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Abstract. In this paper, we develop spectral and post-spectral estimators for

grouped panel data models. Both estimators are consistent in the asymptotics

where the number of observations N and the number of time periods T simulta-

neously grow large. In addition, the post-spectral estimator is
√
NT -consistent

and asymptotically normal with mean zero under the assumption of well-separated

groups even if T is growing much slower than N . The post-spectral estimator has,

therefore, theoretical properties that are comparable to those of the grouped fixed-

effect estimator developed by Bonhomme and Manresa in [11]. In contrast to the

grouped fixed-effect estimator, however, our post-spectral estimator is computation-

ally straightforward.

1. Introduction

Consider a grouped panel data model

yit = x′itβ + αgit + vit, for all i = 1, . . . , N, t = 1, . . . , T, (1)

where i denotes cross-sectional units, t denotes time periods, yit ∈ R is an observable

dependent variable, xit = (xit1, . . . , xitd)
′ ∈ Rd is a corresponding vector of observable

covariates, gi ∈ {1, . . . , G} is an unobservable group-membership variable, vit ∈ R is

an unobservable zero-mean noise random variable, β = (β1, . . . , βd)
′ ∈ Rd is a vector

of parameters of interest, and (α1t, . . . , αGt)
′ ∈ RG is a vector of unobservable group-

specific time effects. Here, we assume that the noise and covariates are uncorrelated,

E[vitxit] = 0d, for all i = 1, . . . , N, t = 1, . . . , T, (2)

where 0d = (0, . . . , 0)′ ∈ Rd, but group-specific time effects and group-membership

variables can be arbitrarily correlated with covariates. Also, throughout the paper,

we assume that the number of groups G is known (consistently estimated).
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The model (1) was originally introduced by Bonhomme and Manresa in [11], who

also developed a so-called grouped fixed-effect estimator of the vector of parameters

β in this model. This estimator has attractive theoretical properties but is computa-

tionally difficult. It is therefore of interest to see if there exist alternative estimators

that would be easier to compute. In this paper, we answer this question affirma-

tively, under certain additional assumptions to be specified in the next paragraph,

and propose an estimator of β, which we call the post-spectral estimator, that also

has nice theoretical properties but, in contrast to the grouped fixed-effect estimator,

is computationally simple.

Like in the previous papers on grouped panel data models, we consider large (N, T )-

asymptotics, i.e. we assume that T → ∞, potentially very slowly, as N → ∞, since

otherwise β is in general not identified. In contrast to the previous papers, however,

we impose a special structure on the data-generating process for the covariates xit.

In particular, we assume that for some M ≥ 1,

xit =
M∑
m=1

ρimα
m
git

+ zit, for all i = 1, . . . , N, t = 1, . . . , T, (3)

where (αm1t, . . . , α
m
Gt)
′ ∈ RG for m = 1, . . . ,M are group-specific time effects, ρim ∈ Rd

for m = 1, . . . ,M are individual-specific vectors of coefficients, and zit is a zero-mean

component of xit that is independent of group-specific time effects, group-membership

variable gi, and vectors of coefficients ρi1, . . . ρiM . Here, no quantity on the right-

hand side of (3) is observed, except for the number of time effects M , which we

assume to be known (consistently estimated). Also, without loss of generality, we

assume that α1
γt = αγt for all γ = 1, . . . , G and t = 1, . . . , T . We believe that this

factor-analytic model for the covariates xit is rather flexible as it allows for individual-

specific correlations between covariates and group-specific time effects. In Appendix

E, we also provide an example in terms of agricultural production functions and

environmental economics to motivate equation (3).

Our post-spectral estimator consists of three steps. In the first step, we carry out

preliminary estimation of β. To do so, we prove that as long as the data-generating

process is given by equations (1) and (3), there exists a convex quadratic function

f : Rd → R such that (i) its unique minimum is achieved by β and (ii) for each value of

b ∈ Rd, the value of f(b) can be consistently estimated by the sum of 2GM+2 largest

in absolute value eigenvalues of a certain matrix. We then demonstrate that this

function and its consistent estimator can be used to construct an estimator of β that is

both consistent and computationally simple. This estimator, which we call the spectral

estimator, may have slow rate of convergence if T is growing rather slowly, and so we
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proceed to the second and the third steps. In the second step, using the preliminary

spectral estimator of β obtained in the first step, we carry out classification of units

i = 1, . . . , N into groups γ = 1, . . . , G. Importantly, our classification algorithm,

which is a version of spectral clustering method ([39, 28, 40, 27]), is fast and does not

require solving any non-convex optimization problems. In the third step, we obtain

the post-spectral estimator of β by performing OLS-type estimation pooling all units

within the same group together.

We prove that our post-spectral estimator is generally consistent and has partic-

ularly attractive properties under the assumption of well-separated groups, which

means that the vectors (αγ1, . . . , αγT )′, γ = 1, . . . , G, are not too close to each other,

and which was also used in [11].1 Specifically, we show that under this assumption, the

classifier constructed in the second step is consistent in the sense that with probability

approaching one, any two units are getting classified into the same group if and only

if they belong to the same group, and so the post-spectral estimator of β is asymptot-

ically equivalent to the pooled-OLS estimator with known group memberships (i.e.,

the oracle estimator). In turn, the latter is
√
NT consistent and admits the standard

OLS inference. Under the assumption of well-separated groups, our post-spectral

estimator thus can be used for testing hypotheses and for constructing confidence in-

tervals for β using standard panel-data methods, ignoring the preliminary estimation

and classification steps. Inference without the assumption of well-separated groups,

however, remains an open (and challenging) question for future work. Theoretical

properties of our post-spectral estimator are thus comparable to those of the grouped

fixed-effect estimator, with the caveat that we impose the special structure on the

data-generating process for the covariates xit given in (3).

To compare computational properties of the post-spectral estimator to those of the

grouped fixed-effect estimator, we note that the latter, as well as many related esti-

mators ([3, 4, 12, 13, 44]), are built around the K-means optimization problem. This

optimization problem is known to be NP-hard (see [5]), and so it is rather unlikely

that there exists a fast algorithm for finding its solutions. Any proposed fast im-

plementation of the aforementioned estimators therefore is likely to fail occasionally.

For example, the grouped fixed-effect estimator is defined as the (global) minimizer

of the sum of squared residuals over all parameter values and over all partitions of

units into groups, and the main algorithm to calculate this minimizer in [11] proceeds

by initializing randomly selected values of parameters β and {αγt}G,Tγ,t=1 and then al-

ternating between two steps: (1) optimization over the values of group memberships

1We make no assumptions on the distance between vectors (αmγ1, . . . , α
m
γT )′ for m ≥ 2.
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g1, . . . , gN given the values of parameters β and {αγt}G,Tγ,t=1, and (2) optimization over

the values of parameters β and {αγt}G,Tγ,t=1 given the values of group memberships

g1, . . . , gN . Since this procedure at best converges to a local minimum, it is repeated

over many different initial values of parameters to find the global minimum, which

corresponds to the grouped fixed-effect estimator. As [11] notes, however, “a prohibi-

tive number of initial values may be needed to obtain reliable solutions.” In addition,

it seems never possible to say whether the global minimum has been found, as this in

general would require minimizing the sum of squared residuals over parameter values

for each partition of units into groups, and the number of these partitions, GN , is

tremendously large even in small samples. [11] also proposed a few other algorithms

to calculate the grouped fixed-effect estimator that tend to perform better in simu-

lations but they are all subject to the same critique: if they are fast, they must fail

occasionally. In contrast, our post-spectral estimator is easy to compute and does

not suffer from the potential failure problem.

There is also growing literature on non-linear panel data models with group struc-

ture of individual-level parameters ([21, 26, 36, 10, 35, 41, 20, 19]) originated by

Hahn and Moon in [21]. This literature is conceptually related to the grouped panel

data model (1) but estimation techniques developed in this literature are very dif-

ferent from those considered here because all aforementioned papers assume that the

individual-level parameters are time-independent, and so preliminary consistent esti-

mation of these parameters is possible by performing estimation separately for each

unit. The latter is not possible in the model (1) because individual effects αgit are

varying over time, which creates one of the key challenges in estimating this model.

We note also that the grouped panel data model (1) is a special case of a panel

data model with interactive fixed effects, corresponding to factor loadings with finite

support in the latter model. The methods developed for estimating panel data models

with interactive fixed effects can therefore be used to estimate β in (1) as well. To the

best of our knowledge, however, most of these methods are either computationally

difficult or require conditions that are substantially different from those used in our

paper. For example, the estimator in [9] is based on a solution to a non-convex opti-

mization problem, and the estimators in [25, 1, 2] require certain IV-type conditions.

Like in our approach, the estimators in [33] also require restricting the data-generating

process for the covariates xit but the nature of imposed restrictions is very different.

In particular, [33] either imposes a certain rank condition, which can only be satisfied

if the dimensionality of xit is sufficiently large, or requires the factor loadings in the

equation for covariates to be independent of the factor loadings in the equation for the
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dependent variable, which in our model would correspond to assuming that gi in (3)

is different and independent of gi in (1),2 thus leading to a random, rather than fixed,

effect model. In fact, the only exception in this literature we are aware of is [29], who

developed a computationally relatively simple method and used conditions that are

similar to (actually somewhat weaker than) those used in our paper. Their estimator

can potentially replace our preliminary spectral estimator. However, the convergence

rate of their estimator is only (T ∧N)−1/2, which can be particularly slow if T is grow-

ing much slower than N , a case of special interest in the grouped panel data model. In

contrast, the rate of convergence of our spectral estimator is (T ∧N)−1, which seems

much more acceptable for the preliminary estimation. Indeed, we find via simulations

reported below that our spectral estimator leads to much better results in reasonably

large samples. In addition, [7] has recently developed a method for debiasing esti-

mators with the slow convergence rate (T ∧N)−1/2 yielding estimators with the fast

convergence rate (T ∧ N)−1. An advantage of our estimator here is that we obtain

the fast rate in just one step, instead of two steps, which again may be preferable

when T is relatively small, so that the original estimator to be debiased is rather

imprecise and is hard to debias. Finally, [30] has recently developed a method that

uses an estimator with the slow convergence rate (T ∧N)−1/2 to consistently classify

units into groups and then relies on pooled OLS to obtain an estimator with a fast

convergence rate. The same comment as above applies here: our advantage is that

when T is relatively small, the estimator with the slow convergence rate (T ∧N)−1/2

may not be precise enough to obtain a good partition of units into groups, leading to

poor properties of the pooled OLS estimator. In fact, we do find in simulations that

the estimator of [29] requires much larger values of T to yield meaningful results than

those required by our estimator.

In addition, we study three extensions of the model (1). First, we consider a

dynamic version of the model, where lagged values of yit appear on the right-hand

side of (1). We demonstrate that our spectral and post-spectral estimators work for

this model too, as long as the number of factors M is appropriately modified. We

allow for both pre-determined and exogenous covariates in this model. Second, we

consider a high-dimensional version of the model (1), where the number of covari-

ates d is large, potentially much larger than NT , but the vector of coefficients β is

sparse in the sense that it has relatively few non-zero components. We demonstrate

how to modify the spectral estimator via `1-penalization to obtain a computationally

2[33] claims that his estimators are consistent without requiring independence of the factors but
a counter-example is given in [42], which proves that if the rank condition is not satisfied, then
independence is essentially a necessary condition for consistency of the estimators in [33].
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simple and consistent estimator of β in this case. Third, we consider an interactive

fixed-effect panel data model, where αgit in (1) is replaced by κ′iφt, with φt being a

vector of factors and κi being a vector of factor loadings. We demonstrate that the

spectral estimator, with appropriately modified parameters G and M , is consistent

in this model with the convergence rate (T ∧ N)−1. Being computationally simple,

our spectral estimator thus can serve as an alternative to existing estimators in the

literature on interactive fixed-effect panel data models. Note, however, that in all

three extensions, we maintain a version of (3).

The rest of the paper is organized as follows. In the next section, we discuss

details of implementation of our spectral and post-spectral estimators. In Section

3, we state their asymptotic properties. In Section 4, we provide the extensions of

the baseline model. In Section 5, we discuss results of a small-scale Monte Carlo

simulation study that shed some light on finite-sample properties of our estimators.

In Section 6, we present most of the main proofs. In Appendix A, we collect some

technical lemmas that are useful for the proofs of our main results. In Appendix B,

we present remaining proofs. In Appendix C, we describe a method for calculating

eigenvalues of large matrices, which may be needed for implementing our estimators.

In Appendix D, we provide some details on the assumptions of the dynamic model

extension. In Appendix E, we discuss an example motivating equation (3).

2. Estimation

Our proposed estimation procedure consists of three steps. The first step is pre-

liminary consistent estimation of β, which is based on the spectral analysis of certain

matrices and gives the spectral estimator. The second step is classification of units

into groups. The third step is pooled-OLS estimation of β on classified units, which

gives the post-spectral estimator. Under the assumption of well-separated groups,

the post-spectral estimator will be
√
NT -consistent and asymptotically normal with

mean zero, making inference based on this estimator straightforward.

2.1. Spectral Estimator. For all b ∈ Rd, let Ab be an N ×N matrix whose (i, j)-th

element is

Abij =
1

NT

T∑
t=1

{
(yit − x′itb)− (yjt − x′jtb)

}2

, for all i, j = 1, . . . , N, (4)

Since Ab is an N×N symmetric matrix, it has N real eigenvalues. Let λb1, . . . , λ
b
2GM+2

be its 2GM + 2 largest in absolute value eigenvalues. We will show below that under
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mild conditions,

λb1 + · · ·+ λb2GM+2 = b′Σb+ S ′b+ L+ oP (1), for all b ∈ Rd, (5)

where Σ is a d×d symmetric positive definite matrix, S is a d×1 vector, L is a scalar,

and, importantly, β is the unique minimizer of the function b 7→ f(b) = b′Σb+S ′b+L.

We therefore define our spectral estimator as

β̃ = (β̃1, . . . , β̃d)
′ = arg min

b∈Rd

{
b′Σ̂b+ Ŝ ′b+ L̂

}
, (6)

where Σ̂, Ŝ, and L̂ are estimators of Σ, S, and L, respectively, to be constructed

below. By the first-order conditions, the estimator β̃ can be equivalently defined as

β̃ = −Σ̂−1Ŝ/2.

We will prove in the next section that β̃ →P β.

Next, we discuss estimators Σ̂, Ŝ, and L̂. For brevity of notation, denote

f̂(b) = λb1 + · · ·+ λb2GM+2, for all b ∈ Rd, (7)

so that by (5),

f̂(b) = b′Σb+ S ′b+ L+ oP (1), for all b ∈ Rd. (8)

Also, for all k = 1, . . . , d, let ek = (0, . . . , 0, 1, 0, . . . , 0)′ be the d× 1 vector with 1 in

the k-th position and 0 in all other positions, and let 0d = (0, . . . , 0)′ be the d × 1

vector with 0 in all positions. Since (5) implies f̂(0d) = L+ oP (1), we set L̂ = f̂(0d).

Further, since f̂(ek)− f̂(−ek)→P 2Sk, we set

Ŝk =
f̂(ek)− f̂(−ek)

2
, for all k = 1, . . . , d,

and Ŝ = (Ŝ1, . . . , Ŝd)
′. Finally, since f̂(ek) + f̂(−ek) = 2(Σkk + L) + oP (1), we set

Σ̂kk =
f̂(ek) + f̂(−ek)

2
− L̂, for all k = 1, . . . , d,

and since f̂(ek + el) = Σkk + Σll + 2Σkl + Sk + Sl + L+ op(1), we set

Σ̂kl = Σ̂lk =
f̂(ek + el)− Σ̂kk − Σ̂ll − Ŝk − Ŝl − L̂

2
,

for all k, l = 1, . . . , d, k > l, and let Σ̂ be the matrix whose (k, l)-th component is

Σ̂kl.
3

3Note that the quality of the estimators Σ̂, Ŝ, and L̂ could potentially be improved by exploiting
additional values of the vector b but we leave the question of optimal estimation for future work.
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Under result (5), the estimators Σ̂ and Ŝ are consistent for Σ and S, respectively,

and so β̃ = −Σ̂−1Ŝ/2→P −Σ−1S/2 = β, as long as Σ is invertible, which is the case

under mild conditions. The bulk of our derivations in the next section will thus be

related to proving (5).

Before we move on, however, we note that the N ×N matrices Ab may be rather

large, and the reader might wonder how much time it takes to calculate their eigen-

values λb1, . . . , λ
b
2GM+2. Fortunately, there exists a class of fast randomized algorithms

that allow to calculate these eigenvalues arbitrarily well; see Appendix C for details.

