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1 Introduction

While economic models are designed to be only partial and incomplete representations of real eco-

nomic phenomena, it is still highly desirable to quantify the degree of model misspecification and the

directions along which the model performance is unsatisfactory. Even if the model is rejected by the

data, it can still be useful for policy analysis but the standard inference and model comparison proce-

dures should be adjusted for the underlying model uncertainty. For these reasons, it is now common

practice to first subject the candidate models to specification testing before committing to a particular

analytical and inference framework.

There are at least two characteristics of economic models that make the development of fully robust

and reliable specification testing procedures more challenging. First, economic models are typically

defined by a set of conditional moment restrictions. The routine approach is to resort to the law

of iterated expectations and reduce the conditional restrictions to unconditional moment restrictions

that are then used to design the proper estimation and testing framework. When this is done in ad

hoc manner, this approach could result in loss of effi ciency and even in inconsistency of the estimator

(see, for example, Dominguez and Lobato, 2004). On the other hand, a transformation that preserves

the information in the conditional moment restrictions leads to modified tests based on a continuum

of moment conditions (see Bierens, 1982; Bierens and Ploberger, 1987; de Jong and Bierens, 1994;

Carrasco and Florens, 2000; Kitamura, Tripathi and Ahn, 2004; among others). A common feature of

all these tests is that they rely on root-n consistent estimators which are readily available in models

that are first-order locally identified.

Second, it is often the case that the moment restriction model is locally under-identified. In

linear models, for example, the lack of first-order local identification —rank deficiency of the Jacobian

matrix of the moment conditions — implies global identification failure which typically renders the

standard specification tests invalid under both the null and alternative hypotheses as the power of the

test, in certain contexts, is bounded by its size (Gospodinov et al., 2017). The intuition behind this

result is that it is sometimes possible to recast the optimal specification test as a reduced rank test

which highlights the diffi culty of determining if the reduced rank is induced by correct specification or

identification failure. In nonlinear models, however, first-order identification is no longer a necessary

condition for global identification. There are prominent examples in which the model fails the first-

order local identification property but identifies the true value locally at second order. Such examples

include models with common conditionally heteroskedastic features (Dovonon and Renault, 2013),
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nonstationary panel AR(1) model with individual fixed effects (Dovonon and Hall, 2018; Dovonon

et al., 2020), and unit root moving average Gaussian models with higher-moment overidentifying

restrictions (Gospodinov and Ng, 2015). The implications of the second-order local identification

for unconditional moment restriction models are a slower rate of convergence of the estimator and

overrejection of the standard specification test (Dovonon and Renault, 2013).

This paper builds on these two strands of literature to obtain conditions under which the con-

ventional specification tests with conditional moment conditions remain valid under first-order local

identification failure. To this end, we formalize the concepts of point identification and first-order local

identification failure in conditional moment restriction models. Similarly to point-identified uncondi-

tional models, the first-order local identification failure allows only for a reduced number of directions

of the parameter vector to be identified while identification of the remaining directions is obtained via

a second-order expansion of the moment conditions. We then proceed with characterizing the limit-

ing behavior of the estimator and the specification test in models with an expanding set of moment

conditions when first-order local identification fails but global identification is still attainable.

Our main contributions can be summarized as follows. First, we extend the test for validity of

conditional moment restrictions (de Jong and Bierens, 1994; Donald et al., 2003) to moment condition

models that are first-order degenerate. We establish our results in a two-step generalized method of

moments (GMM) framework with general forms of moment condition models and dependent data.

By contrast, the limiting behavior of the test proposed by de Jong and Bierens (1994) is obtained

in the context of nonlinear regression models with cross-sectional data. We should note that the

extension to dependent data and characterizing the limiting behavior of the GMM estimator and the

specification test in this context is non-trivial. We outline the conditions under which the specification

test with an increasing number of unconditional moment restrictions is robust to the type of singularity

arising from first-order local identification failure. More specifically, we extend the notion of second-

order local identification to the setting of models defined with conditional moment restrictions. The

limiting behavior of the GMM estimator and the specification test are studied under the identification

pattern where point identification hold, first-order local identification fails while local identification is

maintained at second-order.

We show that the GMM estimator based on the expanding moment restrictions estimate the

directions of the parameters that are locally identified at first order at a standard
√
n-rate while the

remaining directions are estimated at a slower rate. Interestingly, this rate is faster than the n1/4-rate

in second-order identified models with a fixed number of moment restrictions (Dovonon and Renault,
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2020). In this paper, the expanding number of moment restrictions enhances the identification signal

and accelerates the rate of convergence. We also derive the asymptotic distribution of the GMM

estimator in the scalar case which highlights the highly non-standard limiting behavior of the estimator.

Despite this non-standard asymptotic setup, we show that the test for validity of conditional moment

restrictions is characterized by a standard normal limit even when the first-order local identification

condition is compromised. Another important intermediate result that we develop in the paper is a

central limit theorem (CLT) for degenerate U -statistics with linear kernels of increasing dimension

under strong mixing dependence. The CLT is novel and of independent interest. Establishing the

asymptotic normality of the test for overidentifying restrictions draws heavily on this CLT.

The rest of the paper is structured as follows. Section 2 introduces the main setup and notation.

It also presents the notions of first- and second-order local identification along with alternative char-

acterizations in the context of conditional moment restrictions. Section 2 ends with two motivating

examples. The asymptotic properties of the GMM estimator are studied in Section 3. Section 4 pro-

poses a CLT for U -statistics under strong mixing dependence and establishes the asymptotic normality

of the specification test statistic under the null hypothesis. This section also shows that this test is

consistent against all alternatives. Section 5 reports simulation results for the empirical size and power

properties of the proposed specification test. This section also provides an empirical application that

illustrates the presence of common conditionally heteroskedastic features in portfolio bond returns.

Section 6 concludes. The proofs and some supplementary results are provided in Appendices A and

B, and the Online Appendix.

Throughout the paper, for any matrix C, ‖C‖2 =
√
λmax(CC ′) denotes the spectral norm, with

λmax(·) the largest eigenvalue function. If C is a vector, this amounts to its Euclidean norm as well.

Also, let λmin(·) denote the smallest eigenvalue function, and Z, N and Rm signify the set of all

integers, the set of natural numbers and the set of real m × 1 vectors, respectively. Furthermore,

Card(S) denotes the cardinality of a finite set S, defined to be the number of elements in the set S,

vec(C) signifies column vectorization of a matrix C, ∨ denotes maximum, Rank(C) is the column rank

of a matrix C, and Diag(c11, c22, ..., cmm) denotes an m×m diagonal matrix with (c11, c22, ..., cmm)′ on

its main diagonal. Convergence in probability and convergence in distribution are denoted by P→ and
d→, respectively, while the abbreviation a.s. stands for almost surely. Let {Xt : t ∈ Z} be a sequence

of random variables and Fba be the σ-algebra generated by {Xt : −∞ ≤ a ≤ t ≤ b ≤ ∞}. Then, {Xt}
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is said to be strong mixing or α-mixing (Andrews, 1984) if

sup
−∞<t<∞

sup
A∈Ft−∞,B∈F∞t+s

|Pr(A ∩B)− Pr(A) Pr(B)| = α(s)→ 0 as s→∞.

Finally, an = oP (1) denotes that the sequence an tends to zero in probability and an = OP (1) signifies

that an is bounded in probability.

2 Model, identification setup and examples

In this paper, we consider a single conditional moment restriction model:

E (u(yt, θ0)|xt) = 0 a.s., (1)

where u is a real-valued function, θ0 ∈ Θ ⊂ Rp is the parameter of interest and {(xt, yt)}t is a sequence

of Rkx×Rky -valued random vectors. Many economic equilibrium models take this conditional moment

restriction form. A prominent example of the role of conditioning is the stochastic discount factor

framework in asset pricing (see, for instance, Hansen, 2014).1 In this setup, the null hypothesis of

validity of the conditional moment restrictions in (1) is

H0 : Pr{E (u(yt, θ0)|xt) = 0} = 1 (2)

against the alternative

H1 : Pr{E (u(yt, θ)|xt) = 0} < 1, for any θ ∈ Θ.

While the single conditional restriction setup covers a wide range of practically relevant models, we

focus on this case merely for the sake of notational simplicity. The main results in this paper carry

over to higher-dimensional conditional moment restrictions at the cost of more cumbersome notation.

Consistent estimation of θ0 using (1) requires point identification; that is, for all θ ∈ Θ,

ρ(xt, θ) := E(u(yt, θ)|xt) = 0, a.s.⇔ θ = θ0. (3)

Moreover, inference about θ0 hinges on the sharpness of the slope of the function θ 7→ ρ(x, θ) at θ0.

The local behavior of this function determines the rate of convergence of the estimation of θ0. The

standard approach to inference relies on a local identification condition that can be expressed as

E
(
ρθ(x, θ0)′ρθ(x, θ0)

)
is non singular, (4)

1For a comprehensive recent discussion of these issues in the context of asset pricing models, we refer the reader to
Antoine et al. (2020).
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where ρθ(x, θ) := E(∇θu(y, θ)|x) with ∇θu(y, θ0) = ∂u(yi, θ)/∂θ
′|θ=θ0 . Following the literature on

unconditional moment restriction models (Sargan, 1983; Dovonon and Renault, 2013; Dovonon and

Hall, 2018; among others), we shall refer to this condition as first-order local identification condition

for conditional moment restriction models. This connection between the identification setups for

unconditional and conditional restriction models is formalized in the next subsection. As pointed out

in the introduction, this paper considers a framework where the conditional moment model is point

identified but there is a failure of the first-order local identification condition.

2.1 Identification in conditional moment restriction models

Note that, for any k and any vector of instruments zt = g(xt) ∈ Rk, function of xt, the conditional

moment restriction in (1) implies the unconditional moment restriction:

E (zt · u(yt, θ0)) = 0. (5)

According to Sargan (1983), Dovonon and Renault (2013), and Lee and Liao (2018), among others,

the unconditional moment restriction (5) locally identifies θ0 at first order if

Rank(E(zt · ∇θu(yt, θ0)) = p (6)

whereas lack of first-order local identification occurs when

Rank(E(zt · ∇θu(yt, θ0)) < p. (7)

Therefore, it is reasonable to conjecture that the conditional moment restriction (1) identifies θ0 locally

at first order if and only if there exists a set of instruments zi such that (6) holds. Relatedly, first-order

local identification fails if and only if (7) holds regardless of the choice of instruments. The following

proposition describes this property in terms of degeneracy of the expected Jacobian of u(yt, θ) at θ0.

Proposition 2.1 The following two statements are equivalent:

(i) For any k and any Rk-valued measurable function g, Rank (E (zt · ∇θu(yt, θ0))) < p, where zt =

g(xt) and assuming that the moment exists.

(ii) There exists at least one linear combination of the elements of E (∇θu(yt, θ0)|xt) that is almost

surely nil.
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A proof of an alternative formulation of this proposition (Proposition 2.2(ii)) is provided in Appen-

dix B. The characterization in (ii) validates (4) as the first-order local identification condition in the

model (1). Further, this highlights some similarities with the first-order local identification failure in

parametric models as studied by Rotnitzky et al. (2000). In this setting, first-order local identification

failure amounts to linear dependence of the elements of the score function of the model, evaluated at

the true parameter value.

For further characterization of point identification and first-order local identification failure, let

us consider the separable Hilbert space L2(P ) := L2(Rkx ,B(Rkx), P ) of square P -integrable real-

valued functions defined on Rkx , where P is the common probability distribution of xt’s - that are

assumed to be stationary - and B(Rkx) is the Borel σ-algebra of Rkx . Let (gl)l∈N be a countable

basis (not necessarily orthonormal) of L2(Rkx ,B(Rkx), P ). Also, let g(k) := (g1, . . . gk)
′ and αl(θ) =

〈gl(·), ρ(·, θ)〉 := E(gl(x)ρ(x, θ)). Then, we have the following proposition.

Proposition 2.2

(i) — If the conditional moment restriction (1) satisfies the point identification property in (3)

and if there exists k0 ∈ N such that αl ≡ 0 for all l ≥ k0, then, for all k ≥ k0,

∀θ ∈ Θ, E
(
g(k)(x) · u(y, θ)

)
= 0⇔ θ = θ0. (8)

—More generally, assume that (a) Θ is compact, (b) (gl)l is orthonormal, (c) θ 7→ E[ρ(x, θ)]2

is continuous on Θ, and, (d) limk

[
supθ∈Θ

∑
i≥k αi(θ)

2
]

= 0.

Then, if model (1) satisfies the point identification property in (3) and for every k there

exists θk ∈ Θ \ {θ0} such that: E[g(k)(x)u(y, θk)] = 0, we have

θk → θ0, as k →∞.

(ii) If E(∇θu(y, θ0)|x) ∈ (L2(P ))p, then the conditional moment restriction (1) fails to satisfy the

first-order local identification condition if and only if there exist 0 ≤ r < p and k0 ∈ N such that,

for all k ≥ k0,

Rank
(
E
(
g(k)(x) · ∇θu(y, θ0)

))
= r < p.

Part (i) of Proposition 2.2 aims to establish an equivalence between point identification of con-

ditional moment restriction (1) - as expressed by (3) - and point identification of the unconditional

moment condition E(g(k)(x)u(y, θ)) = 0 for large enough k. Note that point identification of the
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unconditional model for any value of k implies point identification of the conditional model. Part (i)

of the proposition establishes the converse for estimating functions ρ(x, θ) that have finite number

of nonzero components in a given basis. This is typically the case for polynomial functions in x. In

more general cases, the second part of (i) establishes, under mild conditions, that all the solutions to

E(g(k)(x)u(y, θ)) = 0 eventually collapse to θ0 as k grows. Regarding condition (d), it is worth men-

tioning that x 7→ ρ(x, θ) ∈ L2(P ) ensures that, for each θ ∈ Θ,
∑

i≥k α
2
i → 0 as k grows. Condition

(d) imposes uniformity to simplify the proof.

Part (ii) is concerned with first-order local identification as it relates local identification failure in

conditional and unconditional models. When k is large enough, the expected Jacobian

G(k) := E(g(k)(x)∇θu(y, θ0))

reaches the maximum rank r < p. Since the moment restrictions are inclusively increasing with k, this

also implies that the null space G(k) and the range of its transpose are fixed. This stability of range

and null space will be key to second-order local identification that will be imposed on the moment

restrictions in order to characterize the limiting behavior of estimators and specification tests. Indeed,

the main consequence of first-order local identification failure, while global identification holds, is

that a certain number (r < p) of directions of the parameter vector are identified through first-order

expansions of the moment function.

Next, following Dovonon and Hall (2018) and Dovonon and Renault (2020), we focus on config-

urations that allow the identification of the remaining directions via a second-order expansion. Let

k ≥ k0 such that Rank(G(k)) = r < p, R1 be a (p, r)-matrix with columns spanning the range of G(k)′ ,

and R2 denote a (p, p − r)-matrix with columns spanning the null space of G(k). We say that the

moment restriction (1) identifies θ0 at second order if, for all u ∈ Rr and v ∈ Rp−r, we have2(
G(k)R1u+

(
v′R′2E

(
g

(k)
l (x)∇θθu(y, θ0)

)
R2v

)
1≤l≤k

)
= 0⇔ ((u, v) = (0, 0)) , (9)

where ∇θθu(y, θ0) := (∂2/∂θ∂θ′)u(y, θ), evaluated at θ0.

Letting M (k) be the matrix of orthogonal projection on the null space of G(k)′ (or equivalently the

orthogonal of the column span of G(k)), Corollary 2.3 of Dovonon and Renault (2020) ensures that (9)

2From our discussion above, if (9) holds for a given k, it holds for all k′ ≥ k.
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is equivalent to the existence of γk > 0 such that, for any v ∈ Rp−r,∥∥∥∥M (k)
(
v′R′2E

(
g

(k)
l (x)∇θθu(y, θ0)

)
R2v

)
1≤l≤k

∥∥∥∥
2

≥ √γk‖v‖22,

with γk = inf
‖v‖2=1

∥∥∥∥M (k)
(
v′R′2E

(
g

(k)
l (x)∇θθu(y, θ0)

)
R2v

)
1≤l≤k

∥∥∥∥2

2

. (10)

This inequality is instrumental in deriving the rate of convergence of estimators of θ0. It is worth

mentioning that it can be shown that γk is a nondecreasing function of k and unlike the case of a fixed

set of unconditional moment restrictions (Dovonon and Hall, 2018; Dovonon and Renault, 2020), this

property has the potential to affect the rate of convergence of the estimators of θ0, especially if γk

diverges to ∞ as k grows.3

We conclude this section with some remarks regarding the second-order local identification. We

define the (k, p2)-matrix

H(k)(θ) = E
(
g(k)(x)[vec′(∇θθu(y, θ))]

)
and H̄(k)(θ) its sample counterpart. By definition, it follows that(

v′R′2E
(
g

(k)
l (x)∇θθu(y, θ0)

)
R2v

)
1≤l≤k

= H(k)(θ) · vec(R2vv
′R2).

Remark 1 If p = 1, first-order local identification failure at θ0 amounts to G(k) = 0 for all k. Then,

second-order local identification amounts to H(k)(θ0) 6= 0 for some k.

Remark 2 If p ≥ 2 and Rank(G(k)) = p − 1 for all k ≥ k0, second-order local identification at θ0

amounts to

Rank
[
G(k)R1 H(k)(θ0) · vec(R2R

′
2)
]

= p,

for R1 and R2 defined as in (9).

Remark 3 If, more specifically, Rank(G(k)) = p− 1 for all k ≥ k0, and in some parameter direction,

say θh, we have E
(
g(k)(x)[∂u(y, θ0)/∂θh]

)
= 0, then second-order local identification amounts to

Rank
[
G(k)dh H(k)(θ0) · vec(ehe

′
h)
]

= p,

where G(k)dh is the (k, p − 1)-matrix of columns of G(k), except the h-th, and eh is the p-vector of

zeros with 1 in its h-th entry. Also, note that

H(k)(θ0) · vec(ehe
′
h) = E(g(k)(x)[∂2u(y, θ0)/∂θ2

h]).

3A proof of the statement for a nondecreasing γk is available from the authors upon request.
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The next subsection provides two examples that illustrate the identification properties which are

outlined and discussed so far. In these examples, the conditional moment restriction model fails

first-order local identification but is point identified and satisfies the second-order local identification

condition.

2.2 Motivating examples

Example 1. The first example is quite stylized and its simplicity allows us to illustrate easily the

main features of our identification setup. More specifically, consider the conditional moment restriction

E(ut(θ)|xt) = 0 with

ut(θ) = (yt − θ)2 − 1 : t = 1, . . . , n,

where yt ∼ iid(0, 1) and yt is independent of the stationary process xt. This setup corresponds to

Remark 1 above and is characterized with first-order local identification failure even though global

identification (of the true value θ0 = 0) is assured. Local identification is obtained at second order:

here, k0 = 1 since with the instrument zt,1 = 1, we have E (∇θθ(zt,1ui(θ0))) = −2 6= 0.

