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I. Introduction

In textbook theory, demand curves for stocks are kept
flat by arbitrage between perfect substitutes. Myron
Scholes argues in his study of large-block sales that
“the market will price assets such that the expected
rates of return on assets of similar risk are equal. If
any particular asset should be selling to yield a higher
expected return due solely to the increase in the quan-
tity of shares outstanding . . . investors seeing these
profit opportunities would soon arbitrage them away”
(1972, p. 182). Arbitrage is possible because “the
shares a firm sells are not unique works of art but
abstract rights to an uncertain income stream for which
close counterparts exist either directly or indirectly via
combinations of assets of various kinds” (p. 179).

The arbitrage Scholes envisions is fundamental in
finance theory: buy the underpriced stock and simul-
taneously short a perfect substitute or do the opposite
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In textbook theory, de-
mand curves for stocks
are kept flat by riskless
arbitrage between perfect
substitutes. In reality,
however, individual
stocks do not have per-
fect substitutes. We de-
velop a simple model of
demand curves for stocks
in which the risk inherent
in arbitrage between im-
perfect substitutes deters
risk-averse arbitrageurs
from flattening demand
curves. Consistent with
the model, stocks without
close substitutes experi-
ence higher price jumps
upon inclusion into the
S&P 500 Index. The re-
sults suggest that arbi-
trage is weaker and mis-
pricing is likely to be
more frequent and more
severe among stocks
without close substitutes.
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when faced with an overpriced stock. The absence of such arbitrage oppor-
tunities leads to the arbitrage pricing theory, the capital asset pricing model,
net present value rules, and the Modigliani-Miller theorems. The argument is
appealing because the Scholes trade requires no net investment and earns an
instant and riskless profit from a portfolio that can be liquidated whenever
prices move back in line. The argument is powerful because competition
between Scholes arbitrageurs keeps demand curves for individual stocks flat
and therefore insulates stock prices from shifts in demand and supply unrelated
to fundamental value. The Scholes arbitrage is one of the most fundamental
mechanisms in the theory of efficient markets.

Is it really reasonable to think that arbitrage works so well? To lend some
empirical substance to the argument, one can point to the fact that between-
stock arbitrage is widely pursued by investment professionals. Barr Rosenberg,
D. E. Shaw, and Long-Term Capital (Spiro 1998) are well-known examples.
The U.S. Offshore Funds Directory(1999) lists many dozens of offshore hedge
funds that use “pairs trading” or “relative value trading” or “market neutral
long/short trading” as one of their principal equity investment strategies.1

Although there is undoubtedly some arbitrage activity in real stock markets,
it seems unlikely to work as effectively as the textbook theory suggests. One
big problem is that individual stocks do not, in practice, have perfect substi-
tutes. Would-be arbitrageurs who take positions in a mispriced stock and hedge
with opposite positions in imperfect substitutes must bear the “arbitrage risk”
that the two return streams do not cancel out.2 Risk averse arbitrageurs will
trade less aggressively if they must bear this arbitrage risk.

These contrasting observations motivate the need for a closer examination
of the argument for flat demand curves for stocks. In this article, we start
with a simple model of demand curves for stocks that captures the theoretical
role of arbitrage and shows its limits. We then test some predictions of this
model using the cross section of price responses of stocks added to the Stan-
dard and Poor’s 500 Index.

The model considers two groups of investors, arbitrageurs and nonarbitra-
geurs. Arbitrageurs differ from nonarbitrageurs in two ways: they hold zero-
net-investment portfolios (“arbitrage portfolios” that require no capital up
front), and they have correct beliefs about the long-run fundamental value of
stocks. Arbitrageurs are assumed to be undiversified and thus averse to the
arbitrage risk associated with pairs trades between imperfect substitutes. We
horizontally sum the arbitrageurs’ and nonarbitrageurs’ demand curves to get
an aggregate demand curve. This curve’s slope depends on four factors in
intuitive directions. It is flatter when (i) the stock has closer substitutes (less
arbitrage risk), (ii) the risk aversion of arbitrageurs is lower, (iii) the heter-

1. Gatev, Goetzmann, and Rouwenhorst (2000) examine the investment appeal of relative value
trading strategies. Richards (2000) studies the risk of these strategies.

2. Jensen (1994, p. 50) calls this notion of arbitrage “risk arbitrage”: “Arbitrage in the financial
markets, more accurately known as risk arbitrage because it does not usually involve the si-
multaneous purchase and sale of the sameitem” (emphasis by the author).
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ogeneity of nonarbitrageurs’ beliefs is lower, and (iv) the number of arbitra-
geurs is higher. In various limiting cases, arbitrage completely flattens the
demand curve.

This model makes the straightforward prediction that the price response to
an excess demand shock increases with the shock’s size and the stock’s ar-
bitrage risk. We test this using the cross section of price responses of stocks
added to the S&P 500 Index. Upon addition to the index, stocks are bought
heavily by index funds that track the index. Since a stock is added to the
index only when another stock must be dropped (usually because of merger,
takeover, or bankruptcy), the sudden surge in index fund demand for the added
stock is arguably an exogenous demand shock. We focus on additions made
between 1976 and September 1989, since, more recently, index changes are
preannounced. This causes a serious confounding effect since arbitrageurs will
very likely prefer front-running the index funds (between the announcement
date and the effective date) over the Scholes arbitrage trade (Beneish and
Whaley 1996; Ip 1998).

Harris and Gurel (1986) and Shleifer (1986) report that added stocks’ prices
jump an average of 3% on the day of the change. Shleifer argues that the
result reflects downward-sloping demand curves. Other explanations have
been suggested. Perhaps S&P 500 addition really does reflect good news about
the prospects of the company, despite S&P’s claims to the contrary.3 But this
does not explain why the addition effect has grown strongly over time, parallel
to the growth in index funds. Another possible explanation of the addition
effect is that the price response capitalizes a reduction in future trading costs
because of the liquidity associated with institutional buyers. However, Beneish
and Whaley (1996) find that bid-ask spreads are not permanently reduced
following S&P 500 addition. Kaul, Mehrotra, and Morck (2000) also find no
permanent reduction in bid-ask spreads in their Toronto Stock Exchange 300
index-reweighting experiment. In addition, since index funds buy and hold,
they reduce the public float. This reduces, not increases, liquidity.

For each stock added to the S&P 500, we measure the size of the index
fund demand shock and the stock’s arbitrage risk. Index fund size data is
from Standard and Poor’s. Arbitrage risk is measured as the historical variance
of a zero-net-investment portfolio that holds $1 long (equivalently, short) in
the added stock and $1 short (equivalently, long) in a portfolio of substitutes.
This intuitive measure of arbitrage risk falls out of the model.

The main empirical results are as follows. First, individual stocks do not
have perfect substitutes. While this is obvious in general, it is surprising how
hard it is to find even reasonably close substitutes. For our median stock, we
are not able to find substitutes that could hedge away even a quarter of the

3. Standard and Poor’s press releases announcing index changes carry the boilerplate note:
“Company additions to and deletions from S&P equity indexes do not in any way reflect an
opinion on the investment merits of the company.”
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stock’s daily return variance.4 Second, as predicted by the model, high-ar-
bitrage risk stocks do indeed experience higher price jumps, controlling for
demand shock size. Third, again as predicted, stocks hit by especially large
index fund demand shocks also experience higher price jumps, controlling
for arbitrage risk. Finally, our regressions provide some numerical estimates
of the slopes of stocks’ demand curves. Our elasticity estimates from the S&P
500 addition context are in the range of previous estimates. For reference, we
provide a summary of our own and previous elasticity estimates in a table.

