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Abstract

This paper explores the role of gender heterogeneity in the social diffusion of obesity
among adolescents and its policy implications. We propose a linear social interaction
model which allows for gender-dependent heterogeneity in peer effects through the
channel of social synergy. We estimate the model using data on adolescent Body Mass
Index and network-based interactions. Our approach allows us to account for network
endogeneity. Our results show that peer effects are gender-dependent, and male stu-
dents are particularly responsive to the weight of their female friends. According to
simulations, reaching out to women results in an 8% increase in effectiveness in re-
ducing overall BMI, based on the most conservative scenario. Thus, female-tailored
interventions are likely to be more effective than a gender-neutral approach to fighting
obesity in schools.
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1 Introduction

Obesity has reached epidemic proportions in children and adolescents in the United States,
increasing from 5% in 1980 to over 19% in 2018 (Skinner et al. [2019; Fryar, Carroll, and
Afful [2020). Mounting evidence suggests that the extra pounds often start children on the
path to health problems such as cardiovascular diseases, diabetes, and cancer (Bendor et al.
2020). To explain such an alarming phenomenon, a large number of studies have focused
on socio-economic factors such as growing unhealthy eating habits and the decline in time
spent doing physical exercise (Papoutsi, Drichoutis, and Nayga [2013). Complementary
to these views, health economists have also attempted to investigate the obesity epidemic
from the perspective of social interactions (Christakis and Fowler [2007; Halliday and Kwak
2009; Trogdon, Nonnemaker, and Pais [2008; Yakusheva, Kapinos, and Eisenberg [2014;
Cohen-Cole and Fletcher 2008; Fortin and Yazbeck 2015). Most of these studies document
the presence of positive and significant peer effects which could increase the prevalence
of obesity by changing reference norms for body image and/or by boosting the social
transmission of unhealthy habits related to diet and physical activityﬂ Our paper follows
the second strand of the literature by exploring the role of gender heterogeneity in the social
diffusion of Body Mass Index (BMI) outcomes among teenagers, and its consequences in
terms of anti-obesity interventionsﬂ

Most studies on peer effects assume social interactions to be homogeneous (Manski
1993; Bramoullé, Djebbari, and Fortin 2009; Blume et al. 2015; De Paula 2017). This
means that the effects of all peers are equal regardless of the particular type, such as race
or gender. However, this assumption is restrictive and may not be realistic when speaking
of the weight of adolescent students, arguably a period in life in which social interactions
are important to structure an individual’s body. In this context, heterogeneity in peer
effects along gender lines could operate through different channels. One channel relates to
the activities teenagers do together: for example, students may go to fast-food restaurants
with peers of the same gender, or conversely, they may practice sport together with same-
gender friendsﬁ However, adolescents are also responsive to the BMI of opposite-gender
friends for a variety of reasons related for instance to the influence of good eating habits
and maturity of these peers. These examples reflect the presence of social spillover (or
synergy) as a basic mechanism to explain peer effects.

This paper proposes an econometric model allowing for heterogeneous peer effects along
gender lines, and estimates it using detailed network data on teenagers’ friendship from
the Add Health dataset. Simulations based on our results show that ignoring gender-based

'Despite some studies have pointed to a virus (Rogers et al. [2007), the standard channel of social
propagation of obesity is thought to be related to complementarities in behavior and/or self-image.

2 Although various methods exist to measure excess body fat, BMI (kg/m?) is the most widely utilized
measure of excess adiposity and risk for related diseases.

3Rees and Sabia (2010) document the heterogeneity in sport participation along gender lines, using the
same Add Health data we use.



heterogeneity of peer effects may lead to inefficient health interventions to curb obesity. The
present study contributes novel methodology, results, and policy insights to the existing
literature, which we discuss in details below.

While the literature on dietary choices and weight outcomes of adolescents is sizable
(Kapinos and Yakusheva 2011; Mora and Gil 2013; Corrado, Distante, and Joxhe 2019;
Fortin and Yazbeck 2015; Angelucci et al. 2019)), studies focusing on the heterogeneity of
peer effects are rare. Some contributions suggest that female adolescents are more respon-
sive than male ones to their peers’ weight-related outcomes (Arduini, Iorio, and Patacchini
2019; Renna, Grafova, and Thakur 2008; Yakusheva, Kapinos, and Eisenberg [2014). How-
ever, to our knowledge, we are the first to model heterogeneity in between-gender peer
effects. In our model, two types of individuals (i.e., male vs. female students) inter-
act within the same network (i.e., a school). This defines an ‘heterogeneous’ model with
two within-gender and two between-gender peer effects, with respect to the ‘homogeneous’
setting with one peer effect term. We characterize our model econometrically and theoret-
ically. Our methodological approach is closely related to the ones developed by Hsieh and
Lin (2017) and Arduini, Patacchini, and Rainone (2020), but with important differences.
Hsieh and Lin (2017) model peer effects via Bayesian methods, and estimate them through
Markov Chain Monte Carlo sampling techniques. Similarly to us, Arduini, Patacchini, and
Rainone (2020) derive a set of identification conditions that generalize the standard linear
model of Bramoullé, Djebbari, and Fortin (2009)) to allow for heterogeneous peer effects.
However, our paper emphasizes the theoretical foundation of our model by showing that
it is micro-founded into an identifiable non-cooperative game of social synergy.

We illustrate our econometric model using the 1996’s saturation sample of the National
Longitudinal Study of Adolescent Health (Add Health) which provides census data on 16
selected schools. Respondents from the sample reported their height and weight (which we
use to compute the BMI), and they were also asked to name up to five male friends and up
to five female friends within their school, which allows us to map the friendship networks.
We find that that peers’ outcomes affect BMI in a way that is gender-specific. In particular,
we find that the ‘male-female’ endogenous peer effect (that is, the effect on male students’
BMI of the BMI of their female friends) is significantly larger than the other estimated peer
effects (for male-male, female-male, female-female interactions, respectively). Our results
are in line with Kooreman (2007) and Hsieh and Lin (2017) who find that the influence
of female students on male students is generally larger than the reverse for a number of
documented adolescent behaviors. This effect could be due to the fact that girls are more
mature and presumably more influential than boys at the same age during childhood and
adolescence. This hypothesis is consistent with recent studies in neuroscience (e.g., Gong
et al. 2009; Lenroot and Giedd [2010; Lim et al. 2015; Goyal et al. |2019)) suggesting that
girls tend to optimize brain connections earlier than boys.

One limitation of our benchmark model is that it implicitly assumes that the formation
of links between students is exogenous once we account for observable attributes and school
choice. However, as long as students self-select their peers partly based on unobserved



factors that equally appear in the equation of interest (i.e., the BMI equation), this will
create an endogeneity problem. For instance, under homophily, that is, when individuals
tend to bond with peers with similar preferences, a spurious correlation will arise between
the individual’s BMI and his/her peers’ BMI. Thus, it is important to provide a robustness
check of network exogeneity. While many approaches have been developed in recent years
to test for network exogeneity (see the recent survey by Bramoullé, Djebbari, and Fortin
2020), we focus on the one proposed by Jochmans (2022)), which we incorporate in our
estimation framework.

Finally, we conduct a simulation exercise to study the impact of an intervention propos-
ing one balanced meal per week in replacement of one fast-food type serving. On the basis
of our most conservative findings, we conclude that the social spillovers of offering meal
replacement to female students are 33% higher than the spillovers of males. This suggests
that returns from (resources spent on treating) females are 8% larger than the ones from
males in terms of overall BMI decrease in the student population. If we further assume that
females are more responsive to the intervention, we conclude that the social spillovers from
females are twice the spillovers from males, which translates into a 54% gain in terms of ag-
gregate BMI decrease from reaching out to female students. Overall, our analysis indicates
that acknowledging gender-based heterogeneity of peer effects may increase dramatically
the efficiency of anti-obesity policies. More generally, while ex-ante evaluations based on
structural models are common in other fields of economics (e.g., Wolpin 2007)), they are
novel in the context of social interactions. By providing the infrastructure to evaluate how
interventions interplay with heterogeneous social diffusion, our paper may be of interest in
many contexts where peer effects differ along individual dimensions (e.g., race, education).