Remark 2.1 (Alternative Version of Spectral Estimator). Given that we have (5)

and that β is the unique minimizer of the function b 7→ b′Σb+S ′b+L, it seems natural

to consider

β̌ = arg min
b∈Rd

(λb1 + · · ·+ λb2GM+2)

as an alternative to the spectral estimator β̃ appearing in (6). The minimization

problem here, however, is not necessarily convex, even though the criterion function

is asymptotically convex. Computing β̌ may therefore be difficult. In contrast, our

spectral estimator β̃ circumvents this problem by employing the parametric structure

of the limit of this criterion function. �

Remark 2.2 (Tuning Parameters for Spectral Estimator). Implementing the spectral

estimator β̃ requires choosing the product GM but does not require knowing G and

M separately, which means that we only need one tuning parameter instead of two

of them. In addition, the proof of Theorem 3.1 below reveals that consistency of the

spectral estimator holds even if we replace GM in the definition of the estimator β̃

by any number that is bigger than GM (as long as it is independent of N and T ).

Thus, to implement the spectral estimator, we actually only need an upper bound on

the product GM . Moreover, the proof of Theorem 3.1 also shows that for any vector

b ∈ Rd, the matrix Ab has at most 2GM + 2 eigenvalues that are not asymptotically

vanishing. This suggests a method to estimate the product GM by counting the

number of eigenvalues of the matrix Ab exceeding certain threshold, which is chosen

to slowly converge to zero. This method can underestimate the product GM , which

happens if the matrix Ab actually has fewer than 2GM + 2 eigenvalues that are not

asymptotically vanishing, but whenever this happens, we can lose only asymptotically

vanishing eigenvalues in the sum (7), which can not break consistency of the spectral

estimator. For brevity of the paper, however, we leave the question of formally

deriving results with an estimated product GM to future work. �
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2.2. Classifier. To classify units into groups, we will use a version of the spectral

clustering method.4 For reasons to be explained in Remark 3.2 in the next section, we

will also rely on sample splitting. To this end, let h1, . . . , hN be i.i.d. random variables

that are independent of the data and that are taking values 0 and 1, each with

probability 1/2. We split all cross-sectional units i = 1, . . . , N into two subsamples,

I0 = {i = 1, . . . , N : hi = 1} and I1 = {i = 1, . . . , N : hi = 0}. Further, for i =

1, . . . , N , denote yi = (yi1, . . . , yiT )′ and xi = (xi1, . . . , xiT )′. Also, for h = 0, 1, let β̃h

be the spectral estimator calculated using the subsample Ih and let B̂h be a T × T
matrix given by

B̂h =
2

NT

∑
i∈Ih

(yi − xiβ̃h)(yi − x′iβ̃h)′. (9)

Since B̂h is a T × T symmetric positive definite matrix, it has T non-negative eigen-

values and T corresponding orthonormal eigenvectors. Let F̂h be a T × G matrix

whose columns are orthonormal eigenvectors corresponding to G largest eigenvalues

of the matrix B̂h. Moreover, for all i = 1, . . . , N , let Âi be a T × 1 vector defined by

Âi = F̂hiF̂
′
hi

(yi − xiβ̃hi).5 (10)

Intuitively, the vectors Â1, . . . , ÂN estimate the vectors αg1 , . . . , αgN , where we de-

noted αγ = (αγ1, . . . , αγT )′ for all γ = 1, . . . , G. We therefore classify units i =

1, . . . , N into G groups using these vectors. To do so, fix a tuning parameter λ > 0,

to be chosen below, and consider the following algorithm:

Classification Algorithm.

Step 1: set A1 = {1}, m = 1, and i = 1;

Step 2: replace i by i+ 1;

Step 3: if i = N + 1, stop the algorithm;

Step 4: set Ci = {γ = 1, . . . ,m : ‖Âi − |Aγ|−1
∑

l∈Aγ Âl‖ ≤ λ};
Step 5: if Ci is empty, replace m by m+ 1, set Am = {i}, and go to Step 2;

Step 6: if Ci is not empty, replace Aγ by Aγ ∪ {i} for γ = min Ci and go to Step 2.

This algorithm creates m groups A1, . . . ,Am, with the number of groups m de-

pending on λ, so that m = m(λ). Clearly, λ 7→ m(λ) is a right-continuous function,

4Note that the special structure on the data-generating process for the covariates xit given in (3) was
used for the construction of the spectral estimator only. This structure has no role for our classifier
and for the post-spectral estimator described below.
5Thus, for all units i with hi = 1, we calculate Âi using F̂1 and β̃1, which are obtained from the
subsample I1 consisting of all units j with hj = 0 and, vice versa, for all units i with hi = 0, we

calculate Âi using F̂0 and β̃0, which are obtained from the subsample I0 consisting of all units j
with hj = 1.
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and so

λ̂ = min
{
λ > 0: m(λ) ≤ G

}
is well-defined. (In practice, λ̂ can be calculated using the values of m(λ) on a fine

grid.) We classify units i = 1, . . . , N into G groups using this algorithm with λ = λ̂.

The result of the algorithm is then m(λ̂) ≤ G groups A1, . . . ,Am(λ̂), and for all

i = 1, . . . , N , there exists a unique γ = γ(i) ∈ {1, . . . ,m(λ̂)} such that i ∈ Aγ. We

set

ĝi = γ(i), for all i = 1, . . . , N,

and ĝ = (ĝ1, . . . , ĝN)′. Note that this classifier can occasionally lead to less than G

groups, which happens when m(λ̂) < G, but we will show in the next section that it

is consistent in the sense that

P
(

for all i, j = 1, . . . , N, ĝi = ĝj if and only if gi = gj

)
→ 1, (11)

under the assumption of well-separated groups.

Remark 2.3 (Covariate-Based Classifiers). Recall that we assume the group struc-

ture in the data-generating process for covariates xit, equation (3). In principle, this

structure could be used to classify units into groups as well. This seemingly sensible

alternative to our procedures is interesting because it does not require estimating β on

the first step, and so looks much easier than our procedures. However, a substantial

drawback of this procedure is that it may not be consistent if the group structure in

the data-generating process for xit’s is coarser than the group-structure in the data-

generating process for yit’s. For example, suppose that M = 2 and ρi1 = 0 for all

i = 1, . . . , N . Then equation (3) becomes

xit = ρi2α
2
git

+ zit, for all i = 1, . . . , N, t = 1, . . . , T.

Now, if we assume that G = 3 but α2
1t = α2

2t 6= α2
3t, there are effectively only two

groups in the data-generating process for xit’s. Therefore, any reasonable classifica-

tion based on this equation would merge groups 1 and 2, which would make (11)

impossible. �

2.3. Post-Spectral Estimator. Once we have classified units into groups, estima-

tion of β is straightforward. In particular, we rely upon a pooled-OLS estimator:

(β̂, α̂) = arg min
b∈B,a∈AG,T

N∑
i=1

T∑
t=1

(yit − x′itb− aĝit)
2
, (12)

where B is a parameter space for the vector β, and AG,T is a parameter space for the

matrix {αγt}G,Tγ,t=1. We refer to β̂ as the post-spectral estimator for grouped panel data



SPECTRAL AND POST-SPECTRAL ESTIMATORS FOR GROUPED PANEL DATA MODELS 11

models. We will show in the next section that under the assumption of well-separated

groups, this estimator is asymptotically equivalent to the estimator based on correct

classification,

(β̂0, α̂0) = arg min
b∈B,a∈AG,T

N∑
i=1

T∑
t=1

(yit − x′itb− agit)
2
, (13)

and thus to the grouped fixed-effect estimator of [11]. Hence, the standard OLS

inference ignoring group classification applies.

Remark 2.4 (Estimating β by OLS of yit on estimated zit). Observe that our data-

generating process for covariates xit in (3) is given by a factor-analytic model; namely,

it can be written as

xit =
M∑
m=1

G∑
γ=1

ρim1{gi = γ}αmγt + zit = ω′iφt + zit, for all i = 1, . . . , N, t = 1, . . . , T,

where φt = (α1
1t, . . . , α

M
Gt)
′ is a GM × 1 vector of factors and ωi = (ρi11{gi =

1}, . . . , ρiM1{gi = G})′ is the GM × d matrix of factor loadings. Here, factors φt
and the factor loadings ωi can be estimated by the method of asymptotic principle

components as in Section 3 of [8]; see also [15, 16, 34, 18]. Denoting these estimators

φ̂t and ω̂i and letting ẑit = xit− ω̂′iφ̂t, we are then able to obtain an estimator of β by

simply running OLS of yit or ẑit. This estimator is easy to compute and is consistent

under weak conditions since zit is uncorrelated with both αgit and xit− zit. However,

it performs poorly in the case of weak factors, i.e. when the factor loadings ωi are

close to zero, as factors φt can not be consistently estimated in this case; see [14, 32]

for details. In particular, our simulation experience confirms that the post-spectral

estimator substantially outperforms this simple estimator in the case of weak factors.

Remark 2.5 (Tuning Parameters for Post-Spectral Estimator). Implementing the

post-spectral estimator β̂ requires choosing the number of groups G but does not

require to specify the number of time effects M in the equation for covariates. Thus,

like in the case of the spectral estimator, we only need one tuning parameter instead

of two to implement the post-spectral estimator. In turn, estimating the number of

groups G is relatively easy. In particular, we can employ penalization techniques as

developed in [8], in the same fashion as discussed in [11]. However, for brevity of the

paper, we leave the question of formally deriving results with an estimated number

of groups G to future work. �
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3. Asymptotic Theory

In this section, we derive asymptotic properties of the procedures described above.

For convenience, we do so in three separate subsections: spectral estimator, classifier,

and post-spectral estimator.

Throughout the rest of the paper, we assume that membership variables gi, group-

specific time effects αmγt and individual specific vectors of coefficients ρim are non-

stochastic, i.e. our analysis is conditional on these random quantities. Also, given

that we set α1
γt = αγt, group-specific time effects αγt are non-stochastic as well.

Moreover, we assume that the units i are independent.

3.1. Spectral Estimator. Let ST denote the unit sphere in RT , i.e. ST = {u ∈
RT : ‖u‖ = 1}. Also, for any random variable w, let ‖w‖ψ2 denote the sub-Gaussian

norm of w, i.e.

‖w‖ψ2 = inf
{
ε > 0: E[exp(w2/ε2)] ≤ 2

}
;

see Section 2.5.2 in [40] on properties of the sub-Gaussian norm.6 Intuitively, a

random variable has a finite sub-Gaussian norm if the tails of its distribution are not

heavier than tails of the Gaussian distribution. For example, every bounded random

variable has a finite sub-Gaussian norm. To prove consistency and to derive the rate

of convergence of the spectral estimator β̃, we will use the following assumptions.

Assumption 3.1. (i) For some constant C1 > 0, we have ‖
∑T

t=1 utvit‖ψ2 ≤ C1 for

all i = 1, . . . , N and u = (u1, . . . , uT )′ ∈ ST . (ii) In addition, for some constant

C2 > 0, we have ‖
∑T

t=1 utzitk‖ψ2 ≤ C2 for all i = 1, . . . , N , u = (u1, . . . , uT )′ ∈ ST ,

and k = 1, . . . , d.

By Hoeffding’s inequality (Proposition 2.6.1 in [40]), Assumption 3.1(i) holds if

the random variables vit have finite sub-Gaussian norm and are independent across t.

More generally, due to numerous versions of Hoeffding’s inequality for time series data

(e.g., see [17, 38]), Assumption 3.1(i) holds as long as the dependence of the random

variables vit across t is not too strong. Assumption 3.1(ii) is similar to Assumption

3.1(i) but imposes the integrability and time series dependence restrictions on zit

instead of vit. We admit that the assumption of random variables having finite sub-

Gaussian norm may be somewhat strong but we emphasize that a version of Theorem

3.1 below, with slower rates, can be derived under weaker integrability assumptions.

We have chosen to work with Assumption 3.1 in order to minimize technicalities of

our analysis.

6Sub-Gaussian norm also often appears in the literature under the name of Orlicz norm.
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Assumption 3.2. (i) We have ‖(NT )−1
∑N

i=1

∑T
t=1 vitzit‖ = OP (1/

√
NT ). (ii) In

addition, (NT )−1
∑N

i=1

∑T
t=1 zitz

′
it = Σ/2+OP (1/

√
NT ), where Σ is a positive definite

d× d matrix.

Since E[vit] = 0, E[vitxit] = 0d, and we assume that αmgit and ρim are non-stochastic,

it follows from (3) that E[vitzit] = 0d. Hence, Assumption 3.2(i) is a quantitative

law of large numbers for the random vector (NT )−1
∑N

i=1

∑T
t=1 vitzit. Similarly,

Assumption 3.2(ii) is a quantitative law of large numbers for the random matrix

(NT )−1
∑N

i=1

∑T
t=1 zitz

′
it. Assumption 3.2(ii) also imposes the constraint that the

probability limit of this matrix is positive-definite, which is an identification condi-

tion.

Theorem 3.1 (Rate of Convergence of Spectral Estimator β̃). Under Assumptions

3.1 and 3.2,

β̃ = β +OP

(
1

T ∧N

)
. (14)

Remark 3.1 (Relaxing Data-Generating Process for Covariates). Inspecting the

proof of Theorem 3.1 reveals that the theorem continues to hold even if we allow

for a substantially larger class of data-generating processes for covariates instead of

that specified in (3). Indeed, if we simply assume that xit = ςit+zit for all i = 1, . . . , N

and t = 1, . . . , T and some N×T matrix ς of rank M , then Theorem 3.1 holds as long

as the spectral estimator β̂ uses 2(G+M + 1) instead of 2GM + 2 eigenvalues of the

matrices Ab. Throughout the paper, however, we prefer to work with (3) as this seems

to be the most natural assumption on the data-generating process for covariates.7 �

3.2. Classifier. For all γ = 1, . . . , G, let Nγ = 1{gi = γ} be the number of units

i within group γ. To prove consistency of the classifier ĝ, we will use the following

assumptions.

Assumption 3.3. (i) For some constant C3 > 0, we have ‖ρim‖ ≤ C3 for all m =

1, . . . ,M and i = 1, . . . , N . (ii) In addition, for some constant C4 > 0, we have

|αmγt| ≤ C4 for all m = 1, . . . ,M , γ = 1, . . . , G, and t = 1, . . . , T .

Assumption 3.4. For some constant c1 > 0, we have T−1
∑T

t=1(αγ1t − αγ2t)2 ≥ c1

for all γ1, γ2 = 1, . . . , G such that γ1 6= γ2.

Assumption 3.3 is self-explanatory. Assumption 3.4 means that the groups are well-

separated in the sense that the vectors of group-specific time effects, (αγ1, . . . , αγT )′

7The representation xit = ςit + zit, however, emphasizes the fact that our methods are able to deal
with the case when the equation for covariates xit have more groups than the equation for the
dependent variable yit.
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for γ = 1, . . . , G, are not too close to each other. We will use this assumption to prove

consistency of the classifier ĝ and to derive asymptotic normality of the post-spectral

estimator β̂ but we will not use it to prove consistency of the post-spectral estimator

β̂. Note, however, that if groups are not well-separated, it is possible that the spectral

estimator actually outperforms the post-spectral one. Also, note that Assumption 3.4

is sufficient for consistency of the classifier ĝ but by no means necessary. In particular,

using more sophisticated arguments as in [27] and stronger conditions on the noise

variables vit (i.e. isotropic Gaussianity, which means that the random variables vit are

i.i.d. centered Gaussian), one can replace Assumption 3.4 by a much weaker condition∑T
t=1(αγ1t−αγ2t)2 ≥ c logN for all γ1, γ2 = 1, . . . , G such that γ1 6= γ2 and a suitable

constant c > 0.

Assumption 3.5. For some constant c2 > 0, we have Nγ ≥ c2N for all γ = 1, . . . , G.

Assumption 3.5 requires that each group γ = 1, . . . , G constitutes a non-trivial

fraction of all units. If we were to assume random group assignment, where each

unit is assigned to group γ with probability pγ > 0, so that
∑G

γ=1 pγ = 1, and

units are assigned independently, this assumption would be satisfied with probability

approaching one as N →∞.

Assumption 3.6. We have logN = o(T ) and log T = o(N).

Assumption 3.6 specifies how fast T and N are required to grow relative to each

other in the asymptotics. The most important observation here is that we allow T to

be much smaller than N , which is the main case of interest for grouped panel data

models; see [11].

Theorem 3.2 (Consistency of Classifier ĝ). Under Assumptions 3.1–3.6, we have

P
(

for all i, j = 1, . . . , N, we have ĝi = ĝj if and only if gi = gj

)
→ 1,

as N →∞.

