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Abstract

This paper explores risk-sharing and equilibrium in a general equilibrium set-up wherein
agents are non-additive expected utility maximizers. We show that when agents have the
same convex capacity, the set of Pareto-optima is independent of it and identical to the set
of optima of an economy in which agents are expected utility maximizers and have the
same probability. Hence, optimal allocations are comonotone. This enables us to study the
equilibrium set. When agents have different capacities, the matters are much more complex
Ž .as in the vNM case . We give a general characterization and show how it simplifies when
Pareto-optima are comonotone. We use this result to characterize Pareto-optima when
agents have capacities that are the convex transform of some probability distribution.
Comonotonicity of Pareto-optima is also shown to be true in the two-state case if the
intersection of the core of agents’ capacities is non-empty; Pareto-optima may then be fully
characterized in the two-agent, two-state case. This comonotonicity result does not general-
ize to more than two states as we show with a counter-example. Finally, if there is
no-aggregate risk, we show that non-empty core intersection is enough to guarantee that
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optimal allocations are full-insurance allocation. This result does not require convexity of
preferences. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

In this paper, we explore the consequences of Choquet-expected-utility on
risk-sharing and equilibrium in a general equilibrium set-up. There has been over

Žthe last 15 years an extensive research on new decision-theoretic models see
Ž . .Karni and Schmeidler 1991 for a survey , and a large part of this research has

been devoted to the Choquet-expected-utility model introduced by Schmeidler
Ž .1989 . However, applications to an economy-wide set-up have been relatively
scarce. In this paper, we derive the implications of assuming such preference
representation at the individuals level on the characteristics of Pareto-optimal

Ž .allocations. This, in turn, allows us to partly characterize equilibrium allocations
under that assumption.

Ž .Choquet-expected-utility CEU henceforth is a model that deals with situations
in which objective probabilities are not given and individuals are a priori not able

Ž .to derive additive subjective probabilities over the state space. It is well-suited to
Žrepresent agents’ preferences in situation where ‘‘ambiguity’’ as observed in the

. 1Ellsberg experiments is a pervasive phenomenon. This model departs from
expected-utility models in that it relaxes the sure-thing principle. Formally, the
Ž .subjective expected-utility model is a particular subclass of the CEU of model.
Our paper can then be seen as an exploration of how the results established in the

Ž .von Neumann–Morgenstern vNM henceforth case are modified when allowing
for more general preferences, whose form rests on sound axiomatic basis as well.
Indeed, since CEU can be thought of as representing situations in which agents are
faced with ‘‘ambiguous events’’, it is interesting to study how the optimal social
risk-sharing rule in the economy is affected by this ambiguity and its perception
by agents.

We focus on a pure-exchange economy in which agents are uncertain about
future endowments and consume after uncertainty is resolved. Agents are CEU

Žmaximizers and characterized by a capacity and a utility index assumed to be
.strictly concave .

When agents are vNM maximizers and have the same probability on the state
Ž .space, it is well-known since Borch 1962 that agents’ optimal consumptions

depend only on aggregate risk, and is a non-decreasing function of aggregate
Ž .resources: at an optimum, an agent bears only some of the aggregate risk. It is

1 Ž . Ž . Ž .See Schmeidler 1989 , Ghirardato 1994 , and Mukerji 1997 .
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Ž .easy to fully characterize such Pareto Optima see Eeckhoudt and Gollier, 1995 .
Ž .More generally, in the case of probabilized risk, Landsberger and Meilijson 1994

Ž . Ž .and Chateauneuf et al. 1997 have shown that Pareto Optima P.O. henceforth
are comonotone if agents’ preferences satisfy second-order stochastic dominance.
This, in particular, is true in the rank-dependent-expected-utility case. The first
goal of this paper is to provide a characterization of the set of P.O. and equilibria
in the rank-dependent-expected-utility case. Our second and main aim is to assess
whether the results obtained in the case of risk are robust when one moves to a
situation of non-probabilized uncertainty with Choquet-expected-utility, in which
there is some consensus.

We first study the case where all agents have the same capacity. We show that
if this capacity is convex, the set of P.O. is the same as that of an economy with
vNM agents whose beliefs are described by a common probability. Furthermore, it
is independent of that capacity. As a consequence, P.O. are easily characterized in

Ž .this set-up, and depend only on aggregate risk and utility index . Thus, if
uncertainty is perceived by all agents in the same way, the optimal risk-bearing is

Ž .not affected compared to the standard vNM case by this ambiguity. The
equivalence proof relies heavily on the fact that, if agents are vNM maximizers
with identical beliefs, optimal allocations are comonotone and independent of
these beliefs: each agent’s consumption moves in the same direction as aggregate
endowments. This equivalence result is in the line of a result on aggregation in

Ž .Appendix C of Epstein and Wang 1994 . Finally, the information given by the
optimality analysis is used to study the equilibrium set. A qualitative analysis of

Ž .the equilibrium correspondence may be found in Dana 1998 .
When agents have different capacities, matters are much more complex. To

begin with, in the vNM case, we don’t know of any conditions ensuring that P.O.
are comonotone in that case. However, in the CEU model, intuition might suggest
that if agents have capacities whose cores have some probability distribution in
common, P.O. are then comonotone. This intuition is unfortunately not correct in
general, as we show with a counter-example. As a result, when agents have
different capacities, whether P.O. allocations are comonotone depends on the
specific characteristics of the economy. On the other hand, if P.O. are comono-
tone, they can be further characterized, although not fully. It is also in general
non-trivial to use that information to infer properties of equilibrium. This leads us
to study cases for which it is possible to prove that P.O. allocations are comono-
tone.

A first case is when the agents’ capacities are the convex transform of some
Ž .probability distribution. We then know from Chateauneuf et al. 1997 and

Ž .Landsberger and Meilijson 1994 that P.O. are comonotone. Our analysis then
enables us to be more specific than they are about the optimal risk-bearing
arrangements and equilibrium of such an economy.

ŽThe second case is the simple case in which there are only two states as in
.simple insurance models a la Mossin, 1968 . The non-emptiness of the cores’`
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intersection is then enough to prove that P.O. allocations are comonotone,
although it is not clear what the actual optimal risk-sharing arrangement looks like.
If we specify the model further and assume there are only two agents, the
risk-sharing arrangement can be fully characterized. Depending on the specifics of
the agents’ characteristics, it is either a subset of the P.O. of the economy in which
agents each has the probability that minimizes, among the probability distributions
in the core, the expected value of aggregate endowments, or the less pessimistic

Žagent insures the other. This last risk-sharing arrangement typically cannot occur
.in a vNM setup with different beliefs and strictly concave utility functions. The

equilibrium allocation in this economy can also be characterized.
Finally, we consider the situation in which there exists only individual risk, a

Ž .case first studied by Malinvaud 1972, 1973 comonotonicity is then equivalent to
full-insurance. We show that a condition for optimal allocations to be full-in-
surance allocations is that the intersection of the core of the agents’ capacities is
non-empty, a condition that can be intuitively interpreted as minimum consensus.
This full-insurance result easily generalizes to the multi-dimensional set-up. Using
this result, we show that any equilibrium of particular vNM economies is
equilibrium of the CEU economy. These vNM economies are those in which
agents have the same characteristics as in the CEU economy and have common
beliefs given by a probability in the intersection of the cores of the capacities of
the CEU economy. When the capacities are convex, any equilibrium of the CEU
economy is of that type. This equivalence result between equilibrium of the CEU
economy and associated vNM economies suggests that equilibrium is indetermi-

Ž . Ž .nate, an idea further explored in Tallon 1997 and Dana 1998 .
The rest of the paper is organized as follows. Section 2 establishes the notation

and define the characteristics of the pure exchange economy that we deal with in
the rest of the paper. In particular, we recall properties of the Choquet integral. We
also recall there some useful information on optimal risk-sharing in vNM
economies. Section 3 is the heart of the paper and deals with the general case of
convex capacities. In Section 3.1, we assume that agents have identical capacities,
while Section 3.2 deals with the case where agents have different capacities.
Section 4 is devoted to the study of two particular cases of interest, namely, the
case where agents’ capacities are the convex transform of a common probability
distribution and the two-state case. The case of no-aggregate risk in a multi-dimen-
sional set-up is studied in Section 5.