Our results are consistent with the hypothesis that risk prevents arbitrage
from completely flattening demand curves for stocks. The results suggest that
typical between-stock arbitrage trades are too risky to be worth a couple of
percentage points, which is what arbitrageurs stand to gain from reversion of
the average S&P effect in our sample. However, the arbitrage argument does
explain some of the cross section: stocks that have closer substitutes have
flatter demand curves.

The long-run effect of S&P 500 additions also bears on our model. Un-
fortunately, the exercise of measuring long-run returns is hampered by the
lack of agreement on how to adjust for risk, a small sample, and the variability
of cumulative abnormal returns. Shleifer (1986), Dhillon and Johnson (1991),
Beneish and Whaley (1996), and Lynch and Mendenhall (1997) find that the
price jumps partially revert (to varying degrees) but have a substantial per-
manent component (where permanent is taken to mean not reversing, on
average, within a few months), while Harris and Gurel (1986) find that the
effect completely reverts within a short 2 weeks. We have been able to verify
prior results but, given no generally accepted way to adjust for risk, we do
not investigate the long-run effect issue anew. All prior authors agree that at
least a portion of the effect reverts in the long run. In our model, this is the
return that attracts arbitrageurs in the first place.

Arbitrage risk may shed light on a number of studies that suggest demand
curves for stocks slope downward. Kaul et al. (2000) document price changes
following a reweighting of the Toronto Stock Exchange 300 Index. Asquith
and Mullins (1986) document negative announcement returns for primary
equity offerings, and more negative returns for larger offerings. Analogous
results are found by Bradley, Desai, and Kim (1988) for tender offers; Hol-
thausen, Leftwich, and Mayers (1990) for buyer-initiated block trades; and
Loderer, Cooney, and Van Drunen (1991) for primary offerings by regulated
firms. To the extent that these results cannot be explained by new information
or changes in liquidity, they are inconsistent with the textbook assumption of
flat demand curves. Between-stock arbitrage trades would be possible in all

4. This agrees with Roll (1988). He finds that, across stocks, the average for daily returns2R
is about .20, controlling for other stocks’ returns, fundamental factors, or industry or market
returns.
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of these settings, and our results suggest that a closer study of the risks of
such arbitrage may help to explain the cross section of these results.

More generally, the results suggest that arbitrage risk can be added to a
growing list of forces that inhibit market efficiency. This list includes infor-
mational and transaction costs (Stoll 2000), heterogeneous beliefs about fun-
damental value (Bagwell 1992), noise trader sentiment risk (De Long et al.
1990), short-sales constraints (Chen, Hong, and Stein 2002), and agency costs
in delegated fund management (Shleifer and Vishny 1997).

As any of these constraints on arbitrage bind more strongly, mispricings
become more likely and more severe. For example, our results suggest that
high-arbitrage risk stocks have steeper demand curves. This means that such
stocks would be particularly likely to exhibit anomalies driven by uninformed
changes in supply and demand. Some initial support for this broader conjecture
comes from our finding that small stocks are, in general, riskier to arbitrage
than large stocks. As Loughran and Ritter (2000, p. 363) observe, “just about
every known stock market pattern is stronger for small firms than for large
firms.”

This article proceeds as follows. In Section II, we present a simple model
in which risk deters arbitrageurs from flattening aggregate demand curves. In
Section III, we look at the arbitrage risk of stocks added to the S&P 500 and
regression results that suggest that arbitrage risk affects the slope of demand
curves. Section IV concludes.

II. A Model of Demand Curves for Stocks

The model consists of two types of investors, arbitrageurs and nonarbitrageurs.
They differ in two dimensions. First, arbitrageurs have correct and homo-
geneous beliefs about the fundamental value of all assets, while nonarbitra-
geurs have heterogeneous beliefs. Second, arbitrageurs are subject to a zero-
net-investment constraint. This is a defining property of real Wall Street
arbitrage strategies such as pairs trading or relative value trading. In this section
we model their respective demand curves and horizontally sum them to derive
the aggregate demand curve. Then we invert the aggregate demand curve to
show the determinants of an asset’s price response to a demand shock.

A. Demand Curves of Arbitrageurs

Consider a market of n risky assets, purchased at and sold att p 0 t p 1.
Returns are distributed normally. For some reason, left˜ ˜R p (P /P ) � 1i i1 i0

exogenous for now, asset j is mispriced—it has an expected return of R̄ (j

, while other assets have expected returns of zero. The risk-averse arbitrageur0
is lured into the market by this mispricing.

Because textbook arbitrage requires no initial outlay, we model the arbi-
trageur subject to an initial wealth constraint of $0. The arbitrageur has ex-
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ponential utility with constant absolute risk aversion k. It is not difficult to
show that these assumptions imply a mean-variance objective and the follow-
ing dollar excess demand for asset j:

R̄jax p , (1)j kAj

where

¯ ¯A { min Var (R � R x), (2)�j j i i
i(jx : i(ji

subject to

x p �1.� i
i(j

This solution is intuitive. The arbitrageur faces a mean-variance objective.
Holdings of asset j alone determine the expected return of the portfolio, since
only it has nonzero expected return. Given the commitment $ , all otheraxj

assets are held to minimize the overall risk of the portfolio, subject only to
the zero-net-investment constraint. Quantity is asset j’s “arbitrage risk.” ItAj

is the variance of the minimum variance portfolio, which is long $1 in asset
j and short, on net, $1 in other assets.5 For example, if asset j has a perfect
substitute, is zero. If the expected return on asset j is positive (negative),Aj

the arbitrageur invests $ long (short) in asset j and $ short (long) acrossa ax xj j

other assets to minimize the total risk of the portfolio. The arbitrageur takes
a small position when the potential gains are small, his risk-aversion is high,
and substitutes are hard to find.

It is useful to visualize the solution as a downward-sloping demand curve.
Denote Under the approximation that equation∗ ∗¯P p E[P ]. R ≈ 1 � (P/P ),j j1 j j j

(1) indicates that the arbitrageur’s excess demand curve has an intercept of
1 and a slope of in space. As is intuitive, if risk aversion is∗�kA (x, P/P )j j j

zero or the asset has perfect substitutes, the demand curve is infinitely elastic
and perfectly flat.

B. Demand Curves of Nonarbitrageurs

To define the excess demand of nonarbitrageurs, we propose the specification

R̄jnax p , (3)j hj

5. Note the distinction between arbitrage risk, idiosyncratic risk, and nondiversifiable risk.
Idiosyncratic risk is usually associated with the error term in asset pricing models. Nondiver-
sifiable risk is closer, but arbitrage imposes the constraint that the hedge position be equal and
opposite the position in the mispriced asset (zero-net investment). Therefore, arbitrage risk is
weakly greater than nondiversifiable risk.
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where is simply a parameter that indexes the heterogeneity of nonarbitra-hj

geurs’ beliefs about asset j’s fundamental value . With homogeneous beliefs∗Pj

(small ), the excess demand curve of nonarbitrageurs is flat. But if there ishj

wide heterogeneity of beliefs, large changes in price (and large expected
returns) are required to induce marginal nonarbitrageurs to modify their de-
mands. Heterogeneity of beliefs about value is convincingly demonstrated by
Bagwell (1992) and Kandel, Sarig, and Wohl (1999).