Remark 3.2 (On the Role of Sample Splitting in Theorem 3.2). Using sample split-

ting to construct the vectors Â1, . . . , ÂN , which are in turn used in the Classification

Algorithm to obtain the classifier ĝ, is important for our analysis. Specifically, sample

splitting allows us to avoid some restrictive assumptions on the geometry of group-

specific time effects. Indeed, suppose that we do full-sample estimation, i.e. we set

Âi = F̂ F̂ ′(yi− xiβ̃) for all i = 1, . . . , N , where β̃ is the full-sample spectral estimator

and F̂ is the T × G matrix consisting of orthonormal eigenvectors corresponding to
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G largest eigenvalues of the matrix

B̂ =
1

NT

N∑
i=1

(yi − x′iβ̃)(yi − x′iβ̃)′,

and consider the following example. Let G = 2 and α1 = 2α2, where ‖α2‖ ≥ c
√
T

for some constant c > 0. In this example, the assumption of well-separated groups

(Assumption 3.4) is satisfied but the T × T matrix B = N−1
∑N

i=1 αgiαgi has only

one non-zero eigenvalue. Therefore, given that B̂ consistently estimate B, the ma-

trix F̂ may not have a probability limit. As a result, T−1/2F̂ ′(vi1, . . . , viT )′ may not

converge to zero in probability (which is guaranteed in the construction based on

sample splitting), and the vectors Â1, . . . , ÂN may turn out poor estimators of the

vectors αg1 , . . . , αgN , leading to inconsistency of the classifier ĝ. More generally, with

full-sample estimation, we would have to impose in Theorem 3.2 an extra assump-

tion that the matrix B = N−1
∑N

i=1 αgiα
′
gi

has G eigenvalues bounded away from

zero, which seems difficult to justify. See, however, [27], who are able to avoid such

conditions without using sample splitting under the isotropic Gaussianity condition

mentioned above.8 �

3.3. Post-Spectral Estimator. In this subsection, we present two results on our

post-spectral estimator β̂. First, we show that this estimator is generally consistent.

Second, we show that under the assumption of well-separated groups, Assumption

3.4, this estimator is
√
NT -consistent and has simple asymptotic distribution.

For all ν = (ν1, . . . , νN)′ ∈ {1, . . . , G}N and γ1, γ2 = 1, . . . , G, denote

I(ν, γ1, γ2) =
{
i = 1, . . . , N : νi = γ1 and gi = γ2

}
and

x̄ν,γ1,γ2,t =
1

|I(ν, γ1, γ2)|
∑

i∈I(ν,γ1,γ2)

xit, for all t = 1, . . . , T.

To derive consistency of the post-spectral estimator β̂, we will use the following

conditions:

8As a side note, we also observe that [39] do not use sample splitting to estimate vectors αg1 , . . . , αgN
but some parts of their derivations are difficult to verify. In particular, in Section 5, they use an
observation that the projection of a Gaussian random vector on any subspace remains Gaussian
but in fact the subspace in their construction is random, in which case the projection may not be
Gaussian.
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Assumption 3.7. For some constant c3 > 0, the minimal eigenvalue of the matrix

1

NT

N∑
i=1

T∑
t=1

(xit − x̄ν,νi,gi,t)(xit − x̄ν,νi,gi,t)′

is bounded from below by c3 for all ν ∈ {1, . . . , G}N with probability 1− o(1).

Assumption 3.8. (i) The set B is compact and (ii) for some constant C5 > 0,

all elements {aγt}G,Tγ,t=1 of the set AG,T satisfy |aγt| ≤ C5 for all γ = 1, . . . , G and

t = 1, . . . , T .

Assumption 3.7 requires that covariates xit have sufficient within-group variation

over time and across units. This assumption was used in [11] as well. Assumption

3.8 is a standard compactness condition used in the statistical analysis of non-linear

models.

Theorem 3.3 (Consistency of Post-Spectral Estimator β̂). Under Assumptions 3.1–

3.3 and 3.5–3.8, we have β̂ →P β.

Finally, we prove
√
NT -consistency and asymptotic normality of the post-spectral

estimator β̂. To do so, denote

x̄γ,t =
1

Nγ

∑
i : gi=γ

xit, for all γ = 1, . . . , G, t = 1, . . . , T

and

x̌it = xit − x̄gi,t, for all i = 1, . . . , N, t = 1, . . . , T.

We will use the following condition:

Assumption 3.9. We have (i) (NT )−1
∑N

i=1

∑T
t=1 x̌itx̌

′
it →P Σ̌ for some positive-

definite d × d matrix Σ̌ and (ii) (NT )−1/2
∑N

i=1

∑T
t=1 vitx̌it →D N(0,Ω) for some

symmetric d× d matrix Ω.

This assumption is similar to the corresponding assumptions in [11].

Theorem 3.4 (Asymptotic Distribution of Post-Spectral Estimator β̂). Under As-

sumptions 3.1–3.9, we have
√
NT (β̂ − β)→ N(0d, Σ̌

−1ΩΣ̌−1).

Remark 3.3 (Variance-Covariance Matrix Estimation). Theorem 3.4 leads to stan-

dard inference on the vector of parameters β as long as we can consistently es-

timate the asymptotic variance-covariance matrix Σ̌−1ΩΣ̌−1. In turn, the latter

is simple. Indeed, Assumption 3.9(i) implies that we can consistently estimate Σ̌
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by (NT )−1
∑N

i=1

∑T
t=1 x̌itx̌

′
it. Also, to estimate Ω, we can use a formula from [6]:

(NT )−1
∑N

i=1

∑T
t1=1

∑T
t2=1 v̂it1 v̂it2x̌it1x̌

′
it2

, where v̂it = yit − x′itβ̂ − α̂ĝit for all i =

1, . . . , N and t = 1, . . . , T . Conditions for consistency of this formula are proven in

[24]. For more detailed discussion of variance-covariance matrix estimation, please

refer to [11]. �

Remark 3.4 (On Assumptions of Theorems 3.1-3.4). Recall that we stated in the

Introduction that E[vit] = 0 and E[zit] = E[vitxit] = 0d. These identities are quite

intuitive and help motivate Assumptions 3.1 and 3.2(i). However, we emphasize

that these identities are actually not used in the proofs of Theorems 3.1-3.4: the

results of the theorems hinge only on assumptions that are explicitly mentioned in

the statements of the theorems, as well as (3). This observation will be helpful below,

when we discuss dynamic grouped panel data models. �

4. Extensions

In this section, we consider three extensions of the model we studied above. The

first extension is concerned with a dynamic version of the model, i.e. a model that

allows for lagged values of yit on the right-hand side of equation (1). The second

extension is concerned with a high-dimensional version of the model, i.e. a model

with high-dimensional β. The third extension is concerned with an interactive fixed-

effect model.

4.1. Dynamic Model. Consider a dynamic grouped panel data model

yit = θyit−1 + x′itβ + αgit + vit, for all i = 1, . . . , N, t = 1, . . . , T, (15)

where xit is a d × 1 vector of pre-determined covariates. As before, assume also

that (3) is satisfied. This model is different from the model we studied above as we

now allow for the lagged dependent variable on the right-hand side of (15). In this

section, we explain what changes one has to carry out in the spectral and post-spectral

estimators to estimate parameters θ and β of this model. We will assume throughout

that |θ| < 1 since otherwise the extension seems difficult. The results below can be

easily extended to allow for additional lagged values of yit on the right-hand side of

(15), i.e. yit−2, yit−3, etc.

To motivate our approach, note that iterating (15) and substituting (3) yields

yit−1 = θt−1yi0 +
t−2∑
r=0

θr(x′it−r−1β + αgit−r−1 + vit−r−1)
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=
M∑
m=1

ρyimα
m,y
git + zyit, for all i = 1, . . . , N, t = 1, . . . , T,

where we denoted

ρyim = 1{m = 1}+ ρ′imβ, for all i = 1, . . . , N,m = 1, . . . ,M,

αm,yγt =
t−2∑
r=0

θrαmγt−r−1, for all t = 1, . . . , T, γ = 1, . . . , G, m = 1, . . . ,M,

zyit = θt−1yi0 +
t−2∑
r=0

θr(z′it−r−1β + vit−r−1), for all i = 1, . . . , N, t = 1, . . . , T,

where the sum
∑−1

r=0 is treated as zero. Hence, we can write

yit = x̊′itβ̊ + αgit + vit,

where we denoted x̊it = (yit−1, x
′
it)
′ and β̊ = (θ, β′)′ and the vector of covariates x̊it

satisfies

x̊it =
2M∑
m=1

ρ̊imα̊
m
git

+ z̊it, for all i = 1, . . . , N, t = 1, . . . , T,

where

ρ̊im = (0, ρ′im)′1{m ≤M}+ (ρyim−M , 0
′
d)
′1{m > M},

α̊mgit = αmgit1{m ≤M}+ αm−M,y
git 1{m > M}, and z̊it = (zyit, z

′
it)
′.

Thus, the dynamic model considered here reduces to the model studied in Sections

2 and 3 with xit, β, ρim, αmγt, zit, and M replaced by x̊it, β̊, ρ̊im, α̊mγt, z̊it, and 2M ,

respectively. Therefore, the parameters of the dynamic model, β̊ = (θ, β′)′, can be

estimated by the spectral and post-spectral estimators as in Section 2 with M , xit, d,

and B replaced by 2M , x̊it, d+ 1, and B̊, respectively, where B̊ is a parameter space

for β̊, e.g. B̊ = [−1 + δ, 1− δ]× B for some δ ∈ (0, 1).

To state the formal results, let Assumptions 4.1–4.12 be the same as Assumptions

3.1–3.12 with zit, xit, d, Σ, and B replaced by z̊it, x̊it, d+ 1, Σ̊, and B̊, respectively.

Theorem 4.1 (Dynamic Model). In the setting of this section, the statements of

Theorems 3.1-3.4 continue to hold, with β replaced by β̊, if Assumptions 3.1–3.9 are

replaced by Assumptions 4.1–4.12.

Remark 4.1 (Relation between Assumptions 3.1–3.12 and Assumptions 4.1–4.12).

Assumptions 4.1–4.12 are stronger than Assumptions 3.1–3.12 in the sense that they

require Assumptions 3.1–3.12 to be supplemented by some extra conditions. We

provide a detailed analysis of these conditions in Appendix D but we note here that
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one of these extra conditions is that the noise variables vit satisfy

E[vit|yit−1, . . . , yi0, xit, . . . , xi1] = 0, for all i = 1, . . . , N, t = 1, . . . , T, (16)

which is rather standard in the literature and allows for predetermined covariates xit.

In addition, we note that these conditions do not require the random variables yi0 to

have mean zero. The latter means that the random vectors z̊it may not be centered

but this does not contradict the results of Theorem 4.1 per our discussion in Remark

3.4 �

4.2. High-Dimensional Model. Consider a high-dimensional grouped panel data

model

yit = x′itβ + αgit + vit, for all i = 1, . . . , N, t = 1, . . . , T,

where xit is a d × 1 vector of covariates and d can be large, potentially much larger

than NT , but the vector of coefficients β is sparse, i.e. s = ‖β‖0 =
∑d

k=1 1{βk 6= 0}
is relatively small (in the sense to be made precise later). As before, assume also

that (3) is satisfied. Estimating this model requires introducing penalized versions of

the spectral and post-spectral estimators. For brevity, however, we focus here on the

penalized spectral estimator only, as deriving results for the penalized post-spectral

estimator requires taking care of a lot of technicalities but does not seem to bring any

new insight.9

To define the penalized spectral estimator, let Ŝ and Σ̂ be the same d×1 vector and

d×d matrix as those appearing in Section 2.1. Note that calculating these quantities

requires only O(d2) operations, and thus is computationally rather simple. We then

define the penalized spectral estimator as

β̂λ = arg min
b∈Rd

{
b′Σ̂b+ Ŝ ′b+ λ‖b‖1

}
,

where λ > 0 is a penalty parameter and ‖b‖1 =
∑d

k=1 |bk| denotes the `1-norm of the

vector b = (b1, . . . , bd)
′. The optimization problem here is convex and can be carried

out using standard software.

To analyze this estimator, we are going to rely on the triangular array asymptotics,

where the model, as well as the dimension d of the vector of covariates, are allowed

to depend on N and T but for brevity of notation, we keep this dependence implicit.

Also, we now have to modify Assumption 3.2. Indeed, Assumption 3.2(i) is impossible

to satisfy if d is growing together with N and T because of the `2-norm appearing

in the assumption. Assumption 3.2(ii) also has to be modified as the concept OP (·)

9Under consistent classification (11), the `1-penalized post-spectral estimator will be similar to the
usual Lasso estimator, with comparable properties.



20 CHETVERIKOV AND MANRESA

is not well-defined when applied to matrices of growing dimensions. However, since

the required modification are only used in this subsection, we spell them directly in

the statement of the theorem. In addition, to state the formal result, for any matrix

A, we will use ‖A‖∞ to denote its `∞-norm, i.e. the maximum of absolute values of

components of A.

Theorem 4.2 (High-Dimensional Model). In the setting of this section, suppose that

Assumption 3.1 is satisfied. In addition, suppose that

max
1≤k≤d

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

vitzitk

∣∣∣∣∣ = OP

(√
log d

NT

)
(17)

and

max
1≤k,l≤d

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

zitkzitl −
Σkl

2

∣∣∣∣∣ = OP

(√
log d

NT

)
(18)

for some positive definite d×d matrix Σ. Also, suppose that for some constant Cz > 0,

we have ‖
∑T

t=1 utz
′
itβ‖ψ2 ≤ Cz for all i = 1, . . . , N and u = (u1, . . . , uT )′ ∈ ST .

Moreover, suppose that log d = o(N) and ‖β‖1 ≤ Cβ for some constant Cβ > 0.

Finally, let cΣ > 0 be the minimal eigenvalue of the matrix Σ, cλ > 1 be some

constant, and S = −2Σβ be a d× 1 vector. Then

‖Ŝ − S‖∞ ∨ ‖Σ̂− Σ‖∞ = OP

(
1

T ∧N
+

√
log d

NT

)
. (19)

Moreover, on the intersection of events

λ ≥ cλ

(
‖Ŝ − S‖∞ + 2Cβ‖Σ̂− Σ‖∞

)
(20)

and

s‖Σ̂− Σ‖∞ ≤
cΣ

2(1 + c̄λ)2
, (21)

we have

‖β̂λ − β‖1 ≤
2(1 + cλ)(1 + c̄λ)sλ

cΣcλ
and ‖β̂λ − β‖ ≤

2(1 + cλ)
√
sλ

cΣcλ
(22)

where c̄λ = (cλ + 1)/(cλ − 1).

Remark 4.2 (Main Implication of Theorem 4.2). By the result (19), it follows that

selecting a constant C > 0 large enough and setting

λ = C

(
1

T ∧N
+

√
log d

NT

)
(23)
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will ensure that the event (20) holds with probability arbitrarily close to one. Also,

the result (19) ensures that the event (21) holds with probability approaching one as

long as

s

(
1

T ∧N
+

√
log d

NT

)
→ 0. (24)

Thus, setting λ according to (23) and assuming (24) ensures that

‖β̂λ − β‖1 ≤ C̄s

(
1

T ∧N
+

√
log d

NT

)
and ‖β̂λ − β‖2 ≤ C̄

√
s

(
1

T ∧N
+

√
log d

NT

)
with probability arbitrarily close to one, where C̄ is some constant. Here, (24) explains

how small s has to be in order for our results to go through.

The choice of the penalty parameter λ in (23) is not practical, as it does not

specify the constant C > 0. From the asymptotic point of view, we can of course set

C = log log n, in which case the bounds on ‖β̂λ− β‖1 and ‖β̂λ− β‖2 presented above

hold with probability approaching one, with C̄ replaced by C̄ log log n, but this choice

may of course perform poorly in finite samples. However, the question of practical

choices of λ is beyond the scope of this paper and we leave it for future work. �

Remark 4.3 (Conditions of Theorems 4.2). Conditions (17) and (18) used in Theo-

rem 4.2 are a natural extension of conditions used in the literature on high-dimensional

models and can be derived from appropriate maximal inequalities. For example, as-

suming that components of zit are bounded and vit is sub-Gaussian, both (17) and

(18) follow from a combination of the union bound and a time-series version of Ho-

effding’s inequality as long as the dependence of random vectors (vit, z
′
it)
′ across t is

not too strong. Moreover, a version of Theorem 4.2 can be derived if conditions (17)

and (18) are relaxed, in which case we would simply have to correspondingly modify

the bound (19). �

4.3. Interactive Fixed-Effect Model. Consider an interactive fixed-effect panel

data model

yit = x′itβ + κ′iφt + vit, for all i = 1, . . . , N, t = 1, . . . , T, (25)

where φt is a J × 1 vector of factors and κi is a J × 1 vector of factor loadings.