The rest of the paper is organized as follows. In Section [2] we characterize our model.
Section [3] introduces the data, Section [4] presents our results, and Section [5| describes the
simulation exercise. Section [6] concludes. Appendix A illustrates the micro-foundation of
our model. Appendix B formalizes the identification conditions and presents the estimation
techniques in use.

2 Estimation Strategy

2.1 The model

We study a setting where n agents (e.g., students) are distributed across R social networks
(e.g., schools), with r = 1,..., R. In a given network r of size n, there are ni female agents
and n;" male agents (nf +nlt = nr) These agents interact with both own-gender and

other-gender peers and their outcome (i.e., BMI) can be influenced by their behaviorﬂ

4In what follows, we order all vector and matrices so that the first nd rows correspond to female agents
of network r, and the remaining n;" rows are for male agents in network r.

5The model could easily be extended to other types of peer heterogeneity such as race and education.
However, for the sake of parsimony, we limit the analysis to gender-based heterogeneity.



For each network we define four fixed and known adjacency matrices: A, ,(z =1,--- ,4).
The matrix Ay, is such that ai,;; = 1 if in network r the male student ¢ is influenced
by the male student j, and 0 otherwiseﬁ The matrix Ay, is such that ag,;; = 1 if in
network 7 the male student 7 is influenced by the female student j, and 0 otherwise. The
matrices Az, and Ay, are similarly defined for female students, that is, As , represents the
impact of female friends on female students, and A4, the impact of male friends on female
students in network r. These matrices are directed: the fact that ¢ influences j does not
necessarily imply that j influences i (e.g., we could have a; ,;; # al,r,ji)ﬂ

Let us call n;; and n{ , the number of male and female individuals influencing 7 in
the network r respectively. The social interaction matrix G, is the weighted version of
matrix A, such that one has g1,,; = 1/ (n;”T + n,fc ) if i is a male student in network r
and is influenced by the male student j, and 0 otherwise. Since we allow for individuals
to be ‘isolated’, that is, not influenced by anyone in their network (i.e., niy = n{ . =0),
the G, ,’s matrices are not row-normalized ( i.e., not all matrix’s rows sum up to one).
Thus, the social interaction matrix for the whole population in network r could be written
as G, =G, +Ga, +G3, + Gy,. The heterogeneous peer effect model for the network r
writes as

Yr = Lnrar‘i‘ﬁmmGl,TYT + /BmfGQ,TYT + /BffG3,TyT + /BfmG4,TYT +
'7Xr+5mmG1,r X + 5mfG2,r Xy + 6ffG3,'rXr + 5fmG4,7" Xp + €, (1)

where y, is the BMI vector and ¢,,, is a n, X 1 vector of ones. «, stands for a fixed effect
specific to network r, which takes into account the unobserved factors which commonly
influence the BMI of all students within a school. The Bs coefficients represent the ‘en-
dogenous’ peer effects (i.e., the effect of peers’ outcomes) which are heterogeneous. For
instance, (B, measures the effect of the outcome of male peers on (the BMI of) male
students. In the same way, 3,7 stands for the effect of the outcomes of female peers on
male students, 3¢y of female peers on female students, and S, of male peers on female
students. We also allow for heterogeneous contextual effects ds that account for the effect
of the characteristics of peers on student’s outcomes and reads the same way (e.g., dpm
measures the effect of the characteristics of male peers on the outcome of male students).
Finally, if we observe R > 1 distinct networks, we can stack up the data and write the
heterogeneous model succinctly as

y =G(B)y +1x +G(d)x +ta+ € (2

~—

W]glere y = (y/l,...,y/R)’, X = (xll,...,x/R)’, t = Dy, stng), a = (a1,...,ar), € =
(617 "'7€R)/7 B = (Bmmaﬁmfvﬁffaﬁfm)la 6 = (5mma5mfa6ffa5fm)/7 Gz = D(Gz,la "';GZ,R)a

5The student i is excluded from his/her own reference group.

"This is because in our illustration we use information on social links as declared by respondents and
the two reports may not coincide within a pair. Nevertheless, our estimation strategy is also compatible
with undirected network data.




G(B) = BrmG1 + 5mfG2 + ﬂfng + ,BfmG4 and G(9) = 0ymG1 + (5mfG2 + 5ffG3 + 5fmG4,
and D indicates a block diagonal matrix.

In order to eliminate the fixed effects ta avoiding the incidental parameters problem,
we perform a global transformation on equation E| For that purpose we define the global
transformation matrix J = D(Jy,...,Jg) where J, = (I, — LTL;”) vV r e {1,..., R}, such that

Ny
Jea = 0, and obtain a transformed model that writes succinctly as

Jy = JZ60 + Je, (3)

where Z = [GIY7GQY7G3y7@4Y7 X]7 X = [XyGlxa G2X7G3X7G4X]a 0 = (67 7, 5)1
Note that if we impose B, = Bmf = ﬁff = ﬁfm = By and O = mf = 5ff = 5fm =
dp, in equation , we obtain the so-called ‘homogeneous’ model

y =BGy + vx + 6,Gx + ta + €. (4)

This corresponds to the specification by Bramoullé, Djebbari, and Fortin (2009) with
fixed effects and will be used as benchmark for our empirical analysis in Section [

In Appendix A we show that Equation [2] can be micro-founded in a non-cooperative
model where peer effects work through the channel of ‘social synergy’ in BMI. The latter
assumption is plausible in our context, because body size can only be indirectly chosen
through effort, that is, healthy life habits (e.g., good dietary behavior, physical exercise).
We show that we can identify all parameters of the utility function, provided that we have
a proxy for individuals’ effort, and discuss the relevance of it in terms of policy evaluation.

2.2 Identification

Let us assume for now that the social interaction matrices are ‘conditionally’ exogenous,
that is, they are exogenous once we control for individual attributes and school-level fixed
effectsﬂ As long as the matrix S(3) = (I — G(B)), where I is the identity matrix, is
invertiblem we can write the reduced form of equation as

y =S(8)7! [’yx +G(6)x + La] +S(B) e, (5)

which allows us to rewrite

G.y = W.(8) [7X + G(5)X + "a] + W.(B)e,

8The incidental parameters problem, which is discussed at length in Lancaster (2000), occurs whenever
the data available for each group or network are finite. This transformation captures the selection bias
stemming from the fact that individuals in the same network face a common environment.

9Formally, the conditional exogeneity assumption writes as E(e|x, 1, G.=1,... 4) = 0.

10" A sufficient condition for this assumption to hold is that |Bmm| < 1, |Bms| < 1, |Bss] < 1 and |Bsm| < 1.
This condition also implies that the matrix S(/3) is uniformly bounded in absolute value.



where W,(8) = G,S(B)! and z = 1,--- ,4. This shows that the right-hand side terms
in equation (2)) is endogenous (E[(W,(B)e)' €] # 0), and thus that the model cannot be
consistently estimated by OLS. This type of endogeneity is frequent in social interaction
models and it stems from the simultaneous determination of outcomes among peers.
Proposition [1| below states the identification condition of equation , which extends
the conditions by Bramoullé, Djebbari, and Fortin (2009) to the case of peer effects het-
erogeneityﬂ For the proof and a detailed discussion, we remand to Appendix B.

Proposition 1 Suppose model (@ holds. Suppose that S(3) is invertible and that (8 +

VBm) # 0, (815 +1B17) # 0, Bung +ABms) # 0 and (3pum +Bgm) # 0. If vector colummns
of matriz Qg are linearly independent, then social effects are identified.