2. Notation, definitions and useful results

We consider an economy in which agents make decisions before uncertainty is
resolved. The economy is a standard two-period pure-exchange economy, but for
agents’ preferences.
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There are k possible states of the world, indexed by superscript j. Let S be the
set of states of the world and AA the set of subsets of S. There are n agents
indexed by subscript i. We assume there is only one good.2 C j is the consumptioni

Ž 1 k .by agent i in state j and C s C , . . . ,C . Initial endowments are denotedi i i
Ž 1 k . nw s w , . . . ,w . wsS w is the aggregate endowment.i i i is1 i

We will focus on Choquet-expected-utility. We assume the existence of a utility
index U :R ™R that is cardinal, i.e. defined up to a positive affine transforma-i q
tion. Throughout the paper, U is taken to be strictly increasing and strictlyi

concave. When needed, we will assume differentiability together with the usual
Inada condition:

1 XŽ .Assumption U1. ; i, U is C and U 0 s`.i i

Ž .Before defining CEU the Choquet integral of U with respect to a capacity , we
recall some properties of capacities and their core.

2.1. Capacities and the core

w x Ž . Ž .A capacity is a set function n : AA™ 0,1 such that n B s0, n S s1, and,
Ž . Ž .for all A, BgAA, A;B´n A Fn B . We will assume throughout that the

Ž .capacities we deal with are such that 1)n A )0 for all AgAA, A/S, A/B.
Ž . Ž . Ž .A capacity n is convex if for all A, Bgn AA, n AjB qn AlB Gn A q

Ž .n B .
The core of a capacity n is defined as follows

k < jcore n s pgR p s1 and p A Gn A , ;AgAAŽ . Ž . Ž .Ýq½ 5
j

Ž . j Ž .where p A sS p . Core n is a compact, convex set which may be empty.j g A
Ž . Ž .Since 1)n A )0 ;AgAA, A/S, A/B, any pgcore n is such that p40,

Ž j .i.e. p )0 for all j .
It is well-known that when n is convex, its core is non-empty. It is equally

well-known that non-emptiness of the core does not require convexity of the
Ž .capacity. If there are only two states however, it is easy to show that core n /B

if and only if n is convex.
We shall provide an alternative definition of the core in the following subsec-

tion.

2 In Section 5, we will deal with several goods and will introduce the appropriate notation at that
time.
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2.2. Choquet-expected-utility

We now turn to the definition of the Choquet integral of fgR S:
`0

fdn'E f s n fG t y1 d tq n fG t d tŽ . Ž . Ž .Ž .H H Hn
y` 0

j Ž . 1 2 kHence, if f s f j is such that f F f F . . . F f :
ky1

j k� 4 � 4 � 4fdns n j, . . . ,k yn jq1, . . . ,k f qn k fŽ . Ž . Ž .ÝH
js1

As a consequence, if we assume that an agent consumes C j in state j, and that
C1 F . . . FC k, then his preferences are represented by:

1� 4Õ C s 1yn 2, . . . ,k U CŽ . Ž .Ž .
j� 4 � 4q . . . n j, . . . ,k yn jq1, . . . ,k U CŽ .Ž . Ž .

� 4 kq . . . n k U CŽ .Ž .
Observe that, if we keep the same ranking of the states as above, then

Ž . Ž . jÕ C sE U C , where C is here the random variable giving C in state j, and thep
j Ž� 4. Ž� 4.probability p is defined by: p sÕ j, . . . ,k yÕ jq1, . . . ,k , js1, . . . ,ky1

k Ž� 4.and p sÕ k .
If U is differentiable and n is convex, the function Õ:R k

™R defined above isq
Ž . � k Ž .continuous, strictly concave and subdifferentiable. Let EÕ C s agR NÕ C y

Ž X. Ž X. X k 4Õ C Ga CyC , ;C gR denote the subgradient of the function Õ at C. Inq
� k 1 2 k 1the open set CgR N0-C -C - . . . -C , Õ is differentiable. If 0-C sq

2 k Ž . Ž .C s . . . sC then, EÕ C is proportional to core n .
Ž .The following proposition gives an alternative representation of core n that

will be useful in Section 5.

Ž . � k k j Ž . Ž Ž ..Proposition 2.1. core n s pgR NS p s1 and Õ C FE U C , ;Cgq js1 p
k 4Rq

Ž . 1 2 kProof. Let pgcore n and assume C FC F . . . FC . Then,
1 � 4 2 1Õ C sU C qn 2, . . . ,k U C yU CŽ . Ž . Ž . Ž .Ž . Ž .

� 4 k ky1q . . . qn k U C y U CŽ Ž . Ž .Ž . Ž .
Ž . Ž . Ž .Hence, since pgcore n , and therefore Õ A Fp A for all events A:

k
1 j 2 1Õ C FU C q p U C yU CŽ . Ž . Ž . Ž .Ž .Ý

js2

q . . . qp k U C k yU C ky1 sE U CŽ . Ž . Ž .Ž .Ž . p

which proves one inclusion.
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� k < k j Ž . Ž Ž ..To prove the other inclusion, let pg pgR S p s1, Õ C FE U C ,q js1 p

4 Ž . Ž .;C . Normalize U so that U C s0 and U C s1 for some C and C. Let AgAA
A Ž A. Ž . Ž Ž A.. Ž .and C sC1 qC1 . Since Õ C sn A FE U C sp A , one gets pAc A p

Ž .gcore n . I

Ž . Ž . Ž . 3A corollary is that if core n /B, then Õ C Fmin E U C .p g cor eŽn . p

2.3. Comonotonicity

˜Ž .We finally define comonotonicity of a class of random variables C .i is1, . . . ,n

This notion, which has a natural interpretation in terms of mutualization of risks,
will be crucial in the rest of the analysis.

˜Ž .Definition 1. A family C of random Õariables on S is a class ofi is1, . . . ,n
X X w j jX xw j jX

xX Xcomonotone functions if for all i, i , and for all j,j , C yC C yC G0.i i i i

ŽAn alternative characterization is given in the following proposition see
.Denneberg, 1994 :

˜Ž .Proposition 2.2. A family C of non-negatiÕe random Õariables on S is ai is1, . . . ,n

class of comonotone functions if and only if for all i, there exists a function
n Ž .g :R ™R , non-decreasing and continuous, such that for all xgR , S g xi q q q is1 i

j Ž n j .sx and C sg S C for all j.i i ms1 m

˜Ž .The family C is comonotone if they all vary in the same direction asi is1, . . . ,n

their sum.