[9] developed an OLS-type interactive fixed-effect estimator of β in this model. The

proposed estimator, however, is a solution to a non-convex optimization problem, and

like in the case of the grouped fixed-effect estimator, it may be difficult to find (ensure

that we found) the global solution to this optimization problem. To fix this issue,

[29] developed an estimator of β based on the nuclear-norm minimization. Their
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estimator solves a convex optimization problem and so is computationally rather

simple. However, the convergence rate of their estimator is only (T ∧N)−1/2, which

can be rather slow, especially if T � N or N � T . It is therefore of interest to look

for alternative estimators of β in this model.

In this subsection, we demonstrate that a trivial modification of our spectral esti-

mator can be used to estimate β in this model with the rate (T ∧N)−1 as long as we

assume that the covariates xit satisfy the factor model as well, namely

xit = ω′iφt + zit, for all i = 1, . . . , N, t = 1, . . . , T, (26)

where φt is a J × 1 vector of factors and ωi is a J × d matrix of factor loadings. Note

here that it is without loss of generality to assume that the same factors φt appear

both in (25) and in (26) as we can always merge the factors from two equations.

Let β̃J be the same spectral estimator β̃ as that defined in Section 2.1 with J

replacing GM . We then have the following result.

Theorem 4.3 (Interactive Fixed-Effect Model). In the setting of this section, suppose

that Assumptions 3.1 and 3.2 are satisfied. Then

β̃J = β +OP

(
1

T ∧N

)
.

Remark 4.4 (Combining β̃J and Interactive Fixed-Effect Estimator). Although the

convergence rate of our estimator β̃J is faster than the convergence rate of the esti-

mator proposed in [29], it is still slower than the convergence rate of the interactive

fixed-effect estimator proposed in [9], which is (NT )−1/2. Like in [29], we therefore

consider our estimator as a starting point in the problem of finding a local minimum

of the optimization problem used to define the interactive fixed-effect estimator. The

resulting estimator will be asymptotically equivalent to the interactive fixed-effect

estimator under certain conditions. �

5. Monte Carlo Simulation Study

In this section, we present results of a Monte Carlo simulation study. We compare

the performance in finite samples of the spectral (S) and post-spectral (P-S) estima-

tors to several natural alternatives. Specifically, we consider the grouped fixed effect

(GFE) estimator proposed in [11], the least squares (LS) estimator proposed in [9],

and the penalized nuclear norm (Pen NN) estimator proposed in [29]. The compari-

son with LS and Pen NN estimators is pertinent because equation (1) can be seen as

a particular case of an interactive fixed effects model where the factors are the group
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trends, αgt, and the loadings are restricted to be of the form (0, . . . , 1, . . . , 0), with 1

in the gthi position.

Computation of the GFE estimator is not trivial. Even with N = 100 and G = 2, it

is hard to be sure that any given algorithm produces the global minimum of the GFE

optimization problem since this would require separately considering GN partitions

of units i = 1, . . . , N into G groups. Having in mind this issue, we calculate the

GFE estimator using Algorithm 1 in [11] with 500 random initial values, which is in

a nutshell the Lloyd algorithm with covariates. Given a classification, this algorithm

obtains the regression coefficients and the group-specific trends by minimizing OLS,

and given the parameters, units are classified into groups according to the smallest

individual-specific residual. We generate the initial values from the standard normal

distribution in R2+G×T , where the first two and the last G×T components correspond

to β = (β1, β2)′ and {αγt}G,Tγ,t=1, respectively.

We also consider an infeasible GFE estimator, which uses only one initial value but

this value is chosen to be the oracle estimator, i.e. the pooled OLS estimator based

on the true partition of units into groups. Using this value substantially increases the

chances to find the global minimum of the GFE optimization problem as we expect

the solution to be near the oracle estimator. In what follows, we refer to this infeasible

GFE estimator as I-GFE.

Computation of the LS estimator can also be problematic, as its objective function

is prone to local minima as well. To deal with this problem, like in the case of the

GFE estimator, we use 500 random initial values and choose the one that gives the

best value of the LS criterion function.

Computation of the Pen-NN estimator is relatively straightforward: it minimizes

a convex objective function. To make the comparison with the other estimators fair,

however, we choose a penalty parameter for this estimator so that the total number

of generated groups is equal to the true value, G, instead of using the data-driven

procedure proposed by the authors. Also, instead of presenting results for the plain

Pen-NN estimator, following the original paper [29], we actually present results for

the LS estimator that uses the Pen-NN estimator as initial value, as adding an extra

step of least squares minimization is supposed to make the estimator more precise.

With some abuse of notation, we still refer to this estimator as Pen-NN.10

Finally, for all data-generating processes, we also report results for the oracle esti-

mator, which is the pooled OLS estimator based on the true partition of units into

10[29] proposed several other estimators as well but we have chosen to present results for the Pen-NN
estimator only, as it dominates the other estimators in our simulations.
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groups. Although we do not discuss these results, an interested reader can use them

as a benchmark for the results on the other estimators.

Next, we discuss the data-generating processes. We generate the data (x′it, yit)
′,

i = 1, . . . , N and t = 1, . . . , T , according to equations (1) and (3), where we set

d = 2, so that the model contains two covariates. Depending on the experiment, we

set N = 100, 200, or 400 and T = 20, 50, or 100. We also set G = 2 or 7 and M = 1 or

2. The random variables vit and components of the random vectors zit are generated

from a truncated standard normal distribution, Z1{|Z| ≤ C}, where Z ∼ N(0, 1) and

C = 20, independently of each other and across indices. The random variables αmγt
are generated from a truncated normal distribution as well but with different variance

values, Z1{|Z| ≤ C}, where Z ∼ N(0, σ2), independently across indices and of all

other random variables. Depending on the experiment, we set σ2 equal to either 1 or

4. We have checked that results are robust with respect to different specifications of

the truncation constant C. Further, we set the number of observations i within each

group γ to be the same, except for the last group, which contains more observations

if G does not divide N . We have also checked with uneven units across groups and

results are unchanged.

Throughout all experiments, we set β = (β1, β2)′, where β1 = −1 and β2 = .8

but we note that the particular choice of these values does not seem to matter much

for the simulation results. Also, when M = 1, we set ρi1 = (ρi11, ρi12)′ with ρi11 =

%+Zi11{|Zi1| ≤ C} and ρi12 = %+Zi21{|Zi2| ≤ C}, where Zi1 and Zi2 are independent

of each other, across i, and of all other random variables in the data-generating

process, and where % = 3. Here, % can be understood as a measure of endogeneity in

the model as it govern the correlation between covariates and grouped-specific time

effects. WhenM = 2, we set ρi11 = %+Zi111{|Zi11| ≤ C}, ρi21 = 1+Zi211{|Zi21| ≤ C},
and ρi12 = % + Zi121{|Zi12| ≤ C} and ρi22 = Zi221{|Zi22| ≤ C}, where random

variables Zimj for m = 1, 2 have standard normal distribution and are independent of

each other, across indices, and of all other random variables in the data-generating

process.

We present results in Tables 1–4 at the end of Supplementary Materials. For each

combination of N and T , these tables give the mean absolute error (MAE) for S, P-S,

LS, Pen-NN, I-GFE, GFE, and oracle estimators. In addition, the tables give the

fraction of misclassified units based on our classification algorithm (which is based

on the spectral estimator, and which is the second step in constructing our post-

spectral estimator) and the fraction of misclassified units in the construction of the

GFE estimator. Each table presents results in the upper panel for G = 2 and in the
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lower panel for G = 7. Tables 1 and 2 correspond to M = 1 and Tables 3 and 4

correspond to M = 2. In addition, Tables 1 and 3 correspond to σ2 = 1, and Tables

2 and 4 correspond to σ2 = 4. When increasing the variance σ2, we are effectively

making the groups more separated, and hence group classification improves. Both

the MAE and the fraction of misclassified units are calculated as the average over 50

simulations.

We now describe the results. We start with the behavior of the S and P-S estima-

tors. In most cases, the P-S estimator outperforms the S estimator. Hence, it seems

that doing the ”post” step delivers a better estimator. Also, the P-S estimator tends

to be comparable to the oracle estimator across all tables as long as N and T increase

sufficiently. In addition, while the P-S estimator seems to have more trouble when

the separation of the groups is less, i.e. in Tables 1 and 3, it still quickly achieves the

oracle for moderate values of N and T . Moreover, when G = 2, the P-S estimator

seems to achieve the oracle faster than when G = 7, but even for small values of N

and T , the P-S estimator is a robust reliable estimator.

Let us now turn to the comparison with the grouped fixed effect estimators. Not

surprisingly, the infeasible I-GFE estimator is often comparable to the oracle. How-

ever, the performance of the feasible GFE estimator varies substantially depending on

the number and separation of the groups. For instance, in the upper panel of Table 1

(G = 2), where separation of groups is moderate, and for moderate values of T , the

GFE estimator is close to the I-GFE estimator, indicating that the minimum might

have been achieved. However, in the lower panel of Table 1 (G = 7), it is unlikely that

500 initial values cover a significant part of the space of all possible partitions of N

units into G groups, and the performance of the GFE estimator deteriorates. In fact,

missclassification for the GFE estimator is on the level of 70% for moderate values of

T when G = 7. In this case, the P-S estimator has a comparative advantage relative

to the GFE estimator. This same pattern is reproduced in Table 2. However, since

the groups are more separated, and the r-squared of the model is higher, the GFE

estimator improves. Interestingly, the behavior of the GFE estimator when M = 2

improves relative to M = 1.

As far the LS estimator is concerned, when the number of groups increases, the

finite sample performance of this estimator deteriorates, although it improves as both

N and T increase. However, it is only for large values of T that the behavior is

comparable to the oracle. At least in this exercise, the P-S estimator outperforms the

LS estimator.
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Finally, the pen NN estimator is, in general, dominated by the other estimators for

our data-generating processes. However, like with the LS estimator, its performance

improves as we increase N and T . For example, in Table 4, when G = 2, the estimator

is actually comparable to the oracle for large values of N and T .

6. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. Throughout this proof, we use c and C to denote strictly pos-

itive constants that can change from place to place but can be chosen to depend on

C1 and C2 only.

We will prove that

λb1 + · · ·+ λb2GM+2 = b′Σb+ S ′b+ L+OP

(
1

T ∧N

)
, for all b ∈ Rd, (27)

where Σ is a positive definite matrix appearing in Assumption 3.2(ii), S = −2Σβ, and

L = LN = β′Σβ+2(NT )−1
∑N

i=1

∑T
t=1 v

2
it. Then β = −Σ−1S/2, and so β̃ = −Σ̂−1Ŝ/2

satisfies (14) by the delta method since (27) implies that

‖Ŝ − S‖ ∨ ‖Σ̂− Σ‖ = OP

(
1

T ∧N

)
by construction in Section 2.1.

To prove (27), fix any b ∈ Rd. For brevity of notation, we will write A instead of

Ab. Then

Aij =
1

NT

T∑
t=1

{
fit − fjt + z′it(β − b)− z′jt(β − b) + vit − vjt

}2

, i, j = 1, . . . , N,

where

fit = α1
git

(1 + ρ′i1(β − b)) +
M∑
m=2

αmgitρ
′
im(β − b), i = 1, . . . , N, t = 1, . . . , T.

Also, let R be an N ×N matrix whose (i, j)-th element is

Rij = − 2

NT

T∑
t=1

{
(β−b)′zitzjt(β−b)+vitvjt+vitz′jt(β−b)+vjtz′it(β−b)

}
, i, j = 1, . . . , N.

As we will see below, this matrix represents the asymptotically negligible component

of A in the sense that

‖R‖ = OP

(
1

T ∧N

)
. (28)
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On the other hand,

tr(R) = − 2

NT

N∑
i=1

T∑
t=1

{
(β − b)′zitzit(β − b) + v2

it + 2vitz
′
it(β − b)

}
= − 2

NT

N∑
i=1

T∑
t=1

{
(β − b)′zitzit(β − b) + v2

it

}
+OP

(
1√
NT

)
by Assumption 3.2(i). Thus, given that tr(A) = 0, the matrix A0 = A−R satisfies

tr(A0) =
2

NT

N∑
i=1

T∑
t=1

{
(β − b)′zitzit(β − b) + v2

it

}
+OP

(
1√
NT

)
= b′Σb+ S ′b+ L+OP

(
1√
NT

)
by Assumption 3.2(ii). In addition, we will show below that A0 has at most 2GM + 2

non-zero eigenvalues. Hence,

λ1 + · · ·+ λ2GM+2 = b′Σb+ S ′b+ L+OP

(
1√
NT

)
+OP

(
1

T ∧N

)
by Lemma A.1 and (28). This gives (27) since

√
NT ≥ T ∧N . Therefore, it remains

to prove (28) and to show that A0 has at most 2GM + 2 non-zero eigenvalues.

To derive the bound on the number of non-zero eigenvalues of A0, let us first

introduce some notation. For all t = 1, . . . , T , denote

Ft = (f1t, . . . , fNt)
′, Vt = (v1t, . . . , vNt)

′, Zt = (z′1t(β − b), . . . , z′Nt(β − b))′.

Also, denote 1N = (1, . . . , 1)′ ∈ RN . In addition, for any vectors a = (a1, . . . , aN)′

and b = (b1, . . . , bN)′, write (ab) = (a1b1, . . . , aNbN)′ and a2 = (a2
1, . . . , a

2
N)′. Then

A =
1

NT

T∑
t=1

(
F 2
t 1′N + 1N(F 2

t )′ + Z2
t 1′N + 1N(Z2

t )′ + V 2
t 1′N + 1N(V 2

t )′
)

+
2

NT

T∑
t=1

(
(FtZt)1

′
N + 1N(FtZt)

′ + (FtVt)1
′
N + 1N(FtVt)

′ + (ZtVt)1
′
N + 1N(ZtVt)

′
)

− 2

NT

T∑
t=1

(
FtZ

′
t + ZtF

′
t + FtV

′
t + VtF

′
t + ZtV

′
t + VtZ

′
t + FtF

′
t + ZtZ

′
t + VtV

′
t

)
.

Also,

R = − 2

NT

T∑
t=1

(
ZtZ

′
t + VtV

′
t + VtZ

′
t + ZtV

′
t

)
.
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Hence, denoting

Q =
1

NT

T∑
t=1

(
F 2
t + Z2

t + V 2
t + 2(FtZt) + 2(FtVt) + 2(ZtVt)

)
and recalling A0 = A−R, we have

A0 = Q1′N + 1NQ
′ − 2

NT

T∑
t=1

(
FtF

′
t + FtZ

′
t + ZtF

′
t + FtV

′
t + VtF

′
t

)
= Q1′N + 1NQ

′ − 2

NT

T∑
t=1

Ft(Ft + Zt + Vt)
′ − 2

NT

T∑
t=1

(Zt + Vt)F
′
t .

The last expression makes bounding the number of non-zero eigenvalues of the matrix

A0 straightforward. Indeed, rank(Q1′N) = rank(1NQ
′) = 1. Also, for each m =

1, . . . ,M and γ = 1, . . . , G, define an N × 1 vector %mγ whose i-th element is

%mγi =

I{m = 1}+ ρ′im(β − b) if gi = γ,

0 if gi 6= γ,
i = 1, . . . , N.

Then Ft =
∑M

m=1

∑G
γ=1 α

m
γt%mγ for all t = 1, . . . , T , and so, for any vector a =

(a1, . . . , aN)′, the vector

T∑
t=1

Ft(Ft + Zt + Vt)
′a =

M∑
m=1

G∑
γ=1

T∑
t=1

αmγt%mγ(Ft + Zt + Vt)
′a

=
M∑
m=1

G∑
γ=1

%mγ

T∑
t=1

αmγt(Ft + Zt + Vt)
′a

belongs to the linear subspace of RN spanned by the vectors %11, . . . , %MG. Hence,

rank

(
T∑
t=1

Ft(Ft + Zt + Vt)
′

)
≤MG.

Similarly, using the fact that the row rank is equal to the column rank,

rank

(
T∑
t=1

(Zt + Vt)F
′
t

)
≤MG.

Thus, given that the rank operator is sub-additive, we conclude that

rank(A0) ≤ 2MG+ 2,

and so A0 has at most 2MG+ 2 non-zero eigenvalues, as claimed.
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It remains to prove (28). To do so, we will show that∥∥∥∥∥ 1

NT

T∑
t=1

VtV
′
t

∥∥∥∥∥ = OP

(
1

T ∧N

)
(29)

and note that ‖(NT )−1
∑T

t=1 ZtZ
′
t‖ = OP (1/(T ∧N)) follows from the exactly same

argument (the former is obtained from Assumption 3.1(i) whereas the latter is from

Assumption 3.1(ii)). Then∥∥∥∥∥ 1

NT

T∑
t=1

VtZ
′
t

∥∥∥∥∥ ≤
√√√√∥∥∥∥∥ 1

NT

T∑
t=1

VtV ′t

∥∥∥∥∥
√√√√∥∥∥∥∥ 1

NT

T∑
t=1

ZtZ ′t

∥∥∥∥∥ = OP

(
1

T ∧N

)
by Lemma A.2. This gives (28).