One immediate consequence of Proposition |1|is that equation can be estimated with
instrumental variable techniques, and that any set Qg containing products of interaction
matrices of arbitrary order and individual attributes is a valid set of instruments for G.y.
This is a extension of the lagged-friend instrumental strategy which has been widely used
in presence of network data (Calvo-Armengol, Patacchini, and Zenou [2009; Kelejian and
Prucha [1998; Patacchini and Zenou 2012). For instance, the instrument set of all matricial
products up to the second order (which we use in Section iﬁ

Qx =J [@fx,agx,(;qc?x,@g@gx,G2G4X,G3G4X,G461X,G4G2x} . (6)

2.3 The endogeneity of social interactions

Endogeneity stemming from network assortativity may arise whenever individual-level un-
observables simultaneously determine social interactions and outcome (i.e., BMI). This
type of endogeneity is usually associated with homophily, that is, the well-documented
tendency to create links with individuals with some similar preferences or characteristics.
In our context, this means that the instrumentation strategy of Section is valid as long
as students do not make friends based on some unobservable characteristics also affecting
BMI, once we control for their observable attributes and school choice. This means that
the network is stochastic but exogenous. However, there could be instances where this
assumption is violated. In what follows we discuss an alternative estimation method that
is robust to network endogeneity of this kind.

Several methodological papers have recently tackled network endogeneity (see the recent
survey by Bramoullé, Djebbari, and Fortin 2020). The majority of them adopt a control
function approach where the network formation equation is specified parametrically (e.g.,
Goldsmith-Pinkham and Imbens [2013; Patacchini and Rainone 2017; Hsieh and Lee [2016)

" This resembles the conditions derived by Arduini, Patacchini, and Rainone (2020).
2Recall that the matrix ordering leads by construction to the followmg identities: G1G4 = 0,,,., G3Go =
On,, G1G3 = 0,,,., G3G1 = 0,,G2G1 = 0,,,, G4G3 = 0,,, 7G2 = Op, »G4 = Op,..



or non-parametrically (e.g., Johnsson and Moon 2021). We tackle the issue adopting the
instrumental-variable method proposed by Jochmans (2022). In our context, this approach
has two advantages: it remains relatively agnostic with respect to the peer selection process,
and it suits data on small (and possibly sparse) networks as the school-level networks we
observe in Add Health. Also, it can be easily integrated into our estimation strategy as we
explain below.

Jochmans (2022) devises instrumental variables with close resemblance to the estimator
of Bramoullé, Djebbari, and Fortin (2009)). This method is based on two all-embracing
conditional moment restrictions: (i) that link decisions that involve a given individual
are not all independent of one another, but (ii) that they are independent of the link
decisions made between other pairs of individuals that are located sufficiently far away
in the networkB For each individual ¢ and for z = 1,---,4, Jochmans (2022) defines
the so-called ‘leave-own-out network’ szi as the sub-network obtained from G, by setting
to zero all links involving agent ¢. Under the two restrictions above, this leave-own-out
network is exogenous to i’s link behavior (because it contains link decisions that do not
involve i) but it also contains predictive information about it (since link decisions between
any triple of individuals are informative about each other). Therefore, linear combinations
of these leave-own-out networks can serve as instruments for G,y and G,x in equation
in analogy with the standard lagged-friend strategyfz] For the purpose of our study, it
boils down to replacing the instrumental variable set in equation @ with

Qk =J @1X,@2X7Q3X,Q4X,QfXaQ§X7@1@2X7@2@3X7 Q,Q,x,Q3Q,x, @4@1?‘1,@4@2?(] ;
(7)

where Q, indicate the average over i for the leave-own-out networks z.

3 Data

3.1 Add Health

The National Longitudinal Study of Adolescent Health (Add Health) is a panel study
of a nationally representative sample of adolescents in grades 7-12 in the United States,
conducted by the Carolina Population Center. It combines information on respondents’
social, economic, psychological and physical well-being with data on family, neighborhood,
community, school, friendships, peer groups, and romantic relationships. The richness of
this information puts Add Health among the largest and most comprehensive longitudinal
surveys of adolescents ever undertaken.

13For a discussion on how these restrictions accommodate most (cooperative and non-cooperative) peer
selection patterns and nest several control-function methods, see Jochmans (2022).

MNote that, if we relax conditional exogeneity of the network, the contextual peer effects G.x become
endogeneous.



Wave I of Add Health consists of an In-school questionnaire that was filled out by 90,118
students in 145 schools and 80 communities during the 1994-1995 school year. A subset of
these students was then chosen for an in-depth survey: Wave II, which was held in 1996,
includes a detailed In-Home questionnaire that was completed overall by 14,738 students
out of the original Wave I pupils. Students who were selected for the In-Home survey were
asked for information on their height and weight, which can be used to compute body mass
indices (BMI). Along with other notable socio-economic covariates, Wave II also provides
information on social interactions, because respondents are asked to name up to five male
friends and up to five of their female friends within their school.

For the purpose of our analysis, we use the saturated sample of Wave II that focuses
on 16 selected schools. Every student attending these 16 schools answered the In-Home
questionnaire, thus providing information on BMI and social links. We construct student
BMI according to the formula: BMI = (weight in kilograms)/(height in meters)ﬂﬂ Having
a census of the schools’ population (rather than a random sample of students within a given
school) is crucial for our study, since our estimation strategy crucially relies on observing
the whole network topology.

3.2 Descriptive statistics

Our estimation sample consists of 2307 students. The sample is balanced across gender
(1146 females and 1161 males). It also includes ‘isolated’ students, that is, students who
do not mention any friends within the schoolm Table provides descriptive statistics
of the variable of interest. Average BMI is 23.13 with a standard deviation of 4.71. This
reveals that on average, the population considered is normal in terms of weight. In terms
of relevant individual characteristics, we can see that mean age is about 16. White students
are more represented (61%) than the other racial communities. The percentage of Black
is 16%, and the omitted category includes Hispanic, Asian and American Indian students.
63% of students in our sample attend grade 11 or 12 and 26% are in grade 9 or 10 (grade 7
or 8 is omitted). 43% of mothers have college-level education (or above) compared to 36%
for fathers of the students in our sample.

Our interaction matrices represent directed links (e.g., gi;; > 0 if student ¢ is influenced
by student j, but not necessarily vice versa). Statistics about the directed network point to
more links with same-gender friends: males have on average 1.46 links with males and 0.83
with females, while females have 1.44 links with females and 0.88 with males. This shows
that the number of same-gender vs. other-gender friends is remarkably comparable for
male and female students. The fact that students declare 2.3 friends on average suggests
that the constraint put in the number of friends by the Add Health study (up to 5 males

5We do not use self-declared body mass indices, although declared BMIs are shown to reflect real variables
in the context of Add Health.
16548 students do not nominate any friend, and 309 of them were also nominated by no one.



and 5 females) is not bindingm

4 Results

This section presents the estimates of our peer effects model using Add Health data. This
could be consistently estimated with 2SLS or GMM techniques with the instruments de-
scribed in Section [2l We use the GMM estimator by Liu and Lee (2010) whose quadratic
moments exploit the correlations between the error term of the reduced peer-effect form
model. This estimator provides more precise estimates of social interaction models com-
pared to the traditional 2SLS method. For details on the associated weighting matrix we
remand to Appendix B.

4.1 Homogenous peer effects and BMI

Table ([2)) presents the GMM estimates from the homogeneous peer effects model of equation
(4)), which serves as a benchmark. The set of characteristics x comprises: student attributes
(age, race, grade), and education level of mother and father respectivelyﬁ We instrument
the term Gy with lagged-friends characteristics of the second degree, that is, the (average)
attributes of friends of friends G2x. This boils down to assuming that social interactions
are exogenous conditionally on observables and school-level effects (see Footnote E[)

Results indicate that the coefficient associated with the endogenous peer effect (Gy) is
significant at 1%. Its estimated magnitude suggests that, ceteris paribus, a 1-unit increase
in the average BMI of peers induces an increase of 0.22 units in the student’s BMI. This
is aligned with the recent literature reporting evidence of positive but small endogenous
peer effects on weight. We also remark that several individual and peer attributes appear
to influence one’s BMI. The first two columns report the estimates and standard errors of
individual own characteristics x, and columns 3 and 4 refer to the contextual effects, that
is, effects of friends’ characteristics Gx. We notice that for students in lower grades and
whose father has college education have lower BMI. Regarding contextual effects, having
older friends and/or friends whose father has a college education reduces a student’s BMI,
which may indicate transmission of information via learning good health habit.