Example 2. The second example is much more realistic as it is believed to capture some important

common drivers in financial asset returns (Engle and Kozicki, 1993; see also Dovonon and Renault,

2013). Let Yt be a bivariate (stock, bond, or other financial asset) returns process, generated by the

following conditionally heteroskedastic (CH) factor representation

Yt+1 = Λft+1 + et+1, (11)

where Λ is a (2 × 2) matrix of factor loadings, ft+1 := (f1,t+1, f2,t+1)′ is the vector of (unobserved)

CH factors and et+1 is the vector of idiosyncratic shocks. Letting Ft denote an increasing filtration to

which all information available at date t is adapted, (11) is assumed to satisfy the following restrictions:

E(et+1|Ft) = 0, Var(et+1|Ft) = Ω, Cov(et+1, ft+1|Ft) = 0,

E(ft+1|Ft) = 0, Var(ft+1|Ft) = Diag(σ2
1,t+1, σ

2
2,t+1),

where Ω is time invariant and σ2
i,t (i = 1, 2) are time-varying volatility processes.

Each return process is supposed to be characterized by CH dynamics so that each has at least one

nonzero factor loading. Interest lies in configurations where both assets have commonality in their CH

dynamics in the sense that they share the same source of heteroskedasticity. A common CH feature

thus amounts to collinearity of γ1 and γ2 and is tested within (11) by investigating whether there
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exists a linear combination of returns that offsets the CH feature. The null of commonality of CH

features can be posed as validity of the conditional moment restriction:

E[ut+1(β, c)|Ft)] = 0, with ut+1(β, c) := (Y1,t+1 + βY2,t+1)2 − c, (12)

where θ := (β, c)′ ∈ R2 is the model parameter vector.

Point identification is ensured in this model since, under the null, the only value of β that offsets

the CH factor is: β0 = −Λ1,1/Λ1,2 and c0 = E(Y1,t+1 + β0Y2,t+1)2. This model also fails first-order

local identification. Indeed, simple calculations yield:

ρθ(Ft, θ0) = E(∇θut+1(θ0)|Ft) =
(
ω −1

)
and Rank(E[ρθ(Ft, θ0)′ρθ(Ft, θ0)]) = 1 < 2,

with ω = 2(Ω21 + θ0Ω22).

To establish second-order local identification, let us consider a basis, (gl(Ft))l, of L2(P ) such that

g1(Ft) = 1 and zt := g2(Ft) is such that Cov(zt, Y
2

2,t+1) 6= 0. Consider Zt := g(2)(Ft) = (1, zt)
′. Then,

we have

G(2) := E[Zt∇θut+1(θ0)] =

(
1

E(zt)

)(
ω −1

)
so that the range of G(2)′ and the null space of G(2) are both of dimension 1, spanned by R1 = (ω −1)′

and R2 = (1 − ω)′, respectively. Furthermore,

E(∇θθut+1(θ0)) =

(
2E(Y 2

2,t+1) 0

0 0

)
, and E(zt · ∇θθut+1(θ0)) =

(
2E(ztY

2
2,t+1) 0

0 0

)
.

Hence, for u, v ∈ R, we have

G(2)R1u+ v2

(
R′2E(∇θθut+1(θ0))R2

R′2E(zt · ∇θθut+1(θ0))R2

)
= 0⇔

(
1

E(zt)

)
(ω2 + 1)u+

(
E(Y 2

2,t+1)

E(ztY
2

2,t+1)

)
v2 = 0

which yields u = v = 0.

3 Asymptotic properties of the GMM estimator

In order to establish the limiting behavior of the test of H0 : Pr{E (u(yt, θ0)|xt) = 0} = 1 under

second-order local identification, we first need to derive the asymptotic properties of the associated

GMM estimators within this identification framework. In the light of Proposition 2.1, we investigate

this null hypothesis by proposing a test for the sequence of unconditional moment restrictions:

E (gl(xt)u(yt, θ0)) = 0, l = 1, . . . , k; t = 1, . . . , n, (13)
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where k = k(n) with k(n)→∞ as n→∞. In the standard identification setting, de Jong and Bierens

(1994) argue that this testing approach delivers a consistent test for H0 against arbitrary forms of

alternative hypotheses. To enhance power, the sequence of functions (gl)l is chosen as an enumeration

of some series expansion that does not depend on θ.

As discussed by de Jong and Bierens (1994), the conditioning random variable x can be considered

bounded since

E(Y |x) = E(Y |Ψ(x))

for any one-to-one function Ψ that maps Rkx into a compact subset D ⊂ Rkx . In that respect, if x

is not initially a bounded random variable, one can consider g(Ψ(x)), instead of g(x). Examples of

bounded transformations Ψ(·) include the component-wise arc tangent function, i.e. x 7→ arctan(x) =

(arctan(x1), . . . , arctan(xkx))′, while choices of enumeration of weight functions (gl)l include polyno-

mial, trigonometric, and Flexible Fourier Form families (see de Jong and Bierens, 1994). We refer to

Andrews (1991) and Gallant (1981) for more details on these families. In our simulations, we employ

gl(x) = cos(lx), l = 1, . . . .

As previously, we set g(k) = (g1, . . . , gk)
′ ∈ Rk and write (13) in a more compact form as:

E
(
g(k)(xt)u(yt, θ0)

)
= 0.

Let the GMM estimator be given by:

θ̂ = arg min
θ∈Θ

f̄k(θ)
′Ŵkf̄k(θ), (14)

where

f̄k(θ) =
1√
n

n∑
t=1

fk(xt, yt, θ), fk(xt, yt, θ) = g(k)(xt)u(yt, θ0),

and Ŵk is a sequence of symmetric, positive definite weighting matrices. The specification test that

we introduce next is expressed as a function of the so-called two-step effi cient GMM estimator which

uses the weighting matrix

Ŵk = V̂ −1
k , V̂k =

1

n

n∑
t=1

fk(xt, yt, θ̃)fk(xt, yt, θ̃)
′. (15)

The preliminary (first-step) GMM estimator θ̃ used in (15) is commonly obtained by setting Ŵk =

Wk,0. We shall require that for all k, all the eigenvalues of Wk,0 lie between two positive constants c1

and c2. Since Wk,0 is often set to Ik, this condition is not restrictive. Furthermore, we will derive our

11



results under the condition that the sequence (fk(xt, yt, θ0))i is serially uncorrelated. This is ensured

by our maintained assumption that

E(u(yt, θ0)|Ft) = 0, where Ft = σ(xt, u(yt−1, θ0), xt−1, u(yt−2, θ0), . . .). (16)

In fact, under this condition and for any k, (fk(xt, yt, θ0))t is a martingale difference sequence with

respect to its natural filtration. The second weighting matrix of the two-step GMM estimator there-

fore boils down to the inverse of V̂k, where V̂k is a sum of outer product of fk(xt, yt, θ̃) as defined by (15).

Our goal is to establish the asymptotic distribution of the test of (2)

Ẑ =
1√
2k

(
f̄k(θ̂)

′V̂ −1
k f̄k(θ̂)− k

)
(17)

under first-order local identification failure. Characterizing the limiting distribution of Ẑ requires that

we determine the limiting behavior of θ̂ under (i) an expanding set of moment conditions (k(n)→∞

as n→∞) and (ii) second-order local identification.

3.1 Assumptions

This section collects and presents the main set of assumptions that allows us to characterize the

limiting behavior of the GMM estimator in the conditional moment setup under local identification

failure.

Assumption 1 (Data dependence structure) We assume that u(yt, θ0) is stationary and satisfies

the dependence structure in (16) and (yt, xt)t∈Z is a strong mixing process with dependence measure

α(s) = O(ρs) for some 0 < ρ < 1.

Assumption 1 ensures that the conditional moment restriction (1) holds. It also implies that

fk(xi, yi, θ0) is a martingale difference sequence with respect to its natural filtration, and is strong

mixing with geometrically decreasing dependence coeffi cient. The mixing property is useful to deal with

the serial correlation of functions of fk. Although this dependence structure may appear restrictive, it

encompasses a large class of time series representations that are useful in applications. This includes

a wide range of linear and nonlinear processes. Carrasco and Chen (2002) and Francq and Zakoian

(2006) establish the geometric strong mixing dependence property for conditionally heteroskedastic

processes such as GARCH and stochastic volatility processes. More recently, Fryzlewicz and Subba

Rao (2011) demonstrate that time-varying ARCH processes also share this property.

12



Assumption 2 (Identification setup) There exists k0 ≥ 1 such that:

(i) (Point identification) The parameter space Θ is a compact subset of Rp and for all k ≥ k0,

∀θ ∈ Θ, E
(
u(y, θ)g(k)(x)

)
= 0⇔ θ = θ0.

(ii) (First-order local identification failure) For all k ≥ k0,

Rank
(
G(k)

)
= r < p.

(iii) (Second-order local identification) For any k ≥ k0 and for R1 and R2 defined as in (9), we

have: for all u ∈ Rr, all v ∈ Rp−r and all k ≥ k0,(
G(k)R1u+

(
v′R′2E

(
g

(k)
l (x)(∇θθu)(θ0)

)
R2v

)
1≤l≤k

= 0

)
⇒ ((u, v) = (0, 0)). (18)

Assumption 2 characterizes the identification framework for our analysis. Assumption 2(i) is

necessary for establishing the consistency of GMM estimators. As we argued above in Proposition 2.2,

this condition is equivalent, under mild regularity conditions, to point identification of the conditional

moment model. Assumption 2(ii) imposes first-order local identification failure. This condition is

shown to be equivalent to a lack of first-order local identification in conditional moment restriction

models. Second-order local identification is presented in Assumption 2(iii).

Theorem A.1 in Appendix A shows that the GMM estimator is consistent under Assumptions 1,

2(i) and the following Assumption 3.

Assumption 3 (Consistency of GMM estimators) Assume that:

(i) E
(
gl(xi)

2u(yi, θ0)2
)
< ∆ < ∞, for some ∆ > 0; θ 7→ E[gl(x)u(y, θ)] is continuous for each

l = 1, . . . , k0, with k0 as defined in Assumption 2(i); and

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

g(k0)(xi)u(yi, θ)− E[g(k0)(xi)u(yi, θ)]

∥∥∥∥∥
2

P→ 0.

(ii) There exists a nonrandom sequence Wk of (k, k)-symmetric positive definite matrices and ∆ > 0

such that, with λ̄k := λmax(Wk), we have

λ̄k /λmin(Wk) ≤ ∆ <∞, λmax(Ŵk)
/
λ̄k = 1 + oP (1), λmin(Ŵk)

/
λmin(Wk) = 1 + oP (1).

13



The existence of the second moment of gl(x)u(y, θ0) in Assumption 3(i) allows us to control the

order of magnitude of quantities such as ‖f̄k(θ0)‖22. Under this condition, ‖f̄k(θ0)‖22 = OP (k). The

last part in Assumption 3(i) is the usual uniform law of large numbers. Primitive conditions for this

to hold for dependent data can be found in Domowitz and White (1982) and Pötscher and Prucha

(1989).

The first condition in Assumption 3(ii) is not restrictive as it merely rules out the possibility

that Wk is ill-conditioned. In standard problems where k is fixed, Ŵk is assumed to converge in

probability to Wk. With increasing k, such a convergence needs to be formalized. It turns out that

the convergence of the extreme eigenvalues of Ŵk to those of Wk is suffi cient to establish consistency

of GMM. The conditions in Assumption 3(ii) are trivially fulfilled by estimation procedures using

non-random weighting matrix with eigenvalues bounded away from 0 and from above. This is the case

for the first-step GMM estimator introduced above which uses Wk,0 as weighting matrix which is then

consistent. We also show that under Assumption A.1 in Appendix A, these conditions continue to

hold for the two-step effi cient GMM estimator, and this estimator is consistent as well (see Corollary

A.2 in Appendix A).

To summarize, Assumptions 1, 2(i), 3 already ensure the consistency of the GMM estimator in

point-identified, conditional restriction model under first-order local identification failure (see Theorem

A.1 in Appendix A). However, for deriving the asymptotic distribution of the test for correct model

specification, we need to characterize the rate of convergence of the GMM estimator.

For this reason, we proceed with introducing additional conditions that will allow us to establish

the rate of convergence of the GMM estimator in conditional moment restriction models under local

identification failure. In what follows, we define H̄(k)(θ) = n−1
∑n

i=1 g
(k)(xi)[vec′(∇θθu(yi, θ))] and

Ḡ(k)(θ) = n−1
∑n

i=1 g
(k)(xi)∇θu(yi, θ) to be the sample counterparts of H(k)(θ) and G(k)(θ), respec-

tively, that were introduced above. Also, let H(k) := H(k)(θ0), D1 = G(k)R1, D̄2 =
√
nḠ(k)(θ0)R2,

M (k) = Ik − W
1/2
k D1(D′1WkD1)−1D′1W

1/2
k , γk = inf‖v‖=1 ‖M (k)W

1/2
k H(k)vec(R2vv

′R′2)‖22, λ̄k :=

λmax(Wk) and λk := λmin(Wk), where Wk is defined as in Assumption 3(ii).

We first state a condition (Condition C below) for an Rm-valued random function Ui(θ) that

proves useful in obtaining the order of magnitude of quantities such as (1/n)
∑n

i=1 g
(k)(xi)Ui(θ̄) −

E(g(k)(xi)Ui(θ0)), where θ̄ converges in probability to θ0 (see Lemma B.1 in Appendix B).
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Condition C. For an Rm-valued random function Ui(θ), there exists a neighborhood N of θ0 such

that:

sup
θ∈N

∥∥∥∥∥ 1

n

n∑
i=1

g(k)(xi)Ui(θ)
′ − E

(
g(k)(xi)Ui(θ)

′
)∥∥∥∥∥

2

= OP

(√
k

n

)
,

and for each l ∈ {1, . . . , k}, and r ∈ {1, . . . ,m}, the map θ 7→ E (gl(xi)Ui,r(θ)) is Lipschitz continuous

on N with coeffi cient c > 0, i.e.,

∀θ1, θ2 ∈ N , ‖E (gl(xi)Ui,r(θ1))− E (gl(xi)Ui,r(θ2)) ‖2 ≤ c‖θ1 − θ2‖2.

The first condition is warranted if the functional central limit theorem applies. The Lipschitz property

follows if the considered expectation functions are continuous on a compact set containing a neighbor-

hood of θ0. The common Lipschitz constant may appear restrictive although such a constant exists

if we assume that supθ∈N E(|gl(x)|‖∂Ui,r(θ)/∂θ′‖2) ≤ ∆ < ∞. We now present the final assumption

that is necessary to derive the rate of convergence of the GMM estimator.

Assumption 4 (Orders of magnitude) Assume that:

(i) θ0 lies in the interior of Θ and θ 7→ u(y, θ) is twice continuously differentiable in a neighborhood

of θ0 for each y and the maps θ 7→ ∇θu(y, θ) and θ 7→ vec(∇θθu(y, θ)) satisfy Condition C.

(ii) There exist α1, α2 > 0 such that: α1

√
k ≤ ‖D1‖2 ≤ α2

√
k, α1

√
k ≤ ‖H(k)‖2 ≤ α2

√
k,

α1k ≤ γk ≤ α2k, λmax(D′1D1)/λmin(D′1D1) = O(1), and ‖D̄2‖2 = OP (
√
k).

(iii) Sk := γ
−1/2
k H(k)′W

1/2
k M (k)W

1/2
k f̄k(θ0) = OP (1).

(iv) λ̄k ≤ ∆ <∞, for some ∆ > 0 and
√
k‖Ŵk −Wk‖2 = oP (1).

Note that D1 and H(k) are non-zero matrices and the condition on their spectral norms in As-

sumption 4(ii) follows if each has at least one column with a number of non-zero elements that is

proportional to k. The magnitude of γk follows from the fact that (a) it is a nondecreasing sequence

in k, and (b) it is of order OP (‖H(k)‖22). The requirement that the ratio of the extreme eigenvalues

of D′1D1 be bounded preserves this nonsingular matrix from being ill-conditioned. the condition on

the (k, p − r)-matrix D̄2 is not particularly restrictive since each component of this matrix is OP (1)

by virtue of the central limit theorem.

In Assumption 4(iii), the order of magnitude of Sk follows if λmax(W
1/2
k VkW

1/2
k ) ≤ ∆ <∞, which

is the case, e.g., if Vk and Wk have bounded eigenvalues or if Wk = V −1
k . To see this, note that if λ̄k
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is bounded, then, for any unit vector c, we have:

c′Var(Sk)c = γ−1
k c′H(k)′W

1/2
k M (k)W

1/2
k VkW

1/2
k M (k)W

1/2
k H(k)c

≤ ∆γ−1
k c′H(k)′W

1/2
k M (k)W

1/2
k H(k)c ≤ ∆λmax(Wk)γ

−1
k ‖H

(k)‖22 = O(1)

which is suffi cient to claim that Sk = OP (1) since E(Sk) = 0.

Lastly, Assumption 4(iv) imposes that the eigenvalues ofWk are bounded and Ŵk is suffi ciently near

Wk as n grows. Note that these two conditions are fulfilled by the GMM estimator with nonrandom

matrix having bounded eigenvalues such as Wk,0. This conditions are also satisfied for the two-step

effi cient GMM estimator as we argue in the next subsection.

3.2 Limiting behavior of the GMM estimator

Given the set of assumptions stated above, we now proceed to establishing the rate of convergence of

the GMM estimator which, in turn, will be useful to characterize the asymptotic distribution of the

specification test. In the standard case of a fixed number of moment restrictions (i.e., k is fixed), the

GMM estimator is known to converge at a sharp rate of n1/4 although a faster rate in some regions

of the sample space is possible (Dovonon and Renault, 2013). This mixture of rates is essential for

deriving the asymptotic distribution of the GMM overidentification test statistic as a mixture of chi-

squared random variables. We show a similar rate behavior for the GMM estimator in the current

context under local identification failure although the original rate needs to be adjusted in order to

reflect the increasing number of moment restrictions.

The next theorem states the rate of convergence of the parameter vector . Recall that R1 denotes

a (p, r)-matrix with columns spanning the range of G(k)′ and R2 is a (p, p − r)-matrix with columns

spanning the null space of G(k), where Rank(G(k)) = r < p.

Theorem 3.1 If Assumptions 1-4 hold and k →∞ as n→∞ with k3/n→ 0, then

‖θ̂− θ0‖2 = OP (γ
−1/4
k n−1/4), ‖R′1(θ̂− θ0)‖2 = OP (n−1/2), and ‖R′2(θ̂− θ0)‖2 = OP (γ

−1/4
k n−1/4).

Theorem 3.1 establishes that each of the components of the GMM estimator converges at least at a

nonstandard rate of γ1/4
k n1/4 while the standard

√
n-rate of convergence is possible in some directions.

More specifically, the directions of the parameter that are identified at first order are
√
n-convergent

while the directions that are second-order locally identified converge at a slower, γ1/4
k n1/4 ∼ k1/4n1/4,

rate. Interestingly, this rate is faster than the result in Dovonon and Renault (2020) who obtain, in a

16



configuration of fixed number of moment restrictions, a slower rate n1/4 for the directions identified at

second order. The faster rate in our context is essentially due to to the increased information brought

by the growing number of moment restrictions.

