants, add up to zero. In the case ns2, our lemma reduces to
a standard separation theorem between two disjoint sets. For n)2, the lemma may be considered as
an n-way separation among n convex sets. See Figure 1 for an illustration of the case ns3.

FIGURE 1.}Separation among three convex sets.
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PROOF OF THE LEMMA: The proof is by induction on n. For ns2, we have PP lPP sB and we1 2
Ž Žuse a standard separation theorem cf. Kelley and Namioka 1963, p. 119, theorem on strong

..separation to conclude that there is a continuous linear functional h: XªR and a number bgR
Ž . Ž . Ž .such that h q )b for qgPP and h q -b for qgPP . Choose p such that h p sb , and set1 2

Ž .h sh and h syh. By linearity of h it is possible to choose pgco PP jPP .1 2 1 2
Ž .nAssume that the lemma holds for every n9-n. Let there be given PP . Set AsF PP andi is1 i- n i

BsPP . Observe that A and B are convex, nonempty, and compact. Furthermore, they are disjointn
since F PP sB. Apply the same separation theorem to conclude that there exist a continuousi i

˜linear h : XªR and bgR such thatn

˜ ˜Ž . Ž .h q )b ;qgB and h q -b ;qgA.n n

˜ Ž .Choose q gX such that h q sb. We shift the origin to q . Specifically, define for each iFn,0 n 0 0
ˆ ˆ n� < 4 Ž .PP s pyq pgPP sPP yq . Naturally, PP and their intersections inherit all relevant proper-i 0 i i 0 i is1

ˆ ˆ ˆ ˆ ˜Ž . Ž .ties of PP . Denote BsByq sPP and AsAyq sF PP and observe that h q )0i i 0 n 0 i- n i n
ˆ ˜ ˆ ˜Ž . � < Ž . 4;qgB and h q -0 ;qgA. Consider X 9s qgX h q s0 . X 9 is a locally convex linearn n

X̂ ˆ X̂topological subspace of X. Focusing on this subspace, define PP sPP lX 9 for i-n. Obviously, PPi i i
ˆ ˆis convex and compact for every i-n. We argue that it is also nonempty. Indeed, PP contains A. Oni

ˆ ˆ ˆ ˆ ˜the other hand, PP has a nonempty intersection with BsPP . By convexity of PP and linearity of h ,i n i n
X̂ ˆ ˆ ˆPP /B. Similarly, for l-n, F PP contains A and intersects B and we therefore geti i/ l, n i

X̂
PP /B ; l-n.F i

i/l , n

ˆ ˆ X̂ X̂Ž .However, X 9 is a hyperplane separating B from A. Hence F PP sB. It follows that PP oni- n i i i- n
ny 1 X̂Ž .X 9 satisfy the conditions of the lemma for n9sny1. Therefore, there exist a point pgco D PPˆ is1 i

X X X̂Ž .and continuous linear functionals h : X 9ªR, i-n, such that h qyp )0 ;qgPP , i-n, andˆi i i
X Ž .Ý h s0 on X 9. Using standard arguments see Fact 1 below , we conclude that, for every i-n,i- n i

hX on X 9 can be extended to h on all of X such that:i i

ˆŽ .h qyp )0 ;qgPP .ˆi i

Define hsÝ h on X. Observe that for every qgX 9,i- n i

Ž . Ž . X Ž .h q s h q s h q s0.Ý Ýi i
i-n i-n

˜Hence h and h are continuous linear functionals on X satisfyingn

˜ Ž . Ž .h q s0«h q s0 ;qgX .n

˜Ž . Ž . Ž .By standard arguments see Fact 2 below , there exists agR such that h q sa h q ;qgX.n
ˆ ˆ Ž . Ž .We wish to show that a-0. Consider qgAsF PP . Since h qyp )0 ; i-n and h p s0,ˆ ˆi- n i i

we obtain

Ž . Ž . Ž .h q sh qyp s h qyp )0.ˆ ˆÝ i
i-n

˜ ˆŽ .On the other hand, h q -0 since qgA. It follows that a-0.n
˜ ˆŽ . Ž . Ž . Ž .Define h s ya h . Since ya )0, h qyp sh q )0 ;qgPP .ˆn n n n n