To prove (29), we proceed by appropriately modifying the proof of Theorem 4.7.1

in [40]. Denote V = (v1, . . . , vN)′, where vi = (vi1, . . . , viT )′ for all i = 1, . . . , N . Then

uniformly over u ∈ ST ,

u′E
[
V ′V
N

]
u =

1

N

N∑
i=1

E [u′viv
′
iu] =

1

N

N∑
i=1

E
[
(v′iu)2

]
≤ C

by Assumption 3.1(i). Thus, ∥∥∥∥E [V ′VN
]∥∥∥∥ ≤ C. (30)

Further, by Exercise 4.4.3, part 2, in [40],∥∥∥∥V ′VN − E
[
V ′V
N

]∥∥∥∥ ≤ 2 max
u∈N

∣∣∣∣u′(V ′VN − E
[
V ′V
N

])
u

∣∣∣∣ , (31)

where N is any (1/4)-net in ST . Moreover, by Corollary 4.2.13 in [40], the net N can

be chosen so that |Nε| ≤ 9T , which we are going to use below.

Next, fix any u ∈ N . Then by Assumption 3.1(i) and Lemma 2.7.6 in [40], for all

i = 1, . . . , N , we have ‖(u′vi)2‖ψ1 ≤ C, and so by Exercise 2.7.10 in [40], ‖(u′vi)2 −
E[(u′vi)

2]‖ψ1 ≤ C. Hence, by Bernstein’s inequality (Corollary 2.8.3 in [40]), for any

ε > 0,

P

(∣∣∣∣u′(V ′VN − E
[
V ′V
N

])
u

∣∣∣∣ ≥ ε

)
= P

(∣∣∣∣∣ 1

N

N∑
i=1

(
(v′iu)2 − E[(v′iu)2]

)∣∣∣∣∣ ≥ ε

)
≤ 2 exp

[
−c(ε ∧ ε2)N

]
,
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and so by the union bound,

P

(
max
u∈N

∣∣∣∣u′(V ′VN − E
[
V ′V
N

])
u

∣∣∣∣ ≥ ε

)
≤ 2× 9T × exp

[
−c(ε ∧ ε2)N

]
.

Therefore, setting ε = c−1(log 9)(T/N) + 1, we obtain

P

(
max
u∈N

∣∣∣∣u′(V ′VN − E
[
V ′V
N

])
u

∣∣∣∣ ≥ CT

N
+ 1

)
≤ 2 exp(−cN).

Combining this bound with (30) and (31) gives∥∥∥∥V ′VN
∥∥∥∥ = OP

(
T

N
+ 1

)
. (32)

Hence, ‖V‖ = OP (
√
T +
√
N), and so∥∥∥∥∥ 1

T

T∑
t=1

VtV
′
t

∥∥∥∥∥ =

∥∥∥∥VV ′T
∥∥∥∥ =
‖V‖2

T
= OP

(
1 +

N

T

)
.

Conclude that ∥∥∥∥∥ 1

NT

T∑
t=1

VtV
′
t

∥∥∥∥∥ = OP

(
1

T
+

1

N

)
= OP

(
1

T ∧N

)
,

which gives (29) and completes the proof. �

Proof of Theorem 3.2. First, we introduce some notations. For all i = 1, . . . , N , de-

note vi = (vi1, . . . , viT )′ and for all γ = 1, . . . , G, denote αγ = (αγ1 , . . . , αγT )′. Then

the model (1) can be written as

yi = xiβ + αgi + vi, i = 1, . . . , N.

Further, let F be a T×G matrix whose columns are orthonormal and span the vectors

α1, . . . , αG. Then for each γ = 1, . . . , G, there exists a G × 1 vector pγ such that

αγ =
√
TFpγ. Here, without loss of generality, we assume that Λ = N−1

∑N
i=1 pgip

′
gi

is a diagonal matrix diag(λ1, . . . , λG) with λ1 ≥ · · · ≥ λG ≥ 0 since otherwise we

can consider the eigenvalue decomposition SΛS ′ of the matrix N−1
∑N

i=1 pgip
′
gi

and

replace F and p1, . . . , pG by FS and S−1p1, . . . , S
−1pG, respectively. Also, throughout

this proof, we use c and C to denote strictly positive constants that can change from

place to place but can be chosen to depend on C1, C2, C3, C4, c1, and c2 only.

We will show below that

‖Âi − αgi‖ = oP (
√
T ) uniformly over i = 1, . . . , N. (33)



SPECTRAL AND POST-SPECTRAL ESTIMATORS FOR GROUPED PANEL DATA MODELS 31

Therefore, by Assumption 3.4, there exists a constant C̄ > 0 such that with proba-

bility approaching one,

‖Âi − Âj‖ ≤ C̄
√
T for all i, j = 1, . . . , N such that gi = gj (34)

and

‖Âi − Âj‖ > 2C̄
√
T for all i, j = 1, . . . , N such that gi 6= gj. (35)

Now, assume that (34) and (35) are satisfied and let A1(λ), . . . ,Am(λ)(λ) be the

partition of units generated by the Classification Algorithm from Section 2.2 for

any given value of the tuning parameter λ and let g̃(λ) = (g̃1(λ), . . . , g̃N(λ))′ ∈
{1, . . . ,m(λ)}N be the corresponding vector of group assignments, so that ĝ = g̃(λ̂).

Then observe that for any λ ≤ C̄
√
T , the vector g̃(λ) has the following property:

for all i, j = 1, . . . , N, we have g̃i(λ) 6= g̃j(λ) if gi 6= gj, (36)

i.e. units from different groups can not be classified into the same group. To see why

this is so, suppose to the contrary that for some λ ≤ C̄
√
T , there exist i, j = 1, . . . , N

such that gi 6= gj but g̃i(λ) = g̃j(λ). In this case, we can consider the first misclassified

unit, say unit i0, in the Classification Algorithm. This unit satisfies the following

inequality for some A ⊂ {1, . . . , N}:∥∥∥∥∥Âi0 − 1

|A|
∑
l∈A

Âl

∥∥∥∥∥ ≤ λ, (37)

where all units l ∈ A are coming from the same group and i0 is coming from another

group, i.e. gi0 6= γ = gl for all l ∈ A. But then, for any j ∈ A,

‖Âi0 − Âj‖ ≤

∥∥∥∥∥Âi0 − 1

|A|
∑
l∈A

Âl

∥∥∥∥∥+

∥∥∥∥∥ 1

|A|
∑
l∈A

Âl − Âj

∥∥∥∥∥
≤ λ+

1

A
∑
l∈A

‖Âl − Âj‖ ≤ 2C̄
√
T ,

where we used the triangle inequality as well as (34) and (37). This contradicts (35),

and so (36) indeed holds for all λ ≤ C̄
√
T .

In turn, (36) implies that if g̃i(λ) 6= g̃j(λ) for some i, j = 1, . . . , N with gi = gj,

then m(λ) > G. Therefore, given than m(λ̂) = G, it follows that if λ̂ ≤ C̄
√
T , then

the vector ĝ = g̃(λ̂) has the following property: for all i, j = 1, . . . , N , we have ĝi = ĝj
if and only if gi = gj. But we claim that λ̂ indeed satisfies the inequality λ̂ ≤ C̄

√
T .

To see why this is so, observe that m(C̄
√
T ) ≥ G by (36) and m(C̄

√
T ) ≤ G by (34).

Hence, m(C̄
√
T ) = G, and so λ̂ ≤ C̄

√
T , as required. Thus, the asserted claim of the
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theorem follows since (34) and (35) hold with probability approaching one. It thus

remains to prove (33). We do so in eight steps.

Step 1. Here we show that

‖F̂ ′hivi‖ = oP (
√
T ) uniformly over i = 1, . . . , N.

To do so, note that for all i = 1, . . . , N , the random vectors vi and F̂hi are independent

conditional on h1, . . . , hN . Therefore, by Assumption 3.1(i) and (2.14) in [40], for all

ε > 0, i = 1, . . . , N , and γ = 1, . . . , G,

P(|F̂ ′hiγvi| > ε) ≤ 2 exp(−cε2),

where F̂hiγ denotes the γ-th column of the matrix F̂hi . Hence, by the union bound,

P

(
max

1≤i≤N
|F̂ ′hiγvi| > ε

)
≤ 2 exp(logN − cε2).

Combining this bound with Assumption 3.6 gives the asserted claim of this step.

Step 2. Here we show that

‖F̂ ′hixi(β̃
hi − β)‖ = oP (

√
T ) uniformly over i = 1, . . . , N.

To do so, for all i = 1, . . . , N , denote zi = (zi1, . . . , ziT )′ and

x̄i =

(
M∑
m=1

ρimα
m
gi1
, . . . ,

M∑
m=1

ρimα
m
giT

)′
,

so that xi = x̄i + zi. Then observe that

‖F̂ ′hizi‖ = oP (
√
T ) uniformly over i = 1, . . . , N

by the same argument as that in Step 1, with Assumption 3.1(ii) playing the role of

Assumption 3.1(i). Also,

‖F̂ ′hix̄i‖ = O(
√
T ) uniformly over i = 1, . . . , N

by Assumption 3.3. Moreover, ‖β̃0−β‖∨‖β̃1−β‖ = oP (1) by Theorem 3.1. Combining

these bounds gives the asserted claim of this step.

Step 3. Here we show that(
1

N

N∑
i=1

v2
it

)
∨

(
1

N

N∑
i=1

‖zit‖2

)
= OP (1) uniformly over t = 1, . . . , T.

To do so, note that by Assumption 3.1(i) and Lemma 2.7.6 in [40], for all i = 1, . . . , N

and t = 1, . . . , T , we have ‖v2
it‖ψ1 ≤ C, and so by Exercise 2.7.10 in [40], ‖v2

it −
E[v2

it]‖ψ1 ≤ C. Hence, by Bernstein’s inequality (Corollary 2.8.3 in [40]), for any
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ε > 0,

P

(
1

N

N∑
i=1

(v2
it − E[v2

it]) > ε

)
≤ exp[−c(ε ∧ ε2)N ],

and so by the union bound,

P

(
max

1≤t≤T

1

N

N∑
i=1

(v2
it − E[v2

it]) > ε

)
≤ T exp[−c(ε ∧ ε2)N ].

Hence, given that E[v2
it] ≤ C for all i = 1, . . . , N and t = 1, . . . , T by Assumption

3.1(i), it follows from Assumption 3.6 that

1

N

N∑
i=1

v2
it = OP (1) uniformly over t = 1, . . . , T.

Thus, given that

1

N

N∑
i=1

‖z2
it‖ = OP (1) uniformly over t = 1, . . . , T

can be proven using the same argument, with Assumption 3.1(i) replaced by 3.1(ii),

the asserted claim of this step follows.

Step 4. Here we show that

‖B̂0 − B̄0‖ ∨ ‖B̂1 − B̄1‖ = oP (1),

where

B̄h =
2

NT

∑
i∈Ih

(yi − xiβ)(yi − xiβ)′, h = 0, 1.

To do so, fix h = 0, 1. Then

B̂h − B̄h =
2

NT

∑
i∈Ih

xi(β̃
h − β)(β̃h − β)′x′i

− 2

NT

∑
i∈Ih

(yi − xiβ)(β̃h − β)′x′i

− 2

NT

∑
i∈Ih

xi(β̃
h − β)(yi − xiβ)′.

All three terms here have the spectral norm oP (1) but for brevity, we only consider

the first term, i.e. we prove that∥∥∥∥∥ 1

NT

∑
i∈Ih

xi(β̃
h − β)(β̃h − β)′x′i

∥∥∥∥∥ = oP (1) (38)
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and note that the other two terms can be bounded similarly. To prove (38), recall

that xi = x̄i + zi as in Step 2. Therefore, by Lemma A.2, the left-hand side of (38)

is bounded from above by

2

∥∥∥∥∥ 1

NT

∑
i∈Ih

x̄i(β̃
h − β)(β̃h − β)′x̄′i

∥∥∥∥∥+ 2

∥∥∥∥∥ 1

NT

∑
i∈Ih

zi(β̃
h − β)(β̃h − β)′z′i

∥∥∥∥∥ .
Here, ∥∥∥∥∥ 1

NT

∑
i∈Ih

x̄i(β̃
h − β)(β̃h − β)′x̄′i

∥∥∥∥∥ ≤ 1

NT

∑
i∈Ih

‖x̄i‖2‖β̃h − β‖2 = oP (1)

by Theorem 3.1 and Assumption 3.3. Also, given that (NT )−1
∑

i∈Ih zi(β̃
h−β)(β̃h−

β)′z′i is a positive-definite matrix,∥∥∥∥∥ 1

NT

∑
i∈Ih

zi(β̃
h − β)(β̃h − β)′z′i

∥∥∥∥∥
≤ tr

{
1

NT

∑
i∈Ih

zi(β̃
h − β)(β̃h − β)′z′i

}
=

1

NT

∑
i∈Ih

tr
{

(β̃h − β)′z′izi(β̃
h − β)

}

=
1

NT

∑
i∈Ih

T∑
t=1

|z′it(β̃h − β)|2 ≤ 1

NT

∑
i∈Ih

T∑
t=1

‖zit‖2‖β̃h − β‖2 = oP (1)

by Step 3 and Theorem 3.1. Combining presented bounds, we obtain the asserted

claim of this step.

Step 5. Here we show that

‖B̂0 − FΛF ′‖ ∨ ‖B̂1 − FΛF ′‖ = oP (1),

To do so, fix h = 0, 1. Then, denoting

B̌ =
1

NT

N∑
i=1

(yi − xiβ)(yi − xiβ)′,

we have

‖B̄h − B̌‖ = oP (1), (39)

where the matrix B̄h is defined in the previous step. To see why this is so, observe

that

B̄h − B̌ =
2

NT

N∑
i=1

(
1{hi = 1− h} − E[1{hi = 1− h}]

)
(yi − xiβ)(yi − xiβ)′.
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Thus, recalling that yi = xiβ + αgi + vi, we have

‖B̄h − B̌‖ ≤

∥∥∥∥∥ 2

NT

N∑
i=1

(
1{hi = 1− h} − E[1{hi = 1− h}]

)
αgiα

′
gi

∥∥∥∥∥
+

∥∥∥∥∥ 2

NT

N∑
i=1

(
1{hi = 1− h} − E[1{hi = 1− h}]

)
viv
′
i

∥∥∥∥∥
+

∥∥∥∥∥ 4

NT

N∑
i=1

(
1{hi = 1− h} − E[1{hi = 1− h}]

)
αgiv

′
i

∥∥∥∥∥ .
Here, ‖αgiα′gi‖ = ‖αgi‖2 ≤ CT for all i = 1, . . . , N , and so applying the expectation

version of Bernstein’s matrix inequality (Exercise 5.4.11 in [40]) conditionally on

(x1, y1), . . . , (xN , yN),

E

[∥∥∥∥∥ 1

NT

N∑
i=1

(
1{hi = 1− h} − E[1{hi = 1− h}]

)
αgiα

′
gi

∥∥∥∥∥
]

≤ C

(√
NT 2 log T

NT
+
T log T

NT

)
= o(1),

where the last bound follows from Assumption 3.6. Hence,∥∥∥∥∥ 1

NT

N∑
i=1

(
1{hi = 1− h} − E[1{hi = 1− h}]

)
αgiα

′
gi

∥∥∥∥∥ = oP (1)

by Markov’s inequality. In addition,∥∥∥∥∥ 1

NT

N∑
i=1

(
1{hi = 1− h} − E[1{hi = 1− h}]

)
viv
′
i

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

NT

N∑
i=1

viv
′
i

∥∥∥∥∥ = oP (1)

by Lemma A.2 and (32) in the proof of Theorem 3.1. Moreover, by Lemma A.2,∥∥∥∥∥ 1

NT

N∑
i=1

(
1{hi = 1− h} − E[1{hi = 1− h}]

)
αgiv

′
i

∥∥∥∥∥
≤

√√√√∥∥∥∥∥ 1

NT

N∑
i=1

αgiα
′
gi

∥∥∥∥∥
√√√√∥∥∥∥∥ 1

NT

N∑
i=1

viv′i

∥∥∥∥∥ = oP (1).