2.4. Optimal risk-sharing with ÕNM agents

We briefly recall here some well-known results on optimal risk-sharing in the
Žtraditional vNM case see e.g. Eeckhoudt and Gollier, 1995 or Magill and Quinzii,

.1996 . Consider first the case of identical vNM beliefs. Agents have the same
Ž 1 k . jprobability ps p , . . . ,p , p )0 for all j, over the states of the world and a

Ž . k j Ž j.utility function defined by Õ C sS p U C , is1, . . . ,n. The followingi i js1 i i

proposition recalls that the P.O. allocations of this economy are independent of the
Ž . Ž .common probability, depend only on aggregate risk and utility indices , and are
comonotone.4

3 Ž .It is well-known see Schmeidler, 1986 that when n is convex, the Choquet integral of any
random variable f is given by Hfdn smin E f.p g coreŽn . p

4 Ž .Borch 1962 noted that, in a reinsurance market, at a P.O., ‘‘the amount which company i has to
Ž .pay will depend only on . . . the total amount of claims made against the industry. Hence any Pareto

optimal set of treaties is equivalent to a pool arrangement’’. Note that this corresponds to the
characterization of comonotone variables as stated in Proposition 2.2.
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Ž .n k nProposition 2.3. Let C gR be a P.O. allocation of an economy in whichi is1 q
agents haÕe ÕNM utility index and identical additiÕe beliefs p . Then, it is a P.O.

X ( )of an economy with additiÕe beliefs p and same ÕNM utility index . Further-
Ž .nmore, C is comonotone.i is1

As a consequence of Propositions 2.2 and 2.3, it is easily seen that, at a P.O.
allocation, agent i’s consumption C is a non-decreasing function of w.i

If agents have different probabilities p j, js1, . . . ,k, is1, . . . ,n, over thei

states of the world, it is easily seen that P.O. now depend on the probabilities and
on aggregate risk. It is actually easy to find examples in which P.O. are not

Žnecessarily comonotone take for instance a model without aggregate risk in which
agents have different beliefs: the P.O. allocations are not state-independent and

.therefore are not comonotone .

3. Optimal risk-sharing and equilibrium with CEU agents: the general convex
case

In this section, we deal first with optimal risk-sharing and equilibrium analysis
when agents have identical convex capacities and then move on to different
convex capacities.

3.1. Optimal risk-sharing and equilibrium with identical capacities

Assume here that all agents have the same capacity n over the states of the
world and that this capacity is convex. We denote by EE the exchange economy in1

which agents are CEU with capacity n and utility index U , is1, . . . ,n.i
Ž .Define D w as follows:n

<D w s pgcore n E wsE w� 4Ž . Ž .n p n

Ž .The set D w is constituted of the probabilities that ‘‘minimize the expectedn
1 2 k Ž .value of the aggregate endowment’’. In particular, if w -w . . . -w , D wn

Ž 1 k . j Ž� 4. Ž� 4.contains only ps p , . . . ,p with p sn j, jq1, . . . ,k yn jq1, . . . ,k
k Ž� 4. 1 k Ž .for all j-k and p sn k . If w s . . . sw , the set D w is equal ton

Ž .core n .
It is important to note that the Choquet integral of any random variable that is

non-decreasing with w is actually the integral of that random variable with respect
Ž .to a probability distribution in D w . In particular, we have the following lemma.n

Lemma 3.1. Let n be a conÕex capacity, U an increasing function and CgR k
q

( ) Ž . Ž .be a non-decreasing function of w. Then, Õ C sE U C for any pgD w .p n
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Proof. Since C is non-decreasing in w, if w1 F . . . Fw k, then C1 F . . . FC k.
Furthermore, w j sw jX implies C j sC jX. The same relationship holds between
Ž j.k Ž Ž j..kw and U C , U being increasing. It is then simply a matter of writingjs1 js1

Ž . Ž .down the expression of the Choquet integral to see that Õ C sE U C for anyp

Ž .pgD w .n I

( )n k nProposition 3.1. The allocation C gR is a P.O. of EE if and only if it is ai is1 q 1

P.O. of an economy in which agents haÕe ÕNM utility index U , is1, . . . ,n andi

identical probability oÕer the set of states of the world. In particular, P.O. are
comonotone.

Proof. Since the P.O. of an economy with vNM agents with the same probability
are independent of the probability, we can choose w.l.o.g. this probability to be

Ž .pgD w .n

Ž .nLet C be a P.O. of the vNM economy. Being a P.O., this allocation isi is1

comonotone. By Proposition 2.2, C is a non-decreasing function of w. Hence,i
Ž . w Ž .xapplying Lemma 3.1, Õ C sE U C , is1, . . . ,n. If it were not a P.O. of EE ,i i p i i 1

Ž X X X .there would exist an allocation C ,C . . . C such that1 2 n

X X
Õ C sE U C GÕ C sE U CŽ . Ž . Ž . Ž .i i n i i i i p i i

w Ž X.x w Ž X.xfor all i, and with at least one strict inequality. Since E U C GEn U C forp i i i i
Ž .nall i, this contradicts the fact that C is a P.O. of the vNM economy.i is1

Ž .nLet C be a P.O. of EE . If it were not a P.O. of the economy with vNMi is1 1
Ž X.n w Ž X.xagents with probability p , there would exist a P.O. C such that E U Ci is1 p i i

w Ž .x Ž .GE U C GÕ C for all i, and with a strict inequality for at least an agent.p i i i i
Ž X.nC being Pareto optimal, it is comonotone and it follows by Proposition 2.2i is1

X Ž X.that C is a non-decreasing function of w. Hence, applying Lemma 3.1, Õ C si i i
w Ž X.x Ž .nE U C , is1, . . . ,n. This contradicts the fact that C is a P.O. of EE .p i i i is1 1 I

Note that this proposition not only shows that P.O. allocations are comonotone
in the CEU economy, but also completely characterizes them.

We may now also fully characterize the equilibria of EE .1

Ž . Ž w w.Proposition 3.2. i Let p ,C be an equilibrium of a ÕNM economy in which
Ž . Ž w w.all agents haÕe utility index U and beliefs giÕen by pgD w , then p ,C isi n

an equilibrium of EE .1
Ž . Ž w w.ii ConÕersely, assume Assumption U1. If p ,C is an equilibrium of EE ,1

Ž . Ž w w.then there exists pgD w such that p ,C is an equilibrium of the ÕNMn

Ž .economy with utility index U and probability pgD w .i n

Ž .Proof. See Dana 1998 . I
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Corollary 3.1. If Assumption U1 is fulfilled and w1 -w2 - . . . -w k, then the
equilibria of EE are identical to those of a ÕNM economy in which agents haÕe1

j �utility index U , is1, . . . ,n and same probabilities oÕer states p sn j, jqi
4 � 4 k Ž� 4. Ž w .1, . . . ,k yn jq1, . . . ,k , j-k and p sn k . Hence, w,C ,is1, . . . ,n arei

comonotone.

To conclude this subsection, observe that P.O. allocations in the CEU economy
inherit all the nice properties of P.O. allocations in a vNM economy with identical
beliefs. In particular, P.O. allocations are independent of the capacity. However,
the equilibrium allocations in the vNM economy do depend on beliefs, and it is
not trivial to assess the relationship between the equilibrium set of a vNM
economy with identical beliefs and the equilibrium set of the CEU economy EE .1

Note for instance that EE has ‘‘as many equilibria’’ as there are probability1
Ž . Ž .distributions in the set D w . If D w consists of a unique probability distribu-n n

tion, equilibria of EE are the equilibria of the vNM economy with beliefs equal to1
Ž .that probability distribution. On the other hand, if D w is not a singleton, it is an

priori not possible to assimilate all the equilibria of EE with equilibria of a given1

vNM economy.