Assuming that nonarbitrageurs’ excess demand is zero at the fundamental
price, then, using the return approximation as above, their excess demand
curve has an intercept of 1 and a slope of in space.∗�h (x, P/P )j j j

C. The Aggregate Demand Curve and the Mispricing Induced by a
Demand Shock

The aggregate excess demand curve is the horizontal sum .agg a nax p x � xj j j

Using the previous results, one can easily show that the aggregate curve is
approximately

aggP xj j
p 1 � . (4)∗ 1 1P �j kA hj j

If there are N identical arbitrageurs instead of just one, symmetry implies that
replaces in equation (4). Under the assumptions made above, theN/kA 1/kAj j

aggregate demand curve has an intercept of 1 and a slope of �1/[(N/kA ) �j

in space.∗(1/h )] (x, P/P )j j j

With this model of the aggregate demand curve, it is simple to see how
price responds to excess demand shocks. Suppose that a sudden demand shock
of $S hits asset j at time between and and the shock ist p s, t p 0 t p 1,
exogenous in the sense that it contains no fundamental news about asset j.
For example, the sudden index fund demand following a stock’s inclusion
into the S&P 500 Index reflects the charter of index funds, not new information
about fundamental value. Both arbitrageurs and nonarbitrageurs help to ac-
commodate this shock: . Assuming that asset j wasagg a nax p x � x p �Sjs js js

initially correctly priced at time 0, that is, that we can plug∗P p P p E[P ],j0 j j1

this demand into (4) to show that the excess return to a demand shock of $S
is simply

P Sjs
� 1 ≈ . (5)

N 1P �j0 kA hj j

Special cases illustrate the comparative statics. When the asset has perfect
substitutes ( is zero), arbitrageurs completely flatten the aggregate demandAj

curve, so shocks are absorbed without any price change. This also happens
when there are infinitely many arbitrageurs or when the arbitrageurs are risk
neutral. The presumed existence of infinitely many small and locally risk-
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neutral arbitrageurs is the traditional fallback argument for market perfection
and efficiency even when arbitrage is risky.6 (It is useful to think of asN/k
the aggregate risk-bearing capacity of arbitrageurs. This capacity is infinite
when there are infinitely many of them or when any of them are risk neutral.)
Otherwise, if the available substitutes are imperfect, there are few and risk-
averse arbitrageurs, and nonarbitrageurs disagree about the fundamental value
of the asset, the aggregate demand curve slopes significantly, and the price
response to an excess demand shock is large. A final interesting case is infinite

. In this case, arbitrageurs are functionally similar to the market makershj

modeled by Grossman and Miller (1988). One can verify that these qualitative
features of the price response do not depend on the approximation we used
to derive equation (5).

A more general remark is in order at this point. Most financial economists
have a strong intuition that idiosyncratic risk such as arbitrage risk is irrelevant
because it can be diversified away. There are a few reasons to question the
hasty application of this intuition in all settings.

First, as a practical matter, arbitrageurs are often not fully diversified. The
dramatic experience of Long-Term Capital in the fall of 1998 is sufficient to
prove this point: the fund’s failure can ultimately be traced to an unfortunate
position on Russian debt. By definition, a well-diversified fund could not fail
because of a single position. More generally, real arbitrageurs tend to have
specialized knowledge that identifies a small number of good bets at one time,
and they spread their limited capital and risk-bearing capacity across a small
number of positions (Shleifer and Vishny 1997). The assumption that arbi-
trageurs are, in general, averse to idiosyncratic risk is clearly an abstraction
but one that does not seem irrelevant in real financial markets.7

Second, as a theoretical matter, there is simply no opportunity to diversify
across S&P 500 additions or similar events that occur infrequently over time.
There is only one change to the S&P 500 every few weeks, on average, so
arbitrageurs cannot hold positions in these mispricings all at once. We develop
this point in the conclusion.

III. An Empirical Test Using S&P 500 Additions

One prediction of the model in Section II is that high-arbitrage-risk stocks
have steeper aggregate demand curves than low-arbitrage-risk stocks, other
things equal. An ideal test of this prediction would select two stocks which
differ in their risk levels but are similar in other respects, subject them to
identical informationless excess demand shocks, and compare their price re-

6. Shleifer and Vishny (1997) argue that N is effectively small in reality.
7. Green and Rydqvist (1997) find that idiosyncratic risk plays a role in the pricing of Swedish

government lottery bonds.



Demand Curves 591

sponses. The stock with the higher arbitrage risk should have a larger price
response if its demand curve is indeed steeper.

This section presents empirical tests based on this intuition. We consider
the price responses of stocks added to the S&P 500 Composite Index. Upon
inclusion into the index, stocks are bought heavily by numerous index funds
that track the index. These funds have an incentive to minimize tracking error
by buying as soon as the changes are made effective. Since a stock is added
to the index only when another stock must be dropped, usually because of
merger, takeover, or bankruptcy, the sudden surge in index fund demand for
the added stock arguably represents an exogenous demand shock.

Since the supply curve of the stock is fixed and vertical over the relevant
horizon, the size of the price jump following this demand shock is determined
by the slope of the stock’s aggregate demand curve and the size of its shift.
If arbitrage risk is a limiting factor in the slope of demand curves, we should
find that this jump is differentially larger for high-arbitrage-risk stocks, con-
trolling for shock size. Note that we do not evaluate a trading strategy. Our
model predicts that the equilibrium price response to a demand shock depends
on the risk of a particular zero-net-investment trading strategy.

Although equation (5) applies to negative shocks and positive shocks, we
do not examine index deletions, since they usually happen during periods of
very intensive confounding news—usually merger, takeover, or bankruptcy.
Goetzmann and Garry (1986), Harris and Gurel (1986), and Lynch and Men-
denhall (1997) study small, carefully screened samples of index deletions.

Our tests require measures of arbitrage risk and shock size for each addition
event. To measure arbitrage risk, the model suggests that we use the variance
of the portfolio that holds long $1 of the stock and short $1 in a portfolio of
close substitutes. In the S&P 500 addition setting, it is natural to think of
shorting the added stock and going long in substitutes, but of course

We consider two different methods of iden-Var (R � R ) p Var (R � R ).i j j i

tifying substitutes and characterize the resulting arbitrage risk measures.
To measure shock size, we rely on Standard and Poor’s own estimates of

the cumulative size of all funds indexed to the S&P 500. Given these estimates,
the fact that the S&P 500 is a value-weighted index, the aggregate capitali-
zation of the S&P 500, and the capitalization of the added stock, we can
estimate the dollar value of the index fund demand shock to each added stock.
We also measure demand shock size as the percent shock (in terms of the
added firm’s capitalization).