Table (3] re-estimate the homogeneous peer effects model allowing for endogenous social
interactions (Section . For the homogeneous model, this consists in instrumenting Gy
and Gx with Qx and QQX. Results from Table show that estimates remain overall

7This alleviates the concern that the network may be only partially observed. Also, it is worth noting that
censoring leads to an underestimation of the magnitude of peer effects, as shown by Griffith (Forthcoming)
using Add Health data. This is reassuring in our context where peer-effect estimates are significantly
positive.

¥The omitted category for race includes Hispanic, Asian and American Indian respondents, while the
omitted category for grade is “7 or 8”. The parent education dummy equals one if the mother/father has
some education at the college level or above.

10



stable (the endogenous peer effect is now at 0.23)@ This suggests that the fixed-effect
instrumentation strategy is rather efficient in reducing the selection bias associated with
confounding correlates. This finding is in line with several recent papers concluding against
a severe assortativity bias in Add Health data (Goldsmith-Pinkham and Imbens [2013;
Boucher 2016} Badev 2021) [

4.2 Gender heterogeneity and BMI

In this subsection, we present the estimates from the model allowing for within- and
between-gender heterogeneity in peer effects. Table provides the results from the GMM
estimation of equation , under the assumption that social interactions are conditionally
exogenous. This consists in instrumenting the four endogenous peer-effect terms with the
set of instruments spelled out in Equation @, that is, all exogenous attributes of friends at
distance 2, per category: G?x and G1Gax (the attributes of males/female friends of males
friends of male students); G2Gx and GyGsx (the attributes of males/female friends of fe-
males friends of male students); G,Gx and G4Gsx (the attributes of males/female friends
of males friends of female students), G3G4x and ng (the attributes of males/female friends
of females friends of female students). The upper panel provides the four endogenous peer
effects coefficients (standard errors of the estimates are reported in the adjacent columns),
namely: the effects of male peers” BMI on the BMI of male students (m — m, columns 3
and 4), the effects of female peers’ BMI on the BMI of male students (m — f, columns 5
and 6), the effects of female peers’ BMI on the BMI of female students (f — f, columns 7
and 8) and the effects of male peers’ BMI on the BMI of female students (f — m, columns
9 and 10).

As in the case of the homogeneous model, the endogenous peer effect estimates are
positive and highly significant, suggesting that interaction with peers of all types influences
a student’s BMI. The within-gender point estimates (0.226 and 0.197 for the m — m and
f—f coefficients respectively) are comparable for magnitude to the f—m coefficient (0.229)
which represents the effect of the average BMI of male peers on female student’s BMI. On
the other hand, the estimated coefficient for the between-gender effect from females to
males is noticeably larger (0.465)E This suggests that males respond more to the average
BMI of their female friends that the reverse, a result which is also obtained by Kooreman
(2007) and Hsieh and Lin (2017) for several adolescent behaviors. As mentioned in the
introduction, in our context this may be partly related to the fact that girls become mature
and their brain reaches their peak volume earlier than boys in the adolescence@

9Using the Durbin-Wu-Hausman test we do not reject the exogeneity of the endogenous peer effect.

20Boucher and Fortin (2016)) suggest that with a rich set of control variables as those that can be used in
our data set, the impact of homophily may be small. Other studies using different data sets and different
outcomes reach the opposite conclusion (e.g., Carrell, Sacerdote, and West (2013) and Hsieh et al. (2020)).

2L All pairwise Wald test statistics reject the equality of the m — f coefficient with the other three peer-
effect estimates (with significance at 10% or below).

22 According to a neuroscience study by Lim et al. (2015), the optimizing of brain connectivity usually
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We report the estimates and standard errors related to individual characteristics in
columns 1-2, and the ones for contextual effects (within- and between- gender) in columns
3 t0 9. Grade 9-10 and 11-12 students are the ones who report a higher BMI (in line with
the results from the homogeneous model). The other coefficients for the individual effects
do not appear significant. Our results also reveal an important number of differences in
the estimates of contextual effects depending on the nature (within- or between-gender)
of social interactions. However, some regularities emerge in line with the results of the
homogeneous model. For instance, the age of friends has a negative impact on a student’s
BMI. Furthermore, having male peers whose father holds some college degree negatively
affects male students’ BMI[Z]

Table re-estimates the heterogeneous peer effects model allowing for endogenous
social interactions (Section . This consists in instrumenting G,y and G.x for z =
1,...4 with the set of instruments in Equation . Results from Table show that
estimates remain overall stable, as in the homogeneous peer effect model@ In particular,
the estimate for the between-gender effect from females to males remains much larger
than the other three coefficients. One thus concludes that gender heterogeneity is the
appropriate hypothesis in our context. This result has potentially important consequences
in terms of public policy evaluation, which we illustrate in the next section through a
simulation exercise.

5 Gender-based Policy Evaluation

Interventions to curb obesity among teenagers may take various forms, aiming at improving
health habits through action (i.e., by changing the cafeteria menu, subsidizing gym access,
etc.) or information (i.e., educational campaigns about nutrition and healthy lifestyle).
Below we provide a simulation exercise that demonstrates the importance of incorporating
gender diversity in peer effects when designing effective interventions. We first show how to
calculate the total treatment effect of an intervention when peer effects are heterogeneous
along gender lines. We then describe the simulation procedure and discuss its results under
different hypotheses regarding the intervention’s design and response.

5.1 Treatment effect with Gender Heterogeneity

We aim at assessing the effect of an intervention designed to curb obesity among a target
population of teenage students connected in a social network. The intervention’s allocation

occurs during ages 10-12 in girls and 15-20 in boys. Girls also mature faster than boys on a physical level:
girls undergo puberty earlier than boys by about 1-2 years and generally finish the stages of puberty quicker
than males.

23We also perform a robustness analysis of our results when using the zBMI instead of absolute BMI,
and the GMM estimation strategies reveals similar patterns.

24Using the Durbin-Wu-Hausman test we do not reject the exogeneity of the endogenous peer effects.
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is represented by the intent-to-treat vector #tt, where itt; = 1 if student 7 is offered the
intervention. We assume that the intervention induces a gender-dependent shift in the
BMI intercept, as ir@

y = ta+ vyitt + G(B)y + € (8)

and that the coefficients v = (vf,7m) representing the response to the intervention of
(male, female) students could be modeled as

vg = impacty * compliancey for g =m, f (9)

where impact represents the gender-specific impact of the intervention (e.g., the interven-
tion could induce different changes on females’ body size for reasons related to nutrition
and biology), and compliance represents the propensity of students to comply with the
intervention which may also depend on gender (e.g., females could be more or less likely
to comply with the intervention)

In a linear intent-to-treat model without peer effects (8 = 0), the total treatment
effect would be given by the coefficients . In models with social lags in the dependent
variable, the interpretation of the estimated parameters is complicated by the fact that
the treatment status of an individual affects not only his own outcome (the direct effect),
but also the outcome of others (the indirect effect). To define a measure of the treatment
effect for equation , we start from its reduced form

y = S(8) [ea + vitt] + S(B) e, (10)

where S(B) = [I — G(B)], and derive the closed-form of the N x N matrix of partial

derivatives with respect to the intervention, which we call %ﬁtt). The k' column of
% is an N x 1 vector that represents the effect of the treatment of individual k£ on

the outcomes of all other individuals and writes

OE (y|itt)

o = S(8) e (1)

where e}, is an N x 1 vector with 1 at the k' element and 0 elsewhere. Following the practice
in spatial and network econometrics (Hsieh and Lee |2016; LeSage and Page 2009; Comola
and Prina |2021)), we compute the treatment effect of the intervention as follows: the direct
treatment effect is the average of the elements in %. The indirect treatment effect,
which operates through the change in the treatment status of peers, is the average of the

25The only individual attribute included is one’s treatment status, and contextual peer effects are ruled
out. This latter condition implies that the treatment status of peers only impacts own BMI through the
changes in peers’ BMI. Imposing positive contextual peer effects would further increase the estimates of
social spillovers in Table (|6]).