3.2. Optimal risk-sharing and equilibrium with different capacities

We next consider an economy in which agents have different convex capacities.
Denote the economy in which agents are CEU with capacity n and utility indexi

U , is1, . . . ,n by EE .i 2

We first give a general characterization of the set of P.O., when no further
restrictions are imposed on the economy. We then show that this general character-
ization can be most usefully applied when one knows that P.O. are comonotone.

Ž . Ž .n k nProposition 3.3. i Let C gR be a P.O. of EE such that for all i,i is1 q 2
j ll Ž . w Ž .x w Ž .xC /C , j/ ll . Let p gcore n be such that E U C sE U C for all i.i i i i n i i p i ii i

Ž .nThen C is a P.O. of an economy in which agents haÕe ÕNM utility index Ui is1 i

and probabilities p , is1, . . . ,n.i
Ž . Ž . Ž .nii Let p gcore n , is1, . . . ,n and C be a P.O. of the ÕNM economyi i i is1

w Ž .x w Ž .xwith utility index U and probabilities p , is1, . . . ,n. If E U C sE U Ci i n i i p i ii i

Ž .nfor all i, then C is a P.O. of EE .i is1 2

Ž . Ž .n Ž X.nProof. i If C is not a P.O. of a vNM economy, then there exists Ci is1 i is1
w Ž X.x w Ž .xsuch that E U C GE U C with a strict inequality for some i. Sincep i i n i ii iX Ž . w xt C q 1y t C KC , ; t g 0,1 , by choosing t small, one may assume w.l.o.g.i i i i i i i

X w Ž X .x w Ž X.xthat C is ranked in the same order as C . Hence, E U C sE U C for alli i p i i n i ii i

Ž .ni, which contradicts the fact that C is a P.O. of EE .i is1 2
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Ž . Ž X.n w Ž X.xii Assume there exists a feasible allocation C such that E U C Gi is1 n i ii

w Ž .x w Ž X.xE U C with a strict inequality for at least some i. Then, E U C Gn i i p i ii i

w Ž .xE U C with a strict inequality for at least some i, which leads to a contradic-p i ii

tion. I

We now illustrate the implications of this proposition on a simple example.

Example 3.1. Consider an economy with two agents, two states and one good, that
thus can be represented in an Edgeworth box. Divide the latter into three zones:

Ž . 1 2 1 2Ø zone 1 , where C )C and C -C1 1 2 2
Ž . 1 2 1 2Ø zone 2 , where C -C and C -C1 1 2 2
Ž . 1 2 1 2Ø zone 3 , where C -C and C )C1 1 2 2

Ž . Ž 1 1.In zone 1 , everything is as if agent 1 had probability n ,1yn and agent 2,1 1
Ž 2 2 . Ž . Ž 2 2 .probability 1yn ,n . In zone 2 , agent 1 uses 1yn ,n and agent 2,2 2 1 1

Ž 2 2 . Ž . Ž 2 2 . Ž 1 1.1yn ,n , while in zone 3 , agent 1 uses 1yn ,n and agent 2, n ,1yn .2 2 1 1 2 2
Ž .In order to use ii of Proposition 3.3, we draw the three contract curves,

corresponding to the P.O. in the vNM economies in which agents have the same
Ž . Ž . Ž .utility index U and the three possible couples of probability. Label a , b and ci

Ž .these curves Fig. 1 .
Ž .One notices that curve a , which is the P.O. of the vNM economy for agents

Ž 1 1. Ž 2 2 .having beliefs n ,1yn and 1yn ,n respectively, does not intersect zone1 1 2 2
Ž .1 , which is the zone where CEU agents do use these probability distributions as
well. Hence, no points are at the same time P.O. of that vNM economy and such

w Ž .x w Ž .x Ž . Ž .that E U C sE U C , is1,2. The same is true for curve c and zone 3 .n i i p i ii i

Ž . Ž .On the other hand, part of curve b is contained in zone 2 . That part constitutes

Fig. 1.
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a subset of the set of P.O. that we are looking for. We will show later on that, in
order to get the full set of P.O. of the CEU economy, one has to replace the part of

Ž . Ž .curve b that lies in zone 3 by the segment along the diagonal of agent 2. e

It follows from Proposition 3.3 that, without any knowledge on the set of P.O.,
Ž .n Žone has to compute the P.O. of k! y1 economies if there are k! extremal

Ž . .points in core n for all i . Thus, the actual characterization of the set of P.O. ofi

EE might be somewhat tedious without further information.2

In the comonotone case however, the characterization of P.O. is simpler, even
though it remains partial.

Corollary 3.2. Assume w1 Fw2 F . . . Fw k.
Ž . Ž .n k ni Let Assumption U1 hold and C gR be a comonotone P.O. of EEi is1 q 2

1 2 k Ž .nsuch that C -C - . . . -C for all is1, . . . ,n. Then, C is a P.O.i i i i is1

allocation of the economy in which agents are ÕNM maximizers with utility index
j Ž� 4. Ž� 4. kU and probability p sn j, . . . ,k yn jq1, . . . ,k for j-k and p si i i i i

Ž� 4.n k .i
Ž . Ž .n k nii Let C gR be a P.O. of the economy in which agents are ÕNMi is1 q

j Ž� 4. Ž�maximizers with utility index U and probability p sn j, . . . ,k yn jqi i i i
4. k Ž� 4. Ž .n1, . . . ,k for j-k and p sn k . If C is comonotone, then it is a P.O. ofi i i is1

EE .2

These results may now be used for equilibrium analysis as follows.

Proposition 3.4. Assume w1 Fw2 F . . . Fw k.
Ž . Ž w w. w1 w ki Let p ,C be an equilibrium of EE . If 0-C - . . . -C for all i, then2 i i
Ž w w.p ,C is an equilibrium of the economy in which agents are ÕNM maximizers

j Ž� 4. Ž� 4.with utility index U and probability p sn j, . . . ,k yn jq1, . . . ,k fori i i i
k Ž� 4.j-k and p sn k .i i

Ž . Ž w w.ii Let p ,C be an equilibrium of the economy in which agents are ÕNM
j Ž� 4. Ž�maximizers with utility index U and probability p sn j, . . . ,k yn jqi i i i

4. k Ž� 4. w Ž w w.1, . . . ,k for j-k and p sn k . If C is comonotone, then p ,C is ani i

equilibrium of EE .2

Ž . Ž w w.Proof. i Since p ,C is an equilibrium of EE , and since Õ is differentiable at2 i

C w for every i, there exists a multiplier l such that pw si i
w XŽ w1. 1 XŽ w k . k x j Ž� 4. Ž� 4.l U C p , . . . ,U C p , where p sn j, . . . ,k yn jq1, . . . ,k fori i i i i i i i i i

k Ž� 4. Ž w w.j-k and p sn k for all i. Hence, p ,C is an equilibrium of the economyi i
Ž j.in which agents are vNM maximizers with probability p for all i, j.i

Ž . Ž w w.ii Let p ,C be an equilibrium of the economy in which agents are vNM
Ž j. wmaximizers with probability p for all i, j. Assume C is comonotone. We thusi

have
X Xw w wp C Fp w´E U C FE U CŽ . Ž .i i p i i p i ii i
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w Ž X.x w Ž X.x w Ž w.x w Ž w.x w Ž X.xSince E U C FE U C and E U C sE U C , we get E U Cn i i p i i n i i p i i n i ii i i i i

w Ž w.x Ž w w.FE U C for all i, which implies that C , p is an equilibrium of EE .n i i 2i
I

Observe that, even though the characterization of P.O. allocations is made
simpler when we know that these allocations are comonotone, the above proposi-
tion does not give a complete characterization. Comonotonicity of the P.O.
allocations is also useful for equilibrium analysis. This leads us to look for
conditions on the economy under which P.O. are comonotone.