This finding bears some similarities to Han and Phillips (2006) who show in the context of weak

instruments, that the GMM estimator may be consistent if the number of moment instruments is al-

lowed to increase with the sample size (see also Chao and Swanson, 2005, among others). The intuition

behind this result is that the expanding number of moment conditions, if growing at an appropriate

rate with the sample size, enhances the identification signal and renders a consistent estimator even

with possibly irrelevant instruments. In our framework, point identification is maintained and con-

sistent estimation is therefore possible even if the number of moment restriction does not grow. But,

as Theorem 3.1 shows, the second-order local identification also reaps important benefits from the

expanding set of moment restrictions as the second-order identified parameters can be estimated at a

faster rate. It is worth mentioning that since achieving consistent estimation requires the number of

moment restrictions to grow at a slower rate than the sample size, it will not be possible to accelerate

the convergence rate of second-order identified directions to the parametric
√
n-rate.

Some further remarks on the rates of convergence in Theorem 3.1, specialized to the first-step and

two-step GMM estimators, are warranted. The validity of the results in Theorem 3.1 for the first-step

and two-step GMM estimators hinge on verifying Assumptions 3(ii) and 4(iii, iv). For the two-step

GMM estimator, we also use Assumption A.1 in Appendix A and Lemma B.2 in Appendix B.

Remark 4 Since the weighting matrix Ŵk := Wk,0 for the first-step GMM estimator is nonrandom

with bounded eigenvalues from above and away from zero, Assumptions 3(ii) and 4(iv) are trivially

verified. Assumption 4(iii) is also satisfied if, for instance, Vk has bounded eigenvalues and this

estimator, say θ̃, is characterized by θ̃ − θ0 = OP (k−1/4n−1/4). Note that the eigenvalues of Vk are

bounded under Assumption A.1(iv) and if Vk has uniformly bounded diagonal elements. This latter

condition is implied by A.1(ii).

Remark 5 For the two-step effi cient estimator with Ŵk := V̂ −1
k , we assume that the smallest eigen-

value of Vk is bounded away from 0; i.e., λmin(Vk) ≥ λ > 0 for all k. This is a reasonable assumption

since λmax(Vk) is an increasing sequence and we shall require that λmin(Vk) and λmax(Vk) are of the

same order of magnitude to preserve Vk from being-ill conditioned. In this case,

λmax(V −1
k ) = 1/λmin(Vk) ≤ 1/λ.
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Furthermore, Lemma B.2(ii, v) in Appendix B ensures that

λmax(V̂ −1
k )

/
λmax(V −1

k ) = 1 + oP (1), and λmin(V̂ −1
k )

/
λmin(V −1

k ) = 1 + oP (1).

Note that in this lemma, vn = (k3/n)1/4 = o(1). This shows that Assumption 3(ii) holds.

Remark 6 Finally, from Lemma B.2(iv) in Appendix B we have that
√
k‖V̂ −1

k −V
−1
k ‖2 = OP (k5/4/n1/4)

which ensures that Assumption 4(iv) holds if k5/n→ 0 as n→∞.

Although the rates of convergence that are stated in Theorem 3.1 are suffi cient to derive the

asymptotic distribution of the specification test, it is interesting to further investigate the large sample

properties of the GMM estimators. Unfortunately, characterizing the asymptotic distribution of the

GMM estimator θ̂ in the general case proves diffi cult. For this reason, we restrict our attention to the

simplest case of single parameter (p = 1) models with a second-order local identification property.

Theorem 3.2 Suppose that p = 1 and Assumptions 1-4 hold. In addition, if k →∞ as n→∞ with

k4/n→ 0, and γ−1/2
k H(k)′Wkf̄k(θ0)

d→ Z := N(0, σ2) for some σ2 > 0, then:

√
γkn(θ̂ − θ0)2 d→ 1{Z≥0}(2Z).

Theorem 3.2 first demonstrates that the slow rate of convergence derived in Theorem 3.1 is, in

fact, sharp meaning that within the assumed model and identification framework, the estimator cannot

converge at a faster rate. Furthermore, the asymptotic distribution in Theorem 3.2 can be readily used

to conduct inference about the true parameter value θ0 by replacing γk with its sample counterpart.

Note that this non-standard asymptotic distribution with an atom mass of 1/2 at the origin is similar

to the one derived by Dovonon and Hall (2018) for a fixed k. As pointed out above, the characterization

of the asymptotic distribution in the general case of p > 1 appears to be quite involved and is beyond

the scope of this paper.

4 Asymptotic distribution of the specification test

The characterization of the asymptotic distribution of our specification test statistic requires a central

limit theorem for degenerate U -statistics with linear kernel of the form hn(xt, xs) := f ′k(xt)V
−1
k fk(xs),

where (xt)t∈Z is a stationary and strong mixing process and (fk(xt))t∈Z is a martingale difference

sequence with respect to its natural filtration. More specifically, we are interested in the asymptotic

distribution of U -statistics of the form:

Un =
1

n

∑
t6=s

fk(xt)
′V −1
k fk(xs)√
k

, (19)
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where Vk := Var(fk(xt)). The degeneracy of Un arises from the fact that
∫
hn(x, y)dF (y) = 0 for all

x, with F denoting the marginal distribution of xt. The asymptotic theory of degenerate U -statistics

has been extensively studied in the literature. Existing results cover cases where xt is assumed to

be i.i.d. or time-dependent as well as cases where the kernel function is sample-size dependent - as

above - or fixed. A CLT for i.i.d. data and sample-size dependent kernel has been developed by

Hall (1984) and played a key role in the main results of de Jong and Bierens (1994). An extension

of Hall’s (1984) results to β-mixing processes has been provided by Fan and Li (1999). More recent

contributions to this literature include Leutch (2012), who proposes a CLT for τ -dependent processes4

and fixed kernel,5 and Gao (2007) and Gao and Hong (2008) who consider α-mixing processes and

sample-size dependent kernels. Kim et al. (2011) further extend these results by establishing the CLT

for U -statistics under quite general conditions. Our kernel is more consistent with the formulation in

Kim et al. (2011) but the special factorization that they require is not well-aligned with our framework

which features an inner product with an increasing dimension.

For this reason, we develop a new CLT that is adapted to the form of the U -statistic in (19). Since

this result may be of independent interest, we collect the conditions that are suffi cient for establishing

the CLT in the following assumptions.

Assumption-clt 1 Assume that (xt)t∈Z is stationary and geometric strong mixing process, fk(xt) is

an Rk-valued measurable function of xt such that the sequence (fk(xt))t∈Z is a martingale difference

with respect to the σ-algebra σ(fk(xs) : s ≤ t).

Assumption-clt 2 Assume that k ∼ nα for some α ∈ (0, 1) and there exists ε > 0, such that

sup
k∈N

1

k

k∑
h=1

E|[V −1/2
k fk(xt)]h|4+ε <∞,

where [a]h is the h-th element of the vector a.

Stationarity and mixing of (xt)t∈Z is already assumed above (see Assumption 1) and is restated

in Assumption-clt 1 to ensure that the results in Proposition 4.1 and Theorem 4.2 below, which

could be of independent interest, are self-contained. Assumption-clt 2 is used to obtain the limit

variance of Un because its derivation requires dealing with 4-th order moments of fk(xt). Replacing

4See Dedecker and Prieur (2005) for a definition. Note that i.i.d. ⇒ β-mixing ⇒ α-mixing ⇒ τ -dependence.
5CLT for degenerate U -statistics with fixed kernel give rise to nonstandard asymptotic distribution taking the form

of a quadratic function of an infinite number of independent Gaussian variables, while sample-size dependent kernels are
typically associated with the standard normal distribution.
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these moments by their analogues under independence is a common approach in the literature. The

remainder is then controlled by resorting to Lemma OA.1 in the online Appendix, due to Roussas

and Ioannides (1987), which can be applied if the condition on the moments in Assumption-clt 2 is

satisfied. Note that this condition is not too restrictive. It imposes the existence of moments of order

higher than the fourth for the normalized components of fk(xt). The boundedness of the average of

these moments means that no component dominates the others in terms of these moments.

Proposition 4.1 Under Assumptions-clt 1 and 2, Var(Un) = 2 + o(1).

To obtain the asymptotic normality for Un, we impose an additional assumption.

Assumption-clt 3 For some β ≥ 0,

E
(

max
1≤t≤n

‖V −1/2
k fk(xt)‖/

√
k

)
= O(logβ n) and E

(
max

1≤t6=s≤n
|fk(xt)′V −1

k fk(xs)|/
√
k

)
= O(logβ n).

The first bound in Assumption-clt 3 is not restrictive as it holds with β = 1 provided that

the moment generating function of zt := ‖V −1/2
k fk(xt)‖2/

√
k exists. This holds regardless of the

dependence structure. For instance, β = 1 if zt has a Gamma distribution, and β = 1/2 if zt is

Gaussian. We would like to remark that zt = OP (1) since E(z2
t ) = 1. If zt’s are i.i.d. with common

distribution F , it is known that this bound holds for a large class of F but rules out those with Paretian

tail; see Pereira (1983). Similar results hold for time-dependent processes as well. We refer to Berman

(1964) and Isaev et al. (2020) for a discussion.

The second bound in Assumption-clt 3 is not too restrictive either. If fk(xt) and fk(xs) are

independent, then E[fk(xt)
′V −1
k fk(xs)/

√
k]2 = 1 so that |fk(xt)′V −1

k fk(xs)|/
√
k = OP (1) and, as

before, we can claim that the stated bound accommodates a large class of processes. We are now

ready to state the following CLT for the scaled U -statistic in (19).

Theorem 4.2 Under Assumptions-clt 1, 2 and 3,

Un√
2

d→ N(0, 1).

The proof of Theorem 4.2 follows similar arguments as in Kim et al. (2011) and is provided in the

Online Appendix. We establish this CLT by showing that the moments of Un converge to those of

the normal distribution. Under Assumption-clt 3, we show that the summands of Un are essentially

bounded by a slowly increasing function of the sample size, which turns out to be essential for con-

trolling the difference between the moments Un and those of its Gaussian limit.
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Building on this central limit theorem, we now characterize the asymptotic distribution of the

specification test statistic Ẑ = 1√
2k

(
f̄k(xt, yt, θ̂)

′V̂ −1
k f̄k(xt, yt, θ̂)− k

)
under the null hypothesis that

the conditional moment restriction (1) is correctly specified.

Theorem 4.3 Suppose that Assumptions 1, 2, 3(i), 4(i ,ii), A.1(ii, iii, iv), and Assumptions-clt 2-3

with fk(x) := fk(x, y, θ0), hold. Also, assume that k = o(n1/5) and Wk,0 has bounded eigenvalues.

Then, as n→∞,

Ẑ
d−→ N(0, 1).

Several remarks are warranted regarding the result in Theorem 4.3. First, it is important to

underscore that the standard normal limit distribution in Theorem 4.3 is obtained in a highly non-

standard setting. In particular, we have a lack of first-order local identification which, as discussed

earlier, gives rise to non-standard limiting behavior of the GMM estimator. The second-order local

identification, in conjunction with the expanding set of moment conditions, ensures the consistency

of the estimator and determines its rate of convergence. The conditions for the consistency of the

two-step GMM estimator are collected in Assumption A.1 in Appendix A and are used in establishing

the limit in Theorem 4.3. While the Ẑ test statistic is based on the effi cient GMM estimator with

Ŵk =
[

1
n

∑n
t=1 fk(xt, yt, θ̃)fk(xt, yt, θ̃)

′
]−1

, stating explicitly that Wk,0 has bounded eigenvalues allows

us to invoke Assumption 4(iii) in order to ensure the desired rate of convergence for the preliminary

GMM estimator θ̃. (See Remark 4.) Also, as discussed earlier, Assumption 4(iii) holds provided that

λmax(W
1/2
k VkW

1/2
k ) ≤ ∆ < ∞ which is trivially satisfied by the effi cient GMM estimator that sets

Wk = V −1
k .

In the conventional framework where the conditional model is point identified, the properly recen-

tered and standardized specification test with an increasing number of moment conditions converges,

under some regularity conditions, to a standard normal limit (see, for example, Carrasco and Florens,

2000; Donald et al., 2003; Tripathi and Kitamura, 2003; among others). Theorem 4.3 establishes

that the standard normal distribution continues to be the correct limit for the Ẑ test statistic under

the null of correct specification, provided that k = o(n1/5) as n → ∞. Unlike the regular setup,

this limit is obtained within the second-order local identification framework in Assumption 2 which is

characterized by first-order local identification failure. Intuitively, this is achieved by combining and

balancing the benefits from the second-order local identification and the expanding number of moment

conditions. Importantly, for the appropriate choice of k (as a function of n), inference for the correct

specification of the conditional moment restriction model is straightforward in practice as it is based
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on the critical values from the standard normal distribution.

We complete our theoretical analysis by characterizing the limiting behavior of Ẑ under the alter-

native hypothesis H1, specified in (2). We will rely on the following strengthened version of Lemma 1

of de Jong and Bierens (1994).

Lemma 4.4 Let Θ and D be compact subsets of Rp and Rkx, respectively. Let u(θ) be an R-valued

random function and x be a random variable with values in D. Assume that the functions gl(x)

form an algebra of continuous real-valued functions on D that separates the points of D and contains

the constant function. Assume further that θ 7→ u(θ) is continuous on Θ almost everywhere and

E(supθ∈Θ |u(θ)|) <∞. Then, if Pr(E(u(θ)|x) = 0) < 1 for each θ ∈ Θ,

∃k0 ∈ N and δ0 > 0 : inf
θ∈Θ

∥∥∥E(g(k0)(x)u(θ))
∥∥∥2

2
> δ0.

The conditions imposed on the series functions gl(·) are as in de Jong and Bierens (1994). The con-

tinuity and dominance conditions on u(θ) are useful to guarantee the continuity of θ 7→ E(gl(x)u(y, θ))

for each l. Continuity of these functions and compactness of Θ are essential to claim the stated result.

This lemma can be applied readily to our conditional moment model and alternative hypothesis H1

in (2). With appropriate choices of series functions gl(·), H1 implies that infθ∈Θ ‖E(g(k0)(x)u(y, θ))‖2 >

0 for a fixed k0 so that the unconditional moment restriction E(g(k0)(x)u(y, θ)) = 0 is misspecified. In

this case, it is known that the Hansen-Sargan specification test for this unconditional restriction —albeit

infeasible because k0 is unknown —would be consistent. Theorem 4.5 shows that this result carries

over to the feasible statistic Ẑ which makes our specification test consistent against all alternatives.6

Theorem 4.5 Let V̂k(θ) := n−1
∑n

t=1 fk(xt, yt, θ)fk(xt, yt, θ)
′. Assume that k2 = o(n), the gl(·) se-

ries are as in Lemma 4.4 and the conditions of that lemma are satisfied with u(θ) := u(y, θ), and

H1 is true. Assume further that there exists λ̄ > 0 such that, with probability approaching one,

supθ∈Θ λmax(V̂k(θ)) ≤ λ̄k, and supθ∈Θ |(1/n)
∑n

t=1 gl(xt)u(yt, θ)− E(gl(xt)u(yt, θ))| = oP (1) for each

l. Then,

∃δ > 0 : lim
n→∞

Pr(k3/2n−1|Ẑ| > δ) = 1.

The conditions of this theorem are essentially a subset of those of the main Theorem 4.3. The

purpose of the condition on the bound of λmax(V̂k) is to facilitate the proof as we can rely on more

6Studying the asymptotic behavior of the test under local alternatives proves to be very involved as it requires
characterizing the limiting behavior of the GMM estimator in misspecified conditional restriction models under drifting
sequences and first-order local identification failure. This analysis is beyond the scope of this paper.
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primitive conditions. Theorem 4.5 shows that |Ẑ| diverges to infinity if k is such that k3/2 = o(n).

Note that in Theorem 4.3, that studies Ẑ under H0, we impose k5 = o(n). This shows that the

proposed test is consistent and has power against all alternatives.

5 Numerical illustrations

In this section, we provide simulation evidence on the empirical size of the standard normal asymptotic

approximation of the specification test. We also apply the proposed testing framework to study the

presence of a common CH factor in bond portfolio returns.

5.1 Simulations

We assess the finite-sample properties of the specification test Ẑ in Monte Carlo simulations. We

consider several simulation setups. The first set of simulations employs the simple design discussed in

Section 2.2:

ut(θ) = (yt − θ)2 − 1 : t = 1, . . . , n,

where yt ∼ iidN(0, 1) and xt ∼ iidN(0, 1) for t = 1, . . . , n, and y is independent of x. The moment

condition tested is

H0 : Pr{E(u|x) = 0} = 1.

The null H0 is correct and identifies the true value θ0 = 0 of the parameter θ. This design is

characterized with first-order local identification failure even though global identification is ensured.

Local identification is obtained at second order according to Assumption 2(iii). Here, k0 = 1 since

with the instrument zt,1 = 1, we have E (∇θθ(zt,1ui(θ0))) = −2 6= 0.

We present results based on 1000 Monte Carlo replications for three specification tests: the tra-

ditional J-test, the conditional moment restriction test by Smith (2007) and Tripathi and Kitamura

(2003), denoted by S-TK, and the test Ẑ based on the N(0, 1) asymptotic approximation. The J-test

is performed on the unconditional moment conditions E(ziui(θ)) = 0 with z′i = (1, x2
i ). We present

results for the J-test under the standard chi-squared asymptotics as well as the mixture of chi-squared

distribution proposed in Dovonon and Renault (2013). The conditional moment restriction tests, S-TK

and Ẑ, involve a choice of tuning parameters. The tuning parameters for the S-TK test are the biweight

kernel k(x) = 15
16(1 − x2)21{|x|≤1} for a kernel function, K∗∗ = 1168780

2263261 , kernel bandwidth bn = n−1/4

and trimming function 1{|x|≤S∗} with S∗ = 1.96. The test is computed for γ = 1 which corresponds

to the continuously-updated GMM. Finally, the non-linear least squares estimator is used as input
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parameter estimator. For our Ẑ test, the tuning parameters are Ψ(·) : R→ [−π, π], x 7→ 2 arctan(x),

series of bounded functions gl(·) : [−π, π]→ [−1,+1], x 7→ cos(lx) for l = 1, . . . k, and k = n1/5.

Table 1. Empirical rejection rates of specification tests under the null (size): simulation design 1.

n J-test S-TK Ẑ test
χ2(1) mixt.

50 5.70 3.60 26.20 10.70
100 6.20 3.80 27.90 7.80
200 6.60 3.70 27.80 8.00
500 7.70 4.50 23.40 6.50
1000 7.00 3.50 19.50 6.20
5000 8.40 4.20 11.80 6.70
10000 8.30 4.70 7.30 4.90

Notes: The nominal level is 5%. ‘mixt.’ stands for 1
2χ

2(1) + 1
2χ

2(2) with a critical value at the 5%
level equal to 5.14. The J-test is performed on the unconditional moment conditions E(ziui(θ)) = 0

with z′i = (1, x2
i ); S-TK is the conditional moment restriction test by Smith (2007) and Tripathi and

Kitamura (2003); and Ẑ test is the conditional moment restriction test proposed in this paper.