26For the sake of simplicity, we are ruling out complications related to non-random attrition.
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column (or row) sums of the non-diagonal elements of % The total treatment
effect is then calculated as the sum of the direct and indirect effects¥] Note that the

formula of equation also applies to the homogeneous peer effect model of equation ,
once we replace Bpm = Bmys = B = Brm = Br in S(B).

5.2 Simulation Procedure

For given values of 7, 3 our simulation routine consists in the following five steps:

1. Generate a dataset with N nodes, equally distributed between males and females,
and multiple intent-to-treat vectors ¢tt* for k =1, ..., K;

2. generate the interaction matrices as follows: first, we draw the binary matrices A, for
z =1,...,4 as random graphs where each link exists independently with a probability
p, (Erdés and Rényi [1959). We then row-standardized A, to obtain G;

3. compute the (direct, indirect, total) treatment effect using equation for: all
students, males, femalesﬂ

4. compute the aggregate decrease in BMI associated to each treatment vector itty;

5. repeat the procedure of steps (1) to (4) for s = 1,...,500 times.

To carry out the steps above, we must calibrate the values for v, 3 and the population
parameters, which we do as follows. As for v we think of an intervention that replaces
one fast-food type serving option with one balanced meal. This follows a large experi-
mented tradition of school-level and firm-level initiatives, such as weekly vegetarian menus
in cafeteriasm We rely on the estimates of the weight production function by Fortin and
Yazbeck (2015)), which are computed using longitudinal data from Add Health. Their esti-
mate suggest that if a student eats one fast-food meal less per week, his/her BMI decreases
by 0.85 in the long term in absence of social interactions@ Our first set of results assumes

2"The row sum represents the impact of changing the treatment status of all other individuals on the
outcome of one particular individual, while the column sum represents the impact of changing the treatment
status of one particular individual on the outcome of all other individuals. These two quantities coincide.

28 Note that the estimates of both the direct and indirect effects result from complex interactions between
the parameters and the social-interaction structure. For instance, an arbitrary diagonal element may
not equal the estimated -y, because the former also includes feedback loops (where observation ¢ affects
observation j, and observation j also affects observation i) and longer paths that might go from observation
i to j to k and back to 4. This is because the series expansion of S(8)~" contains terms (G)* that, for
k > 2, have non-zero elements on the diagonal.

29Note that the randomness of the network structure generate variation in these quantities of interest.

300ne famous campaign in this spirit is the Meatless Monday, launched in the 2000s in collaboration with
the Johns Hopkins Bloomberg School of Public Health.

31Controlling for lagged BMI, Fortin and Yazbeck (2015) find that an extra day of fast food restaurant
visit per week increases zZBMI (that is, the BMI standardized for gender and age) by 0.02 points in the
long term. This is also consistent with the results by Niemeier et al. [2006L Since the average zBMI in our
sample is 0.55, we have transposed their result in our metric as (23.1 % 0.02)/0.55 ~ 0.85.
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that the impact of the intervention is the same for males and females, and all individuals
comply with the intervention, which gives vy = v, = —0.85. In our second set of results,
we assume that vy > ~,,, which could be rationalized either with a differential impact
(i.e. one fast-food type serving may have a larger impact on females because of hormonal
differences, metabolism and portion size) or with differential compliance by gender (i.e. fe-
males may be more likely choose the healthy meal rather than looking for fast-food options
within or outside the cafeteria, a point that will be discussed below).

The remaining parameters are calibrated on the Add Health sample and our estimation
results. We fix N = 120, p;1 = ps = 0.03 and po = ps = 0.015, which gives the same
expected number of within- and between-gender links as the estimation sample of Section
(M) (1.8 and 0.9 respectively). Finally, we calibrate the peer effect parameters for the
heterogeneous model to equal the estimates from Table , and we set G accordingly@

5.3 Simulation Results
5.3.1 Gender-neutral response

Panel A of Table @ reports the results from the simulation exercise assuming vy = v,, =
v = —0.85, i.e., full compliance and same impact across gender. The upper part of the
panel reports the treatment effect (direct, indirect, total) for all students together and by
gender, for the homogeneous and heterogeneous model respectively (mean and standard
deviation over 500 draws).

The estimate of the direct effect is —0.85 throughout, meaning that one less fast-food
meal per week has a long-term ‘direct’ effect of decreasing student’s own BMI by 0.85 units.
This is the same as the response parameter « in absence of the interventionﬂ The estimate
is stable across models (homogeneous and heterogeneous) and across gender (males and
females) as it is expected to be.

The indirect treatment effect represents the social spillover through network lines. Its
estimate for the homogeneous model is —0.31 for all students confounded, males and fe-
males. This means that treating a randomly chosen student has on average an indirect
effect of —0.31 units on the BMI of the others, given the existing social synergies. This
indirect effect is sizable, as it represents approximately a 37% increase with respect to the
direct effect. That is, on the basis of the evidence from Add Health, we conclude that
social interactions amplify the impact of the intervention by about 37% with respect to the
benchmark scenario of no social interactions and/or no social synergies among students.

When we turn to the heterogeneous model (columns 4-6) we notice that the overall
indirect coefficient is still —0.31, but this is actually a weighted average of an estimated
effect of —0.26 for males vs. —0.35 for females. This suggests that, once gender-based het-

3213, is the weighted average of the four estimates for the heterogeneous model, which ensures internal
consistency (i.e. the two models deliver comparable outcome vectors y for any arbitrary «).
33 Although these two quantities do not need to coincide precisely (footnote , they often do.
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erogeneity is accounted for, the social spillovers (in term of BMI decrease among peers) of
the intervention on female students are 33% higher than the corresponding social spillovers
from males.

The bottom part of panel A reports the aggregate effect on BMI of three intent-to-treat
vectors representing different partial-intervention designs. #tt! depicts a scenario where
50% of students were randomly selected for the obesity-curbing intervention, regardless of
their gender. itt? represents a scenario where only female students were selected for the
intervention, while in 4tt3 only male students were selected. In all three scenarios, the
expected number of treated students stays the same (i.e. 60 out of 120). The aggregate
effect reported in Column 4 (‘without PE’) does not take into account the social spillovers
driven by peer eﬁects@ Columns 5 and 6 (‘with PE’) report the aggregate effect on BMI
accounting for social spillovers. Since the intent-to-treat vectors are drawn independently
for each simulated network, we report both the average BMI decrease (column 5) and its
standard deviation (column 6) over the 500 simulations.

The estimated decrease in BMI without social spillovers is the same across all treatment
vectors (51 BMI points throughout column 4). Once we account for social spillovers, results
from itt! suggest that treating 50% of students at random (i.e. regardless of gender)
decreases aggregate BMI by 69.34 pointsﬂ This corresponds to a decrease of 0.58 BMI
points per student, or 12.3% of BMI standard deviation in Add Health. However, the
magnitude of the impact is larger (—72.1 BMI points) when we treat female students only
in itt2. Conversely, the magnitude of the impact is smaller (—66.8 BMI points) when we
treat male students only in itt3. These numbers represent a ‘natural’ metric of efficiency in
the context of our policy evaluation exercise: aggregate returns from treating females are
8% larger than returns from treating males. In other words, investing monetary resources
in females results in an overall reduction in BMI that is 8% greater than the reduction
achieved by treating males.

To summarize, even in the ‘neutral’ scenario of Panel A where all students are affected
by the intervention to the same extent, we find that social spillovers from females are
about 33% larger than the ones from males, which results in an additional 8% returns
from treating females in terms of aggregate BMI decrease. This result serves as a lower
benchmark as it is entirely driven by the heterogeneity of peer effects along gender lines.

5.3.2 Gender-heterogeneous response

Panel B of Table @ explores a scenario where females are more responsive to the interven-
tion at hand, that is, 7y > 7;,. This could be due to the fact that the intervention is more
effective on female compliers, or to the fact that compliance is higher among females — a
point to be discussed below. In particular, we have calibrated a mean-preserving spread

34This boils down to summing up the direct effect over treated individuals.
35This statistics is by construction the same for the homogeneous peer-effect model under any intent-to-
treat vector.
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of v = 1;9, = 0.7 so that the resulting BMI vector across the student population is
comparable to panel A.