Combining these bounds, we obtain (39).
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Now, given that B̌ = (NT )−1
∑N

i=1(αgi + vi)(αgi + vi)
′, αgi =

√
TFpgi , and

N−1
∑N

i=1 pgip
′
gi

= Λ, we have

‖B̌ − FΛF ′‖ ≤

∥∥∥∥∥ 2

NT

N∑
i=1

αgiv
′
i

∥∥∥∥∥+

∥∥∥∥∥ 1

NT

N∑
i=1

viv
′
i

∥∥∥∥∥ = oP (1)

by the arguments above. Combining this bound with (39) and Step 4 and using the

triangle inequality gives the asserted claim of this step.

Step 6. Here we show that there exist orthogonal G×G matrices O0 and O1 such

that for all γ = 1, . . . , G and h = 0, 1,

‖(F̂hOh − F )′Fpγ‖ = oP (1).

To do so, fix h = 0, 1 and note that by Step 5, there exists a sequence {ψn}n≥1 of

positive numbers such that ψn → 0 as n→∞ and

P(‖B̂h − FΛF ′‖ > ψn) ≤ ψn. (40)

Also, recall that Λ = diag(λ1, . . . , λG), where λ1 ≥ . . . λG ≥ 0. In addition, set

λ0 = +∞ and λG+1 = 0 and let Ḡ be the largest integer γ = 0, . . . , G such that

λγ − λγ+1 >
√
ψn. Then λḠ+1 ≤ G

√
ψn. In addition, by the Davis-Kahan theorem

(see Theorem 2 in [43]), there exists an orthogonal G × G matrix Oh such that,

denoting F̃ = F̂hOh and letting F̃γ and Fγ denote the γ-th columns of F̃ and F ,

respectively, we have

max
1≤γ≤Ḡ

‖F̃γ − Fγ‖ ≤ 4
√
G‖B̂h − FΛF ′‖/

√
ψn,

and so by (40),

max
1≤γ≤Ḡ

‖F̃γ − Fγ‖ ≤ 4
√
G
√
ψn

with probability at least 1− ψn. Therefore,

1

N

N∑
i=1

‖(F̃ − F )′Fpgi‖2 = tr

(
1

N

N∑
i=1

(F̃ − F )′Fpgip
′
gi
F ′(F̃ − F )

)

= tr
(

(F̃ − F )′FΛF ′(F̃ − F )
)

= tr

(
(F̃ − F )′

G∑
γ1=1

λγ1Fγ1F
′
γ1

(F̃ − F )

)

=
G∑

γ1,γ2=1

λγ1{F ′γ1(F̃γ2 − Fγ2)}
2 ≤

Ḡ∑
γ1=1

G∑
γ2=1

λγ1{F ′γ1(F̃γ2 − Fγ2)}
2 +G3

√
ψn

≤
Ḡ∑

γ1=1

λγ1{F ′γ1(F̃γ1 − Fγ1)}
2 +

Ḡ∑
γ1=1

∑
γ2 6=γ1

λγ1{F ′γ1F̃γ2}
2 +G3

√
ψn = oP (1),
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where the middle term is bounded by Lemma A.3 and all λγ are bounded by

max
1≤γ≤G

λγ = ‖Λ‖ = ‖FΛF ′‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

αgiα
′
gi

∥∥∥∥∥ ≤ C,

where the last inequality follows from Assumption 3.3(ii). Combining this bound with

Assumption 3.5, we conclude that for all γ = 1, . . . , G,

‖(F̂hOh − F )′Fpγ‖2 ≤ C

N

N∑
i=1

‖(F̂hOh − F )′Fpgi‖2

=
C

N

N∑
i=1

‖(F̃ − F )′Fpgi‖2 = oP (1),

which gives the asserted claim of this step.

Step 7. Here we show that for all γ = 1, . . . , G and h = 0, 1,

‖(F̂hOh − F )pγ‖ = oP (1).

To do so, fix h = 0, 1 and note that

1

N

N∑
i=1

‖(F̂hOh − F )pgi‖2 = tr

(
1

N

N∑
i=1

(F̂hOh − F )pgip
′
gi

(F̂hOh − F )′

)
= tr

(
(F̂hOh − F )Λ(F̂hOh − F )′

)
= tr

(
Λ(F̂hOh − F )′(F̂hOh − F )

)
=

G∑
γ=1

λγ‖(F̂hOh − F )γ‖2 = oP (1)

by the same argument as that used in Step 6. Combining this bound with Assumption

3.5, we conclude that for all γ = 1, . . . , G,

‖(F̂hOh − F )pγ‖2 ≤ C

N

N∑
i=1

‖(F̂hOh − F )pgi‖2 = oP (1),

which gives the asserted claim of this step.

Step 8. Here we complete the proof. To do so, we have

‖Âi − αgi‖ = ‖F̂hiF̂ ′hi(yi − xiβ̃
hi)−

√
TFpgi‖

=
√
T‖F̂hiF̂ ′hiFpgi − Fpgi‖+ oP (

√
T )

=
√
T‖F̂hiOhi(F̂hiOhi)

′Fpgi − Fpgi‖+ oP (
√
T )
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=
√
T‖F̂hiOhipgi − Fpgi‖+ oP (

√
T ) = oP (

√
T )

uniformly over i = 1, . . . , N , where the second line follows from Steps 1 and 2, the

third from Ohi being orthogonal, and the fourth from Steps 6 and 7. This gives the

asserted claim of this step and completes the proof of the theorem. �
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Appendix A. Technical Lemmas

Lemma A.1. Let A and B be two symmetric N ×N matrices, and suppose that the

matrix B has only K ≤ N non-zero eigenvalues λB1 , . . . , λ
B
K. Further, let λA1 , . . . , λ

A
K

be the K largest in absolute value eigenvalues of the matrix A. Then∣∣∣∣∣
K∑
k=1

λAk −
K∑
k=1

λBk

∣∣∣∣∣ ≤ 3K‖A−B‖.

Remark A.1. This lemma does not follow from Weyl’s inequality immediately be-

cause λA1 , . . . , λ
A
K are the largest in absolute value eigenvalues of A. �

Proof. Let λBK+1, . . . , λ
B
N be the remaining eigenvalues of B, so that

λBK+1 = . . . λBN = 0, (41)

and let λAK+1, . . . , λ
A
N be the remaining eigenvalues of A, so that

min(|λA1 |, . . . , |λAK |) ≥ max(|λAK+1|, . . . , |λAN |). (42)

By Weyl’s inequality ([40], Theorem 4.5.3), one can construct a one-to-one function

f : {1, . . . , N} → {1, . . . , N} such that

|λAk − λBf(k)| ≤ ‖A−B‖, for all k = 1, . . . , N. (43)

Using this function, define K = {j = 1 . . . , K : f−1(j) > K} and note that if this

set is non-empty, then there exists k = 1, . . . , K such that f(k) > K, and so for any

j ∈ K,

|λBj | ≤ |λAf−1(j)|+ ‖A−B‖ ≤ |λAk |+ ‖A−B‖ ≤ |λBf(k)|+ 2‖A−B‖ = 2‖A−B‖,

where the first inequality follows from (43) and the triangle inequality, the second

from (42), the third from (43) and the triangle inequality, and the fourth from (41).

Hence, ∣∣∣∣∣
K∑
k=1

λBk −
K∑
k=1

λBf(k)

∣∣∣∣∣ =

∣∣∣∣∣∑
j∈K

λBj

∣∣∣∣∣ ≤ 2K‖A−B‖.

In addition, ∣∣∣∣∣
K∑
k=1

λAk −
K∑
k=1

λBf(k)

∣∣∣∣∣ ≤ K‖A−B‖
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by (43). Combining the last two inequalities gives the asserted claim. �

Lemma A.2. Let µ1, . . . , µN and ν1, . . . , νN be two sequences of vectors in RT . Define

A =
N∑
i=1

µiµ
′
i, B =

N∑
i=1

νiν
′
i, C =

N∑
i=1

µiν
′
i, and D =

N∑
i=1

(µi + νi)(µi + νi)
′.

Then ‖C‖ ≤
√
‖A‖

√
‖B‖ and ‖D‖ ≤ 2(‖A‖+ ‖B‖).

Proof. For any x ∈ RT such that ‖x‖ = 1,

x′Cx =
N∑
i=1

(x′µi)(ν
′
ix) ≤

√√√√ N∑
i=1

(x′µi)2

√√√√ N∑
i=1

(ν ′ix)2

=
√
x′Ax

√
x′Bx ≤

√
‖A‖

√
‖B‖,

by the Cauchy-Schwarz inequality. Taking the supremum over all x ∈ RT with

‖x‖ = 1 of the left- and right-hand sides of this chain of inequalities gives the first

asserted claim.

To prove the second asserted claim, note that

‖D‖ ≤

∥∥∥∥∥
N∑
i=1

µiµ
′
i

∥∥∥∥∥+

∥∥∥∥∥
N∑
i=1

µiν
′
i

∥∥∥∥∥+

∥∥∥∥∥
N∑
i=1

νiµ
′
i

∥∥∥∥∥+

∥∥∥∥∥
N∑
i=1

νiν
′
i

∥∥∥∥∥
≤ ‖A‖+

√
‖A‖

√
‖B‖+

√
‖B‖

√
‖A‖+ ‖B‖

≤ ‖A‖+ (‖A‖+ ‖B‖)/2 + (‖B‖+ ‖A‖)/2 + ‖B‖ = 2(‖A‖+ ‖B‖).

This completes the proof of the lemma. �

Lemma A.3. Let F1, F2, and F3 be vectors in RT and suppose that (i) ‖F2 − F1‖ ≤√
2, (ii) F ′2F3 = 0, and (iii) ‖F1‖ = ‖F2‖ = ‖F3‖ = 1. Then |F ′1F3| ≤ 3‖F2 − F1‖.

Proof. By (iii),

F ′1F3 = 1− ‖F3 − F1‖2

2
. (44)

By the triangle inequality,

‖F3 − F1‖ ≥ ‖F3 − F2‖ − ‖F2 − F1‖,

and so, given that ‖F3 − F2‖ =
√

2 by (ii), it follows from (i) that

‖F3 − F1‖2 ≥
(
‖F3 − F2‖ − ‖F2 − F1‖

)2

≥ 2− 2
√

2‖F2 − F1‖. (45)

Combining (44) and (45),

F ′1F3 ≤ 1− 1 +
√

2‖F2 − F1‖ =
√

2‖F2 − F1‖. (46)
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Also, again by the triangle inequality,

‖F3 − F1‖ ≤ ‖F3 − F2‖+ ‖F2 − F1‖,

and so, by (i),

‖F3 − F1‖2 ≤
(
‖F3 − F2‖+ ‖F2 − F1‖

)2

≤ 2 + 2
√

2‖F2 − F1‖+
√

2‖F2 − F1‖ = 2 + 3
√

2‖F2 − F1‖. (47)

Combining (44) and (47), F ′1F3 ≥ −3‖F2 − F1‖. Combining this inequality with (46)

gives the asserted claim. �

Lemma A.4. Let θ ∈ (−1, 1) be a real number and T ≥ 2 be an integer. Then for

all u = (u1, . . . , uT )′ ∈ RT such that
∑T

t=1 u
2
t ≤ 1, we have

T−1∑
t=1

(
T−1∑
r=t

ur+1θ
r−t

)2

≤ 1

(1− θ)2
.

Proof. We proceed by induction. When T = 2, we have

T−1∑
t=1

(
T−1∑
r=t

ur+1θ
r−t

)2

= u2
2 ≤ 1 ≤ 1

(1− θ)2
,

so that the claim holds. Now suppose that the claim holds for all T = 2, . . . , k. We

will prove that the claim holds for T = k+1. To do so, fix any u = (u1, . . . , uT )′ ∈ RT

such that
∑T

t=1 u
2
t ≤ 1 and observe that

T−1∑
t=1

(
T−1∑
r=t

ur+1θ
r−t

)2

=
T−2∑
t=1

(
ut+1 +

T−1∑
r=t+1

ur+1θ
r−t

)2

+ u2
T

=
T−2∑
t=1

u2
t+1 + 2ut+1

T−1∑
r=t+1

ur+1θ
r−t +

(
T−1∑
r=t+1

ur+1θ
r−t

)2
+ u2

T

≤ 1 +
T−2∑
t=1

T−1∑
r=t+1

(u2
t+1 + u2

r+1)θr−t + θ2

T−2∑
t=1

(
T−2∑
r=t

ur+2θ
r−t

)2

,

where the third line follows from
∑T

t=1 u
2
t ≤ 1 and an elementary inequality 2ab ≤

a2 + b2. Also, by the induction hypothesis,

T−2∑
t=1

(
T−2∑
r=t

ur+2θ
r−t

)2

≤ 1

(1− θ)2
.
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In addition,
T−2∑
t=1

T−1∑
r=t+1

(u2
t+1 + u2

r+1)θr−t ≤ 2
T−2∑
l=1

T∑
t=1

θlu2
t ≤

2θ

1− θ
.

Hence,
T−1∑
t=1

(
T−1∑
r=t

ur+1θ
r−t

)2

≤ 1 +
2θ

1− θ
+

θ2

(1− θ)2
=

1

(1− θ)2
,

which completes the induction argument and thus gives the asserted claim for all

T ≥ 2. �

Appendix B. Proofs for Remaining Results from Main Text

Proof of Theorem 3.3. Throughout the proof, for any a ∈ RT and R > 0, we use

B(a, R) to denote the ball in RT with center a and radius R, i.e. B(a, R) = {u ∈
RT : ‖u − a‖ ≤ R}. Also, we use c and C to denote strictly positive constants that

can change from place to place but can be chosen to depend on C1, C2, C3, C4, C5,

c1, c2, and c3 only.

We proceed in five steps. The second and third steps follow closely the arguments in

the proof of Theorem 1 in [11] but we provide all the details for reader’s convenience.

Step 1. Here we show that

max
1≤i≤N

E

[
T∑
t=1

v2
it

]
≤ CT and max

1≤i≤N
max
j 6=i

E

[∣∣∣∣∣
T∑
t=1

vitvjt

∣∣∣∣∣
]
≤ C
√
T . (48)

To prove the first inequality, note that for all i = 1, . . . , N , we have E[v2
it] ≤ C‖vit‖2

ψ2
≤

C by (2.15) in [40] and Assumption 3.1(i). To prove the second inequality note that

for all i, j = 1, . . . , N with i 6= j, we have

P

(∣∣∣∣∣
T∑
t=1

vitvjt

∣∣∣∣∣ > ε | vj1, . . . , vjT

)
≤ 2 exp

(
− cε2∑T

t=1 v
2
jt

)
for all ε > 0 by (2.14) in [40] and Assumption 3.1(i). Therefore, given that the

function r 7→ exp(−c/r) is concave on R+ for any c > 0, we have

P

(∣∣∣∣∣
T∑
t=1

vitvjt

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− cε2∑T

t=1 E[v2
jt]

)
≤ 2 exp

(
−cε

2

T

)
by Jensen’s inequality and the first inequality in (48). Hence,

E

[∣∣∣∣∣
T∑
t=1

vitvjt

∣∣∣∣∣
]

=

∫ ∞
0

P

(∣∣∣∣∣
T∑
t=1

vitvjt

∣∣∣∣∣ > ε

)
dε ≤ C

√
T ,
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which gives the second inequality in (48).

Step 2. For all b ∈ B, a = {aγt}G,Tγ,t=1 ∈ AG,T , and ν = {νi}Ni=1 ∈ {1, . . . , G}N ,

denote

Q(b, a, ν) =
1

NT

N∑
i=1

T∑
t=1

(yit − x′itb− aνit)2

and

Q̄(b, a, ν) =
1

NT

N∑
i=1

T∑
t=1

(x′it(β − b) + αgit − aνit)2 +
1

NT

N∑
i=1

T∑
t=1

v2
it.

In this step, we show that

Q(b, a, ν)− Q̄(b, a, ν) = oP (1)

uniformly over b ∈ B, a ∈ AG,T , and ν ∈ {1, . . . , G}N . To do so, note that

Q(b, a, ν)− Q̄(b, a, ν) = − 2

NT

N∑
i=1

T∑
t=1

vit

(
x′it(b− β) + aνit − αgit

)
.

Here, we have

E

( 1

NT

N∑
i=1

T∑
t=1

vitαgit

)2
 =

1

(NT )2

N∑
i=1

E

( T∑
t=1

vitαgit

)2


≤ C

(NT )2

N∑
i=1

T∑
t=1

α2
git
≤ C

NT
→ 0,

where the first inequality follows from Assumption 3.1(i) and (2.15) in [40] and the

second from Assumption 3.3(ii). Thus, by Markov’s inequality,

1

NT

N∑
i=1

T∑
t=1

vitαgit = oP (1).