We first describe our addition event sample. Next we detail the construction
of variables and present summary statistics. Then we show regressions of the
determinants of event day returns and some figures that show that most of
the influence of arbitrage risk and shock size on event returns lasts at least
20 trading days, but beyond that it is difficult to make meaningful inferences.
We close with some numerical estimates of the slopes of demand curves for
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stocks implicit in the regression results and compare them with a range of
previously published estimates.

A. S&P 500 Index Addition Sample

We consider S&P 500 Index additions between September 22, 1976, and
September 30, 1989. Standard and Poor’s did not record announcement dates
prior to this starting date. Starting in October 1989, Standard and Poor’s began
to preannounce index changes several days before they were effective. Thus,
in the earlier period there is a single “event day” in which the change was
announced and immediately made effective.8 Our setting represents the
cleanest experiment in which to study the Scholes argument that we have
found.

There were 278 index changes announced between September 22, 1976,
and September 30, 1989. Among the added stocks, we drop 18 due to missing
data (event-day returns or historical returns needed to compute arbitrage risk
measures) and one due to outlying event day returns.9 Raw event day returns
for the remaining 259 stocks in this subsample average 3.29% (SD p

) and returns over the market average 3.16% ( %). These2.32% SD p 2.29
summary statistics are similar to those reported by previous authors. Negative
event day returns are particularly rare in the last years of our sample, pre-
sumably reflecting the effect of larger demand shocks by growing index funds.

B. Variables

The measurable right-hand-side variables in equation (5) are arbitrage risk A
and demand shock size S. We first discuss arbitrage risk. Definition (2) implies
that arbitrageurs consider all available assets as potential substitutes. However,
solving for optimal zero-net-investment portfolio weights on each of thousands
of assets for each of 259 stocks is too difficult both for us and for D. E. Shaw.
Indeed, the transaction costs of hedging with many distinct assets would be
prohibitively high. The first task is to select an appropriately restricted set of
potential substitutes. To avoid focusing on the wrong substitutes, we construct
both a simple and more detailed measure under alternative assumptions about
the universe of potential substitutes considered by arbitrageurs. The substitutes
we consider are (1) the market portfolio and (2) three stocks that match the
subject stock on industry and as closely as possible on size and book-to-

8. More precisely, index change announcements are made after the market close, so the event
day is the next trading day.

9. Marion Laboratories, added May 4, 1988, fell over 13.4% on the event day amid the
announcement that a rival drug company was going to produce a generic version of its biggest-
selling product. The next poorest event-day performance out of 259 other events was a drop of
2.5%. We exclude Marion Laboratories to prevent it from dominating the regression results.
Median regressions that include this data point yield virtually identical results to the OLS re-
gressions we report.
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market. We denote the resulting arbitrage risk measures and ,A A1 2

respectively.10

To illustrate our procedure, we describe how we estimate for Church’sA2

Fried Chicken. Church’s was added to the S&P 500 Index on November 16,
1977, and deleted March 1, 1989, following its acquisition. We place all Center
for Research in Security Prices (CRSP) stocks in Church’s Fama and French
(1997) industry as of November 1977 into quintiles by the absolute value of
the difference between their market capitalizations and Church’s market cap-
italization and also by the difference between their book-to-market ratios and
Church’s book-to-market ratio. We sort these stocks by market capitalization
difference quintile and then by book-to-market difference quintile. We then
select the three stocks at the top of this sort. To break ties among stocks with
the same values for both quintiles, we select the one with the smallest absolute
difference in capitalization. This procedure selects Wendy’s, Morrison Res-
taurants (now Ruby Tuesday), and Friendly’s as industry-, size-, and book-
to-market-matched substitutes for Church’s Fried Chicken in November 1977.

The final step is to determine the variance of the zero-net-investment port-
folio long $1 in Church’s and short a net of $1 across these three substitute
stocks, where the short position is set to minimize the variance of the overall
position. We could regress Church’s historical returns on those of the three
substitutes, constrain the sum of the three slope coefficients to equal unity,
and call the residual variance . This is essentially what we do, exceptA2Church’s

we consider excess returns. We specify Church’s excess returns as a com-
bination of the excess returns of Church’s substitutes. The benefit of this is
that we need not constrain the sum of the slope coefficients in order to maintain
a zero-net-investment. To illustrate, consider our final model for Church’s
excess returns, estimated using daily data over the calendar day [�365, �20]
preevent window:

(R � R ) p .108(R � R )Church’s, t ft Wendy’s, t ft

� .259(R � R ) � .109(R � R ).Morrison, t ft Friendly’s, t ft

The implied arbitrage strategy is for every $1 long in Church’s, to short $1
in T-bills, short $.108 in Wendy’s, long $.108 more in T-bills, short $.259 in
Morrison, long $.259 more in T-bills, short $.109 in Friendly’s, and long $.109
more in T-bills. Then is the residual variance of this portfolio.11 WeA2Church’s

10. Why do we not consider hedging with options? It is possible to hedge the short stock
position perfectly with a combination of a put, a call, and a bond. However, if put-call parity
holds, the stock and the options will be similarly mispriced, and one cannot profit from the
fundamental mispricing. If put-call parity does not hold, there is a much larger inefficiency at
hand. Put differently, hedging a long position in a stock using the stock’s own options is akin
to being simultaneously long and short the same share. The position that results is indeed riskless,
but it also contains no profit opportunity.

11. The model does not identify the arbitrageur’s investment horizon. Our procedure implicitly
uses a daily measure, which is surely much too short. In general, however, stocks that are hard
to hedge at daily frequencies are also hard to hedge at longer frequencies, so the cross-sectional
ranking is preserved.
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TABLE 1 The Arbitrage Risk of Stocks Added to the S&P 500 Index

Mean SD Minimum Median Maximum

A1i .000372 .000255 .000033 .000311 .002219
A2i .000409 .000275 .000034 .000334 .002277
Var (R )it .000469 .000318 .000039 .000379 .002374
Var (R � R )it ft .000468 .000314 .000039 .000379 .002375
E1i .000098 .000112 �.000006 .000050 .000791
E2i .000061 .000089 �.000004 .000027 .000726
E / Var (R � R )1i it ft .183 .116 �.011 .151 .585
E / Var (R � R )2i it ft .109 .103 �.016 .078 .471

Note.—The sample includes 259 stocks added to the S&P 500 Index between September 1976 and September
1989. We construct two stock-specific arbitrage-risk measures. Both models were estimated with daily returns over
a [�365, �20] calendar day window. Arbitrage-risk measure is the variance of the residuals of the modelA1i

where is the return on CRSP’s value-weighted AMEX/NASDAQ/NYSE index andR �R p b (R �R ), Rit ft 1i mt ft mt

is the T-bill return. Daily values for were approximated with appropriate roots of the corresponding monthlyR Rft ft

return. Measure is the residual variance of whereA R �R p b (R �R ) �b (R �R ) �b (R �R ),2i it ft 1i sub1it ft 2i sub2it ft 3i sub3it ft

, , and denote returns on three industry-, size-, and book-to-market-matched “substitute” stocks.R R Rsub1it sub2it sub3it

We use the Fama and French (1997) industry classifications to match on industry. See text for details of the
substitute selection procedure. and are estimated over the same interval as the arbitrage-Var (R ) Var (R �R )it it ft

risk measures. is the “explained” variance . is defined analogously.E Var(R �R ) �A E1i it ft 1i 2i

compute and similarly for each of the 259 stocks in the sample. ThisA A1 2

procedure is very similar to that used by Pontiff (1996). Pontiff selects 10
open-end funds as the universe of potential substitutes for the closed-end
funds in his sample.