Results from Panel B for Column (1) (homogeneous model, all students confounded)
are comparable to Column (1) in Panel A, as expected. Columns (2) and (3) report the
estimates of the homogeneous peer effect model for females and males respectively: the
estimated direct effects are now unsurprisingly —1 and —0.7, but the indirect effects are now
—0.36 and —0.25 respectively for females and males: even if peer effects are homogeneous
within and across gender, females now have a larger impact on their peers because they
experience a larger BMI decrease following the intervention. As before, the estimated effect
of —0.31 in Column (1) is a weighted average of the gender-specific effects in columns (2)
and (3).

When we turn to the heterogeneous model (columns 4 to 6) we see that all three
estimates of the direct effect are comparable to the ones for the homogeneous model, as
expected. However, we can see that the gap in indirect effect estimates across gender lines
becomes even wider. The indirect effect for females is now almost double that the one for
males, —0.41 in Column (5) versus —0.22 in Column (6). This is due to the fact that when
v > v¥m and peer effects are allowed to be heterogeneous across gender, females loose more
weight and also influence more their peers. The weighted average of these estimates is still
0.31 (as in Column 1), meaning that if we consider a random sample of students regardless
of their gender, we expect an indirect effect of 0.31 on average. However, this hides a large
disparity across gender lines, as the expected social spillovers from females are double the
ones from males.

The bottom part of Panel B reports the effect of the intervention on aggregate BMI.
Results show that treating 50% of students at random induces an aggregate decrease of
—69.74 BMI points under tt!, which hinders a large disparity between the aggregate BMI
decrease from treating females only (—84.82 under itt?) and the corresponding value from
treating males only (—55.03 under itt3). This suggests that, because of social synergies,
keeping the budget constant, the returns from treating females only are 54% larger than
returns from treating males (from -55.03 to -84.82 BMI points).

To summarize, we had seen in Panel A that the heterogeneity of peer effects along
gender lines has tangible consequences even in a benchmark setting where all students
respond in the same way to the intervention. If we further assume that female students
are more responsive to the intervention under scrutiny (Panel B), the estimated spillovers
generated by females are twice as large as those generated by males. This translate into a
54% gains in aggregate BMI decrease from reaching out to female students.

5.4 Discussion

Results from Table (@ show that interventions are most effective when targeted to the
group generating higher social spillovers. This suggests that incorporating gender-based
peer effects could improve the efficacy of policy interventions. In fact, failing to consider
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such heterogeneity overlooks critical information that could aid in optimizing the alloca-
tion process, especially when resources are scarce. The last two decades have witnessed the
implementation of a large variety of policy instruments aimed at curbing obesity among
teenagers in western countries. Those include interventions administered remotely (e.g.,
online nutrition education program, email nudges with tailored dieting advice or steps/day
goal) and offline (e.g., face-to-face discussion groups, interactive action planning, supply of
fruits and vegetables, supply of wearable sport activity trackers). Evidence from the liter-
ature on nutrition science suggests that young adults respond differently to interventions
depending on their gender (Poobalan et al. 2010; Sharkey et al. 2020)@ In particular,
females appear more motivated to undertake dietary changes, while males are generally
more responsive to incentives related to physical activity. Since interventions are often
constrained in terms of budget, one way to allocate resources efficiently could be to design
policy instruments implicitly tailored to address the motivation and barrier of one spe-
cific gender. On the basis of our results above, it is ceteris paribus preferable to invest in
interventions aimed at educating teenagers towards better dietary patterns, because the
higher direct impact on the female population could in turn spills over more effectively to
their male peers. Such policy instruments are easy to implement, and they do not aim at
impacting the structure of social interactions directlym

Finally, it is worth noting that, throughout the exercise above, we have modeled the
response to the intervention as a shift in the BMI. This assumption allows us to be rel-
atively agnostic with respect to the precise mechanism at work. However, policy makers
may have alternative assumptions, based on their knowledge of the policy under scrutiny:
for instance, they can hypothesize that the intervention affects the way peers influence the
marginal utility of own BMI. In order to do a policy-evaluation exercise on the basis of al-
ternative assumptions, one could rely on the theoretical framework developed in Appendix

A.

6 Conclusion

This paper explores gender heterogeneity in the social transmission of BMI among teenagers,
and its policy consequences. We propose a model where social interactions allow for
between- and within-gender heterogeneity, and the Body Mass Index (BMI) results from so-
cial synergy among peers in a way that is micro-founded in a non-cooperative manner. We
characterize the model econometrically, showing how identification conditions generalize
those of the homogeneous model by Bramoullé, Djebbari, and Fortin (2009).

36In an extensive meta-analysis, Sharkey et al.|[2020|find that gender-targeted programs are more effective
to tackle youth obesity, but the results are not statistically significant due to the small sample size.

37 According to our results, an increase in the frequency of between-gender links could also magnify the
effect of the anti-obesity campaign. However, interventions aimed at manipulating directly social links
(Goette, Huffman, and Meier 2012} Fafchamps and Quinn |2018|) are widely seen as difficult to implement
and scale up.
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We estimate the model using data on BMI and social interactions of adolescents in
the Add Health dataset, controlling for the endogeneity of declared links. Comparing the
GMM estimates of a standard homogeneous model with our heterogeneous model, we show
that Add Health data display significant gender-dependent heterogeneity in peer effects.
In particular, results suggest that male students are more affected by the average BMI of
their female friends that the reverse.

One interest in our approach is to design interventions on the basis of the heterogeneity
in social interaction patterns. We illustrate this point with a simulation exercise where we
evaluate an intervention replacing one fast-food type serving with one balanced meal per
week. Results from our simulations show that, in the most conservative scenario where
all students are affected by the intervention to the same extent, the social spillovers stem-
ming from female students are 33% higher than the spillovers from males. This result is
entirely driven by the heterogeneity of peer effects along gender lines, and it translates into
an 8% gain in terms of aggregate BMI decrease from reaching out to females rather than
males. If we further assume that female students respond more to the kind of interven-
tion under scrutiny (as the literature on nutrition science seems to suggest), we conclude
that social spillovers from females are twice as large as male-generated spillovers and that
resources spent on females generate a decrease of aggregate BMI which is 54% above the
one generated by resources spent on males.
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Tables and Figures

Table 1: Descriptive statistics

Mean s.d. Min Max
Weight Status
BMI 23.13  4.71 12,98 46.07
Males” BMI 23.54 4.64 15.12 44.63
Females” BMI 22.73 4.75 12,98 46.07
Regressors
Age 16.38 1.44 13 20
White 0.61 0.49 0 1
Black 0.16 0.36 0 1
Grades 9-10 0.26 0.44 0 1
Grades 11-12 0.63 048 0 1
Mother: some college education 0.43 049 0 1
Father: some college education 0.36 048 0 1
Network Statistics

Number of friends 2.30  2.10 0 10
Males: Number of male friends 1.46 1.34 0 5
Males: Number of female friends 0.83 1.12 0 5
Females: Number of male friends 0.88 1.18 0 5
Females: Number of female friends 1.44  1.31 0 5

N = 2307
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Table 2: Estimation of homogeneous peer effects (exogenous network)

(1) (2) (3) (4)
Individual Effects  Contextual Effects

coef. s.e. coef. s.e.
Endogenous Peer Effects 0.220%%*  0.022 - -
Age 0.124 0.086 -0.305***  0.044
White -0.189 0.233 0.183 0.290
Black -0.253 0.286 0.472 0.378
Grade 9-10 1.114%%%  0.423 0.097 0.520
Grade 11-12 1.830***  0.483 0.053 0.555

Mother: some college education 0.169 0.150 -0.121 0.244
Father: some college education  -0.260*  0.153  -0.506**  0.242

N=2307. School-level fixed effects included.