The results for the empirical size of the tests at the 5% nominal level are reported in Table 1 as the

sample size n increases. The S-TK test exhibits substantial overrejections even for fairly large sample

sizes. While the standard chi-squared J-test is not asymptotically valid, the chi-squared mixture

performs well with only slight underrejections. The Ẑ test tends to overreject at small sample sizes

(with 7.8% rejections at the 5% significance level) but approaches the nominal level as n grows.
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Figure 1: The left graph presents the Monte Carlo kernel density and the limit N(0, 1) density for the
specification test. The middle and right graphs plot the Monte Carlo kernel density and histogram
for the GMM estimator and the squared GMM estimator, respectively. The sample size is n = 10, 000

and the number of Monte Carlo replications is 10,000.

To visualize the quality of the N(0, 1) approximation for the Ẑ test, the left panel of Figure 1

plots the kernel density obtained from 10,000 replications and n = 10, 000 against the N(0, 1) density.

The simulated density appears to be very close to the limit distribution. The middle plot in Figure

24



1 presents the simulated kernel density7 for the GMM estimator of θ while the right plot provides

the histogram for the squared GMM estimator of θ. The histogram for the squared GMM estimator

nicely illustrates the half probability mass at zero suggested by theory (Theorem 3.2). In addition,

the simulated kernel density for θ̂ reveals some features in the shape of the distribution that are not

immediately evident in the histogram for θ̂
2
.

The second simulation design is tailored to the common CH factor discussed in Section 2.2 and

focus only on the properties of the Ẑ test. The data generating process has the form:

Yt+1 = Λft+1 + et+1, (20)

where Yt+1 and et+1 ∼ iidN(0, κIm) are m × 1 vectors and ft+1 is an (m − 1) × 1 vector. The i-th

component fi,t+1 of ft+1 follows a GARCH(1,1) process:

fi,t+1 = σi,t+1εi,t+1, σ2
i,t+1 = ωi,0 + ωi,1f

2
i,t + ωi,2σ

2
i,t, (21)

with ωi,0, ωi,1, ωi,2 > 0 and εi,t+1 ∼ iidN(0, 1). Bougerol and Picard (1992) derive the conditions for

strict stationarity of GARCH processes.

We consider two cases: (i) m = 2, bivariate Yt+1 with a single common CH factor, and (ii) m = 3,

trivariate Yt+1 with two common CH factors. In both cases, we set κ = 0.1 and ωi,0 = 1−ωi,1−ωi,2 for

i = 1, 2. For case (i), Λ =
(

1 0.5
)′
, ω1,1 = 0.2 and ω1,2 = 0.6. For case (ii), Λ =

(
1 1 0.5

0 1 0.5

)′
,

with the first CH factor having the same GARCH parameters as in case (i) and the second CH

factor having GARCH parameters ω2,1 = 0.4 and ω2,2 = 0.4. We use Yt as conditioning variables in

constructing the functions gl(·), l = 1, . . . , k.

The empirical rejection probabilities of the Ẑ test for n = 2, 000, 5, 000 and 10, 000 and 1, 000

Monte Carlo replications are presented in Table 2, with the empirical size of the test reported in

the top panel. For both cases, (i) and (ii), the rejections of the test are close to the nominal levels.

Since in these simulations k = n1/5 (by rounding up k to the nearest integer), it appears that further

improvements can be obtained if we set k = const ·n1/5, where the constant const is calibrated to the

particular setup (values of n and m).

The third simulation design assesses the power of the Ẑ test in the context of model (20)-(21).

We again consider two cases but with the following modifications: (i) m = 2, bivariate Yt+1 with

two CH factors, and (ii) m = 3, trivariate Yt+1 with three CH factors. In both cases, we set Λ to

be the identity matrix. For case (i), ω1,1 = 0.2 and ω1,2 = 0.6, and ω2,1 = 0.4 and ω2,2 = 0.4. For

7For the kernel density estimation, we use the ksdensity function in Matlab.
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case (ii), the first two CH factors have the same GARCH parameters as in case (i) and the third CH

factor has GARCH parameters ω3,1 = 0.1 and ω3,2 = 0.8. As in the previous design, we set κ = 0.1,

ωi,0 = 1−ωi,1−ωi,2 (for i = 1, 2, 3) and use Yt as conditioning variables in constructing the functions

gl(·), l = 1, . . . , k. The empirical power of the Ẑ test is presented in the bottom panel of Table 2. In

case (i), the rejection rates under the alternative quickly reach levels close to 100%. In case (ii), the

power of the test increases more slowly but it is at 100% for T = 10, 000. Overall, provided that the

sample size is reasonably large, the empirical size and power properties of the proposed specification

test are quite satisfactory.

Table 2. Empirical rejection rates of specification test Ẑ under the null (size) and alternative (power).
n 10% 5% 10% 5%

m = 2 m = 3

simulation design 2: size
2000 8.00 3.30 11.30 3.40
5000 8.90 4.00 9.20 3.50
10000 9.80 4.90 12.80 5.40

simulation design 3: power
2000 98.30 97.60 39.90 26.90
5000 100.00 100.00 95.50 91.60
10000 100.00 100.00 100.00 100.00

Notes: The nominal level is 5% and 10%. For simulation design 2 (size), m = 2 corresponds to a
bivariate yt+1 with a single common CH factor, and Case m = 3 corresponds to a trivariate Yt+1 with
two common CH factors. For simulation design 3 (power), m = 2 corresponds to a bivariate yt+1 with
two CH factors, and Case m = 3 corresponds to a trivariate Yt+1 with three CH factors.

5.2 Empirical application

In this section, we investigate the presence of a common CH factor in U.S. bond returns of different

maturities. Engle et al. (1990) argued that the CH factor model provides a parsimonious approxima-

tion of the covariance structure of excess asset returns. After presenting some preliminary evidence

on commonality in the GARCH-based volatility dynamics in bond returns, we subject these portfolio

returns to the test of common CH features which amounts to testing the validity of a version of the

conditional moment restriction E (u(yt, θ0)|xt) = 0.

Let rx(j)
t+1 denote the holding return, between periods t and t + 1, on a bond with j years to

maturity, in excess of the risk-free rate. Let Yt+1 = (rx
(1)
t+1, ..., rx

(N)
t+1)′. As in Section 2.2, we posit that

the N -vector of excess bond returns Yt+1, adapted to the increasing filtration Ft, admits a common

factor representation:

Yt+1 = µt + Λft+1 + et+1,
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where the errors et+1 satisfy E(et+1|Ft) = 0 and Var(et+1|Ft) = Ω, and ft+1 is a vector of r (r <

N) common factors that satisfy Cov(et+1, ft+1|Ft) = 0, E(ft+1|Ft) = 0, and Var(ft+1|Ft) = Dt =

Diag(σ2
1,t+1, . . . , σ

2
r,t+1).8 Then, Yt+1 is characterized by (N − r) time invariant CH common features

if its conditional covariance matrix is given by

Var(Yt+1|Ft) = ΛDtΛ
′ + Ω.

This implies that there exists a vector β 6= 0N in RN such that E
(
(β′Yt+1)2|Ft

)
is constant.

In the empirical analysis, we use the Fama bond portfolio returns from CRSP with the following

maturities: 1 to 2 years, 2 to 3 years, 3 to 4 years, 4 to 5 years, and 5 to 10 years. The data is at

monthly frequency covering the period January 1952 —December 2020. We construct excess bond

returns by subtracting the one-month risk-free rate, obtained from CRSP.
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Figure 2: Estimated GARCH(1,1) volatilities for portfolio bond excess returns of different maturities.

We start by fitting a GARCH(1,1) to each of these excess bond returns. The filtered GARCH

volatilities are plotted in Figure 2. As the graph reveals, there appears to be a strong co-movement

in these GARCH volatilities. This is probably not too surprising since the first principal component

in these five bond returns explains in excess of 95% of their volatility.

Crump and Gospodinov (2022) argue that the spread or cross-sectionally differenced returns,

dr
(j)
t+1 = rx

(j)
t+1 − rx

(j−1)
t+1 , reveal better the underlying factor structure since the term-structure identi-

8The conventional term structure models impose no-arbitrage restrictions on the factor loading matrix Λ. Recent
research (Duffee, 2011; Joslin et al., 2011; among others) casts doubt on the role of no-arbitrage restrictions in modeling
and forecasting bond yields. The forecasting properties are further deteriorated by incorporating stochastic volatility.
As Joslin and Le (2021) demonstrate, this is largely attributed to the fact that these models impose a tight link between
risk compensation and interest rate volatility, and recommend the use of unrestricted factor models. This is the approach
that we follow here.
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ties induce elevated local correlations in rx(j)
t+1 across maturities that obscure the true signal.

9 For this

reason, we use the vector of differenced returns Yt+1 = (rx
(1)
t+1, dr

(2)
t+1..., dr

(N)
t+1)′ which brings down the

explained variation by the first principal component to 67%: more muted than that for excess bond

returns but still large enough to suggest commonality in bond return dynamics.
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Figure 3: Plot of ut+1(β̂, ĉ) := (β̂
′
Yt+1)2 − ĉ, where the estimates are based on E[ut+1(β, c)|Ft)] = 0.

We estimate the parameters by the two-step effi cient GMM, based on the conditional restriction

E(ut+1(θ0)|Ft) = 0, where ut+1(β, c) := (β1Y1,t+1 + ... + β4Y4,t+1 + (1 − β1 − · · · − β4)Y5,t+1)2 − c.

We use Yt as a vector of conditioning variables and the choices of gl(·) and k are as specified in the

previous section. The obtained estimates for β̂ are (−0.2087, 0.1913, 0.6420, 0.4376,−0.0622)′ which,

interestingly, produce a tent-shaped pattern as in Cochrane and Piazzesi (2005). Figure 3 plots

(β̂1Y1,t+1 + ... + β̂4Y4,t+1 + (1 − β̂1 − ... − β̂4)Y5,t+1)2. While this graph reveals that the strong CH

structure, observed in individual series, is largely destroyed, we subject this hypothesis to a formal test

using our Ẑ test statistic. The value of the test is −0.0839 with a p-value of 0.9331 suggesting that the

null H0 : E
(
(β′Yt+1)2 − c|Ft

)
= 0 cannot be rejected. This result could have important implications

for portfolio allocation and hedging.

6 Conclusions

Economic models are often defined by a set of conditional moment restrictions that can be used to as-

sess the degree of misspecification or the validity of particular economic theory. It is possible, however,

that while the model remains globally identified, it suffers from first-order local identification failure.

9When the maturity matches the frequency of the data, the differenced returns have the interpretation of returns on
a forward trade (see Crump and Gospodinov, 2022).
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This setup is the focus of our theoretical analysis. First, we derive the rate of convergence of the GMM

estimator with an expanding number of moment conditions under the lack of first-order local identifi-

cation. This rate of convergence is shown to be faster than the case with a fixed number of restrictions.

Unlike the standard case, the contribution of the increasing number of moment restrictions translates

into effi ciency gain that drives the faster rate of convergence. We also characterize the asymptotic

distribution of the estimator which is non-standard and has a point mass at zero. Finally, we establish

the asymptotic normality of the conditional moment restriction test in our setup. Importantly, this

result is obtained for time series data resorting to central limit theorems for degenerate U -statistics of

weakly dependent processes. The finite-sample properties of the test are illustrated using simulated

data and the proposed testing framework is applied to study the presence of common (conditionally

heteroskedastic) features in bond portfolio returns.

The validity of the standard normal limit for the specification test is established for large samples.

For empirical problems with limited sample sizes, finite-sample improvements based on subsampling

or resampling methods are often desirable. However, such finite-sample refinements may be diffi cult

to develop and implement due to the highly challenging nature of our setup: a conditional moment

restrictions model with local first-order local identification failure, second-order local identification and

dependent data. While the analysis in this paper provides some guidance on how one could design

asymptotically valid methods with improved finite-sample properties, such an extension proves to be

highly nontrivial. This is a fruitful direction for future research.

Appendix A: Consistency of the GMM estimator

This Appendix establishes the consistency of the GMM estimator with an increasing number of moment

conditions. The general result in Theorem A.1 is then specialized to the two-step effi cient estimator

by Corollary A.2. Assumption A.1 provides suffi cient conditions for Assumption 3(ii) to hold as

established by Lemma B.2.

Theorem A.1 Under Assumptions 1, 2(i) and 3, if k/n→ 0 as n→∞, then the GMM estimator θ̂

—defined by (14) —converges in probability to θ0.

The following assumption pertains to the consistency of the two-step effi cient GMM estimator.

Assumption A.1 (Consistency of two-step GMM)

(i) θ̃ − θ0 = OP (rn), with θ̃ the first-step GMM estimator of θ0 and rn → 0 as n→∞.
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(ii) E
[
u(y, θ0)2δ|gh(x)|δ|gl(x)|δ

]
≤ ∆ <∞, for some δ > 2 and an absolute constant ∆ > 0.

(iii) For each y, the function θ 7→ u(y, θ) is continuously differentiable in a neighborhood N of θ0 and

E
(
gl(x)2 supθ∈N u(y, θ)2

)
≤ ∆ <∞ and E

(
gl(x)2 supθ∈N ‖∇θu(y, θ)‖2

)
≤ ∆ <∞.

(iv) Let λ̄k := λmax(Vk) and λk := λmin(Vk). There exists λ > 0: λk ≥ λ and λ̄k/λk ≤ ∆ <∞.

(v) k[rn ∨ n−1/2]→ 0 as n→∞.

Corollary A.2 If Assumptions 1, 2(i), 3(i), and A.1 hold, then the two-step GMM estimator, defined

with Ŵk = V̂ −1
k , is consistent.

Proof of Theorem A.1: Let ut := u(yt, θ0). Note that

E(f̄k(θ0)′f̄k(θ0)) =
1

n

n∑
t,s=1

E
[
g(k)(xt)

′g(k)(xs)utus

]
=

1

n

n∑
t=1

E
[
g(k)(xt)

′g(k)(xt)u
2
t

]
= E

[
g(k)(xt)

′g(k)(xt)u
2
t

]
≤ k · max

1≤l≤k
E[gl(xt)

2u2
t ].

Since max1≤l≤k E[gl(xt)
2u2
t ] is bounded, we can claim that f̄k(θ0)′f̄k(θ0) = OP (k). Also, by definition,

λmin(Ŵk)
1

n
f̄k0(θ̂)

′f̄k0(θ̂) ≤ λmin(Ŵk)
1

n
f̄k(θ̂)

′f̄k(θ̂) ≤
1

n
f̄k(θ̂)

′Ŵkf̄k(θ̂)

≤ 1

n
f̄k(θ0)′Ŵkf̄k(θ0) ≤ λmax(Ŵk)

1

n
f̄k(θ0)′f̄k(θ0).

In particular,

1

n
f̄k0(θ̂)

′f̄k0(θ̂) ≤
λmax(Ŵk)

λmin(Ŵk)

1

n
f̄k(θ0)′f̄k(θ0) =

λmax(Ŵk)

λmax(Wk)

λk

λmin(Ŵk)

λmax(Wk)

λk

1

n
f̄k(θ0)′f̄k(θ0).

By Assumption 3(ii), we can therefore claim that:

1

n
f̄k0(θ̂)

′f̄k0(θ̂) :=

∥∥∥∥∥ 1

n

n∑
t=1

g(k0)(xt)ut(θ̂)

∥∥∥∥∥
2

2

= OP (k/n) = oP (1).

Thus, by Assumption 3(i), we can claim that E(g(k0)(xt)u(yt, θ̂))
P→ 0.We shall deduce that θ̂ converges

in probability to θ0 by the following standard argument (see, e.g., Newey and McFadden, 1994). Let

N be an open neighborhood of θ0. By continuity of θ 7→ E(g(k0)(xt)u(yt, θ)) and compactness of Θ\N ,

inf
θ∈Θ\N

‖E(g(k0)xt)(u(yt, θ))‖2 = ‖E(g(k0)(xt)u(yt, θ∗))‖2 = ε

with ε 6= 0 because Θ \ N 3 θ∗ 6= θ0. Since E(g(k0)(xt)u(yt, θ̂)) = oP (1),

Pr
(
‖E(g(k0)(xt)u(yt, θ̂))‖2 < ε/2

)
→ 1.
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That is, Pr(θ̂ ∈ N )→ 1 and this concludes the proof. �

Proof of Corollary A.2: Assumptions 1, and A.1(ii, iii) ensure that the orders of magnitude derived

by Lemma B.2 apply and the conditions in Assumption 3(ii) follow from Assumption A.1(iv, v). �

Appendix B: Preliminary lemmas and proofs of main results

B.1 Useful lemmas

Let ut(θ) = u(yt, θ), ∇θf̄k(θ) = ∂f̄k(θ)/∂θ
′, ∇θut(θ) = ∂ut(θ)/∂θ

′, ∇θθut(θ) =
[
vec
(
∂2ut(θ)/∂θ∂θ

′)]′,
D̄1(θ) :=

1

n

n∑
t=1

g(k)(xt)∇θut(θ)R1, D1 := E[g(k)(xt)∇θut(θ0)R1],

H̄(k)(θ) =
1

n

n∑
t=1

g(k)(xt)∇θθut(θ), and H := H(k)(θ0) = E[g(k)(xt)∇θθut(θ0)].

Lemma B.1 Let θ̄ be a random sequence converging in probability to θ0 as n grows. If θ 7→ Ut(θ) is

a random Rm-valued function satisfying Condition C in the main text. Then,∥∥∥∥∥ 1

n

n∑
t=1

g(k)(xt)Ut(θ̄)
′ − E

(
g(k)(xt)Ut(θ0)′

)∥∥∥∥∥
2

= OP

(√
k · (n−1/2 ∨ ‖θ̄ − θ0‖2)

)
.

Lemma B.2 Let θ̄ be a sequence of estimators converging in probability to θ0 and vn = k(n−1/2 ∨

‖θ̄ − θ0‖2). Also, let λk := λmin(Vk) and V̄k be defined by

V̄k =
1

n

n∑
t=1

fk(xt, yt, θ̄)fk(xt, yt, θ̄)
′.

If Assumptions 1 and A.1(ii, iii) hold, then

(i) ‖V̄k − Vk‖2 = OP (vn), (ii) |λmin(V̄k)− λk| = OP (vn), (iii) |λmin(V̄k)λ
−1
k − 1| = OP (λ−1

k vn),

(iv) ‖V̄ −1
k − V −1

k ‖2 =
OP (λ−2k vn)

1+OP (λ−1k vn)
.

(v) If, in addition, λmax(Vk)/λmin(Vk) = O(1), then |λmax(V̄k)λmax(Vk)
−1 − 1| = OP (λ−1

k vn).