Table 1 reviews the estimation procedures and gives summary statistics.
For reference, we compute summary statistics for the total variance of added
stocks’ excess returns. We also compute the absolute amount and the fraction
of total variance explained by substitutes’ returns.12

The general message in table 1 is that individual stocks do not have perfect
substitutes. Risk measures and are similar in magnitude, highly cor-A A1 2

related (about .98), and on the same order of magnitude as the risk faced by
not hedging at all The last four rows of the table indicate that[Var (R )].it

good substitutes can reduce the variance of speculative returns by one-fifth
for typical stocks and by up to three-fifths for a very few stocks. But for
some stocks, hedging is essentially impossible. They have no decent substi-
tutes. Short-sellers of these stocks may as well hold a risk-free asset rather
than search for substitutes. These results agree with Roll (1988): for daily
returns, the average is around .20 for his best-fitting models.2R

Stocks with good substitutes include American Barrick Resources (substi-
tutes include other gold mining companies) and Standard Oil (other oil com-
panies). In general, small stocks tend to have higher arbitrage risk than large
stocks. In our sample, the correlation between log (market value) and A is
negative and very highly significant.

Index fund demand shock size, S, is easier to measure. Since the S&P 500

12. The zero-net-investment portfolio models do not include a constant (it has no interpretation),
so it is not identically true that total variance can be decomposed into residual variance (arbitrage
risk) and explained variance. This accounts for the negative values we occasionally obtain for
the latter.
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TABLE 2 The Demand Shock to Stocks Added to the S&P 500 Index
(Selected Years)

1976 1980 1984 1988 1992 1996

S&P 500–tracking index
fund capitalization
($ billion)* 19 35 68 135 255 475

S&P 500 total capitaliza-
tion ($ billion) 662 926 1,217 1,897 3,015 5,626

Size of demand shock as:
% of market

capitalization 2.9 3.8 5.6 7.1 8.5 8.4
Dollar value (median;

$ million)† 11 31 42 96 183 418

Note.—All values are end-of-year, and all monetary values are in current dollars. S&P 500–tracking index
fund capitalization is an estimate of the aggregate capitalization of all public and private funds indexed to the S&P
500. S&P 500 total capitalization is the aggregate market capitalization of all 500 firms in the index at the end
of the given year. Data for these two items were provided by Standard and Poor’s Index Services. The percentage
of a newly added firm’s capitalization demanded by index funds is the ratio of S&P 500 index fund capitalization
to S&P 500 total capitalization. The reported dollar value demand shock is the median shock over all firms in our
sample that were added that year.

* Standard and Poor’s had estimates available only for years 1985 through 1997. The values for earlier years
were estimated by fitting an exponential curve through the 1985–1997 data, which fits with an of .97.2R

† Due to data availability, the 1976 value applies to firms added to the index between September 22, 1976,
and December 31, 1976, and the 1996 value applies to firms added between January 1, 1996, and May 21, 1996.

is a value-weighted index, the ratio of total S&P 500-indexed assets to total
S&P 500 capitalization identifies the percentage of each included firm that is
demanded by index funds. Table 2 summarizes the growth of index funds
over the period 1976–96, based on estimates provided by Standard and Poor’s
Index Services. By these estimates, index funds grew 2,400% between 1976
and 1996, increasing from $19 billion to $475 billion. Over the same period,
the total capitalization of the S&P 500 grew by 750%, from $662 billion to
$5,626 billion. Thus the percentage of an added firm’s capitalization demanded
by index funds has grown strongly, from about 3% in 1976 to more than 8%
in 1996.13

The fourth row of table 2 calculates the size of the demand shock, in current
millions of dollars, for the year’s median-size addition. It is simply the median
dollar value of the percentage shocks reported in row 3. This variable varies
across firms within a year, in contrast to the percentage shock variable, which
varies only across years.14 For purposes of comparison, we gather data from
1992 and 1996 for this row.

13. The results of Blume and Edelen (2001) suggest that a better measure of the effective
demand shock is the index demand relative to the public float, not relative to the total shares
outstanding. Unfortunately, we are not aware of an electronic source for insider holdings that
covers our sample period.

14. In practice, some index funds may wait for a few days or even until the end of the month
to rebalance. The validity of our assumption—that the full shock is satisfied immediately—requires
that arbitrageurs be able to calculate the demand they will ultimately need to satisfy. Competition
among these arbitrageurs ensures that the impact of the full demand shock will be reflected at
announcement.
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C. Empirical Results

Equation (5) predicts that event returns should be increasing in arbitrage risk
and shock size. Table 3 reports ordinary least squares (OLS) estimates of
models of announcement day returns. Specifications 1 and 2 show that ar-
bitrage risk and demand shock size are both positively and significantly related
to event returns. Given their very high correlation with each other (above
.98), it is not surprising that the arbitrage risk measures and have similarA A1 2

explanatory power. Specification 3 illustrates that the demand shock measured
in percentage terms is also strongly related to event returns. These results
broadly confirm two qualitative predictions of our model. Announcement day
returns are significantly higher for stocks without close substitutes and for
stocks hit by large index fund demand shocks.

The model also predicts that event day returns ought not respond to the
component of risk that can be hedged away, only to the arbitrage risk com-
ponent. Specification 4 tests this prediction. The explained component of risk
is not significantly related to event returns. These results are similar to results
in Pontiff (1996), in which the cross section of average closed-end fund
discounts depends only on the unhedgeable component of closed-end fund
risk.

Specification 5 considers the possibility that the arbitrage risk coefficient
is biased because it is correlated with the omitted variable h.One could imagine
an extreme inefficient market model in which arbitrage is completely unim-
portant, so the aggregate demand curve is determined entirely by the heter-
ogeneity of nonarbitrageurs’ beliefs. To test this interpretation, we proxied
for the heterogeneity of investor beliefs using the heterogeneity of analysts’
earnings forecasts from I/B/E/S. We measured analyst dispersionas the stan-
dard deviation of analysts’ forecasts for one-year-ahead earnings per share
(EPS), divided by the mean estimate. We exclude stocks that have fewer than
five such estimates as of the event date. Specification 5 reports that this proxy
for h is not strongly related to event returns, and controlling for it does not
diminish the coefficient on arbitrage risk. However, consistent with this hy-
pothesis’s premise that arbitrage risk is correlated with h, we do find a sig-
nificant positive correlation of .138 between arbitrage risk and the hetero-
geneity of earnings forecasts. We find similar results for a specification that
measures analyst dispersionas the standard deviation of analysts’ forecasts
for one-year-ahead EPS, divided by the stock price (not reported). It seems
likely that the weak effect of analyst dispersionis due to its theoretically
ambiguous relationship to true heterogeneity h. That is, one can imagine that
career concerns cause analysts to give similar forecasts for precisely those
stocks in which true heterogeneity and uncertainty is high. The results of
Bagwell (1992) and Kandel et al. (1999) demonstrate that heterogeneity does
affect the slopes of demand curves in situations where heterogeneity can be
measured.