Further, denoting x̄it =
∑M

m=1 ρimα
m
git

, so that xit = x̄it + zit, we have∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

vitx̄
′
it(b− β)

∥∥∥∥∥ ≤ C

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

vitx̄it

∥∥∥∥∥ = oP (1)

uniformly over b ∈ B by the same argument as that we have just used and Assump-

tions 3.3 and 3.8. Moreover,∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

vitz
′
it(b− β)

∥∥∥∥∥ ≤ C

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

vitzit

∥∥∥∥∥ = oP (1)
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uniformly over b ∈ B by Assumptions 3.2(i) and 3.8. In addition,∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

vitaνit

∣∣∣∣∣ =

∣∣∣∣∣ 1

NT

G∑
γ=1

T∑
t=1

aγt
∑
i : νi=γ

vit

∣∣∣∣∣
≤ 1

NT

G∑
γ=1

√√√√ T∑
t=1

a2
γt

√√√√ T∑
t=1

( ∑
i : νi=γ

vit

)2

≤ C

N
√
T

G∑
γ=1

√√√√ T∑
t=1

( ∑
i : νi=γ

vit

)2

≤ C

N
√
T

G∑
γ=1

√√√√ N∑
i,j=1

∣∣∣∣∣
T∑
t=1

vitvjt

∣∣∣∣∣,
where the second line follows from the Cauchy-Schwarz inequality and Assumption

3.8. In turn,

E

[
N∑

i,j=1

∣∣∣∣∣
T∑
t=1

vitvjt

∣∣∣∣∣
]
≤ C(N2

√
T +NT )

by Step 1. Hence, by Markov’s inequality,∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

vitaνit

∣∣∣∣∣ = oP (1)

uniformly over a ∈ AG,T and ν ∈ {1, . . . , G}N since T →∞ as N →∞. Combining

presented bounds gives the asserted claim of this step.

Step 3. Here we show that

Q̄(b, a, ν)− Q̄(β, α, g) ≥ c3‖b− β‖2

for all b ∈ B, a ∈ AG,T , and ν ∈ {1, . . . , G}N with probability 1 − o(1), where

α = {αγt}G,Tγ,t=1. To do so, note that

Q̄(b, a, ν)− Q̄(β, α, g) =
1

NT

N∑
i=1

T∑
t=1

(
x′it(b− β) + aνit − αgit

)2

≥ min
ã∈AG,T

1

NT

N∑
i=1

T∑
t=1

(
x′it(b− β) + ãνit − αgit

)2

≥ 1

NT

N∑
i=1

T∑
t=1

(
(xit − x̄ν,νi,gi,t)′(b− β)

)2

≥ c3‖b− β‖2

for all b ∈ B, a ∈ AG,T , and ν ∈ {1, . . . , G}N with probability 1−o(1) by Assumption

3.7. The asserted claim of this step follows.
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Step 4. Denote

Gγ =
{
i = 1, . . . , N : ĝi = γ

}
, for all γ = 1, . . . , G

and

α̌γt =
1

|Gγ|
∑
i∈Gγ

αgit, for all γ = 1, . . . , G, t = 1, . . . , T.

In this step, we show that

1

NT

N∑
i=1

T∑
t=1

(α̌ĝit − αgit)2 = oP (1). (49)

To do so, note that by (33) in the proof of Theorem 3.2, there exist sequences {λN}N≥1

and {δN}N≥1 of positive numbers such that λN/
√
T → 0 and δN → 0 as N →∞ and

the event

max
1≤i≤N

|Âi − αgi | ≤ λN (50)

holds with probability at least 1−δN (note that the proof of (33) did not use Assump-

tion 3.4, which is not imposed here). We claim that on the event (50), λ̂ ≤ CGλN ,

where CG > 0 is a constant depending only on G. To see why this is so, suppose that

(50) is satisfied and consider the subset A0 of the set {α1, . . . , αG} and a constant

R0 > 0 defined by the following algorithm:

Step 1: set γ = 1, A1 = {α1, . . . , αG}, and R1 = λN ;

Step 2: if {
∪a∈Aγ

(
B(a, 8Rγ + 6λN) \B(a, Rγ)

)}
∩ Aγ = ∅, (51)

then set A0 = Aγ and R0 = Rγ and stop;

Step 3: replace γ by γ + 1 and set Rγ = 9Rγ−1 + 6λN ;

Step 4: let Aγ be the smallest subset of Aγ−1 such that

{α1, . . . , αG} ⊂ ∪a∈AγB(a, Rγ);
11

Step 5: go to step 2.

Observe that on Step 4 of this algorithm, we have |Aγ| ≤ |Aγ−1| − 1. Indeed, if Step

4 is performed for given γ, it follows from Step 2 that there exist a1, a2 ∈ Aγ−1 such

that a2 ∈ B(a1, 8Rγ−1 +6λN), and so B(a2, Rγ−1) ⊂ B(a1, 9Rγ−1 +6λN) = B(a1, Rγ),

letting us drop a2 from Aγ−1 while constructing Aγ and yielding |Aγ| ≤ |Aγ−1|−1. In

turn, the latter implies that the algorithm will stop in a finite number of steps and, in

fact, Step 3 will be performed at most G− 1 times. Hence, R0 satisfies R0 ≤ C̄GλN ,

11If there are several smallest sets, choose one of them at random.
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where C̄G > 0 is a constant depending only on G. In addition,

{α1, . . . , αG} ⊂ ∪a∈A0B(a, R0) (52)

by construction.

Further, since (51) is satisfied with γ = 0 by construction, it follows that

a1, a2 ∈ A0, implies that ‖a2 − a1‖ ≤ R0 or ‖a2 − a1‖ > 8R0 + 6λN . (53)

This allows us to partition A0 into equivalence subclasses as follows. Say that a1 ∼ a2

if ‖a2 − a1‖ ≤ R0. Then for any a1, a2, a3 ∈ A0, we have that a1 ∼ a2 and a2 ∼ a3

imply a1 ∼ a3, meaning that the relation ∼ is actually an equivalence relation. Thus,

we can partition A0 into k ≤ G equivalence subclasses A0,1, . . . ,A0,k such that for

any a1, a2 ∈ A0 we have a1 ∼ a2 if and only if a1 and a2 belong to the same subclass.

Then it follows from (50), (52), and (53) that for each i = 1, . . . , N , there exists a

unique γ(i) ∈ {1, . . . , k} such that ‖Âi − a‖ ≤ R0 + λN for some a ∈ A0,γ(i). Thus,

for any i1, i2 = 1, . . . , N , we have that ‖Âi1 − Âi2‖ ≤ 3R0 + 2λN if γ(i1) = γ(i2) and

that ‖Âi1 − Âi2‖ > 6R0 + 4λN if γ(i1) 6= γ(i2). In turn, the latter implies that if

we run the Classification Algorithm from Section 2 with λ = 3R0 + 2λN , we obtain

m(λ) = k groups A1, . . . ,Ak such that any two units i1, i2 = 1, . . . , N are classified

to the same group if and only if γ(i1) = γ(i2). To see why this is so, suppose that

for some γ = 1, . . . , k, we have two units i1, i2 that are classified to the same group

Aγ but are such that γ(i1) 6= γ(i2). For this γ, let i1 → i2 → · · · → i|Aγ | be

the order in which units are added to Aγ by the Classification Algorithm, and let

r be the smallest number in the set {2, . . . , |Aγ|} such that γ(ir) 6= γ(ir−1). Then

‖Âir − Âi1‖ > 6R0 + 4λN and ‖Âil − Âi1‖ ≤ 3R0 + 2λN for all l = 1, . . . , r − 1. This

implies that∥∥∥∥∥Âir − 1

r − 1

r−1∑
l=1

Âil

∥∥∥∥∥ > (6R0 + 4λN)− (3R0 + 2λN) = 3R0 + 2λN ,

yielding a contradiction. Now suppose that there are two units i1, i2 that are classified

to different groups Aγ1 and Aγ2 but are such that γ(i1) = γ(i2). For these γ1 and γ2,

let i1 → i2 → · · · → i|Aγ1 |+|Aγ2 | be the order in which units are added to Aγ1 and Aγ2
by the Classification Algorithm. Assume, without loss of generality, that the first unit,

i1, is added to Aγ1 , and let r be the smallest number in the set {2, . . . , |Aγ1|+ |Aγ2 |}
such that the unit ir is added to the set Aγ2 . Then ‖Âir − Âil‖ ≤ 3R0 + 2λN for all
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l = 1, . . . , r − 1, and so ∥∥∥∥∥Âir − 1

r − 1

r−1∑
l=1

Âil

∥∥∥∥∥ ≤ 3R0 + 2λN ,

yielding a contradiction, and finishing the proof of our claim that the Classification

Algorithm from Section 2 with λ = 3R0 + 2λN yields m(λ) = k groups A1, . . . ,Ak
such that any two units i1, i2 = 1, . . . , N are classified to the same group if and

only if γ(i1) = γ(i2). The latter than implies that m(3R0 + 2λN) = k ≤ G, and so

λ̂ ≤ 3R0 + 2λN ≤ CGλN for some CG > 0 depending only on G, as desired.

Next, we claim that (50) implies even more: it implies that there exists a constant

C̃G > 0 depending only on G such that for any γ = 1, . . . , G and any i1, i2 ∈ Gγ, we

have

‖αgi2 − αgi1‖ ≤ C̃GλN . (54)

To see why this is so, suppose again that (50) is satisfied. As we have proven above,

it is then not possible that the Classification Algorithm with λ = λ̂ ≤ 3R0 + 2λN
generates groups A1, . . . ,Am(λ) such that there are two units i1, i2 the are classified

to the same group Aγ but are such that γ(i1) 6= γ(i2). In turn, for any i1, i2 such that

γ(i1) = γ(i2), we have ‖Âi2 − Âi1‖ ≤ 3R0 + 2λN , and so ‖αgi2 −αgi1‖ ≤ 3R0 + 4λN ≤
C̃GλN for some C̃G > 0, as desired.

We are now ready to finish this step. On (50), by the triangle inequality and (54),

we have(
1

T

T∑
t=1

(α̌ĝit − αgit)2

)1/2

≤ 1

|Gĝi |
∑
j∈Gĝi

(
1

T

T∑
t=1

(αgjt − αgit)2

)1/2

=
1√
T |Gĝi |

∑
j∈Gĝi

‖αgj − αgi‖ ≤
1√
T |Gĝi |

∑
j∈Gĝi

C̃GλN = o(1)

uniformly over i = 1, . . . , N . This gives the asserted claim of this step because (50)

holds with probability approaching one.

Step 5. Here we finish the proof. We have

Q̄(β̂, α̂, ĝ) = Q(β̂, α̂, ĝ) + oP (1)

≤ Q(β, α̌, ĝ) + oP (1) = Q̄(β, α̌, ĝ) + oP (1),

where the equalities follow from Step 2 and the inequality from (12). Thus, for some

constant c > 0,

c‖β̂ − β‖2 ≤ Q̄(β̂, α̂, ĝ)− Q̄(β, α, g)
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= Q̄(β̂, α̂, ĝ)− Q̄(β, α̌, ĝ) + Q̄(β, α̌, ĝ)− Q̄(β, α, g) ≤ oP (1)

by Steps 3 and 4. The asserted claim of the theorem follows. �

Proof of Theorem 3.4. By Theorem 3.2, β̂ = β̂0 with probability 1 − o(1) for β̂0

appearing in (13). In turn, by the Frisch-Waugh-Lovell theorem,

β̂0 =

(
N∑
i=1

T∑
t=1

x̌itx̌
′
it

)−1( N∑
i=1

T∑
t=1

x̌ityit

)
,

and so

√
NT (β̂0 − β) =

(
1

NT

N∑
i=1

T∑
t=1

x̌itx̌
′
it

)−1(
1√
NT

N∑
i=1

T∑
t=1

x̌itvit

)
→D N(Σ̌−1ΩΣ̌−1)

by Slutsky’s lemma and Assumption 3.9. The asserted claim follows. �

Proof of Theorem 4.1. The asserted claim follows from the same arguments as those

in the proofs of Theorems 3.1–3.4 as long as we can show that there exists a constant

C > 0 such that ‖ρ̊im‖ ∨ |α̊mγt| ≤ C for all i = 1, . . . , N , γ = 1, . . . , G, t = 1, . . . , T ,

and m = 1, . . . , 2M , which would correspond to Assumption 3.3 in the context of

dynamic model. To do so, observe that

max
1≤m≤2M

‖ρ̊im‖ ≤ max
1≤m≤M

(‖ρim‖+ |ρyim|)

≤ max
1≤m≤M

(‖ρim‖+ 1 + |ρ′imβ|) ≤ 1 + C3(1 + ‖β‖)

for all i = 1, . . . , N by Assumption 4.5. Also,

max
1≤m≤2M

|α̊mγt| ≤ max
1≤m≤M

(
|αmγt|+

∣∣∣∣∣
t−2∑
r=0

θrαmγt−r−1

∣∣∣∣∣
)
≤ C4

(
1 +

1

1− θ

)
by Assumption 4.6. Therefore, the asserted claim follows if we set

C = 1 + C3(1 + ‖β‖) + C4

(
1 +

1

1− θ

)
.

This completes the proof of the theorem. �

Proof of Theorem 4.2. We first prove (19). By construction of Σ̂ and Ŝ, it suffices to

show that

λb1 + · · ·+ λb2GM+2 = b′Σb+ S ′b+ L+OP

(
1

T ∧N
+

√
log d

NT

)
uniformly over b ∈ B = {0d} ∪ {ek : k = 1, . . . , d} ∪ {ek + el : k, l = 1, . . . , d}. To do

so, we proceed by appropriately modifying the proof of Theorem 3.1. Throughout,
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we use the same notations as in the proof of Theorem 3.1. We have

tr(R) = − 2

NT

N∑
i=1

T∑
t=1

{
(β − b)′zitzit(β − b) + v2

it + 2vitz
′
it(β − b)

}
= − 2

NT

N∑
i=1

T∑
t=1

{
(β − b)′zitzit(β − b) + v2

it

}
+OP

(√
log d

NT

)
uniformly over b ∈ B since∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

vitz
′
it(β − b)

∣∣∣∣∣ ≤
∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

vitzit

∥∥∥∥∥
∞

‖β − b‖1 ≤ (Cβ + 2)OP

(√
log d

NT

)
uniformly over b ∈ B. Thus,

tr(A0) =
2

NT

N∑
i=1

T∑
t=1

{
(β − b)′zitzit(β − b) + v2

it

}
+OP

(√
log d

NT

)

= b′Σb+ S ′b+ L+OP

(√
log d

NT

)
uniformly over b ∈ B since∣∣∣∣∣ 2

NT

N∑
i=1

T∑
t=1

(β − b)′zitz′it(β − b)− (β − b)′Σ(β − b)

∣∣∣∣∣
≤

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

zitz
′
it − Σ

∥∥∥∥∥
∞

‖β − b‖2
1 ≤ (Cβ + 2)2OP

(√
log d

NT

)
uniformly over b ∈ B. Also,∥∥∥∥∥ 1

NT

T∑
t=1

VtV
′
t

∥∥∥∥∥ = OP

(
1

T ∧N

)
as in the proof of Theorem 3.1. Further, to prove that∥∥∥∥∥ 1

NT

T∑
t=1

ZbtZ
′
bt

∥∥∥∥∥ = OP

(
1

T ∧N

)
(55)

uniformly over b ∈ B, where we denoted Zbt = (z′1t(β − b), . . . , z′Nt(β − b))′, we have

‖u′zi(β−b)‖ψ2 ≤ ‖u′ziβ‖ψ2 +‖u′zib‖ψ2 ≤ Cz +2C2 uniformly over u = (u1, . . . , uT )′ ∈
ST and b ∈ B by our assumptions, where we denoted zi = (zi1, . . . , ziT )′ for all
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i = 1, . . . , N . Thus, denoting Zb = (z1(β − b), . . . , zN(β − b))′, we have

P

(
max
u∈N

∣∣∣∣u′(Z ′bZbN
− E

[
Z ′bZb
N

])
u

∣∣∣∣ ≥ ε

)
≤ 2× 9T × exp(−c(ε ∧ ε2)N)

for all b ∈ B, where N is the same as in the proof of Theorem 3.1 and c is a constant

depending only on Cz and C2. Hence, by the union bound,

P

(
max
b∈B

max
u∈N

∣∣∣∣u′(Z ′bZbN
− E

[
Z ′bZb
N

])
u

∣∣∣∣ ≥ ε

)
≤ (1+d+d2)×2×9T×exp(−c(ε∧ε2)N).