Lemma B.3 Let θ̄ and θ̂ be two sequences of estimators converging to θ0 in probability. Let Ŵk be a

sequence of (k, k)-positive-definite weighting matrices and Wk be a (k, k)-symmetric positive definite

matrix such that the eigenvalues of Ŵk and Wk satisfy Assumption 3(ii). Assume that the functions
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θ 7→ ∇θui(θ) · R1 and θ 7→ ∇θθui(θ) satisfy Condition C in the main text. Furthermore, let D̄1 :=

D̄1(θ̄), D̂1 := D̄1(θ̂), D̄2 := D̄2(θ0), H̄ := H̄(k)(θ̄), H := H(k)(θ0), M̄ (k) := Ik − P̄ (k)with P̄ (k) :=

Ŵ
1/2
k D̄1

(
D̄′1ŴkD̄1

)−1
D̄′1Ŵ

1/2
k , M (k) := Ik −P (k), with P (k) := W

1/2
k D1 (D′1WkD1)−1D′1W

1/2
k , f̄k :=

f̄k(θ0), and M̂ (k) defined as M̄ (k) but using D̂1. Finally, let

∆1n = H̄ ′Ŵ
1/2
k M̄ (k)Ŵ

1/2
k H̄−H ′W 1/2

k M (k)W
1/2
k H and ∆2n = H̄ ′Ŵ

1/2
k M̄ (k)Ŵ

1/2
k f̄k−H ′W 1/2

k M (k)W
1/2
k f̄k.

If there exist α1, α2 > 0 such that

α1

√
k ≤ ‖D1‖2 ≤ α2

√
k, α1

√
k ≤ ‖H‖2 ≤ α2

√
k, λmax(D̄′2D̄2) = OP (k)

and

λmax(D′1D1)/λmin(D′1D1) ≤ α2, and ‖f̄k‖2 = OP (
√
k),

then:

(i) ‖D̄′2ŴkD̄2‖2 = OP (λ̄kk), (ii) ‖Ŵ 1/2
k f̄k‖2 = OP (

√
λ̄kk), (iii) ‖Ŵ 1/2

k H̄‖2 = OP (
√
λ̄kk),

(iv) ‖(D̄′1ŴkD̄1)−1‖2 = OP (λ̄
−1
k k−1), (v) ‖M̄ (k) −M (k)‖2 = OP (λ̄

−1
k ‖Ŵk −Wk‖2) + OP (n−1/2 ∨

‖θ̄ − θ0‖2),

(vi) ‖∆1n‖2 = OP (k‖Ŵk −Wk‖2) +OP (λ̄kk[n−1/2 ∨ ‖θ̄ − θ0‖2]),

(vii) ‖∆2n‖2 = OP (kλ̄k[n
−1/2 ∨ ‖θ̄ − θ0‖2]) +OP (k‖Ŵk −Wk‖2),

(viii) If θ̄ ∈ (θ0, θ̂), we have ‖M̂ (k) − M̄ (k)‖2 = OP (n−1/2 ∨ ‖θ̂ − θ0‖2).

The proofs of Lemmas B.1, B.2 and B.3 are provided in the Online Appendix.

B.2 Proofs of main results

Proof of Proposition 2.2: (i) It suffi ces to show that (8) holds for k0 to claim that it holds for all

k ≥ k0. Since αl ≡ 0 for all l ≥ k0, we have

E(u(y, θ)|x) := ρ(x, θ) =

k0−1∑
l=1

αl(θ)gl(x) and [ρ(x, θ) ≡ 0]⇔ [αl = 0, ∀l = 1, . . . , k0 − 1].

By the law of iterated expectations, αl(θ) = E(gl(x)u(y, θ)) = 0, ∀l = 1, . . . , k0− 1 and this establishes

the claim since [ρ(x, θ) ≡ 0⇔ θ = θ0] holds by assumption.
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To establish the second claim, recall that ρ(x, θ) =
∑∞

l=1 αl(θ)gl(x). Also, by the law of iterated

expectations, E(g(k)(x)u(y, θ)) = E(g(k)(x)ρ(x, θ)) so that

E(g(k)(x)u(y, θ)) = (α1(θ), . . . , αk(θ))
′.

Hence, by the definition of θk,

E(ρ(x, θk))
2 = E

 ∑
l≥k+1

αl(θk)gl(x)

2

=
∑
l≥k+1

αl(θk)
2 → 0, as k →∞, (B.1)

where the convergence follows from (d).

Consider an arbitrary small and open neighborhood of N of θ0 and let ε = minΘ\N E(ρ(x, θ))2. By

the continuity assumption (c), the compactness of Θ \ N , and the identification property in (3), we

can claim that ε > 0. Also, from (B.1), it is clear that there exists k0 ∈ N such that E[ρ(x, θk)]
2 < ε

for all k ≥ k0. It then follows that for k ≥ k0, we have θk ∈ N which proves the claim.

(ii) First, we establish the necessary condition. If the first-order local identification condition fails,

then

Rank
[
E
(
(E(∇θu(y, θ0)|x))′(E(∇θu(y, θ0)|x))

)]
< p,

implying that there exists δ 6= 0 ∈ Rp such that E(∇θu(y, θ0)|x) · δ = 0 almost surely. Therefore, for

any k ∈ N,

E
(
g(k)(x) · ∇θu(y, θ0)

)
· δ = E

(
g(k)(x) · E(∇θu(y, θ0)|x)

)
· δ = 0.

As a result,

Rank
(
E
(
g(k)(x) · ∇θu(y, θ0)

))
≤ p− 1, ∀k.

Since k 7→ Rank
(
E
(
g(k)(x) · ∇θu(y, θ0)

))
takes integer values, it is nondecreasing and bounded from

above, it reaches its maximum, say r ≤ p− 1, as k increases. This shows the necessary condition.

Next, we establish the suffi cient condition. Under the stated condition, there exists δ 6= 0 such that

E (gl(x) · ∇θu(y, θ0)) · δ = E (gl(x) · E(∇θu(y, θ0)|x)) · δ = 0, for all l ≥ 1. (B.2)

Since E(∇θu(y, θ0)|x) ∈ (L2(P ))p, its i-th component can be written as
∑

l≥1 αl,igl(x), with αl,i’s

being scalars. Taking the relevant linear combinations (over l) of the equalities in (B.2), we have

E
(
(E(∇θu(y, θ0)|x))′(E(∇θu(y, θ0)|x))

)
· δ = 0
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and this completes the proof. �

Proof of Theorem 3.1: Let R = (R1 |R2) and consider the transformation θ = Rη := R1η1 +R2η2,

with θ, η ∈ Rp, η1 ∈ Rr and η2 ∈ Rp−r, and set θ̂ = Rη̂, and θ0 = Rη0. Hence, f̄k(θ̂) = f̄k(Rη̂) =

f̄k(R1η̂1 + R2η̂2). By a first-order Taylor expansion of η1 7→ f̄k(R1η1 + R2η̂2) around η01 and a

second-order Taylor expansion of η2 7→ f̄k(R1η01 +R2η2) around η02, we have

f̄k(θ̂) = f̄k(θ0) +
1√
n
∇θf̄k(R1η̄1 +R2η̂2)R1

√
n(η̂1 − η01) +∇θf̄k(θ0)R2(η̂2 − η02)

+
1

2
H̄(k)(θ̄) ·

√
n · vec(R2(η̂2 − η02)(η̂2 − η02)′R′2),

where η̄1 ∈ (η01, η̂1) and θ̄ ∈ (θ0, θ̂) and both may differ from row to row.

Let θ̃ = R1η̄1+R2η̂2, D̄1 = 1√
n
∇θf̄k(θ̃)·R1, D̄2 = ∇θf̄k(θ0)R2, z0n =

√
n·vec(R2(η̃2−η02)(η̃2−η02)′R′2)

and we write

f̄k(θ̂) = f̄k(θ0) + D̄1

√
n(η̂1 − η01) + D̄2(η̂2 − η02) +

1

2
H̄(k)(θ̄)z0n. (B.3)

By pre-multiplying this equation by D̄′1Ŵk and solving for
√
n(η̂1 − η01), we obtain

√
n(η̂1 − η01) = −

(
D̄′1ŴkD̄1

)−1
D̄′1Ŵk

(
f̄k(θ0)− f̄k(θ̂) + D̄2(η̂2 − η02) +

1

2
H̄(k)(θ̄)z0n

)
. (B.4)

Plugging this back into (B.3), we have

M̄ (k)Ŵ
1/2
k f̄k(θ̂) = M̄ (k)Ŵ

1/2
k f̄k(θ0) + M̄ (k)Ŵ

1/2
k D̄2(η̂2 − η02) +

1

2
M̄ (k)Ŵ

1/2
k H̄(k)(θ̄)z0n, (B.5)

with M̄ (k) = Ik − P̄ (k) and P̄ (k) = Ŵ
1/2
k D̄1

(
D̄′1ŴkD̄1

)−1
D̄′1Ŵ

1/2
k . Then, multiplying each side of

(B.5) by its own transpose and rearranging yields

1

4
z′0nH̄

(k)(θ̄)′Ŵ
1/2
k M̄ (k)Ŵ

1/2
k H̄(k)(θ̄)z0n = (f̄k(θ̂)

′Ŵ
1/2
k M̄ (k)Ŵ

1/2
k f̄k(θ̂)−f̄k(θ0)′Ŵ

1/2
k M̄ (k)Ŵ

1/2
k f̄k(θ0))

− (η̂2 − η02)′D̄′2Ŵ
1/2
k M̄ (k)Ŵ

1/2
k D̄2(η̂2 − η02)− 2f̄k(θ0)′Ŵ

1/2
k M̄ (k)Ŵ

1/2
k D̄2(η̂2 − η02)

− f̄k(θ0)′Ŵ
1/2
k M̄ (k)Ŵ

1/2
k H̄(k)(θ̄)z0n − (η̂2 − η02)′D̄′2Ŵ

1/2
k M̄ (k)Ŵ

1/2
k H̄(k)(θ̄)z0n.

By definition, f̄k(θ̂)′Ŵkf̄k(θ̂) ≤ f̄k(θ0)′Ŵkf̄k(θ0). Hence,

1

4
z′0nH̄

(k)(θ̄)′Ŵ
1/2
k M̄ (k)Ŵ

1/2
k H̄(k)(θ̄)z0n = (f̄k(θ̂)

′Ŵ
1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ̂)− f̄k(θ0)′Ŵ

1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ0))

− (η̂2 − η02)′D̄′2Ŵ
1/2
k M̄ (k)Ŵ

1/2
k D̄2(η̂2 − η02)− 2f̄k(θ0)′Ŵ

1/2
k M̄ (k)Ŵ

1/2
k D̄2(η̂2 − η02)

− f̄k(θ0)′Ŵ
1/2
k M̄ (k)Ŵ

1/2
k H̄(k)(θ̄)z0n − (η̂2 − η02)′D̄′2Ŵ

1/2
k M̄ (k)Ŵ

1/2
k H̄(k)(θ̄)z0n.
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We show in the Online Appendix that

|f̄k(θ̂)′Ŵ 1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ̂)− f̄k(θ0)′Ŵ

1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ0)| = OP (λ̄kk/

√
n) +OP (λ̄kk‖θ̂− θ0‖2) (B.6)

and, since λ̄k is bounded and k/
√
n→ 0, only the second term matters.

Using this fact and letting H := H(k)(θ0) and

∆1n := H̄(k)(θ̄)′Ŵ
1/2
k M̄ (k)Ŵ

1/2
k H̄(k)(θ̄)−H ′W 1/2

k M (k)W
1/2
k H,

∆2n := H̄(k)(θ̄)′Ŵ
1/2
k M̄ (k)Ŵ

1/2
k f̄k(θ0)−H ′W 1/2

k M (k)W
1/2
k f̄k(θ0),

we can write

1

4
z′0nH

′W
1/2
k M (k)W

1/2
k Hz0n ≤ OP (λ̄kk)‖η̂ − η0‖2 − (η̂2 − η02)′D̄′2Ŵ

1/2
k M̄ (k)Ŵ

1/2
k D̄2(η̂2 − η02)

− 2f̄k(θ0)′Ŵ
1/2
k M̄ (k)Ŵ

1/2
k D̄2(η̂2 − η02)− f̄k(θ0)′W

1/2
k M (k)W

1/2
k Hz0n −∆′2nz0n

− (η̂2 − η02)′D̄′2Ŵ
1/2
k M̄ (k)Ŵ

1/2
k H̄(k)(θ̄)z0n −

1

4
z′0n∆1nz0n. (B.7)

From (B.4), we can show that ‖η̂1 − η01‖2 = OP (‖η̂2 − η02‖22) so that ‖η̂ − η0‖2 = OP (‖η̂2 − η02‖2).

Also, from the second-order local identification property, we have

1

4
z′0nH

′W
1/2
k M (k)W

1/2
k Hz0n ≥

1

4
γk‖z0,n‖22 =

1

4
γkn‖η̂2 − η02‖42.

Let z1n = γ
1/4
k n1/4(η̂2 − η02). By the Cauchy-Schwarz inequality, (B.7) yields

1

4
‖z1n‖42 ≤

1

γ
1/4
k n1/4

OP (λ̄kk)‖z1n‖2+
1
√
nγk
‖D̄′2ŴkD̄2‖2·‖z1n‖22+

2

(nγk)
1/4
‖Ŵ 1/2

k f̄k(θ0)‖2‖Ŵ 1/2
k D̄2‖2·‖z1n‖2

+ ‖γ−1/2
k H ′W

1/2
k M (k)W

1/2
k f̄k(θ0)‖2 · ‖z1n‖22 +

1
√
γk
‖∆2n‖2 · ‖z1n‖22

+
1

γ
3/4
k n1/4

‖Ŵ 1/2
k D̄2‖2‖Ŵ 1/2

k H̄(k)(θ̄)‖2 · ‖z1n‖32 +
1

4γk
‖∆1n‖2 · ‖z1n‖42.

Since γk/k = O(1), by Lemma B.3, we have

1
√
nγk
‖D̄′2ŴkD̄2‖2 = OP (λ̄k

√
k/n),

1

(nγk)
1/4
‖Ŵ 1/2

k f̄k(θ0)‖2‖Ŵ 1/2
k D̄2‖2 = OP (λ̄kk

3/4/n1/4),

1

γ
3/4
k n1/4

‖Ŵ 1/2
k D̄2‖2‖Ŵ 1/2

k H̄(k)(θ̄)‖2 = OP (λ̄kk
1/4/n1/4),

1

γk
‖∆1n‖2 = OP (‖Ŵk −Wk‖2) +OP (λ̄k/

√
n) +OP (λ̄k‖θ̂ − θ0‖2),

and
1
√
γk
‖∆2n‖2 = OP (λ̄k

√
k/n) +OP (λ̄k

√
k‖θ̂ − θ0‖2) +OP (

√
k‖Ŵk −Wk‖2).

35



Since λ̄k is bounded, k3/n→ 0 and
√
k‖Ŵk −Wk‖2 = oP (1), it follows that

1

γk
‖∆1n‖2 = oP (1), and

1
√
γk
‖∆2n‖2 = OP (k1/4/n1/4)‖z1n‖2 = oP (1)‖z1n‖2.

Hence,

‖z1n‖42 ≤ ‖γ
−1/2
k H ′W

1/2
k M (k)W

1/2
k f̄k(θ0)‖2 · ‖z1n‖22 + oP (1) · ‖z1n‖2 + oP (1) · ‖z1n‖22

+ oP (1) · ‖z1n‖32 + oP (1) · ‖z1n‖42. (B.8)

Since γ−1/2
k H ′W

1/2
k M (k)W

1/2
k f̄k(θ0) = OP (1), we can readily claim that ‖z1n‖ = OP (1). Indeed, (B.8)

amounts to

(1 + oP (1))‖z1n‖2 ≤
OP (1)

‖z1n‖2
+

oP (1)

‖z1n‖22
+

oP (1)

‖z1n‖2
+ oP (1).

Hence, if ‖z1n‖2 > 1, this inequality implies (1 + oP (1))‖z1n‖2 ≤ OP (1) + oP (1). Thus, we either have

(‖z1n‖2 < 1) or (1 + oP (1))‖z1n‖2 ≤ OP (1), which ensures that ‖z1n‖2 = OP (1); that is,

γ
1/4
k n1/4(η̂2 − η02) = OP (1).

Using (B.4), we obtain that
√
n(η̂1−η01) = OP (1). Recalling that θ̂−θ0 = R1(η̂1−η01)+R2(η̂2−η02),

we have

‖θ̂ − θ0‖2 = OP (n−1/2) +OP (γ
−1/4
k n−1/4) = OP (γ

−1/4
k n−1/4).

Also, by the definition of R1 and R2 as spanning, respectively, the range of the transpose a matrix

and the null space of that same matrix, we have R′1R2 = 0. Hence,

R′1(θ̂ − θ0) = R′1R1(η̂1 − η01) = OP (n−1/2)

and

R′2(θ̂ − θ0) = R′2R2(η̂2 − η02) = OP (γ
−1/4
k n−1/4).

To complete the proof, it only remains to establish (B.6), which is done below. �

Proof of Theorem 3.1: Since θ0 is in the interior of Θ and θ̂ converges in probability to θ0, θ̂ is also

an interior optimum with probability approaching one. Therefore, this estimator solves:

(∇θf̄k(θ̂))′Ŵkf̄k(θ̂) = 0. (B.9)

By a mean-value expansion of ∇f̄k(θ̂) and a second-order Taylor expansion f̄k(θ̂) around θ0, we have

∇θf̄k(θ̂) = ∇θf̄k(θ0) + H̄(k)(θ̇)
√
n(θ̂ − θ0)
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and

f̄k(θ̂) = f̄k(θ0) +∇θf̄k(θ0)(θ̂ − θ0) +
1

2
H̄(k)(θ̈)

√
n(θ̂ − θ0)2,

with θ̇, θ̈ ∈ (θ0, θ̂). Let ḣ := H̄(k)(θ̇), ḧ := H̄(k)(θ̈), and D̄2 := ∇θf̄k(θ0). The first-order condition

(B.9) yields

n−1/4(∇f̄k(θ̂))′Ŵkf̄k(θ̂) = n−1/4D̄′2Ŵkf̄k(θ0) + n−1/4D̄′2ŴkD̄2(θ̂ − θ0) +
1

2
D̄′2Ŵkḧn

1/4(θ̂ − θ0)2

+ ḣ′Ŵkf̄k(θ0)n1/4(θ̂ − θ0) + ḣ′ŴkD̄2n
1/4(θ̂ − θ0)2 +

1

2
ḣ′Ŵkḧn

3/4(θ̂ − θ0)3 = 0.