4. Optimal risk-sharing and equilibrium in some particular cases

In this section, we focus on two particular cases in which we can prove directly
that P.O. allocations are comonotone.

4.1. ConÕex transform of a probability distribution

In this subsection, we show how one can use the previous results when agents’
capacities are the convex transform of a given probability distribution. In this case,
one can directly apply Corollary 3.2 and Proposition 3.4 to get a characterization
of P.O. and equilibrium.

Ž 1 k . jLet ps p , . . . ,p be a probability distribution on S, with p )0 for all j.

Proposition 4.1. Assume w1 Fw2 F . . . Fw k. Assume that, for all i, U isi

differentiable and n s f op , where f is a strictly increasing and conÕex functioni i i
w x w x Ž . Ž . 1 2 kfrom 0,1 to 0,1 with f 0 s0, f 1 s1. Then, at a P.O., C FC F . . . FCi i i i i

for all i.

Proof. Since U is differentiable, strictly increasing and strictly concave, and f isi i

a strictly increasing, convex function for all i, it results from Corollary 2 in Chew
Ž .et al. 1987 that every agent strictly respects second-order stochastic dominance.

Therefore, it remains to show that if every agent strictly respects second-order
stochastic dominance, then, at a P.O., C1 FC 2 F . . . FC k for all i. We do soi i i

Ž .using Proposition 4.1 in Chateauneuf et al. 1997 .
Ž .n 1 2 1 2Assume C is not comonotone. W.l.o.g., assume that C )C , C -C , andi is1 1 1 2 2

C1 qC1 FC 2 qC 2. Let CX be such that:1 2 1 2

p 1C1 qp 2 C 2
1 1X X X1 2 j jC sC s and C sC , j)21 1 1 11 2p qp
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Let CX sC for all i)2, and CX be determined by the feasibility conditioni i 2

C qC sCX qCX . Hence,1 2 1 2

p 2
X1 1 1 2C sC q C yC ,Ž .2 2 1 11 2p qp

p 1
X X2 2 1 2 j jC sC y C yC and C sC , j)2Ž .2 2 1 1 2 21 2p qp

It may easily be checked that C 2 -C1X sC 2X
-C1, and C1 -C1X FC 2X

-C 2.1 1 1 1 2 2 2 2

Furthermore, p 1C1X qp 2 C 2X sp 1C1 qp 2 C 2, and p 1C1X qp 2 C 2X sp 1C1 q1 1 1 1 2 2 2

p 2 C 2.2

Therefore, CX is1,2 is strictly a less risky allocation than C is1,2, with respecti i

to mean preserving increases in risk. It follows that agents 1 and 2 are strictly
better off with CX, while other agents’ utilities are unaffected. Hence, CX Pareto
dominates C. Thus, any P.O. C must be comonotone, i.e. C1 FC 2 F . . . FC k fori i i

all i. I

Using Corollary 3.2, we can then provide a partial characterization of the set of
P.O. Note that such a characterization was not provided by the analysis in

Ž . Ž .Chateauneuf et al. 1997 or Landsberger and Meilijson 1994 .

Proposition 4.2. Assume w1 F . . . Fw k and that agents are CEU maximizers
Ž . Ž .with n s f op , f conÕex, strictly increasing and such that f 0 s0 and f 1 s1.i i i i i

Then,
Ž . Ž .n k n 1 2 ki Let C gR be a P.O. of this economy such that C -C - . . . -Ci is1 q i i i

Ž .nfor all is1, . . . ,n. Then, C is a P.O. allocation of the economy in whichi is1

agents are ÕNM maximizers with utility index U and probability p j si i
w Ž k s. Ž k s.x k Ž k .f S p y f S p for js1, . . . ,ky1, and p s f p .i ssj i ssjq1 i i
Ž . Ž .n k nii Let C gR be a P.O. of the economy in which agents are ÕNMi is1 q

j w Ž k s.maximizers with utility index U and probability p s f S p yi i i ss j
Ž k s.x k Ž k . Ž .nf S p for js1, . . . ,ky1, and p s f p . If C is comonotone,i ssjq1 i i i is1

then it is a P.O. of the CEU economy with n s f op .i i

Proof. See Corollary 3.2. I

The same type of result can be deduced for equilibrium analysis from Proposi-
tion 3.4, and we omit its formal statement here.

The previous characterization formally includes the Rank-Dependent-
Ž . Ž .Expected-Utility model introduced by Quiggin 1982 in the case of probabilized

Žrisk. It also applies to the so-called ‘‘simple capacities’’ see e.g. Dow and
.Werlang, 1992 , which are particularly easy to deal with in applications.

Ž . Ž . Ž .Indeed, let agents have the following simple capacities: n A s 1yj p Ai i
Ž .for all AgAA, A/S, and n S s1, where p is a given probability measure withi

0-p j -1 for all j, and 0Fj-1.
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Ž .These capacities can be written n s f op where f is such that f 0 s0,i i i i
Ž .f 1 s1, is strictly increasing, continuous and convex, with:i

°f p s 1yj p if 0FpF max p AŽ . Ž . Ž .i i
� 4Ž .p A -1~¢f 1 s1Ž .i

Hence, n is a convex transformation of p , and we can apply the results of thisi

subsection to characterize the set of P.O. in an economy where all agents have
such simple capacities.

4.2. The two-state case

� 4We restrict our attention here to the case Ss 1,2 . Agent i has a capacity n i
Ž� 4. Ž� 4. Ž� 4. Ž� 4.characterized by two numbers n 1 ,n 2 such that n 1 F1yn 2 . Toi i i i

Ž� 4. s Ž .simplify the notation, we will denote n s sn . In this particular case, core ni i i
�Ž . w 1 2 x4s p ,1yp Npg n ,1yn .i i

Call E the two-state exchange economy in which agents are CEU maximizers3

with capacity n and utility index U , is1, . . . ,n.i i

Ž .Assumption C. l core n /B.i i

This assumption is equivalent to n 1 qn 2 F1, i, js1, . . . ,n, or stated differ-i j
w 1 2 xently, to l n ,1yn /B. Recall that in the two-state case, under Assumptioni i i

C, the agents’ capacities are convex.
We now proceed to show that this ‘‘minimal consensus’’ assumption is enough

to show that P.O. are comonotone.

Proposition 4.3. Let Assumption C hold. Then, P.O. are comonotone.