Equation (5) of the model predicts that arbitrage risk and shock size do
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TABLE 3 The Effects of Arbitrage Risk and Demand Shock Size on S&P 500 Addition Event Returns

(1) (2) (3) (4) (5) (6) (7) (8)

Constant .023** .023** �.002 �.002 .002 .027** .023** .024**
(.003) (.003) (.006) (.006) (.007) (.002) (.002) (.003)

A1i 16.234** 16.294** 14.131* 16.746*
(5.953) (5.834) (6.518) (7.038)

A2i 14.257*
(5.761)

E1i 11.395
(16.360)

Analyst dispersioni �.006
(.015)

Shock mili .000043* .000043*
(.000021) (.000021)

Shock pcti .00509** .00496** .00428**
(.00105) (.00103) (.00126)

# Shock miliA1i .206**
(.070)

# Shock pctiA1i 4.081** 3.901**
(1.112) (1.320)

Analyst dispersioni

# Shock pcti �.00056
(.00060)

2̄R .039 .036 .102 .104 .080 .037 .061 .060
N 259 259 259 259 177 259 259 177

Note.—This table presents OLS models of S&P 500 Index addition announcement day returns. The dependent variable is the excess return over the market The sample includes 259(R �R ).it mt

stocks added to the S&P 500 between September 1976 and September 1989, or as limited by data. The construction and summary statistics of arbitrage risk A and explained risk E are summarized
in table 1. Analyst dispersioni is the standard deviation of analysts’ forecasts for 1-year-ahead earnings per share, divided by the mean estimate, for stocks that have such estimates outstanding by
at least five analysts at the time of the addition ( , , , ). Shock mili is the dollar value of S&P 500 index fund demand, in millions of current dollarsmean p .094 median p .060 SD p .118 N p 177
( [million], [million], [million], ). Shock pcti is the percentage of the added firm’s capitalization demanded by index fundssample mean p $64 median p $51 SD p $64 N p 259
( , , , ). Heteroskedasticity-robust standard errors are in parentheses.sample mean p 5.0 median p 5.4 SD p 1.3 N p 259

* Significant at the 5% level.
** Significant at the 1% level.
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not enter linearly. In particular, when the demands of nonarbitrageurs are
relatively inelastic (h is high), nonarbitrageurs do not supply much stock to
index funds. Only arbitrageurs will be willing to satisfy the demand shock.
In this case, the interaction of arbitrage risk and shock size is what best explains
event returns. Specifications 6, 7, and 8 confirm that the interaction of arbitrage
risk and shock size is a strong explanatory variable of event returns.

One potential challenge to our interpretation of these results is an imperfect
indexing effect: if indexers minimize tracking error but face transaction costs,
then all else (such as shock size) equal, they will prefer to add the stocks that
are less correlated with other securities. In this case arbitrage risk could pick
up some of the unmeasured component of actual shock size. From what
evidence we could gather, this does not appear to be a compelling hypothesis.
Announcement day volume, relative to historical average volume or as a
percent of dollar shock size, is not differentially higher for high-arbitrage-
risk stocks (not reported). In addition, it seems possible, if not very likely,
that the loss of fund inflows due to increased tracking error far outweighs the
transaction costs saved by imperfect indexing, so indexing funds—at least
those that solicit outside investors—have incentives to index as perfectly as
they can.

Taken as a whole, the results indicate that arbitrage fails to flatten demand
curves for stocks and that this happens in part because perfect substitutes are
not available. On the other hand, we note that several specifications include
a constant term of 2%. In addition, the explanatory power of our regressions
is not high, though this is not unusual for studies that try to explain a cross
section of daily returns. It is unclear whether these shortcomings reflect the
fact that our regression model is misspecified (vs. eq. [5]), that we are ignoring
other important effects, or that the noise component of event day returns
dominates the signal and even a perfect structural model would be unable to
explain much more of the sample variation.

We perform two additional exercises to shed light on the economic sig-
nificance of the results. First, we plot mean cumulative abnormal returns for
added stocks to examine whether the event day effects are quickly reverting
or not. This addresses the question of whether our results reflect temporary
price pressures or longer-run downward-sloping demand curves. Second, in
the next subsection we discuss the estimates of slopes of demand curves
implicit in our results and compare them with estimates from other sources.

Shleifer (1986), Dhillon and Johnson (1991), Beneish and Whaley (1996),
and Lynch and Mendenhall (1997) argue that the addition effect is at least
partially permanent, while Harris and Gurel (1986) use a different method-
ology under which the effect completely and quickly reverses. Our model
predicts that there will be at least some reverting component, to reward ar-
bitrageurs for accommodating the index funds’ demands by selling shares to
them. All prior research points to this conclusion.

Unfortunately, long-run inference is notoriously difficult. The signal com-
ponent of the average 3% abnormal return quickly becomes swamped by the
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noise added by new fundamental news within a few days after the addition.
To minimize the influence of extraneous factors on cumulative abnormal re-
turns and to perform inference as precisely as possible, we have cleaned the
sample by eliminating 68 addition events that occurred within 2 days of reports
of other fundamental news reported in NEXIS (which subsumes the Wall
Street Journal Index, for instance).15

Figure 1 plots mean cumulative abnormal returns for added stocks by shock
size. To control for the interactive effect with arbitrage risk, we exclude stocks
in the highest and lowest quartiles of the arbitrage-risk distribution from the
plot. Figure 1 confirms that larger shocks induce larger price responses, and
the average does not appear to reverse within 20 trading days. Given the
standard errors reported in the table, the two series are statistically different
on the announcement day (as is also clear from table 3), but the rapid growth
in the variance of cumulative returns causes the series to be statistically in-
distinguishable within 10 days. Indeed, after a few weeks, one cannot reject
the hypothesis that the effect has completely reversed.

Figure 2 plots mean cumulative abnormal returns for the added stocks, by
arbitrage risk. To control for the interactive effect with shock size, we exclude
stocks in the highest and lowest quartiles of the shock size distribution. Figure
2 confirms that high-arbitrage-risk stocks experience larger average price re-
sponses. These abnormal returns are not quickly mean reverting. As in figure
1, the mean returns are statistically different on the announcement day but
quickly become statistically indistinguishable from each other and from zero.
Similar figures result from using other arbitrage risk measures or from plotting
medians instead of means.16

Beyond 20 days, the direction that the mean cumulative abnormal return
estimate takes becomes more sensitive to methodology. Under most risk ad-
justments that we have tried, we find a partial reversion within several months,
which is consistent with prior literature. We do not report these estimates
since at least five other papers report similar results for essentially the same
sample.

It is important that a partial reversion is as consistent with the model as a
full reversion—either way arbitrageurs on average make a profit. Unfortu-
nately, the model cannot specify the horizon over which the reversion should
occur. Harris and Gurel suggest that full reversion takes place within 2 weeks,
while DeBondt and Thaler (1985) look for mean reversion over horizons of

15. Confounding news events include 37 reports about significant changes in investment practices
and prospects of the firm or its industry, including acquisitions, capital expenditures, new product
announcements, and price changes; 18 earnings announcements and earnings forecasts; six capital
structure news reports, including bond rating changes, dividend changes, and security issues; six
litigation news reports; and one report of executive turnover.