In this framework, γk = H ′WkH. With H := H(k)(θ0), we can write

1

2
(γkn)3/4(θ̂ − θ0)3 +

1

2γk
(ḣ′Ŵkḧ−H ′WkH)(γkn)3/4(θ̂ − θ0)3 +

3

2γ
3/4
k n1/4

H ′ŴkD̄2
√
γkn(θ̂ − θ0)2

+
1

γ
3/4
k n1/4

(ḣ−H)′ŴkD̄2
√
γkn(θ̂ − θ0)2 +

1
√
γk
H ′Wkf̄k(θ0)(γkn)1/4(θ̂ − θ0)

+
1
√
γk

(ḣ′Ŵk −H ′Wk)f̄k(θ0)(γkn)1/4(θ̂ − θ0) +
1

2γ
3/4
k n1/4

D̄′2Ŵk(ḧ−H)
√
γkn(θ̂ − θ0)2

+
1
√
γkn

D̄′2ŴkD̄2(γkn)1/4(θ̂ − θ0) + n−1/4D̄′2Ŵkf̄k(θ0) = 0.

Similar to the lines of the proof of Lemma B.3, it is not hard to see that

1

γk
(ḣ′Ŵkḧ−H ′WkH) = oP (1), H ′ŴkD̄2 = OP (k), ‖ḣ−H‖2 = OP (

√
k[n−1/2∨‖θ̂−θ0‖2]) = OP (k1/4/n1/4),

(ḣ−H)′ŴkD̄2 = OP (k3/4/n1/4), and
1
√
γk

(ḣ′Ŵk −HWk)f̄k(θ0) = oP (1).

Then, letting z1n := (γkn)1/4(θ̂ − θ0) and Zn := 1√
γk
H ′Wkf̄k(θ0), we have

z1n(z2
1n + 2Zn) = oP (1). (B.10)

Since (z1n, Zn) = OP (1), by the Prokhorov’s theorem, each subsequence of has a further subsequence

that converges in distribution to, say, (V,Z). Thus, along this converging subsequence, (B.10) implies

that

V (V 2 + 2Z) = 0.

Therefore, it is not diffi cult to see that |V | = 1Z≤0

√
−2Z and, since as a Gaussian random variable

Z has a symmetric distribution, |V | = 1Z≥0

√
2Z. The fact that this limit distribution is not specific

to the subsequence implies that the whole sequence converges to (V,Z). By the continuous mapping

theorem, it follows that z2
1n

d→ V 2 = 1Z≥0(2Z) and this completes the proof. �
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Proof of Theorem 4.3: We proceed in two steps by showing first that Ẑ is bounded by two statistics

Ẑ1 and Ẑ2; that is,

Ẑ1 + oP (1) ≤ Ẑ ≤ Ẑ2 + oP (1). (B.11)

We then show in the second step that Ẑ1 and Ẑ2 converge in distribution to N(0, 1) which establishes

the stated result.

Step 1: By definition,

f̄k(θ̂)
′V̂ −1
k f̄k(θ̂) ≤ f̄k(θ0)′V̂ −1

k f̄k(θ0) = f̄k(θ0)′V −1
k f̄k(θ0) + f̄k(θ0)′(V̂ −1

k − V −1
k )f̄k(θ0).

Note that

|f̄k(θ0)′(V̂ −1
k − V −1

k )f̄k(θ0)| ≤ ‖V̂ −1
k − V −1

k ‖2‖f̄k(θ0)‖22.

From Theorem 3.1, the first-step GMM estimator θ̃ is such that θ̃ − θ0 = OP (k−1/4n−1/4). Hence,

Lemma B.2(iv) implies that ‖V̂ −1
k − V −1

k ‖2 = OP (k3/4n−1/4). Thus,

‖V̂ −1
k − V −1

k ‖2‖f̄k(θ0)‖22 = OP (k7/4n−1/4) =
√
kOP (k5/4n−1/4) = oP (

√
k).

As a result, we have

Ẑ =
f̄k(θ̂)

′V̂ −1
k f̄k(θ̂)− k√

2k
≤
f̄k(θ0)′V −1

k f̄k(θ0)− k√
2k

+ oP (1) := Ẑ2 + oP (1). (B.12)

On the other hand, using (B.5), we can write

f̄k(θ̂)
′V̂ −1
k f̄k(θ̂)

=
[
f̄k(θ̂)

′V̂
−1/2
k P̄ (k)V̂

−1/2
k f̄k(θ̂)− f̄k(θ0)′V̂

−1/2
k P̄ (k)V̂

−1/2
k f̄k(θ0)

]
+ f̄k(θ0)′V̂ −1

k f̄k(θ0)

+ (η̂2 − η02)′D̄′2V̂
−1/2
k M̄ (k)V̂

−1/2
k D̄2(η̂2 − η02) +

1

4
z′0nH̄

(k)(θ̄)′V̂
−1/2
k M̄ (k)V̂

−1/2
k H̄(k)(θ̄)z0n

+ 2f̄k(θ0)′V̂
−1/2
k M̄ (k)V̂

−1/2
k D̄2(η̂2 − η02) + f̄k(θ0)′V̂

−1/2
k M̄ (k)V̂

−1/2
k H̄(k)(θ̄)z0n

+ (η̂2 − η02)′D̄′2V̂
−1/2
k M̄ (k)V̂

−1/2
k H̄(k)(θ̄)z0n := (1) + (2) + (3) + (4) + (5) + (6) + (7).

From (B.6), and Lemma B.2, we have

(1) = OP (k3/4n−1/4) = oP (1), (3) = OP (k1/2n−1/2) = oP (1),

(4) =
1

4
z′0nH

′V
−1/2
k M (k)V

−1/2
k Hz0n + oP (1), (5) = OP (k3/4n−1/4) = oP (1),

(6) = f̄k(θ0)′V
−1/2
k M (k)V

−1/2
k Hz0n + oP (1), (7) = OP (k1/4n−1/4) = oP (1)
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and from the lines above, (2) = f̄k(θ0)′V −1
k f̄k(θ0) + oP (

√
k). As a result, we write

f̄k(θ̂)
′V̂ −1
k f̄k(θ̂) = f̄k(θ0)′V −1

k f̄k(θ0) + f̄k(θ0)′V
−1/2
k M (k)V

−1/2
k Hz0n

+
1

4
z′0nH

′V
−1/2
k M (k)V

−1/2
k Hz0n + oP (

√
k). (B.13)

Let the rank factorization of M (k)V
−1/2
k H be M (k)V

−1/2
k H = H1H2, where H1 and H2 are a (k, rh)-

matrix and a (rh, p
2)-matrix, respectively, with the same rank rh = Rank(M (k)V

−1/2
k H) ≤ p2. By

second-order local identification, rh 6= 0 so that M (k)V
−1/2
k H 6= 0.

Thus, (B.13) can be written as

f̄k(θ̂)
′V̂ −1
k f̄k(θ̂) = f̄k(θ0)′V −1

k f̄k(θ0) + f̄k(θ0)′V
−1/2
k H1H2z0n +

1

4
z′0nH

′
2H
′
1H1H2z0n + oP (

√
k).

Letting m(u) := f̄k(θ0)′V −1
k f̄k(θ0) + f̄k(θ0)′V

−1/2
k H1u + 1

4u
′H ′1H1u, and M1 := Ik −H1(H ′1H1)−1H ′1,

we can claim that

min
u∈Rrh

m(u) + oP (
√
k) = f̄k(θ0)′V

−1/2
k M1V

−1/2
k f̄k(θ0) + oP (

√
k) ≤ f̄k(θ̂)′V̂ −1

k f̄k(θ̂).

Letting Ẑ1 :=
f̄k(θ0)′V

−1/2
k M1V

−1/2
k f̄k(θ0)−k√

2k
, we obtain (B.11).

Step 2: We now show that both Ẑ1 and Ẑ2 are asymptotically standard normal. We first consider

Ẑ2. We have

Ẑ2 =
1

n
√

2k

n∑
t6=s:t,s=1

fk(xs, ys, θ0)′V −1
k fk(xt, yt, θ0)+

1
n

∑n
t=1 fk(xt, yt, θ0)′V −1

k fk(xt, yt, θ0)− k√
2k

:= U1n+U2n.

The asymptotic normality of U1n follows readily from the central limit theorem stated by Theorem

4.2. In addition, it is not hard to see that E(U2n) = 0. Using similar arguments as in the proof of

Proposition 4.1, we can show that E(U2
2n) = o(1). This establishes that U2n = oP (1). We can then

conclude that Ẑ2 is asymptotically standard normal.

We now consider Ẑ1. Note first that, since M1 is an orthogonal projection matrix on a space of

dimension k− rh, there exists a (k, k− rh)-matrix S1 such that S′1S1 = Ik−rh and M1 = S1S
′
1. In that

respect, f̄k(θ0)′V
−1/2
k M1V

−1/2
k f̄k(θ0) = f̄k(θ0)′V

−1/2
k S1S

′
1V
−1/2
k f̄k(θ0). Also, V ar(S′1V

−1/2
k f̄k(θ0)) =

Ik−rh . Using Theorem 4.2 and similarly to the lines above for Ẑ2, we can claim that

Ẑ3 :=
f̄k(θ0)′V

−1/2
k S1S

′
1V
−1/2
k f̄k(θ0)− (k − rh)√

2(k − rh)

d→ N(0, 1).

Since 0 ≤ rh ≤ p2 with p fixed, we can see that Ẑ1 = Ẑ3 + oP (1). Therefore, Ẑ1
d→ N(0, 1). �
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Proof of Lemma 4.4: Note that conditions of the theorem ensure that the maps θ 7→ E(gl(x)u(θ))

are continuous on Θ for each l. By Lemma 1 of de Jong and Bierens (1994), we can claim that, for each

θi ∈ Θ, there exists li such that |E(gli(x)u(θi))| = δi > 0. By continuity of the map θ 7→ E(gli(x)u(θ)),

there exists an open neighborhood Vi of θi such that |E(gli(x)u(θ))| > δi/2 for all θ ∈ Vi. Clearly,

Θ ⊂ ∪θi∈ΘVi and, by compactness of Θ, we can extract a finite number of elements from the sequence

of Vi to cover Θ. That is, Θ ⊂ ∪m0
j=1Vij , with m0 finite. Let k0 = max1≤j≤m0 lij . k0 is a finite integer

and, by construction, for any θ ∈ Θ, E(g(k0)(x)u(θ)) 6= 0. Also, taking δ0 = min1≤j≤m0(δij/2)2, we

obviously have ‖E(g(k0)(x)u(θ))‖22 ≥ δ0 > 0 and this concludes the proof. �

Proof of Theorem 4.5: From Lemma 4.4, there exist k0 and δ0 > 0 such that

E(fk0(xt, yt, θ̂))
′E(fk0(xt, yt, θ̂)) ≥ δ0. We have

k3/2n−1|Ẑ| ≥ 2−1/2kn−1(f̄k(θ̂)
′V̂ −1
k f̄k(θ̂)− k) ≥ 2−1/2kn−1f̄k(θ̂)

′f̄k(θ̂)/λmax(V̂k) + 21/2k2n−1

≥ (2−1/2/λ̄)n−1f̄k0(θ̂)
′f̄k0(θ̂) + o(1), with probability approaching one.

Also,

n−1f̄k0(θ̂)
′f̄k0(θ̂) ≥ E(fk0(xt, yt, θ̂))

′E(fk0(xt, yt, θ̂))+2

(
1

n

n∑
t=1

fk0(xt, yt, θ̂)− E[fk0(xt, yt, θ̂)]

)′
E(fk0(xt, yt, θ̂))

≥ δ0 − 2

∥∥∥∥∥ 1

n

n∑
t=1

fk0(xt, yt, θ̂)− E[fk0(xt, yt, θ̂)]

∥∥∥∥∥
2

‖E(fk0(xt, yt, θ̂))‖2 = δ0 + oP (1)OP (1).

It follows that, with probability approaching one, k3/2n−1|Ẑ| ≥ (2−1/2/λ̄)δ0 +oP (1) and this concludes

the proof by setting δ := (2−1/2/λ̄)δ0. �
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Proofs of Lemmas B.1, B.2 and B.3 in Appendix B

The proofs of Lemma B.1(i), Proposition 4.1 and Theorem 4.2 rely on the following result.

Lemma OA.1 (Theorem 7.4 of Roussas and Ioannides, 1987) Suppose that Fmn are the σ-algebras

generated by a stationary α-mixing process xi with mixing coeffi cient α(i). For some positive integer

`, let ηi ∈ F tisi , where s1 < t1 < s2 < t2 < · · · < t` and si+1 − ti ≥ τ for all i. In addition, let

‖η‖p = [E|η|p]1/p for 1 < p <∞ and ‖η‖∞ = esssup|η|, respectively, and assume further that

‖η‖pi <∞ for some 1 < pi ≤ ∞ with q =
∑̀
i=1

1

pi
< 1.

Then, ∣∣∣∣∣E
(∏̀
i=1

ηi

)
−
∏̀
i=1

E(ηi)

∣∣∣∣∣ ≤ 10(`− 1)α(τ)1−q
∏̀
i=1

‖ηi‖pi .

Proof of Lemma B.1:∥∥∥∥∥ 1

n

n∑
t=1

g(k)(xt)Ut(θ̄)
′ − E

(
g(k)(xt)Ut(θ0)′

)∥∥∥∥∥
2

≤ OP

(√
k

n

)
+
∥∥∥E(g(k)(xt)Ut(θ̄)

′
)
− E

(
g(k)(xt)Ut(θ0)′

)∥∥∥
2

≤ OP

(√
k

n

)
+

(
k∑
l=1

m∑
r=1

[
E
(
gl(xt)Ut,r(θ̄)

)
− E (gl(xt)Ut,r(θ0))

]2)1/2

≤ OP

(√
k

n

)
+
√
km · c · ‖θ̄ − θ0‖2 = OP

(√
k · (n−1/2 ∨ ‖θ̄ − θ0‖2)

)
. �

Proof of Lemma B.2: (i) Recall that

‖V̄k − Vk‖2 ≤ k max
1≤h,l≤k

|[V̄k − Vk]hl|.

Letting si,hl = vi(θ0)− E(vi(θ0)), with vi(θ) = gh(xi)gl(xi)ui(θ)
2, we have

[V̄k − Vk]hl =
1

n

n∑
i=1

vi(θ̄)− E[vi(θ0)]

=

(
1

n

n∑
i=1

si,hl

)
+

2

n

n∑
i=1

gh(xi)gl(xi)ui(θ̄)∇θui(θ̃)(θ̄ − θ0) := (a′) + (b′). (OA.1)

The first equality follows by definition and the second one follows from a mean-value expansion of

(1/n)
∑n

i=1 vi(θ̄) around θ0 with θ̃ ∈ (θ̄, θ0). We need to determine the order of magnitude of (a′) and

(b′). Pick 0 < ξ < 1/2 and let α = (1− 2ξ)/2. We have

E
(
nξa′

)2
= n2ξ−2

n∑
i,j=1

E(si,hlsj,hl).

1



From Assumption A.1-(ii), we have maxh,lE|si,hl|δ < ∞ with δ > 2. Also, using Assumption 1, we

can apply Lemma OA.1, and claim (with q = 2/δ < 1) that: for all i, j,

|E(si,hlsj,hl)− E(si,hl)E(sj,hl)| ≤ 10ρ(1−q)|i−j|(E|si,hl|δ)2/δ ≤ 10ρ(1−q)|i−j|(max
h,l

E|si,hl|δ)2/δ := cρ(1−q)|i−j|.

Note that for |i− j| > nα,

|E(si,hlsj,hl)| = |E(si,hlsj,hl)− E(si,hl)E(sj,hl)| ≤ cρ(1−q)nα

and for |i− j| ≤ nα,

|E((si,hlsj,hl))| ≤
(
E(s2

i,hl)E(s2
j,hl)

)1/2 ≤ c.
It follows that

n∑
i,j=1

E(si,hlsj,hl) =
∑

|i−j|≤nα
E(si,hlsj,hl) +

∑
|i−j|>nα

E(si,hlsj,hl) ≤ c · n · nα + 2c · n ·
n∑

j=nα+1

ρ(1−q)j

≤ c · n · nα + 2c · nρ(1−q)(nα+1) 1− ρ(1−q)(n−nα)

1− ρ1−q ≤ c · n · nα +
4c

1− ρ1−q · n.

As a result, for any n ≥ 1,

n2ξ−2
∑
i,j

E(si,hlsj,hl) ≤ c · n−α + c′ · n2ξ−1 = c · n−α + c′ · n−2α

uniformly in h, l. Letting ξ → 1/2, α→ 0 and, hence, n−1
∑

i,j E(si,hlsj,hl) ≤ c+ c′. We can therefore

claim that

max
h,l

∣∣∣∣∣ 1n
n∑
i=1

si,hl

∣∣∣∣∣ = OP (n−1/2).

Besides,

|(b′)| ≤ 2

(
1

n

n∑
i=1

|gh(xi)||gl(xi)| sup
θ∈N
|ui(θ)|‖∇θui(θ)‖

)
‖θ̄ − θ0‖

≤ 2

(
1

n

n∑
i=1

gl(xi)
2 sup
θ∈N
|ui(θ)|2

)1/2(
1

n

n∑
i=1

gh(xi)
2 sup
θ∈N
‖∇θui(θ)‖2

)1/2

‖θ̄ − θ0‖ = OP (‖θ̄ − θ0‖).

We deduce from (OA.1) that:

max
1≤h,l≤k

|[V̂k − Vk]hl| = OP (n−1/2) +OP (‖θ̄ − θ0‖) = OP (n−1/2 ∨ ‖θ̄ − θ0‖)

and the result follows.

2



(ii) and (iii): Let c be the unit vector of Rk such that c′Vkc = λk if λk ≤ λmin(V̄k). (Choose c such

that c′V̄kc = λmin(V̄k) otherwise.) We then have

|λk − λmin(V̄k)| ≤
∣∣c′(Vk − V̄k)c∣∣ ≤ k∑

h,l=1

|ch||cl|
∣∣[Vk − V̄k]hl∣∣ ≤ max

1≤h,l≤k

∣∣[Vk − V̄k]hl∣∣
(

k∑
l=1

|cl|
)2

≤ k · max
1≤h,l≤k

∣∣[Vk − V̄k]hl∣∣
and (ii) follows from the proof of part (i). Part (iii) is obtained by dividing each side of (ii) by λk.

We establish (iv) by recalling that V̄ −1
k − V −1

k = −V̄ −1
k (V̄k − Vk)V −1

k . Thus, by the Cauchy-Schwarz

inequality, we have:

‖V̄ −1
k −V −1

k ‖2 ≤ λmax(V̄ −1
k )‖V̂k−Vk‖2λmax(V −1

k ) =
1

λmin(V̄k)λk
‖V̄k−Vk‖2 =

λk
λmin(V̄k)

λ−2
k ‖V̄k−Vk‖2.

This yields the stated order by using (i) and (iii). The proof of (v) follows the same arguments as

those in the proof of (iii). �

Proof of Lemma B.3: (i) We have ‖D̄′2ŴkD̄2‖2 = λmax(D̄′2ŴkD̄2) ≤ [λmax(Ŵk)/λ̄k]λ̄kλmax(D̄′2D̄2) =

OP (λ̄kk).

(ii) Same as (i) by noting that ‖Ŵ 1/2
k f̄k‖2 =

√
λmax(f̄ ′kŴkf̄k) =

√
f̄ ′kŴkf̄k.