Table 3: Estimation of homogeneous peer effects (endogenous network)

(1) (2) (3) (4)
Individual Effects  Contextual Effects

coef. s.€. coef. s.e.
Endogenous Peer Effects 0.234*%*%*  0.035 - -
Age 0.079 0.091 -0.281*%**  0.094
White -0.111 0.368 -0.531 1.676
Black 0.267 0.802 -0.642 2.027
Grade 9-10 1.371%* 0.663 -0.339 0.976
Grade 11-12 1.791** 0.699 0.263 1.122

Mother: some college education 0.170 0.177 -0.694 1.045
Father: some college education -0.267 0.208 -0.165 0.994

N=2307. School-level fixed effects included.
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Table 6: Simulation results

Panel A: vf = v, = —0.85

model: homogeneous PE heterogeneous PE

n 2 6 @) G ©
all females  males all females  males

TE: direct -0.85 -0.85 -0.85 -0.85 -0.85 -0.85
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

TE: indirect -0.31 -0.31 -0.31 -0.31 -0.35 -0.26
(0.01) (0.02) (0.02) (0.01) (0.03)  (0.02)

TE: total -1.16 -1.16 -1.16 -1.16 -1.20 -1.11
(0.01) (0.01) (0.01) (0.01) (0.03)  (0.02)

Aggregate effect on BMI without PE with PE
ittl: 50% students at random -51 -69.34  (6.35)
itt?: 50% students, females only -51 -72.10  (1.65)
itt3: 50% students, males only -51 -66.82  (1.19)
Panel B: v¢ = —1,v,, = =0.7
model: homogeneous PE heterogeneous PE

n 2 6 (1) G ©
all females  males all females  males

-0.85 -1 -0.7 -0.85 -1 -0.7
TExdirect 00y 0.00)  (0.00) (0.00) (0.00)  (0.00)
TE: indirect -0.31 -0.36 -0.25 -0.31 -0.41 -0.22
(0.01)  (0.03)  (0.02) (0.01) (0.03)  (0.02)

TE: total -1.16 -1.37 -0.95 -1.17 -1.41 -0.92
(0.01)  (0.03)  (0.02) (0.01) (0.03)  (0.02)

Aggregate effect on BMI without PE with PE

itt!: 50% students at random -51 -69.74  (6.51)
itt2: 50% students, females only -60 -84.82  (1.94)
itt3: 50% students, males only -42 -55.03  (0.98)

Note: average values computed over 500 draws. Standard errors in parentheses.
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Appendix A

We now develop a non-cooperative model to micro-found our estimating equation through
the channel of strategic complementarity (‘social synergy’) in BMI within the social net-
work. We develop the theoretical model for one network of non-isolated students where
heterogeneous peer effects only work through the ‘endogenous’ channel ( i.e., ds are set to
zero). This is done to simplify the notation, and is aligned with the simulation exercise
of section ol However, the discussion can be trivially extended to the most general case.
Also, we ignore the network formation endogeneity as our results remain stable when we
take it into account.

Let us consider one population of students (n™ + n/ = n), interacting among them.
The student ¢’s reference group is non-empty: n;,, +n; ¢y > 0 for each zﬁ The friendship
network is defined by four fixed and known binary adjacency matrices A,(z = 1,--- ,4),
and their weighted version G,(z = 1, - ,4), defined as above. Every individual maximizes
a gender-dependent quadratic utility function which is separable in private and social sub-
utilities, subject to a linear production function for the BMI. The maximization program
of a type-m individual 1 is:

2
yioax Uim(€im,¥) = —Yim — Zém + Vmm¥Yim81iYm + Vi fYim8%Y - (12)
St Yim = Q0 — Q1€ + Q2T m + Nim, (13)

where y; »,, is the outcome (i.e., BMI) of individual i in category m, y,, is the vector of
outcomes in m category, y is the vector of outcomes in f category, y is the concatenated
vector of outcomes in f and m categories, e; stands for the effort of i, g/, is the ith row
of the social interaction matrix G, and z; and n; ., denote observable and unobservable
individual characteristics. The first two terms in the utility function describe the private
sub-utility: the first term assumes that an increase in BMI reduces the individual ’s util-
ity The second term e’zm represents the cost of effort to reduce weight and assumes that
the marginal cost of effort is increasing with effort. The social sub-utility corresponds to
the two last terms in the utility function: we assume that social interactions influence pref-
erences through the channel of social synergy in BMI between a student and his reference

group of each type (Fortin and Yazbeck 2015)@

38Note that the empirical illustration relaxes this assumption, allowing for isolated students.

39We are ignoring here a situation where very low weight negatively affects health (e.g., anorexia).

4OThis framework is also consistent with a mechanism of pure conformity in social interactions. In
that case, an individual’s utility is positively affected by the degree to which he conforms with his peers’
outcome or characteristics due for instance to the presence of social norms. However, while in a model such
as ours, the channels of social synergy and pure conformity are observationally equivalent (Blume et al.
2015; Boucher and Fortin 2016; Boucher et al. [2022)), it seems plausible to assume that social synergy is
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The maximization program of type-f individuals can be written using a similar utility
function, where social interaction parameters can differ from those of type-m ones. Hence,
a type-f individual solves the following program:

2

e-
Juax - Upleiy) = ~yif = ;f D r i, 185 f U mYi, f84Ym (14)
st. yiy=ap—aie;f+ aaxif+ 1 f (15)

The first order conditions of the type-m maximization program lead to

Ym = QL + BmmGIYm + 6mfGQYf + Xy + €m (16)

where a = ag — i, Brm = WWmms Bmf = WPmys, and €, = n,,,, where p = o? represents the
squared marginal productivity of effort on weight level. Similarly, the first order conditions
for type-f individuals lead to

Y :aLf+ﬁffG3yf+ﬁfmG4ym+a2x}c+ef (17)

where Brr = pibsr, Brm = pPgm, and €5 = ny. Assuming that the absolute value of the
(’s is less than one, if we concatenate Equations and , we obtain the following
best-response functions for the whole population of students, given the others’ weight level
(Nash equilibrium):

y=aLr+ BmmGly + ,BmfG?y + ﬁffGZSy + BfmG4y + aox + €, (18)

which coincides with equation . Notice that homogeneity implies that all ¥’s are equal
(=), and thus Bymm = Bms = Brr = Bfm = B (equation )

This theoretical result has a practical relevance for the evaluation of exogenous shocks
and interventions (Section . In fact, the conditions above imply that we can separately
identify all the parameters of the utility function provided that we have a proxy for effort.
While effort is generally not observed, it is possible to find a good proxy for effort in
observational databases at the individual level (e.g., a measure of eating habits, physical
exercise, etc.). When no such data are available, one can always recover the parameters
of the preferences and the production function, for a given level of u. Indeed, each of the
four social sub-utility parameters (the v’s) are proportional to its corresponding f, the
proportionality coefficient being p 1.

Finally, throughout the simulation exercise of section [5| we have assumed that the
intervention shifts the intercept ag of the BMI production function in equation . This

the mechanism at play in peer effects. Indeed, it means that an increase in the peers’ average BMI of a
given gender positively influences the marginal utility of his own BMI (Y5, > 0;%ms > 0). Heterogeneity
in social interactions is reflected by the fact that ¢ s, and ¥, s can be different. For instance, as mentioned
earlier, since girls are in general more mature and influencial than boys at the same age, it is natural to
assume that the former have more influence on the latter’s marginal utility than the reverse.
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is a benchmark assumption which allows us to be relatively agnostic with respect to the
underlying mechanism. However, we could have alternative hypotheses about the channels
through which the intervention affects the BMI in the population of interest: for instance,
policy makers may have good reasons to believe that the intervention affects either the
marginal productivity of effort (o) of directly the way peers’ BMI influences the marginal
utility of own BMI (¢’s). These different scenarios yield different conclusions in terms
of policy evaluation, and the amplitude of these discrepancies could be evaluated by an
appropriate calibration of the model above, following the footsteps of section (5).