16. Figure 1 looks the same using the full, unclean sample. Figure 2 looks similar but, apparently
due to noise, the cumulative abnormal return (CAR) of the low-arbitrage-risk series jumps up at
day �5, while at the same time the CAR of the high-arbitrage-risk series jumps down, causing the
two plots to cross. Thus we caution the reader against depending too much on the plots beyond a
very few days after the event.
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Fig. 1.—Mean cumulative abnormal returns for stocks added to the S&P 500, by size of index fund demand shock. The sample includes 191 stocks
that were added to the S&P 500 between September 1976 and September 1989 and were not the subject of contemporaneously reported news. To
control for the level of arbitrage risk, we exclude stocks in the extreme two quartiles of the arbitrage-risk distribution (measure ). We split the remainingA1

96 stocks into above-median and below-median demand shock groups. Cumulative abnormal returns are calculated by summing returns over the CRSP
value-weighted market index. The standard error of the estimates in each series is approximately .40% at day 0, .90% at day �10, and 1.10% at day
�20.
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Fig. 2.—Mean cumulative abnormal returns for stocks added to the S&P 500, by level of arbitrage risk. The sample includes 191 stocks that were
added to the S&P 500 between September 1976 and September 1989 and were not the subject of contemporaneously reported news. To control for the
size of the index fund demand shock, we exclude stocks in the extreme two quartiles of the shock size distribution. We split the remaining 96 stocks
into above-median and below-median arbitrage-risk groups, using measure . Cumulative abnormal returns are calculated by summing returns overA1

the CRSP value-weighted market index. The standard error of the estimates in each series is approximately .40% at day 0, .80% at day �10, and 1.00%
at day �20.
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several years. We conclude that some reversion exists, but it takes longer than
the 10 days or so in which reliable inference in this sample is still possible.
In a sense, the fact that reversion is difficult to document precisely is consistent
with the model. If reversion were too quick and dependable, arbitrage would
be riskless and unlimited, and in equilibrium there would be no price effect
in the first place.

D. Elasticity Estimates

In this subsection, we discuss the slopes of aggregate demand curves implicit
in our regression results. The convention in prior literature is to focus on the
price elasticity of demand, that is, the percent change in demand per percent
increase in price. The model in this article, on the other hand, implies that
demand curves have constant semi-elasticities, that is, constant dollar changes
in demand per percent increases in price. Although we see no theoretical
reason why demand curves for stocks should be isoelastic, we will assume
that they are for the sake of comparing our results with prior estimates.

To be clear, the elasticity measure we are interested in is where(%Dx/%DP),
x can be taken as excess demand since supply curves for stocks are vertical.
Conveniently, this means the price elasticity of demand can be identified from
supply shocks—changes in total shares outstanding—as well as demand shocks.
In some cases, such as the index additions, it is easier to think about the demand
shock as a reduction in public float.

The perfect market benchmark is, of course, that the elasticity is negative
infinity. This is the perfectly flat demand curve. If a stock with an elasticity
of negative infinity is even a little overpriced (underpriced), investors will
want to sell short (buy) an infinite amount of it. The closest estimate to negative
infinity that we find is also the first estimate, made by Scholes (1972). Scholes
regresses the abnormal return at the announcement of a secondary distribution
of a large block on the size of the large block as a percent of the firm. Assuming
that any information associated with such an announcement is absorbed into
the constant term, the inverse of the coefficient on percent block size is the
elasticity of interest. This coefficient is close to zero (the regression itself has
an of .0004), leading Scholes to estimate an elasticity of �3,000. He2R
concludes that demand curves for stocks are essentially flat. Table 4 sum-
marizes this and other elasticity estimates for individual stocks.17 The estimates
are not always easy to find in the original papers (they are not always the
focus), so we also indicate the appropriate page number.

More recent elasticity estimates suggest that demand curves are much
steeper than Scholes’s estimate. Shleifer (1986) notes that the typical S&P
500 addition effect in his sample is around 3%. He also points out that, at
the time of the sample, index funds demanded about 3% of the newly added
stocks. If one attributes the entire addition effect to a shift in uninformed

17. Gompers and Metrick (2001) estimate the price elasticity of demand for the market portfolio
as a whole, using estimates of the elasticity of individual stocks as a crucial input.
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TABLE 4 Estimates of the Price Elasticity of Demand for Individual Stocks

Source Elasticity Estimate Sample

Scholes (1972, p. 195) �3,000 345 secondary distributions of large
blocks on NYSE between 1961
and 1965

Shleifer (1986, inferred) �1 246 additions to the S&P 500
between 1976 and 1983

Loderer, Cooney, and
Van Drunen (1991,
p. 640)

�11.12 (mean)
�4.31 (median)

409 announcements of equity issues
by regulated firms between 1969
and 1982

Bagwell (1992, p. 97) �1.65 31 Dutch auction repurchases be-
tween 1981 and 1988

Kandel, Sarig, and
Wohl (1999, p. 235)

�37.2 (mean)
�21.0 (median)

27 Israeli IPO auctions between 1993
and 1996

Kaul, Mehrotra, and
Morck (2000, p. 911)

�10.5 292 stocks affected by Toronto Stock
Exchange 300 index weights
change effective November 1996

The current article
(specification 8,
table 3)

�11.72 (at
twenty-fifth
percentile
arbitrage risk)

�8.24 (at median
arbitrage risk)

�5.57 (at sev-
enty-fifth
percentile
arbitrage risk)

177 additions to the S&P 500
between 1976 and 1989

Note.—This table reports estimates of the price elasticity of demand for individual stocks. The measure is the
percent change in demand associated with a 1% higher price. The perfect market benchmark is negative infinity.
In cases where the author uses a different definition, we transform the results to obtain comparable estimates. The
estimates are ordered by publication date. The page on which the relevant data is published is reported.

demand, as opposed to an information or liquidity change, these figures imply
an elasticity estimate of about �1. The results of Harris and Gurel (1986)
imply a similar estimate, but they put less emphasis on an explanation based
on sloping demand curves.

Loderer et al. (1991) estimate the price elasticity of demand from a sample
of announcements of primary offerings by regulated firms. These announce-
ment effects, the authors argue, are unlikely to be driven by adverse infor-
mation. Dividing the percent increase in supply due to the new shares by the
announcement effect (which is typically negative), they estimate a mean price
elasticity of demand of �11.12 and a median elasticity of �4.31. These
estimates, like Shleifer’s, attribute the entire price effect to the change in
excess demand. In additional analysis, Loderer et al. attempt to control for
the impact of adverse information directly and explore the cross section of
implied elasticities in more detail.

Bagwell (1992) studies a small sample of firms that conducted Dutch auction
share repurchases. She expresses her results from the perspective of the re-
purchasing firms, which essentially face upward-sloping supply curves for
repurchased shares. This is the reflection of downward-sloping demand curves
from the investors’ perspective. She finds that to repurchase 15% of outstand-
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ing stock in a Dutch auction, the median firm must offer a 9.1% premium.
This leads to a demand elasticity estimate of �1.65.