(iii) We have ‖Ŵ 1/2
k H̄‖2 ≤ ‖Ŵ 1/2

k (H̄ −H)‖2 + ‖Ŵ 1/2
k H‖2 ≤ ‖Ŵ 1/2

k ‖2‖H̄ −H‖2 + OP (
√
λ̄kk). Note

that

‖Ŵ 1/2
k ‖2‖H̄ −H‖2 ≤

√
λmax(Ŵk)OP (

√
k[n−1/2 ∨ ‖θ̄ − θ0‖2]) = oP (

√
λ̄kk) and the result follows.

(iv) We have ‖(D̄′1ŴkD̄1)−1‖2 = [λmin(D̄′1ŴkD̄1)]−1. But, λmin(D̄′1ŴkD̄1) ≥ λmin(Ŵk)λmin(D̄′1D̄1).

Note that, proceeding as in the proof of Lemma B.2-(iii), we obtain

|λmin(D̄′1D̄1)/λmin(D′1D1)− 1| = OP (‖D̄′1D̄1 −D′1D1‖2/λmin(D′1D1)).

Using Lemma B.1, it is not diffi cult to see that ‖D̄′1D̄1−D′1D1‖2 = OP (k[n−1/2 ∨‖θ̄− θ0‖2]) = oP (k).

As a result, λmin(D̄′1D̄1)/λmin(D′1D1)− 1 = oP (1). We can therefore claim that

‖(D̄′1ŴkD̄1)−1‖2 ≤
1

λmin(Ŵk)λmin(D̄′1D̄1)
= OP ([λmin(Wk)λmin(D′1D1)]−1) = OP (λ̄

−1
k k−1).
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(v) We have

M̄ (k) −M (k) = (Ŵ
1/2
k −W 1/2

k )D̄1(D̄′1ŴkD̄1)−1D̄′1Ŵ
1/2
k +W

1/2
k (D̄1 −D1)′(D̄′1ŴkD̄1)−1D̄′1Ŵ

1/2
k

+W
1/2
k D1[(D̄′1ŴkD̄1)−1 − (D′1WkD1)−1]D̄′1Ŵ

1/2
k +W

1/2
k D1(D′1WkD1)−1(D̄1 −D1)Ŵ

1/2
k

+W
1/2
k D1(D′1WkD1)−1D1(Ŵ

1/2
k −W 1/2

k ) := (1) + (2) + (3) + (4) + (5).

Note that

(D̄′1ŴkD̄1)−1 − (D′1WkD1)−1 = −(D̄′1ŴkD̄1)−1(D̄′1ŴkD̄1 −D′1WkD1)(D′1WkD1)−1.

From (iv), ‖(D̄′1ŴkD̄1)−1‖2 = OP (λ̄
−1
k k−1) and ‖D′1WkD1‖2 = OP (λ̄

−1
k k−1). Also,

D̄′1ŴkD̄1 −D′1WkD1 = (D̄1 −D1)′ŴkD̄1 +D′1(Ŵk −Wk)D̄1 +D′1Wk(D̄1 −D1).

Hence,

‖D̄′1ŴkD̄1 −D′1WkD1‖2 = OP (λ̄kk[n−1/2 ∨ ‖θ̄ − θ0‖2]) +OP (k‖Ŵk −Wk‖2).

Thus,

‖(D̄′1ŴkD̄1)−1 − (D′1WkD1)−1‖2 = OP (λ̄
−1
k k−1[n−1/2 ∨ ‖θ̄ − θ0‖2]) +OP (λ̄

−2
k k−1‖Ŵk −Wk‖2).

Also, using the Ando-van Hemmen inequality (see Ando and van Hemmen, 1980), we have∥∥∥Ŵ 1/2
k −W 1/2

k

∥∥∥
2
≤ 1

λmin(Ŵk)1/2 + λmin(Wk)1/2
‖Ŵk −Wk‖2 ≤ λmin(Wk)

−1/2‖Ŵk −Wk‖2.

Then, going back to the expression for M̄ (k) −M (k), we have

‖(1)‖2 ≤ λmin(Wk)
−1/2‖Ŵk −Wk‖2OP (

√
k)OP (λ̄

−1
k k−1)OP (

√
k)OP (

√
λ̄k) = OP (λ̄

−1
k ‖Ŵk −Wk‖2).

Similarly, we can verify that ‖(5)‖2 = OP (λ̄
−1
k ‖Ŵk −Wk‖2) and

‖(2)‖2 ≤ λ̄1/2
k OP (

√
k[n−1/2 ∨ ‖θ̄ − θ0‖2])OP (λ̄

−1
k k−1)OP (

√
k)OP (λ̄

1/2
k ) = OP (n−1/2 ∨ ‖θ̄ − θ0‖2).

The same holds for ‖(4)‖2. Finally,

‖(3)‖2 ≤ OP (λ̄k)OP (k)
[
OP (λ̄

−1
k k−1[n−1/2 ∨ ‖θ̄ − θ0‖2]) +OP (λ̄

−2
k k−1‖Ŵk −Wk‖2)

]
= OP ([n−1/2 ∨ ‖θ̄ − θ0‖2]) +OP (λ̄

−1
k ‖Ŵk −Wk‖2)

and the result follows.

4



(vi) Note that

‖∆1n‖2 = ‖H̄ ′Ŵ 1/2
k M̄ (k)Ŵ

1/2
k H̄ −H ′W 1/2

k M (k)W
1/2
k H‖2

≤ ‖H̄−H‖2‖Ŵk‖2‖H̄‖2+‖H‖2
∥∥∥Ŵ 1/2

k −W 1/2
k

∥∥∥
2
‖Ŵ 1/2

k ‖2‖H̄‖2+‖H‖2‖W 1/2
k ‖2‖M̄

(k)−M (k)‖2‖H̄‖2‖Ŵ 1/2
k ‖2

+ ‖H‖2‖W 1/2
k ‖2

∥∥∥Ŵ 1/2
k −W 1/2

k

∥∥∥
2
‖H̄‖2 + ‖H‖2‖Wk‖2‖H̄ −H‖2.

The result follows by the same steps as above.

(vii) Similarly,

‖∆2n‖2 = ‖H̄ ′Ŵ 1/2
k M̄ (k)Ŵ

1/2
k f̄k −H ′W 1/2

k M (k)W
1/2
k f̄k‖2

≤ ‖H̄−H‖2‖Ŵk‖2‖f̄k‖2+‖H‖2
∥∥∥Ŵ 1/2

k −W 1/2
k

∥∥∥
2
‖Ŵ 1/2

k ‖2‖f̄k‖2+‖H‖2‖W 1/2
k ‖2‖M̄

(k)−M (k)‖2‖Ŵ 1/2
k ‖2‖f̄k‖2

+ ‖H‖2‖W 1/2
k ‖2

∥∥∥Ŵ 1/2
k −W 1/2

k

∥∥∥
2
‖f̄k‖2

and the result follows along similar lines as above.

(viii) We have

‖M̂ (k)−M̄ (k)‖2 ≤ ‖Ŵk‖2
(
‖D̂1 − D̄1‖2‖(D̂′1ŴkD̂1)−1‖2‖D̂1‖2 + ‖D̂1‖2‖D̄1‖2‖(D̂′1ŴkD̂1)−1 − (D̄′1ŴkD̄1)−1‖2

+ ‖D̄1‖2‖(D̄′1ŴkD̄1)−1‖2‖D̂ − D̄1‖2
)

:= (1) + (2) + (3).

From (iv), ‖(D̄′1ŴkD̄)−1
1 ‖2 = OP (λ̄

−1
k k−1) and ‖(D̂′1ŴkD̂1)−1‖2 = OP (λ̄

−1
k k−1). Note that

‖D̂1 − D̄1‖2 ≤ ‖D̂1 −D1‖2 + ‖D̄1 −D1‖2 ≤ OP (
√
k[n−1/2 ∨ ‖θ̂ − θ0‖2]) +OP (

√
k[n−1/2 ∨ ‖θ̄ − θ0‖2]).

Since θ̄ ∈ (θ0, θ̂), we can write θ̄ = tθ0 + (1 − t)θ̂ for t ∈ (0, 1). Therefore, we can claim that

‖D̂1 − D̄1‖2 = OP (
√
k[n−1/2 ∨ ‖θ̂ − θ0‖2]). Using similar arguments as above, we can also show that

‖(D̂′1ŴkD̂1)−1 − (D̄′1ŴkD̄1)−1‖2 = OP (λ̄
−1
k k−1[n−1/2 ∨ ‖θ̂ − θ0‖2]).

By combining this with the fact that ‖Ŵk‖2 = OP (λ̄k), ‖D̄1‖2 = OP (
√
k) and ‖D̂1‖2 = OP (

√
k), the

result follows readily. �

Proof of Equation (B.6) in Appendix B

We have

f̄k(θ̂)
′Ŵ

1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ̂)− f̄k(θ0)′Ŵ

1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ0) = 2f̄k(θ̂)

′Ŵ
1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ̂)

− 2f̄k(θ0)′Ŵ
1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ̂)− (f̄k(θ̂)− f̄k(θ0))′Ŵ

1/2
k P̄ (k)Ŵ

1/2
k (f̄k(θ̂)− f̄k(θ0)).
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From (B.3) and (B.4), ‖f̄k(θ̂)− f̄k(θ0)‖2 = OP (
√
k‖η̂ − η0‖2) = OP (

√
k‖θ̂ − θ0‖2). Hence,

|(f̄k(θ̂)− f̄k(θ0))′Ŵ
1/2
k P̄ (k)Ŵ

1/2
k (f̄k(θ̂)− f̄k(θ0))| ≤ λmax(Ŵk)‖f̄k(θ̂)− f̄k(θ0)‖22 = OP (λkk‖θ̂ − θ0‖22)).

Let D̂1 := D̄1(θ̂). By the first-order necessary optimality condition, D̂′1Ŵkf̄k(θ̂) = 0.

Let P̂ (k) := Ŵ
1/2
k D̂1(D̂′1ŴkD̂1)−1D̂′1Ŵ

1/2
k . Obviously, P̂ (k)Ŵ

1/2
k f̄k(θ̂) = 0. Thus,

P̄ (k)Ŵ
1/2
k f̄k(θ̂) = (P̄ (k) − P̂ (k))Ŵ

1/2
k f̄k(θ̂) and ‖P̄ (k)Ŵ

1/2
k f̄k(θ̂)‖2 ≤ ‖P̄ (k) − P̂ (k)‖2 ·OP (

√
λ̄kk).

From Lemma B.3, ‖P̄ (k) − P̂ (k)‖2 = OP (n−1/2 ∨ ‖θ̂ − θ0‖2) and it follows that

‖P̄ (k)Ŵ
1/2
k f̄k(θ̂)‖2 = OP (

√
kλ̄k[n

−1/2 ∨ ‖θ̂ − θ0‖2]).

Thus:

f̄k(θ̂)
′Ŵ

1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ̂) = OP (λ̄kk[n−1 ∨ ‖θ̂ − θ0‖22])

and

f̄k(θ0)′Ŵ
1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ̂) = OP (λ̄kk[n−1/2 ∨ ‖θ̂ − θ0‖2]).

As a result,

|f̄k(θ̂)′Ŵ 1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ̂)− f̄k(θ0)′Ŵ

1/2
k P̄ (k)Ŵ

1/2
k f̄k(θ0)| = OP (λ̄kkn

−1/2) +OP (λ̄kk‖θ̂ − θ0‖2). �

Proofs of Proposition 4.1 and Theorem 4.2

Proof of Proposition 4.1: We shall assume, without loss of generality, that Vk = Ik. This amounts

to taking the scaled version of fk(θ0) by V −1/2
k . In the following expressions, we let fi = fk(xi). We

have

V ar(Un) =
1

n2k
E

 n∑
i=1

∑
j 6=i

f ′ifj

2

=
1

n2k

∑
i1 6=j1

∑
i2 6=j2

E(f ′i1fj1 · f
′
i2fj2)

=
2

n2k

∑
i 6=j

E
[
(f ′ifj)

2
]

+
1

n2k

∑
i1 6=j1,i2 6=j2
3 diff. indices

E
[
(f ′i1fj1) · (f

′
i2fj2)

]
+

1

n2k

∑
i1 6=j1,i2 6=j2
4 diff. indices

E
[
(f ′i1fj1) · (f

′
i2fj2)

]
. (OA.2)

Because of the martingale difference dynamics of fi, all the terms in the last summation are 0. We

next show that the second expression is o(1) and the first one is equal to 2 + o(1).

6



(a) Consider:

An =
1

n2k

∑
i 6=j1,i 6=j2
j1 6=j2

E[f ′ifj1 · f ′ifj2 ].

Let πn = na, a ∈ (0, 1). In the following, we will consider two indices i, j to be connected iff |i−j| ≤ πn

and a set of three indices to be connected iff any one of them is connected to at least another one of

them.

In the summation above, we have three configurations that stand out:

(i) The three indices i, j1, j2 are connected. Denote S1 to be the collection of such indices.

(ii) Only two of the indices, say {i, j1}, {i, j2} or {j1, j2} are connected. Denote S2, S3 and S4 the

subset of indices (i, j1, j2) satisfying these descriptions, respectively.

(iii) All the three indices are isolated from one another. Denote S5 to be the collection of such indices.

We first deal with (i). We have

|E[f ′ifj1 · f ′ifj2 ]| =

∣∣∣∣∣∣
k∑

h,h′=1

E[fihfj1hfih′fj2h′ ]

∣∣∣∣∣∣ ≤
k∑

h,h′=1

E|fihfj1hfih′fj2h′ |

≤
k∑

h,h′=1

[
E(f4

ih)E(f4
j1h)E(f4

ih′)E(f4
j2h′)

]1/4 ≤ k∑
h,h′=1

(
E|fih|4+ε

)2/4+ε (E|fih′ |4+ε
)2/4+ε

,

where the first inequality is the triangle inequality, the second one follows from the Cauchy-Schwarz

inequality, the third one follows from the monotonicity (in p) of Lp-norms and the stationarity as-

sumption. Hence,

|E[f ′ifj1 · f ′ifj2 ]| ≤ k2

(
1

k

k∑
h=1

(
E|fih|4+ε

)2/4+ε

)2

≤ k2

(
1

k

k∑
h=1

(
E|fih|4+ε

)4/4+ε

)

≤ k2

(
1

k

k∑
h=1

E|fih|4+ε

)4/4+ε

≤ k2∆ε,

where ∆ε = ∆4/4+ε is an absolute constant. The last inequality holds by assumption and the previous

two follow from the Jensen’s inequality. Thus,

A1n ≡

∣∣∣∣∣∣ 1

n2k

∑
(i,j1,j2)∈S1

E[f ′ifj1 · f ′ifj2 ]

∣∣∣∣∣∣ ≤ N(S1)
k2∆ε

n2k
,

where N(S) denotes the cardinality of S. It is not hard to see that N(S1) ≤ nπ2
n. Then,

A1n ≤ ∆εkπ
2
n/n.
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Choosing πn = o(
√
n/k) is suffi cient to claim that A1n = o(1).

We next deal with (ii). Assume that (i, j1) are connected and j2 is isolated from both so that (i, j1, j2) ∈

S2. Take p1 = 4+ε
3 and p2 = 4 + ε. Let q = 1

p1
+ 1

p2
= 4

4+ε . We have q < 1 and by Lemma OA.1, it

follows that

E(fihfih′fj1hfj2h′) = E(fihfih′fj1h)E(fj2h′) +O
(
ρ(1−q)πn‖fihfih′fj1h‖p1‖fj2h′‖p2

)
= O

(
ρ(1−q)πn‖fihfih′fj1h‖p1‖fj2h′‖p2

)
.

By the Cauchy-Schwarz inequality, we have

‖fihfih′fj1h‖p1‖fj2h′‖p2 ≤
(
E|fih|4+ε

) 1
4+ε
(
E|fih′ |4+ε

) 1
4+ε
(
E|fj1h|4+ε

) 1
4+ε =

(
E|fih|4+ε

) 2
4+ε
(
E|fih′ |4+ε

) 1
4+ε ,

where the last equality holds by stationarity. Hence,

E(fihfih′fj1hfj2h′) = O(ρ(1−q)πn‖fih‖24+ε‖fih′‖24+ε).

This yields
k∑

h,h′=1

E(fihfih′fj1hfj2h′) = O

ρ(1−q)πnk2

(
1

k

k∑
h=1

‖fih‖24+ε

)2
 .

But, by the Jensen’s inequality,(
1

k

k∑
h=1

‖fih‖24+ε

)2

≤ 1

k

k∑
h=1

‖fih‖44+ε =
1

k

k∑
h=1

(
E|fih|4+ε

) 4
4+ε

≤
(

1

k

k∑
h=1

E|fih|4+ε

) 4
4+ε

≤
(

sup
k

1

k

k∑
h=1

E|fih|4+ε

) 4
4+ε

= ∆ε <∞.

Thus,
k∑

h,h′=1

E(fihfih′fj1hfj2h′) = O
(
k2ρ(1−q)πn

)
.

Hence,

A2n ≡

∣∣∣∣∣∣ 1

n2k

∑
(i,j1,j2)∈S2

E[f ′ifj1 · f ′ifj2 ]

∣∣∣∣∣∣ = O

(
N(S2)

n2k
k2

)
.

Clearly, N(S2) ≤ n2πn. Thus, choosing πn = na for some a > 0 ensures that A2n = o(1). Likewise,

summation over (i, j1, j2) ∈ S3 leads to a negligible quantity.

Now, consider S4, where j1 and j2 are connected while i is isolated. Applying Lemma OA.1, we have

E(fihfih′fj1hfj2h′) = E(fihfih′)E(fj1hfj2h′) +O
(
ρ(1−q)πn‖fihfih′‖p1‖fj1hfj2h′‖p2

)
= O

(
ρ(1−q)πn‖fihfih′fj1h‖p1‖fj2h′‖p2

)
,
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with p1 = p2 = 4+ε
2 , and then, q = 4

4+ε . From the Cauchy-Schwarz inequality and the stationarity

assumption, we have

‖fihfih′fj1h‖p1‖fj2h′‖p2 ≤
(
|fih|4+ε

) 2
4+ε
(
|fih′ |4+ε

) 2
4+ε .

Similar derivations as above lead to

A3n ≡

∣∣∣∣∣∣ 1

n2k

∑
(i,j1,j2)∈S4

E[f ′ifj1 · f ′ifj2 ]

∣∣∣∣∣∣ = O

(
N(S4)

n2k
k2

)
.

Again, N(S4) ≤ n2πn. Thus, choosing πn = na for some a > 0 ensures that A3n = o(1).