Proof. Assume w1 Fw2 and C not comonotone. W.l.o.g., assume that C1 )C 2,1 1
1 2 Ž . Ž . XC -C . Let p ,1yp gl core n and C be the feasible allocation defined2 2 i i

by

C1X sC 2X sp C1 q 1yp C 2Ž .1 1 1 1

and C1X and C 2X are such that C jX qC jX sC j qC j , js1,2, i.e.2 2 1 2 1 2

C1X sC1 q 1yp C1 yC 2 , C 2X sC 2 yp C1 yC 2Ž . Ž . Ž .2 2 1 1 2 2 1 1

One obviously has C1 -C1X FC 2X
-C 2.2 2 2 2

Finally, let C jX sC j, ; i)2, js1,2. We now prove that CX Pareto dominates C.i i

Õ CX sÕ C sU p C1 q 1yp C 2 yn 1U C1Ž . Ž . Ž .Ž . Ž .1 1 1 1 1 1 1 1 1 1

y 1yn 1 U C 2 ) pyn 1 U C1 yU C 2 G0Ž . Ž . Ž . Ž . Ž .Ž .1 1 1 1 1 1 1 1
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since U is strictly concave and pGn 1. Now, consider agent 2’s utility:1 i

Õ CX yÕ CŽ . Ž .2 2 2 2
X X2 1 1 2 2 2s 1yn U C yU C qn U C yU CŽ . Ž . Ž . Ž . Ž .2 2 2 2 2 2 2 2 2 2

Since U is strictly concave and C1 -C1X FC 2X
-C 2, we have:2 2 2 2 2

U C1X yU C1 U C 2 yU C 2XŽ . Ž . Ž . Ž .2 2 2 2 2 2 2 2
)X X1 1 2 2C yC C yC2 2 2 2

Ž Ž 1X . Ž 1.. Ž . Ž Ž 2 . Ž 2X.. Ž .and hence, U C yU C r 1yp ) U C yU C r p . Therefore,2 2 2 2 2 2 2 2

1yp
X X2 2 2 2Õ C yÕ C ) 1yn yn U C yU C G0Ž . Ž . Ž . Ž . Ž .2 2 2 2 2 2 2 2 2 2

p

Ž 2 .Ž . 2 2 Ž 2 . Ž 2X.since 1 y n 1 y p y pn s 1 y n y p G 0 and U C y U C ) 0.2 2 2 2 2 2 2

Hence, CX Pareto dominates C. I

Remark. If n 1 qn 2 -1, i,js1, . . . ,n, which is equiÕalent to the assumption thati j
( )l core n contains more than one element, then one can extend Proposition 4.3i i

to linear utilities.

Remark. Although conÕex capacities can, in the two-state case, be expressed as
( )simple capacities, the analysis of Section 4.1 and in particular Proposition 4.1

cannot be used here. Indeed, Assumption C does not require that agents’ capaci-
ties are all a conÕex transform of the same probability distribution as Example 4.1
shows.

Example 4.1. There are two agents with capacity n 1 s1r3, n 2 s2r3, and1 1
1 2 Ž .n s1r6, n s2r3 respectively. Assumption C is satisfied since ps 1r3,2r32 2

is in the intersection of the cores. The only way n and n could be a convex1 2

transform of the same probability distribution is n sp and n s f op with1 2 2
Ž . Ž .f 1r3 s1r6 and f 2r3 s2r3. But f then fails to be convex.2 2 2 e

Intuition derived from Proposition 4.3 might suggest that some minimal
consensus assumption might be enough to prove the comonotonicity of the P.O.
However, that intuition is not valid in general, as can be seen in the following
example, in which the intersection of the cores of the capacities is non-empty, but

Ž .where some P.O. allocations are not comonotone.

Ž . 1r2Example 4.2. There are two agents, with the same utility index U C s2C ,i

but different beliefs. The latter are represented by two convex capacities defined as
follows:

3 3 1
� 4 � 4 � 4n 1 s n 2 s n 3 sŽ . Ž . Ž .1 1 19 9 9

6 6 4
� 4 � 4 � 4n 1,2 s n 1,3 s n 2,3 sŽ . Ž . Ž .1 1 19 9 9
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2 2 3
� 4 � 4 � 4n 1 s n 2 s n 3 sŽ . Ž . Ž .2 2 29 9 9

4 5 5
� 4 � 4 � 4n 1,2 s n 1,3 s n 2,3 sŽ . Ž . Ž .2 2 29 9 9

The intersection of the cores of these two capacities is non-empty since the
probability defined by p j s1r3, js1,2,3 belongs to both cores. The endowment
in each state is, respectively, w1 s1, w2 s12, and w3 s13. We consider the

Ž .optimal allocation associated to the weights 1r2,1r2 and show it cannot be
Ž . Ž .comonotone. In order to do that, we show that the maximum of Õ C qÕ C1 1 2 2

subject to the constraints C j qC j sw j, js1,2,3 and C j G0 for all i and j, does1 2 i

not obtain for C1 FC 2 FC3, is1,2.i i i

Observe first that if C1 FC 2 FC3, is1,2, then:i i i

Õ C qÕ CŽ . Ž .1 1 2 2

5 3 1 4 2 3
1 2 3 1 2 3( ( ( ( ( (s2 C q C q C q C q C q C1 1 1 2 2 2ž /9 9 9 9 9 9

Ž 1 2 3 1 2 3. Ž . Ž .Call g C ,C ,C ,C ,C ,C the above expression. Note that Õ C qÕ C1 1 1 2 2 2 1 1 2 2

takes the exact same form if C1 -C3 -C 2 and C1 -C 2 -C3.1 1 1 2 2 2

The optimal solution to the maximization problem:

max g C1 ,C 2 ,C3 ,C1 ,C 2 ,C3Ž .1 1 1 2 2 2

C j qC j sw j js1,2,31 2
s.t.

j½C G0 js1,2,3 is1,2i

ˆ 1 ˆ 2 ˆ 3 ˆ 1 ˆ 2 ˆ 3Ž . ŽŽ . Ž . Ž . Ž . Ž . Ž .. Ž .is C , C , C s 25 r 41 , 108 r 13 , 13 r 10 and C , C , C s1 1 1 2 2 2
ˆ 1 ˆ 3 ˆ 2 ˆ 1ŽŽ . Ž . Ž . Ž . Ž . Ž ..16 r 41 , 48 r 13 , 117 r 10 . It satisfies 0-C -C -C and 0-C -1 1 1 2

ˆ 2 ˆ 3C -C . Therefore:2 2

ˆ ˆ 1 2 3Õ C qÕ C )Õ C qÕ C for all C such that C FC FC ,Ž . Ž .Ž . Ž .1 1 2 2 1 1 2 2 i i i

is1,2

and, hence, the P.O. associated to the equal weights for each agent is not
comonotone. e

One may expect that it follows from Proposition 4.3 that the P.O. of EE are the3

P.O. of the vNM economy in which agents have probability p s1yn 2, isi i

1, . . . ,n. However, it is not so, since as recalled in Section 2.4, the P.O. of a vNM
economy with different beliefs are not, in general, comonotone. We can neverthe-
less use Proposition 3.3 to provide a partial characterization of the set of P.O.

In this particular case of only two states, we can obtain a full characterization
of the set of P.O. if there are only two agents in the economy. This should then be



( )A. Chateauneuf et al.rJournal of Mathematical Economics 34 2000 191–214208

interpreted as a characterization of the optimal risk-sharing arrangement between
Žtwo parties to a contract arrangement that has been widely studied in the vNM

.case .