Kandel et al. (1999) study a sample of 27 Israeli IPOs that are conducted
as nondiscriminatory (uniform price) auctions. Their data allow them to com-
pletely trace out the demand schedule for these stocks. Around the auction’s
clearing price, they estimate the median firm’s elasticity as �21.0 and the
mean firm’s elasticity as �37.2. As it is not clear that Scholes-type arbitrageurs
would be able to enter bids in this auction, the relatively flat demand curve
estimates from this sample are somewhat more surprising.

Kaul et al. (2000) investigate the price effects of a definitional change in
the Toronto Stock Exchange 300 (TSE) index. This change produced changes
in demands by index funds that track the TSE. Similar to Scholes (above)
and us (below), they estimate an elasticity from the inverse of the slope
coefficient in regressions of individual securities’ price responses on the im-
plied percent changes in public float. Their elasticity estimate is �10.5. It is
interesting that, in this experiment, the effects of the reweighting are manifest
primarily at the effective date, not the announcement date, and this is the
point at which Kaul et al. take the price response to estimate the elasticity.
The early announcement creates the opportunity to front-run (as in Beneish
and Whaley 1996). The fact that there was no run-up in price that eliminated
the effective day abnormal return (at which time front-running arbitrageurs
would distribute their accumulated supply) suggests that “arbitrageurs” simply
did not notice that this change was going to happen. Perhaps they did not
pick up on the change until the effective date, and perhaps they never did.
In that case, the estimated elasticity reflects mainly the heterogeneity of non-
arbitrageurs’ beliefs about the value of these stocks. Another possibility is
that the precise basis for the weights change was not known ex ante, leaving
arbitrageurs to guess about the exact size of the demand shock. However, they
still had the opportunity to diversify across stocks subject to weights changes
and thus they could diversify away some of this uncertainty. In any case, the
key point is that the Scholes arbitrage was clearly inoperational.

We also report the elasticity estimates that are implied on our own results.
The message of this article is that the slopes of demand curves for stocks depend
on arbitrage risk. We, therefore, compute the implied elasticity for stocks at the
twenty-fifth percentile, at the median, and at the seventy-fifth percentile of
arbitrage risk using specification 8 of table 3. A stock at the median of arbitrage
risk has an elasticity of �8.24. The calculation for this is �8.24 p

where 3.901 is the coefficient on the inter-1/(3.901 ∗ .000311 ∗ 100 ∗ �1),
action of arbitrage risk and percent shock in specification 8, .000311 is the
median stock’s arbitrage risk from table 2, 100 is a scale factor to turn decimal
returns to percentage changes, and �1 is the percent decrease in demand by
arbitrageurs and nonarbitrageurs that accommodates the percent demand shock.
A stock at the twenty-fifth percentile of arbitrage risk has a significantly flatter
demand curve with an elasticity of �11.72. A stock that is at the seventy-fifth
percentile of arbitrage risk has a significantly steeper demand curve with an
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elasticity of �5.57. In other words, a given percentage demand shock causes
twice the response in a stock at the seventy-fifth percentile of arbitrage risk as
compared with a stock at the twenty-fifth percentile.

The difference between our estimates and Shleifer’s estimates, which also
come from the S&P 500 setting, is mainly due to the constant term in spec-
ification 8. This term may reflect an information or liquidity component to
the addition effect, in which case our estimate is more accurate than Shleifer’s.
On the other hand, our specification may be incorrect, and the entire addition
effect may reflect downward-sloping demand curves, in which case Shleifer’s
estimate is preferable. Some support for our approach comes from the fact
that our estimates are somewhat less extreme than his relative to estimates
from other settings. Whether the elasticity is �1 or �8.24, though, the essential
theoretical conclusion is the same: arbitrage fails to flatten demand curves for
stocks.

IV. Summary and Implications

Scholes (1972) suggests that arbitrage between perfect substitutes keeps the
demand curves for stocks flat. While between-stock arbitrage is widely pursued
by real “arbitrageurs,” most stocks do not have very close substitutes, and
such strategies are far from riskless. This article presents empirical evidence
from S&P 500 Index additions that suggests that arbitrage risk is an important
determinant of the demand curve’s slope. We believe the results are most
consistent with the interpretation that risk discourages arbitrage from flattening
demand curves for stocks.

The results of this article lead us to differ with Ross (1987), who writes,
“not to say that the intuition and the theories of finance cannot be fit into the
framework of supply and demand, rather that doing so does not gain us much.
The fit is awkward and irrelevant at best” (p. 30). A methodical investigation
of the limits of arbitrage, and the implications of these limits for the shapes
of excess demand curves for stocks, seems likely to improve our understanding
of the growing set of empirical findings that are difficult to explain with
models that assume unlimited arbitrage.

Further empirical research on how arbitrage risk affects prices could proceed
along two broad lines. The first line would attempt to confirm or refute our
proposition that the response to excess demand shocks depends on arbitrage
risk. Potential shocks may include equity issues, repurchases, or takeovers.
A stumbling block for studies like these, however, is the difficulty of con-
trolling for new information associated with the shock. Experiments as in-
formationally clean as S&P 500 Index changes are hard to find.

A second line of research would explore the impact of arbitrage that is
limited by arbitrage risk. The guiding hypothesis is that true anomalies are
likely to be severest in settings where arbitrage is most difficult. This obser-
vation has been made previously by De Long et al. (1990), Pontiff (1996),
and Shleifer and Vishny (1997), among others. To this end, we find it par-
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ticularly interesting that arbitrage risk is higher for smaller stocks. This may
help to explain Loughran and Ritter’s (2000, p. 363) observation that “just
about every known stock market pattern is stronger for small firms than for
large firms.”

An important observation about the implications of idiosyncratic arbitrage
risk for various market anomalies has been made by Campbell (2000) and
Shleifer (2000) in their discussions of the current article. By its nature, ar-
bitrage risk is, in principle, diversifiable. But one simply cannot form a port-
folio of S&P 500 additions, because there is only one change every few
weeks. Similarly, it is not easy to form a portfolio of initial public offerings
at the end of the first trading day (at which point several authors have argued
that they are overpriced, on average). In general, the more mispricings that
can be identified and traded upon at once, the less influence arbitrage risk
should have on any particular mispricing, and therefore the smaller the average
mispricing should be in equilibrium. Put differently, the abnormal returns on
a given portfolio of events should be smaller and abnormal returns on the
individual events should be less related to arbitrage risk in periods when there
are more events in the portfolio. The results of Baker and Savasoglu (2002)
generally support these predictions. They find that excess returns to individual
risk-arbitrage deals are increasing in measures of the risk that the merger deal
goes through, but decreasing in the total number of merger deals outstanding
at the time.

As a final remark, the behavioral asset pricing models that are emerging
must always explain first why arbitrage fails before they explore how irrational
trading affects prices. This point is emphasized by Shleifer (2000). Our results
suggest that risk resulting from a lack of substitutes may itself be enough to
justify an assumption of limited arbitrage. Arbitrage risk can be added to a
list of factors that may inhibit market efficiency: informational and transaction
costs (Stoll 2000), heterogeneous beliefs about fundamental value (Bagwell
1992), noise trader sentiment risk (De Long et al. 1990), short-sales constraints
(Chen et al. 2002), and agency costs in delegated arbitrage (Shleifer and
Vishny 1997). In contrast to most other limits on arbitrage, however, arbitrage
risk is relatively easy to measure.
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