Ž ny 1 . Ž n .To conclude, set pspqq . Observe that pgco D PP and hence pgco D PP . Weˆ 0 is1 i is1 i
Ž . Ž . Ž .claim that p and h satisfy a and b . Indeed, for every iFn, and every qgPP :i iF n i

Ž . ŽŽ . Ž .. ŽŽ . .h qyp sh qyq y pyq sh qyq yp )0ˆi i 0 0 i 0

ˆsince qyq gPP . Finally, Ý h s0 by construction of h . Q.E.D.0 i iF n i n
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The following two facts, which are used in the proof above, are straightforward andror
well-known.

ˆFACT 1: Let X be a locally convex linear topological space. Let h be a continuous linear
ˆ� < Ž . 4functional and X 9s pgX h p s0 . Assume that C:X is convex and compact, and that

Ž .ClX 9/B. Further assume that h9: X 9ªR is a continuous linear functional such that h9 p )0
;pgClX 9. Then, h9 can be extended to a continuous linear functional h: XªR such that
Ž .h p )0 ;pgC.

� < Ž . 4PROOF OF FACT 1: Set Ds pgX 9 h9 p s0 . Observe that D/B since the origin is in D.
Thus C and D are disjoint nonempty closed and convex sets in X, and C is compact. Let a

˜continuous linear functional h: XªR and dgR be such that

˜ ˜Ž . Ž .h p -d ;pgD and h p )d ;pgC.

˜ ˜ ˜Ž . Ž .We claim that h has to be constant on D. Indeed, assume that for some p, qgD, h p /h q .
ˆ ˆŽ . Ž . Ž . Ž . Ž .Since p, qgD implies h p sh q s0 and h9 p sh9 q s0, we conclude that pqa qyp gD
˜ ˜� Ž Ž .. < 4 Ž .for all agR. Hence h pqa qyp agR sR, a contradiction to the fact that h p -d

˜Ž .;pgD. Thus there is a cgR such that h p sc ;pgD. Since the origin is in D, we obtain cs0.
It follows that d)0 and therefore

˜Ž .h p )d)0 ;pgC.

˜We now wish to show that, up to multiplication by a positive constant, h extends h9 on X. Restrict
˜Ž . Ž .attention to X 9. If pgX 9 satisfies h9 p s0, then pgD and we know that h p s0. By Fact 2

˜ ˜Ž . Ž .below, there exists agR such that h p sa h9 p ;pgX 9. However, on ClX 9, both h and h9 are
˜Ž .positive. Therefore a)0. Hence h' 1ra h extends h9 on X and is positive on all of C. Q.E.D.

˜FACT 2: Let X be a linear space and let h, h: XªR be linear. Assume that

˜Ž . Ž .h q s0«h q s0 ;qgX .

˜Ž . Ž .Then there exists agR such that h q sa h q ;qgX.

We skip the proof of this Fact and now turn to the proof of Theorem 2:
Ž . Ž . Ž .i « ii . Assume that F PP sB. Let I be a minimal with respect to set inclusion subset ofiF n i

� 4 n1, . . . , n with the property that F PP sB. Since F PP sB, but PP /B for every i, such a setig I i is1 i i
< <I exists and for every such set I G2. Apply the Lemma to I.

Ž . Ž . � 4 Ž .ii « i . Assume that a point pgX, a set I: 1, . . . , n , and functionals h exist asi ig I
Ž . Ž . Ž .required, and suppose, contrary to i , that there exists qgF PP . Then, by a , Ý h qyp )0,iF n i ig I i

Ž .contrary to b . Q.E.D.
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