Proposition 4.4. Assume ns2, w1 -w2 and that agents haÕe capacities n ,i
is1,2 which fulfill Assumption C, and such that n 2 -n 2. Assume finally1 2

Ž .Assumption U1 and let C be a P.O. of EE . Then, there are only two cases:i is1,2 3
Ž . 1 2 Ž .i Either C -C , ; i and C is a P.O. of the ÕNM economy with utilityi i i is1,2

index U and probabilities p s1yn 2, is1,2.i i i
Ž . 1 2 1 2ii Or, C sC , C -C and1 1 2 2

n 2 U X C 2 n 2Ž .1 2 2 2
F 1Ž .X2 211yn 1ynU CŽ .1 22 2

Proof. It follows from Proposition 4.3 that there are three cases: C1 -C 2, ; i,i i

C1 sC 2 and C1 -C 2 and lastly C1 sC 2 and C1 -C 2. The first case follows1 1 2 2 2 2 1 1

from Corollary 3.2.
1 2 Ž .Second, if 0-C sC , C is optimal iff there exists t)0 such that1 1 i is1,2

Ž . Ž .=Õ C g tEÕ C which is equivalent to2 2 1 1

n 2 U X C 2 n 2 1yn 1Ž .1 2 2 2 1
F F 2Ž .X2 2 111yn 1yn nU CŽ .1 2 12 2

�wŽ 1.Ž 2 .x Ž 1 2 .4Since Assumption C is fulfilled, 1F 1yn 1yn r n n ; hence, the1 2 1 2
Ž . Ž . Ž .right-hand side of Eq. 2 is fulfilled and Eq. 1 is equivalent to Eq. 2 .

Lastly, the case 0-C1 sC 2 is symmetric. The first-order corresponding condi-2 2

tions imply n 2 Gn 2, which contradicts our hypothesis.1 2 I

Fig. 2.
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Fig. 3.

We can illustrate the optimal risk-sharing arrangement just derived in an
Ž . Ž .Edgeworth box. Fig. 2 a represents case i and the optimal contract is the same

as the one in the associated vNM setup.
Ž .However, Fig. 2 b gives a different risk-sharing rule that can interpreted as

2 2 Ž . Ž .follows. The assumption n -n is equivalent to E x FE x for all x1 2 n n1 2

comonotone with w. But we have just shown that we could restrict our attention to
allocations that are comonotone with w. Hence, the assumption n 2 -n 2 can be1 2

interpreted as a form of pessimism of agent 1. Under that assumption, agent 2
never insures himself completely, whereas agent 1 might do so. This is incompati-
ble with a vNM economy with strictly concave and differentiable utility indices.

Ž .Finally, risk-sharing arrangements such as the one represented in Fig. 3 a
cannot be excluded a priori, i.e. there is no reason that the contract curve in the

Ž .vNM economy crosses agent 1’s diagonal only once. In Fig. 3 a , the thin line
represents the P.O. of the vNM economy in which agent i uses probability
Ž 2 2 .1yn ,n that are not P.O. of the CEU economy, as they are not comonotone.i i

If agent 2 has a utility index of the DARA type, it is easy to show that the set
of P.O. of the economy in which agents have utility index U and probabilityi
Ž 2 2 .1yn ,n crosses agent 1’s diagonal at most once, hence, preventing the kind ofi i

situation represented in Fig. 3.
Ž .When there are only two types of agents, we can also go further in the

characterization of the set of equilibria.

Proposition 4.5. Assume ks2, ns2, w1 Fw2, Assumptions C and U1 hold
2 2 Ž w w.and n -n . Let p ,C be an equilibrium of EE. Then there are only two1 2

cases:
Ž . 1w 2w Ž w w.i Either C -C ,is1,2 and p ,C is an equilibrium of a ÕNM economyi i

in which agents haÕe utility index U and beliefs giÕen by p s1yn 2, is1,2.i i i
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Ž . 1w 2w ww wwii Or, C sC sC and C satisfies the following:1 1

Ž . Ž 2 .Ž 1 ww. XŽ 1 ww. 2Ž 2 ww. XŽ 2 ww.a 1yn w yC U w yC qn w yC U w yC s02 1 2 2 1 2
Ž . 2 Ž 2 . w Ž 1 ww. Ž 2 ww.xb n r 1yn F y w yC r w yC1 1 1 1

Proof. It follows from Proposition 4.4 that either C1w -C 2w,is1,2 or C1w si i 1

C 2w sCww. The first case follows from Proposition 3.4. In the second case, the1
ŽŽ 2 . XŽ 1 ww. 2 XŽ 2P.O. allocation is supported by the price 1yn U w yC ,n U w y2 2 2 2

ww.. Ž 1 ww 2 ww.C , hence, the tangent to agent 2’s indifference curve at w yC ,w yC
Ž 1 2 .has the following equation in the C ,C plane:

1yn 2 U X w1 yCww C1 yCwwŽ . Ž .Ž .2 2

qn 2U X w2 yCww C 2 yCww s0Ž . Ž .2 2

w Ž 1 2 .Now C is an equilibrium allocation iff w ,w fulfills that equation. Condition1 1
Ž . Ž . Ž .b follows from condition a and condition ii from Proposition 4.4. I

There might therefore exist, for a range of initial endowments, equilibria at
which agent 1 is perfectly insured even though agent 2 has strictly convex
preferences. Observe also that nothing excludes a priori the possibility of having a

Ž .different kind of equilibria for the same initial endowment see Fig. 3b .

5. Optimal risk-sharing and equilibrium without aggregate risk

We now turn to the study of economies without aggregate uncertainty.5 This
Ž .corresponds to the case of individual risk first analyzed by Malinvaud 1972 and

Ž .1973 . A particular case is the one of a sunspot economy, in which uncertainty is
purely extrinsic and does not affect the fundamentals, i.e. each agent’s endowment

Žis independent of the state of the world see Tallon, 1998 for a study of sunspot
.economies with CEU agents . Our analysis of the case of purely individual risk

Žmight also yield further insights as to which type of financial contracting e.g.
mutual insurance rather than trade on Arrow securities defined on individual

.states is necessary in such economies to decentralize an optimal allocation.
It turns out that the economy under consideration possesses remarkable proper-

ties: P.O. are comonotone and coincide with full insurance allocations, under the
relatively weak condition of Assumption C. Furthermore, this condition, which is
weaker than the convexity of preferences, is enough to prove the existence of an
equilibrium. Finally, the case of purely individual risk lends itself to the introduc-
tion of several goods.

5 For a study of optimal risk-sharing without aggregate uncertainty and an infinite state space, see
Ž .Billot et al. 2000 .
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We thus move to an economy with m goods, indexed by subscript ll . C j isi ll
j Ž j j .the consumption of good ll by agent i in state j. We have, C s C , . . . ,C ,i i1 im

Ž 1 k . j jX Xand C s C , . . . ,C . If C sC for all j, j , then C will denote both thisi i i i i i
Ž j .constant bundle i.e. C 'C and the vector composed of k such vectors, thei i

context making it clear which meaning is intended. Let p j be the price of good llll
j Ž j j . Ž 1 k .available in state j, p s p , . . . , p , and ps p , . . . , p .1 m

The utility index U is now defined on R m , and is still assumed to be strictlyi q
concave and strictly increasing. We will also need a generalization of Assumption
U1 to the multi-good case, which ensures that the solution to the agent’s
maximization program is interior.