Appendix B

Proof of proposition

To prove our proposition, we assume that S(3) is invertible (see footnote |10| for sufficient
conditions) and we use the formula of the inverse of matrix established using the Newton
Binomial formula. The following steps are necessary to prove our proposition:

1. Let k =1,2,3,4,... and derive the expression of Si(3)~! usingﬂ
k>1
— [k ~ \k—i A \k—i— 1A ~ONE s A~ Ni—1
S:8) =Y <> (B G1)* ™ + (b = ) (Brom®1)* ™ "G . [(B1Gs)" +iB1m (51 Gs) ™G

=0 ¢
2. Sum over all k’s and re-write S(3)~! such that S(3)"! =1+ 3 S.(8).
k=1
3. Using the latter expression, derive an expression of W;(3) = G;S(8)~! and W;(8)G(6)
Vi € {1,2,3,4}.

4. Write {W;(8) [yx +G(8)x +ta]};—1234) as a function of instruments and ex-
tract intruments and the associated restrictions on the parameters of the model,
pre-multiplied by matrix J.

For sake of simplicity, let susbscripts mm, mf, ff and fm in B be replaced by 1,2,3,4
respectively. Using the steps enumerated above and developing for k € 1,2,3,4, one can
write Sk () using the expression below:

S1(8) = [B1G1 + B2G2] x [B3Gs + B1G4]

S2(B) = {ﬂlzG? + 25152@71@2} +2[1G1 + B2G2] x [B3G3 + uGa] + [5§G§ + 25354@13@4}

41Recall that we order all matrices so that the first nf rows correspond to type-f individuals of network
r, and the remaining n," rows are for type-m individuals in network r. This leads by construction to the
following identities: G1,.Ga,r = On,, G3,+.G2,r = On,, G1,,.G3r = On,, G3,.G1,p = On,., G572 = 0y,
G437 =0n,,G4r.Gs, = 0,, and G2,,.G1,r = Op,.
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S3(8) = {ﬁ?ci + 35%52@’?@2} +3 [512@'? + 25152@!1@2} x [83G3 + B1G4]
+ 3 [B1G1 + $2G2] x [ 3G; + 25354‘@3@4} + [ iG; +35§54G§G4]

Sa (ﬂ) = |: %Gzll + 46?62@?@2} +4 %G? + 35%62@?@2 X [ﬂg@g + ﬁ4@4]
+ 6 {B%G? + 25152@'1@2} x 823G} + 26364656 | + 4 [51G1 + B2G5]
< [B6] +3830,66u | + [316; +1538:636G.]

We then write S™!(8) = I+S1(8)+S2(8)+S3(8)+S4(8)+ > Sk(B) using the expres-
k=5 B
sions of Sy,(8) given above. We are then able to write, Vi € {1,2, 3,4}, W;(8) [yx + G(8)x + v

as:

Wi(B) [rx +G(@)x+1a] =1Gix + (v81+61) [6] +46] + B + iG] | x

(VB2 + 02) [G1G2] x + B1(27B2 + 62) [Gng
B2(27B3 + 83) [G1G2Gs] x + B2(2784 + 04) [G1G2G4] x
[Gl + ﬁlG? + 5261@'2 + B%G:f + 2,6162@?(32 + } Lo

G, § Sk(8) [(v + G(8))x + ea

X

+ o+ o+

(785 + 03) |GG + 53G2G§ + 59%62@2 + »33?@2@3} X
(VB4 + 04) |G2Gy)| X + B3(27f4 + 64) [G2G3G4] x
B3 (3784 + b4) [‘GzG;Gd X + B3 (4vB4 + 04) {G2G3G4} X
|:G2 + ﬁ3G2G3 + B?%GQGE + 263ﬁ4@2@3©4 + :| Lo
Gz Y Sk(B) [(v +G(8))x + ta

=5

W3 (8) [yx + G(8)x + 1a] = 1Gax

+ o+ o+t

W3(B) [yx+G(8)x + ta] =1Gsx + (VB3 + d3) {Gz + 63G§ + 6%@3 + ﬂg@g} x

+ (vBu + 0a) [GaGa] x + B3(27Ba + ba) [(;2(;4] x

+  B3(37Bs+ b4) [G§G4] X + 33 (4784 + 64) Gg(—h} X
+ {GS + 53@?3 + BsG3Gy + 25354@3@4 + ..

+

G; k§::5 S(B) [(v +G(8))x + ver]
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Wi(B) [1x+G(8)x +1a] =1Gsx + (B +61)

+ (VB2 +02) 72| X +

4+ Ba(2vB5 + 03) [GaG2Gs] x + B2(2vB4 + 64) [G4G2Gy] x
+ [G4 + 81G4Gy + $2G4Go + 612([7}4@? + } L
+

G, § Sk(8) [(7 +G(8))x + 1]

G.G, + 166G’ + B2G.G: + 5;(;4@;*} x
G4G:] x + B1(2762 + 62) [G4G1G] x

The above expressions provide sufficient conditions of identification of our parameters
using the IV method. These conditions extend the ones obtained in Bramoullé, Djebbari,
and Fortin (2009) regarding the independence of the interaction matrices of our model and
restrictions on our parameters.

Specifically, considering the expressions given above, we can see that naturally occuring
intruments of our endogenous variables include different order of our interaction matrices
and interactions of different orders of these matrices. For example, instruments of our
first endogenous variable include JGi1x, J G12x, JG13x and higher degrees of the ma-
trix JG1 multiplied by vector x of characteristics if both (y81 + 01) # 0 and matrices
G1,G12,G13, G, ete. are linearly independent. Following the same method and using
the other expressions above, we can see that minimal conditions for IV variables to work for
each of the four endogenous variables are (y82+3d2) # 0, (7083+03) # 0 and (754—1—(54) # 0.
In addltlon 'y needs to be different from zero and matrices G, G2, G3, Gy, Gl, GG,
G2Gs, Gg, Gl, ..., I need to be independent, which corresponds to the condition that
vector columns of matrix Qg of instruments should be linearly independent. Additional
conditions appear whenever one is concerned about adding instruments of higher order of
interaction matrices multiplication. In this case, the additional conditions on parameters
of the model take the form of 3; # 0 Vi € {2,3,4} and ((j — 1)v5; + ;) # 0 and linear
independence of jth order interaction of social interaction matrices such that CG,;G; adds
up to the independence conditions stated above, where C is either a single interaction
matrix or a non-zero product of interaction matrices. For example, J G1G2G4X may be
used as an instrument if By # 0, (2784 + 64) # 0 and matrices Gy, Go, Gg, Gu, Gl, GG,
G-Gs, Gg, G:l)’, ..., I and G1G3G, are linearly independent. Also, J G4G2G3X may be used
as an additional instrument if By # 0, B3 # 0, (3y83 + 03) # 0 and matrices G, G2, Gs,
Gy, G%, G1G,, G2Gs, G?,), Gi’, ..., I and G4G2G§ are linearly independent.

GMM with quadratic conditions

Let the IV moments be given by the expression ¢;(6) = Qx€(0) where €(0) =
J(y —Z6 — ta). The additional quadratic moments are given by the expression g(0) =
[U/le(O),U’Z(—:(O),...,U;(-:(O)]IG(O), where U; is such that ¢r(JU;) = 0 In addition,

“2Following Liu and Lee (2010), we use Uy, = Gy, — tr(JGy)I/tr(J) for k= 1,...,4.
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let the combined vector of linear and quadratic empirical moments be given in g(0) =
[4,(0), ¢4(0)]. Finally, let Q = Q(62, fis, jis) where 62, fi3 and fig are initial estimators of
the second, third and fourth moments of the error term of our model. In our heterogeneous
model, the optimal weighting matrix associated with our GMM is given by

72 QK Qx 13 Qw

Q=Var|g(0)] = 7
3w’ Qe (pa — 30w + 04T

where w = [vecp(U1),vecp(Us), ...,vecp(Uy)], E* = E + E/, V square matrix E of size n,
vecp(A) = (a11,a22, ..., ann) and T = I [vec(U3), vecp(U$), ...,vecD(UfI)]. The feasible
optimal GMM estimator is given by

N

agmm = argmin 06@9,(9)5719(0)

which is implemented in our estimates of Section
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