We next consider (iii), where {i, j1, j2} has no pairs connected. Again, by Lemma OA.1, we have

E(fihfih′fj1hfj2h′) = E(fihfih′)E(fj1h)E(fj2h′) +O
(
ρ(1−q)πn‖fihfih′‖p1‖fj1h‖p2‖fj2h′‖p3

)
= O

(
ρ(1−q)πn‖fihfih′‖p1‖fj1h‖p2‖fj2h′‖p3

)
,

with p1 = 4+ε
2 , and p2 = p3 = 4 + ε. By the Cauchy-Schwarz inequality and stationarity, we have, as

before,

‖fihfih′‖p1‖fj1h‖p2‖fj2h′‖p3 ≤
(
E(|fih|4+ε

) 2
4+ε
(
E(|fih′ |4+ε

) 2
4+ε .

Hence,
k∑

h,h′=1

E(fihfih′fj1hfj1h′) = O(ρ(1−q)πnk2).

Thus,

A4n ≡

∣∣∣∣∣∣ 1

n2k

∑
(i,j1,j2)∈S5

E[f ′ifj1 · f ′ifj2 ]

∣∣∣∣∣∣ = O

(
1

n2k
N(S5)ρ(1−q)πnk2

)
.

Note that N(S5) ≤ n3. Thus A4n = O(n2ρ(1−q)πn). Taking πn = na for some a > 0 ensures that

A4n = o(1).

Therefore, since k = nα, with α ∈ (0, 1), we can always find πn = na with a > 0 small enough so that

all A1n, A2n, A3n and A4n are all o(1). This shows that An = o(1). Hence, the second term in the

expression of the variance of Un in (OA.2) is o(1); that is,

1

n2k

∑
i1 6=j1,i2 6=j2
3 diff. indices

E
[
(f ′i1fj1) · (f

′
i2fj2)

]
= o(1).

(b) Consider the first term in the expression of the variance of Un in (OA.2). We have

1

n2k

∑
i 6=j

E
[
(f ′ifj)

2
]

=
1

n2k

∑
i 6=j

k∑
h,h′=1

E(fihfjhfih′fjh′).

9



As previously, we can show that

|E(fihfjhfih′fjh′)| ≤ (E|fih|4+ε)
2
4+ε (E|fjh|4+ε)

2
4+ε

and
k∑

h,h′=1

E(fihfjhfih′fjh′) ≤ k2 ·∆ε.

If i, j are connected,

A5n ≡

∣∣∣∣∣∣∣∣
1

n2k

∑
i 6=j

|i−j|≤πn

k∑
h,h′=1

E(fihfjhfih′fjh′)

∣∣∣∣∣∣∣∣ ≤
Nk2∆ε

n2k
= O

(
kπn
n

)
,

where N ≤ 2nπn is the number of connected pairs (i, j). Choosing πn = o(n/k) is enough to claim

that A5n = o(1).

If i, j are not connected, |i− j| ≥ πn, we have

E(fihfjhfih′fjh′) = E(fihfih′)E(fjhfjh′) +O
(
ρ(1−q)πn‖fihfih′‖p1‖fjhfjh′‖p2

)
,

with p1 = p2 = 4+ε
2 and q = 4

4+ε . As in the previous lines, we can claim that

1

n2k

∑
i 6=j

|i−j|≥πn

k∑
h,h′=1

E(fihfjhfih′fjh′) =
1

n2k

∑
i 6=j

|i−j|≥πn

E∗((f ′ifj)2) +O
(
kρ(1−q)πn

)
,

where E∗ denote expectation under independence of fi and fj . By taking πn = na for some a > 0

small enough, the second term in the right hand side is o(1). Note that the number N of connected

pairs (i, j) satisfies:

n(n− 2πn) ≤ N ≤ n2.

Also,

E∗(f ′ifj)2 = E∗(f ′ifjf ′jfi) = trace(E∗[fjf ′jfif ′i ]) = k.

It follows that 1
n2k

∑
i 6=j,|i−j|≥πn E

∗((f ′ifj)
2) = 1 + o(1) and as a result,

1

n2k

∑
i 6=j

E
[
(f ′ifj)

2
]

= 1 + o(1).

This completes the proof. �
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Proof of Theorem 4.2: As previously, we assume, without loss of generality, that Vk = Ik. Again,

we let fi := fk(xi) and set zi := max1≤i≤n ‖fi‖/
√
k and zij := max1≤i 6=j≤n |f ′ifj |/

√
k. Let M > 0.

Then, we have

Un = Un1{(zi≤M logβ n)∩(zij≤M logβ n)} + Un1{(zi>M logβ n)∪(zij>M logβ n)}. (OA.3)

For the second term in this expression, we have

E[|Un|1{zi>M logβ n∪zij>M logβ n}] ≤ E[|Un|1{zi>M logβ n}] + E[|Un|1{zij>M logβ n}].

By the Cauchy-Schwarz and the Markov inequalities,

E[|Un|1{zi>M logβ n}] ≤
(
E(U2

n) Pr(zi > M logβ n)
)1/2

≤ 1√
M logβ n

(
E(U2

n)E(zi)
)1/2

.

Thus, by Proposition 4.1 and Assumption-clt 3, there exists a constant c > 0 such that

sup
n
E[|Un|1{zi>M logβ n}] ≤

c√
M
.

The same claim can be made about supnE[|Un|1{zij>M logβ n}] and it then follows that

lim
M→∞

sup
n
E[|Un|1{(zi>M logβ n)∪(zij>M logβ n)}] = 0.

Hence, Un1{(zi>M logβ n)∪(zij>M logβ n)} can be made stochastically small by taking M large and we can

only focus on the first term in (OA.3). We shall therefore consider throughout that

max
1≤i≤n

‖fi‖√
k logβ n

≤M and max
1≤i 6=j≤n

|f ′ifj |√
k logβ n

≤M (OA.4)

for a fixed constant M > 0.

Next, we show that the moments of Un/
√

2 converge to those of the standard normal distribution.

Let r ∈ N . We have

U2r+1
n =

1

(n
√
k)2r+1

n∑
i1,j1,...,i2r+1,j2r+1=1

ia 6=ja,a=1,...,2r+1

2r+1∏
s=1

f ′isfjs

=
1

(n
√
k)2r+1

n∑
i1,j1,...,i2r+1,j2r+1=1

ia 6=ja,a=1,...,2r+1

k∑
h1,...,h2r+1=1

2r+1∏
s=1

fis,hsfjs,hs . (OA.5)

To derive this moment, we shall rely, following Kim et al. (2011), on some notions from graph theory.

To make the discussion self-contained, we introduce some of these notions below. More details may
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be found in Kim et al. (2011). Each term of in the right-hand side of (OA.5) can be associated with

an undirected graph with vertices i1, j1, i2, j2, . . . , i2r+1, j2r+1. Let πn(≤ n) be an increasing sequence

of n. We say that a1, a2 in the graph {i1, j1, i2, j2, . . . , i2r+1, j2r+1} are connected if: |a1 − a2| ≤ πn or

there exist {b1, . . . bl} ⊂ {i1, j1, i2, j2, . . . , i2r+1, j2r+1} such that

|a1 − b1| ≤ πn, |b1 − b2| ≤ πn, . . . , |bl−1 − bl| ≤ πn, |bl − a2| ≤ πn.

Note that in a graph, many is and/or js may take the same value. A component of the graph is a

subset I of {i1, j1, i2, j2, . . . , i2r+1, j2r+1} such that every vertex in I is connected to at least another

one. A graph can be partitioned into m components: I1, . . . Im. We may assume, without loss of

generality, that the components are arranged in the increasing order of vertices so that, for u < v,

i < j for all i ∈ Iu and j ∈ Iv.

The distance between two successive components Iu and Iu+1 is defined as

du := d(Iu, Iu+1) = inf
i∈Iu,j∈Iu+1

(j − i).

Note that du ≥ πn for any u. For given k components I1, . . . , Im, let d(u) denote the u-th smallest

distance among d1, . . . , dm−1. The size of a component is the number of vertices (accounting for

multiplicity) it contains.

Suppose that the graph G = {i1, j1, i2, j2, . . . , i2r+1, j2r+1} comprises m components.

Since ‖fi‖/
√
k logβ n ≤ M for all i, we also have |fi,h|/

√
k logβ n ≤ M for all i and h = 1, . . . , k. We

can then apply Lemma OA.1 with p1 = · · · = pk =∞ and claim that

E

(
2r+1∏
s=1

fis,hsfjs,hs

)
=

m∏
`=1

E

 ∏
s:is∈I`

fis,hs
∏

s:js∈I`

fjs,hs

+O
(
ρd(1)k2r+1 logβ(4r+1) n

)
.

We shall use the type of decomposition above routinely throughout our subsequent derivations.

Let Gm be the set of graphs having exactly m components. We have

E(U2r+1
n ) =

1

(n
√
k)2r+1

4r+2∑
m=1

∑
i1,j1,...,i2r+1,j2r+1∈Gm
ia 6=ja,a=1,...,2r+1

E

(
2r+1∏
s=1

f ′isfjs

)

=
1

(n
√
k)2r+1

4r+2∑
m=1

∑
i1,j1,...,i2r+1,j2r+1∈Gm
ia 6=ja,a=1,...,2r+1

n∑
h1,...,h2r+1=1

E

(
2r+1∏
s=1

fis,hsfjs,hs

)
. (OA.6)
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(a) Consider a graph with m ≥ 2r + 2 components. Then there exists at least one component,

I`0 = {i0}, with size 1 and

E

 ∏
s:is∈I`0

fis,hs
∏

s:js∈I`0

fjs,hs

 = E(fi0,hs) = 0.

Thus, for such graphs,

E

(
2r+1∏
s=1

fis,hsfjs,hs

)
= O

(
ρd(1)k2r+1 logβ(4r+2) n

)
= O

(
ρπnk2r+1 logβ(4r+2) n

)
.

Clearly, the total number of graphs with at least 2r + 2 components is less than or equal to (n(n −

1))2r+1, the total number of graphs in the expansion in (OA.6). As a result,

1

(n
√
k)2r+1

4r+2∑
m=2r+2

∑
i1,j1,...,i2r+1,j2r+1∈Gm
ia 6=ja,a=1,...,2r+1

n∑
h1,...,h2r+1=1

E

(
2r+1∏
s=1

fis,hsfjs,hs

)

= O
(
n2r+1k3(r+1/2)ρπn logβ(4r+2) n

)
= o(1),

where the final order of magnitude is obtained by setting πn = na for some a ∈ (0, 1).

(b) Consider graphs with m ≤ 2r components. Recalling (OA.4), we have

An :=

∣∣∣∣∣∣∣∣
1

(n
√
k)2r+1

2r∑
m=1

∑
i1,j1,...,i2r+1,j2r+1∈Gm
ia 6=ja,a=1,...,2r+1

E

(
2r+1∏
s=1

f ′isfjs

)∣∣∣∣∣∣∣∣ ≤
cM,r(

√
k logβ n)2r+1

(n
√
k)2r+1

2r∑
m=1

Nm,

where Nm is the number of graphs with exactly m components and cM,r is a constant depending

only on M and r. We next find an upper bound for Nm. Define the degree of a component as

the number of different vertices it contains and let δ` denote the degree of the component I` for

` = 1, . . . ,m. Let Nm(δ1, . . . , δm) be the number of graphs with m components with δ`’s being the

respective components. Recall that m ≤
∑m

u=1 δu ≤ 4r + 2. Hence,

Nm(δ1, . . . , δm) = nπδ1−1
n nπδ2−1

n · · ·nπδm−1
n = nmπδ1+···+δm−m

n ≤ nmπ4r+2−m
n .

Thus,

Nm ≤ (4r + 2)mnmπ4r+2−m
n .

For 1 ≤ m ≤ 2r, we have:

Nm ≤ (4r + 2)2rn2rπ4r+1
n = O

(
n2rπ4r+1

n

)
and

2r∑
m=1

Nm ≤ 2r(4r + 2)2rn2rπ4r+1
n = O

(
n2rπ4r+1

n

)
.
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Taking πn = n
1

4r+1
−ε for some ε ∈ (0, 1

4r+1) ensures that An = o(1).

(c) We are left with the graphs with m = 2r + 1 components. Note that if there is one component of

such graphs that has more than two vertices (accounting for multiplicities), then, there is at least one

component with exactly one vertex. Similarly to part (a) of the proof, the contribution of such graphs

to the moment in (OA.6) is negligible. We are left with the case where each component has exactly

2 vertices. Again, if any of these components, say I`0 , has size 2, then, by the martingale difference

assumption, E(fi,hfj,h′) = 0 for i 6= j ∈ I`0 and h, h′ = 1, . . . , k. Graphs containing such components

also have negligible contribution. There only remain graphs with components each having two equal

vertices. Let G′2r+1 be the set of all graphs with 2r + 1 components, each of size 1. Note that each

graph in G′2r+1 contains 2r+ 1 different vertices, each featuring exactly twice. We can check along the

same lines as in (a) that:

1

(n
√
k)2r+1

∑
i1,j1,...,i2r+1,j2r+1∈G′2r+1

ia 6=ja,a=1,...,2r+1

E

(
2r+1∏
s=1

f ′isfjs

)
=

1

(n
√
k)2r+1

∑
i1,j1,...,i2r+1,j2r+1∈G′2r+1

ia 6=ja,a=1,...,2r+1

E∗
(

2r+1∏
s=1

f ′isfjs

)
+o(1),

where E∗ is the expectation under pairwise independence of (2r + 1) distinct f•’s appearing in the

expectation.

Take E :=
∏2r+1
s=1 f ′isfjs with i1, j1, . . . , i2r+1, j2r+1 ∈ G′2r+1. Since each fis (or fjs) appears exactly

twice in the product, it either appears in a square inner product: (f ′isfjs)
2 and nowhere else, or it

appears in two different inner products: (f ′isfjs)(f
′
is′
fjs′ ) (with is = is′) and nowhere else. Because we

are in the presence of odd number (2r + 1) of inner product terms in E, there is at least one is1 such

that fis1 appears in two different inner products; that is, factors such as (f ′is1
fjs1 ) and (f ′is2

fjs2 ) with

is1 = is2 and js1 6= js2 appear in E.

Let

(f ′is1fjs1 ) · (f ′is2fjs2 ) · · · (f ′isufjsu )

be a product of factors from E featuring pairwise different inner products but with each vertex ap-

pearing exactly twice. Clearly, u ≥ 3. From the discussion above, such a product can be found for

any graph in G′2r+1.

Now, consider E∗
(∏2r+1

s=1 f ′isfjs

)
. By (OA.4), we have

E∗
(

2r+1∏
s=1

f ′isfjs

)
≤ cM,r

(√
k logβ n

)2r+1−u
E∗
(

(f ′is1fjs1 ) · (f ′is2fjs2 ) · · · (f ′isufjsu )
)

≤ cM,r

(√
k logβ n

)2r−2
E∗
(

(f ′is1fjs1 ) · (f ′is2fjs2 ) · · · (f ′isufjsu )
)

= cM,r

(√
k logβ n

)2r−2
k,
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where cM,r is a constant depending only on M and r. Since the number of graphs in G′2r+1 is less

than n2r+1 (a graph in G′2r+1 corresponds in particular to a subset of 2r + 1 elements from a set of n

elements), we have

1

(n
√
k)2r+1

∑
i1,j1,...,i2r+1,j2r+1∈G′2r+1

ia 6=ja,a=1,...,2r+1

E∗
(

2r+1∏
s=1

f ′isfjs

)
≤
cM,r

(√
k logβ n

)2r−2
kn2r+1

(n
√
k)2r+1

=
cM,r logβ(2r−2) n√

k
= o(1).

Parts (a), (b) and (c) allow us to conclude that E(U2r+1
n ) = o(1).

(d) Let us now obtain the limit of E(Un/
√

2)2r. Similarly to (OA.6), we can claim that

E((Un/
√

2)2r) =
1

(n
√

2k)2r

4r∑
m=1

∑
i1,j1,...,i2r,j2r∈Gm
ia 6=ja,a=1,...,2r

E

(
2r∏
s=1

f ′isfjs

)
. (OA.7)

Here, we shall distinguish the cases: m ≥ 2r+ 1, m ≤ 2r− 1 and m = 2r. Similarly to the arguments

in (a) and (b) above, we can claim that those graphs have negligible contribution to E((Un/
√

2)2r).

The discussion in (c) is also valid here and only graphs in G′2r can contribute to this expectation. Also

graphs with vertices of equal value appearing in different inner products do not contribute significantly.

We are left with graphs featuring only square of inner products. Such graphs exist since the number

of inner product in each term of the summation in (OA.7) is even (2r). We can write

E((Un/
√

2)2r) =
1

(n
√

2k)2r

∑
i1,j1,...,ir,jr∈G′2r
ia 6=ja,a=1,...,r

E∗
(

r∏
s=1

(f ′isfjs)
2

)
+ o(1).

(In this expression, we represent graphs in G′2r that determine
∏r
s=1(f ′isfjs)

2 by i1, j1, . . . , ir, jr without

the need to repeat each vertex.) Recall that Un = (2/n)
∑

i<j(f
′
ifj/
√
k) so that

E
(
Un√

2

)2r

= 22r 1

(n
√

2k)2r

∑
i1,j1,...,ir,jr∈G′2r
ia<ja,a=1,...,r

E∗
(

r∏
s=1

(f ′isfjs)
2

)
+ o(1). (OA.8)

We have

E∗
(

r∏
s=1

(f ′isfjs)
2

)
=

r∏
s=1

E∗
(
(f ′isfjs)

2
)

=

r∏
s=1

E∗
(
f ′isfjsf

′
jsfis

)
=

r∏
s=1

traceE∗(fisf ′is) = kr.

The number of times that a specific term
∏r
s=1(f ′isfjs)

2 appears in the expansion of E(Un/
√

2)2r is

given by the multinomial formula as (2r)!/2r. We are left to determine the cardinality number of

graphs in G′2r such that is < js for s = 1, . . . , r. That is the cardinality of the set

S =
{
{(i1, j1), . . . , (ir, jr)} ⊂ ∆n : ∀s, s′ = 1, . . . , r, |as − as′ | ≥ πn with a• = i• or j•

}
,
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with ∆n := {(i, j) : i < j, and i, j = 1, . . . , n}.

Define

Sr = {{(i1, j1), . . . (ir, jr)} ⊂ ∆n} ,

and

S2 =
{
{(i1, j1), . . . (ir, jr)} ⊂ ∆n : ∃s, s′ ∈ {1, . . . , r} : |as − as′ | ≤ πn

}
.

We have S = Sr \ S2 so that Card(S) = Card(Sr)− Card(S2). Note that:

Card(S1) =

(
n(n−1)

2

r

)
=

1

r!

n(n− 1)

2

(
n(n− 1)

2
− 1

)
· · ·
(
n(n− 1)

2
− r + 1

)
and

Card(S2) ≤
2r−1∑
j=1

(
2r − 1

j

)
πjnn

2r−j = o(n2r),

where in this summation j represents the number of increments smaller than πn as we sort the 2r

vertices is’s and js’s in increasing order. Hence,

Card(S) =
n2r

r!2r
(1 + o(1)).

The result follows by noting that (OA.8) can be rewritten as

E
(
Un√

2

)2r

= 22r 1

(n
√

2k)2r

n2r

r!2r
(1 + o(1))

(2r)!

2r
kr =

(2r)!

2rr!
+ o(1). �
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