� X m Ž X. Ž .4 m mAssumption Um. ; i, x gR NU x GU x ;R , ; xgR .q i i qq qq

Aggregate endowment is the same across states, although its distribution among
households might differ in each state. Therefore, we consider a pure exchange

Ž k meconomy EE with n agents and m goods described by the list: EE s Õ :R ™R,4 4 i q
k m .w gR , is1, . . . ,n . We will denote aggregate endowments w, i.e., wsS w .i q i i

Before dealing with non-additive beliefs, we first recall some known results in
the vNM case.

Ž 1 k .Proposition 5.1. Assume all agents haÕe identical ÕNM beliefs, ps p , . . . ,p .
Then,
Ž . j jX X Ž 1.ni At a Pareto optimum, C sC for all i, j,j and C is a P.O. of the statici i i is1

Ž Ž . .economy U , w sE w , is1, . . . ,n .i i p i
Ž . Ž w w.ii Let Assumption Um hold. p ,C is an equilibrium of the ÕNM economy if

w m w Ž w 1 w 2 w k .and only if there exists q gR such that p s q p , q p , . . . ,q p andq
w wŽ . Ž Ž .q ,C is an equilibrium of the static economy U , w sE w , is1, . . . ,n.i i p i

It is also easy to see that if the agents’ beliefs are different, the agents will
consume state-dependent bundles at an optimum. We now examine to what extent
these results, obtained in the vNM case, generalize to the CEU setup, assuming
that condition Assumption C holds.

Using Proposition 2.1, this assumption is equivalent6 to PP/B, where

k
k j 1 kPPs pgR N p s1 and Õ C , . . . ,C FE U C ,; i ,;CŽ .Ž .Ž .Ýqq i i i p i i i½ 5

js1

Recall that Assumption C was not enough to prove the comonotonicity of P.O.
Ž .in the general case though it was sufficient in the two-state case .

We now proceed to fully characterize the set of P.O.

6 Ž .Recall that we are dealing with capacities such that 1)n A )0 for all A/B and A/S.
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Proposition 5.2. Let Assumption C hold. Then,
Ž . Ž .n ji Any P.O. C of EE is such that C is independent of j for all i andi is1 4 i
Ž 1.nC is a P.O. of the static economy in which agents haÕe utility functioni is1
Ž .nU .i is1
Ž . Ž .n k m nii The allocation C gR is a P.O. of EE if and only if it is a P.O. of ai is1 q 4

ÕNM economy with utility index U and identical probability oÕer the set of statesi

of the world. Hence, P.O. are independent of the capacities.

Ž . Ž .Proof. i Assume, to the contrary, that there exist an agent say agent 1 and
X Xj j j Ž .states j and j such that C /C . Let C 'C sE C for all j and all i where1 1 i i p i

Ž .pgPP. This allocation is feasible: S C sE S C sw. By definition of PP,i i p i i
1 kŽ . Ž Ž .. Ž Ž .. Ž Ž .. Ž .Õ C , . . . ,C FE U C for all i. Now, E U C FU E C sU C si i i p i i p i i i p i i i
1 kŽ .Õ C , . . . ,C for all i, since U is concave. This last inequality is strict for agenti i i i

j jX Ž 1 k .1, since C /C , p40, and U is strictly concave. Therefore, Õ C , . . . ,C F1 1 1 i i i
1 kŽ .Õ C , . . . ,C for all i, with a strict inequality for agent one, a contradiction to thei 1 i

Ž .nfact that C is an optimum of EE .i is1 4
Ž .ii We skip the proof for this part of the proposition for it relies on the same type
of argument as that of Proposition 3.3. I

Ž .Thus, even with different ‘‘beliefs’’ in the sense of different capacities , agents
might still find it optimal to fully insure themselves: differences in beliefs do not
necessarily lead agents to optimally bear some risk as in the vNM case.

We now proceed to study the equilibrium set.

Proposition 5.3. Let Assumption C hold.
Ž . Ž w w.i Let p ,C be an equilibrium of a ÕNM economy in which all agents haÕe

Ž w w.utility index U and beliefs giÕen by pgPP, then p ,C is an equilibrium ofi

EE .4
Ž .ii ConÕersely, assume n is conÕex and U satisfies Assumption Um for all i.i i

Ž w w. Ž w w.Let p ,C be an equilibrium of EE , then there exists pgPP such that p ,C4

is an equilibrium of the ÕNM economy in which all agents haÕe utility index Ui
w Ž w 1 w 2 w k .and probability p . Furthermore, p s q p ,q p , . . . ,q p with pgPP and

w Ž w.q sl =U C , l gR for all i.i i i i q

Ž . Ž w w.Proof. i Let p ,C be an equilibrium of a vNM economy in which all agents
have beliefs given by p . We have, C jw sC jXw for all j, jX and all i. By definitioni i

of an equilibrium, S C jw sS w j for all j and, for all i:i i i i

CX G0, pwCX Fpw w´E U CX FE U CwŽ . Ž .Ž . Ž .i i i p i i p i i

Ž X. Ž Ž X .. Ž w Ž Ž w..Now, since pgPP, Õ C FE U C . Notice that Õ C sE U C . Hence,i i p i i i i p i i
Ž X. Ž w. Ž w w.Õ C FÕ C , and p ,C is an equilibrium of EE .i i i i 4

Ž . Ž w w.ii Let p ,C be an equilibrium of EE . Assume n is convex and U satisfy4 i i

Assumption Um for all i. Then Cw
40 for all i. From Proposition 5.2 and thei

first theorem of welfare, C jw sC jXw for all j, jX and all i.i i
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From first-order conditions and Assumption Um, there exists l gR for all i,i q
w Ž w w . w Ž Ž w . 1such that p g l EÕ C , . . . ,C . Therefore, p s l =U C p , . . . ,i i i i i i i i

Ž w. k . Ž . wl =U C p where p gcore n . Summing over p ’s components, one gets:i i i i i i

l= U Cw p j s p jws l X= U X C X
w p X

j that is: l= U CwŽ . Ž . Ž .Ý Ý Ýi i i i i i i i i i i
j j j

sl X= U X C X
w

; i ,iXŽ .i i i

j Ž . wHence, p is independent of i for all j, i.e. p gl core n sPP. Let q si i i i
Ž w. w w 1 w 2 w k .l =U C and psp . One gets p sq p , q p , . . . ,q p with pgPP. Iti i i i

Ž w w.follows from Proposition 5.1 that p ,C is an equilibrium of the vNM economy
with utility index U and probability p .i I

This proposition suggests equilibrium indeterminacy if PP contains more than
Ž .one probability distribution. This road is explored further in Tallon 1997 and

Ž .Dana 1998 . A direct corollary concerns existence:

Corollary 5.1. Under Assumption C , there exists an equilibrium of EE .4

Hence, since capacities satisfying Assumption C need not be convex, the
Žconvexity of the preferences which is equivalent, in the CEU setup, to the

convexity of the capacity and concavity of the utility index, see Chateauneuf and
.Tallon, 1998 is not necessary to prove that an equilibrium exists in this setup.
Ž .Malinvaud 1973 noticed that the P.O. allocations could be decentralized

Ž .through insurance contract in a large economy. Cass et al. 1996 showed, in an
expected utility framework, how this decentralization can be done in a finite

Ž .economy: agents of the same type share their risk through actuarially fair mutual
insurance contract. The same type of argument could be used here in the
Choquet-expected-utility case. It is an open issue whether P.O. allocations can be
decentralized with mutual insurance contract where agents in the same pool have
different capacities.
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