Setting here ε = c−1(log 9)(T/N) + 1, we obtain

P

(
max
b∈B

max
u∈N

∣∣∣∣u′(Z ′bZbN
− E

[
Z ′bZb
N

])
u

∣∣∣∣ ≥ c−1(log 9)(T/N) + 1

)
≤ 2(1 + d+ d2) exp(−cN)→ 0

because log d = o(N). We thus obtain (55) by the same arguments as those in the

proof of Theorem 3.1. Repeating the remaining arguments of the proof of Theorem

3.1, we obtain (19).

Next, we prove that (20) and (21) imply (22). To do so, we assume for the rest of

the proof that both (20) and (21) are satisfied. Then, by the definition of β̂λ,

β̂′λΣ̂β̂λ + Ŝ ′β̂λ + λ‖β̂λ‖1 ≤ β′Σ̂β + Ŝ ′β + λ‖β‖1.

Also,

(β̂λ − β)′Σ̂(β̂λ − β) = β̂′λΣ̂β̂λ − β′Σ̂β + 2(β − β̂λ)′Σ̂β.
Taking the sum of these two displays, we obtain

(β̂λ − β)′Σ̂(β̂λ − β) = (Ŝ + 2Σ̂β)′(β − β̂λ) + λ‖β‖1 − λ‖β̂λ‖1

≤ ‖Ŝ + 2Σ̂β‖∞‖β̂λ − β‖1 + λ‖β‖1 − λ‖β̂λ‖1

≤
(
‖Ŝ − S‖∞ + 2Cβ‖Σ̂− Σ‖∞

)
‖β̂λ − β‖1 + λ‖β‖1 − λ‖β̂λ‖1,

where the third line follows by recalling that S+ 2Σβ = 0 and ‖β‖1 ≤ Cβ. Therefore,

by (20), we have

(β̂λ − β)′Σ̂(β̂λ − β) ≤ (λ/cλ)‖β̂λ − β‖1 + λ‖β‖1 − λ‖β̂λ‖1. (56)

Further, denote δ = β̂λ − β, T = {k = 1, . . . , d : βk 6= 0}, and T c = {1, . . . , d} \ T .

Also, let δT = (δT 1, . . . , δT d)
′ be a d × 1 vector such that δT k = δk1{k ∈ T } and,

similarly, let δT c = (δT c1, . . . , δT cd)
′ be a d× 1 vector such that δT ck = δk1{k ∈ T c}.

Then, given that (β̂λ − β)′Σ̂(β̂λ − β) ≥ 0, it follows from (56) that

0 ≤ (1/cλ)‖β̂λ − β‖1 + ‖β‖1 − ‖β̂λ‖1
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≤ (1/cλ)(‖δT ‖1 + ‖δT c‖1) + ‖δT ‖1 − ‖δT c‖1,

where the second inequality follows from observing that βk = βk1{k ∈ T } for all

k = 1, . . . , d. Therefore, (1−1/cλ)‖δT c‖1 ≤ (1+1/cλ)‖δT ‖1, and so ‖δT c‖1 ≤ c̄λ‖δT ‖1.

Thus,

δ′Σ̂δ = δ′Σδ − δ′(Σ− Σ̂)δ ≥ cΣ‖δ‖2 − ‖δ‖2
1‖Σ̂− Σ‖∞

≥ cΣ‖δ‖2 − (1 + c̄λ)
2‖δT ‖2

1‖Σ̂− Σ‖∞
≥ cΣ‖δ‖2 − s(1 + c̄λ)

2‖δ‖2‖Σ̂− Σ‖∞ ≥ cΣ‖δ‖2/2

by (21). Substituting this bound into (56), we obtain

cΣ‖δ‖2/2 ≤ λ(1 + 1/cλ)‖δT ‖1 ≤
√
sλ(1 + 1/cλ)‖δ‖.

Rearranging this bound gives gives the second inequality in (22). To obtain the first

inequality in (22), observe that

‖δ‖1 = ‖δT ‖1 + ‖δT c‖1 ≤ (1 + c̄λ)‖δT ‖1 ≤
√
s(1 + c̄λ)‖δ‖.

This completes the proof of the theorem. �

Proof of Theorem 4.3. The proof is closely related to that of Theorem 3.1, with the

main difference is that we now have

fit = (κi + ωi(β − b))′φt, for all i = 1, . . . , N, t = 1, . . . , T.

This difference in turn requires us to change the calculation of the bound on the

number of non-zero eigenvalues of the matrix A0. Recalling that Ft = (f1t, . . . , fNt)
′

for all t = 1, . . . , T , we now have

T∑
t=1

Ft(Ft + Zt + Vt)
′ =

T∑
t=1

Kφt(Ft + Zt + Vt)
′ = K

T∑
t=1

φt(Ft + Zt + Vt)
′,

where K = (κ1 + ω1(β − b), . . . , κN + ωN(β − b))′ and Zt and Vt are the same as in

the proof of Theorem 3.1. Thus, given that K is an N × J matrix, it follows that

the rank of the matrix
∑T

t=1 Ft(Ft +Zt + Vt)
′ is at most J . Similarly, the rank of the

matrix
∑T

t=1(Zt + Vt)F
′
t is also at most J , as the column rank coincides with the row

rank. We have thus replaced GM in the proof of Theorem 3.1 by J . The rest of the

proof is the same as that of Theorem 3.1. �
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Appendix C. Randomized Algorithm for Calculating Eigenvalues of

Large Matrices

To calculate the spectral estimator β̃ in Section 2, we had to calculate 2GM + 2

largest in absolute value eigenvalues of the N × N matrix Ab. When N is large,

calculating these eigenvalues exactly may be difficult. Fortunately, there exists a

class of randomized algorithms that allow to calculate these eigenvalues approximately

with minimal efforts. In this section, we describe one such algorithm. Our discussion

here mostly follows [22], where an interested reader can find several other related

algorithms.

For brevity of notation, suppose that we have an N ×N symmetric matrix A and

we would like to calculate its k largest in absolute value eigenvalues, λ(1), . . . , λ(k),

ordered so that |λ(1)| ≥ · · · ≥ |λ(k)|. Consider the following algorithm:

Randomized Algorithm for Calculating Eigenvalues.

Step 1: choose an oversampling parameter p > 0, e.g. p = 5 or 10;

Step 2: set a multiplication parameter q = [logN ];

Step 3: draw an N × (k + p) random matrix Ω = {Ωij}N,k+p
i,j=1

iid∼ N(0, 1);

Step 4: compute the N × (k + p) matrix Y = Aq+1Ω;

Step 5: compute QR decomposition Y = QR with Q having orthonormal columns;

Step 6: compute the (k + p)×N matrix B = Q′A;

Step 7: compute eigenvectors s̃1, . . . , s̃k+p of the (k + p)× (k + p) matrix BB′;

Step 8: compute N × 1 vectors sj = B′s̃j for j = 1, . . . , k + p;

Step 9: compute λ̂j = sign(s′jAsj)(‖B′Bsj‖/‖sj‖)1/2 for j = 1, . . . , k + p;

Step 10: order values λ̂1, . . . , λ̂k+p into λ̂(1), . . . , λ̂(k+p) so that |λ̂(1)| ≥ · · · ≥ |λ̂(k+p)|;
Step 11: return λ̂(1), . . . , λ̂(k).

The result of this algorithm is k values λ̂(1), . . . , λ̂(k). These are estimators of k

largest in absolute value eigenvalues λ(1), . . . , λ(k) of the matrix A. As follows from

results in [22], these estimators are consistent as N → ∞ under conditions to be

discussed below even though they are based on a realization of the random matrix Ω.

Specifically, Corollary 10.10 in [22] shows that

E[‖A−QQ′A‖] ≤

(
1 +

√
k

p− 1
+
e
√
N(k + p)

p

) 1
q+p+1

|λ(k+1)|,

where λ(k+1) is the (k + 1)th largest in absolute value eigenvalue of A. Therefore, by

Markov’s inequality,

‖A−QQ′A‖ = OP (|λ(k+1)|). (57)
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In turn, by the triangle inequality, the fact that Q′Q is the identity matrix, and the

definition B = Q′A,

‖A′A−B′B‖ = ‖A′A− A′QQ′QQ′A‖

≤ ‖A‖‖A−QQ′A‖+ ‖QQ′A‖‖A−QQ′A‖ ≤ 2‖A‖‖A−QQ′A‖

Thus, given that λ̂2
(1), . . . , λ̂

2
(k) are k largest eigenvalues of the matrix B′B by construc-

tion (see Steps 8,9, and 10 in the algorithm above), it follows from Weyl’s inequality

that λ̂2
(1), . . . , λ̂

2
(k) are consistent estimators of λ2

(1), . . . , λ
2
(k) as long as ‖A‖ = OP (1)

and |λ(k+1)| = oP (1) as N → ∞. Hence, λ̂(j) → λ(j) for all j = 1, . . . , k under the

same conditions by the Davis-Kahane theorem.

The described algorithm can be applied in Section 2 to calculate the spectral esti-

mator β̃ with A = Ab and k = 2GM + 2. In this case, the aforementioned conditions

‖A‖ = OP (1) and |λ(k+1)| = oP (1) are satisfied under Assumptions 3.1 and 3.2 by the

proof of Theorem 3.1.

Appendix D. Relation between Assumptions 3.1–3.12 and Assumptions

4.1–4.12

In this section, we explain what conditions one has to impose on top of Assumptions

3.1–3.12 to obtain Assumptions 4.1–4.12. To start with, note that Assumptions 4.1

and 4.5–4.9 coincide with Assumptions 3.1 and 3.5–3.9. Also, Assumption 4.11 follows

immediately from Assumption 3.11 if we define B̊ = [−1, 1] × B, as proposed in the

main text. In addition, Assumptions 3.10 and 3.12 depend on xit but their versions

corresponding to the dynamic model, i.e. Assumptions 4.10 and 4.12, are discussed

in [11], where some interpretations as well as low-level conditions are provided. We

thus only need to discuss Assumptions 4.2, 4.3, and 4.4.

To this end, suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 are satisfied and, in

addition, suppose that the noise variables vit satisfy (16). Moreover, suppose that

there exists a constant Cy > 0 such that ‖yi0‖ψ2 ≤ Cy for all i = 1, . . . , N . Then for

all u = (u1, . . . , uT )′ ∈ ST , we have∥∥∥∥∥
T∑
t=1

ut

t−2∑
r=0

θrvit−r−1

∥∥∥∥∥
ψ2

=

∥∥∥∥∥
T−1∑
t=1

vit

T−1∑
r=t

ur+1θ
r−t

∥∥∥∥∥
ψ2

≤ C1

1− θ

by Assumption 3.1(i) and Lemma A.4 and, similarly,∥∥∥∥∥
T∑
t=1

ut

t−2∑
r=0

θrz′it−r−1β

∥∥∥∥∥
ψ2

=

∥∥∥∥∥
T−1∑
t=1

z′itβ

T−1∑
r=t

ur+1θ
r−t

∥∥∥∥∥
ψ2

≤ dzC2‖β‖∞
1− θ
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by Assumption 3.1(ii) and Lemma A.4, where dz is the dimension of zit. Also,∥∥∥∥∥
T∑
t=1

utθ
t−1yi0

∥∥∥∥∥
ψ2

≤ ‖yi0‖ψ2

1− θ
≤ Cy

1− θ
.

Hence, by the triangle inequality,∥∥∥∥∥
T∑
t=1

utz
y
it

∥∥∥∥∥
ψ2

≤ Cy + C1 + dzC2‖β‖∞
1− θ

,

and so Assumption 4.2 is satisfied.

Next,

E

( N∑
i=1

T∑
t=1

vitz
y
it

)2
 =

N∑
i=1

T∑
t=1

E
[
(vitz

y
it)

2
]
≤

N∑
i=1

T∑
t=1

√
E[v4

it]E[(zyit)
4] ≤ CNT

for some constant C > 0 by (16), the triangle inequality, Assumption 3.1, the fact

that ‖yi0‖ψ2 ≤ Cy for all i = 1, . . . , N , and (2.15) in [40]. Thus, Assumption 4.3

is satisfied as well. Finally, regarding Assumption 4.4, observe that the convergence

(NT )−1
∑N

i=1

∑T
t=1 z̊itz̊

′
it = Σ̊ +OP (1/

√
NT ) holds by a law of large numbers as long

as the dependence of (zit, vit)’s across t is not too strong. Also, by Assumption 3.4,

the matrix Σ̊ has at most one zero eigenvalue, whereas Assumption 4.4 requires that

Σ̊ has no zero eigenvalues, so that Σ̊ is invertible. Although it seems difficult to

provide low-level conditions implying invertibility of Σ̊, as it depends on the auto-

covariance structure of the random processes (z′it, vit)
′, t = 1, . . . , T , we note that Σ̊

can be consistently estimated (as it is done in the process of constructing the spectral

estimator), and so the invertibility condition is testable.

Appendix E. Motivating Example

To motivate equation (3), we provide a specific example in the context of agricul-

tural production and environmental economics. Suppose a production process has an

input that is potentially polluting, x, such as a pesticide. In addition, suppose we

want to assess the incidence of the use of this substance in the environment’s pollution,

such as water or soil. See, for example, [31]. The incidence of polluting substances

on the environment depends on the intensity of use, but also on the characteristics of

the environment, such as soil permeability, rainfall, etc.

Suppose we have the following model to quantify the effect of the use of input x

on some measure of pollution:

yit = xitβ + αgit + εit
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where yit is a measure of pollution, xit is the quantity of pesticide, αgit are unobserved

characteristics of the region, gi, such as soil permeability, rain incidence, and other

characteristics that influence the presence of chemicals in the environment, and ε is

an unobserved shock. The farmer chooses to purchase pesticide in the local market

as to maximize expected profits:

xit = arg max
x

E [πi(x, αgit, zit, νit)|αgi1, . . . αgiT , zi1, . . . , ziT ]− C(x, pxgit)/pgit (58)

where πi(x, αgt, zit, εit) is the production function of farmer i, and C(x, pxgit) is the cost

associated to purchase x when the price of the input is pxgit, and pgit is the price of the

produced good in the local market of farmer i. The production process depends on

the use of observable inputs, such as x, but also soil and rain characteristics specific

to the region, that affect both the prevalence of pesticides in the environment but also

the agricultural process, and zit, a variable that affects production, such as quality

of inputs, observed to the farmer but not to the econometrician, which does not

affect the environment. Finally ν is an idiosyncratic shock in the production process,

unforeseeable by both the farmer and the econometrician.

Assume πi(x, αgit, zit, νit) = π̃i(x, αgit, zit)+νit, and E [νit|αgi1, . . . αgiT , zi1, . . . , ziT ] =

0. In addition, let π̃′i(x, αgit, zit) = βix+αgit + zit, and C ′(x, pxgit) = pxgit be the partial

derivative with respect to the first argument, respectively for π̃i and C. The F.O.C.

in (58) implies that xit is defined as:

βixit + αgt + zit −
pxgt
pgt

= 0,

which implies: xit = 1
βi

(
pxgt
pgt
− αgt

)
− 1

βi
zit, which takes the form of equation (3) with

M = 2.



5
8

C
H
E
T
V
E
R
IK

O
V

A
N
D

M
A
N
R
E
S
A

Table 1. Mean Absolute Error (MAE) and misclassification results: σ2 = 1, M = 1

G = 2

T N
Mean Absolute Error Misclassification

S P-S LS Pen NN I-GFE GFE Oracle S GFE

20
100 0.035 0.018 0.059 0.151 0.016 0.034 0.014 0.009 0.058
200 0.024 0.009 0.019 0.150 0.009 0.009 0.008 0.002 0.003
400 0.016 0.007 0.010 0.151 0.007 0.008 0.006 0.003 0.006

50
100 0.024 0.007 0.012 0.149 0.007 0.007 0.007 0.000 0.000
200 0.015 0.006 0.008 0.150 0.006 0.006 0.006 0.000 0.000
400 0.010 0.004 0.006 0.149 0.004 0.004 0.004 0.000 0.000

100
100 0.014 0.006 0.010 0.153 0.006 0.006 0.006 0.000 0.000
200 0.008 0.004 0.006 0.151 0.004 0.004 0.004 0.000 0.000
400 0.004 0.002 0.004 0.152 0.002 0.002 0.002 0.000 0.000

G = 7

T N
Mean Absolute Error Misclassification

S P-S LS Pen NN I-GFE GFE Oracle S GFE

20
100 0.116 0.109 0.144 0.151 0.023 0.144 0.011 0.346 0.705
200 0.057 0.085 0.149 0.152 0.029 0.149 0.010 0.234 0.744
400 0.025 0.062 0.142 0.148 0.055 0.147 0.006 0.139 0.764

50
100 0.034 0.014 0.142 0.147 0.007 0.147 0.007 0.006 0.651
200 0.015 0.008 0.143 0.148 0.006 0.137 0.006 0.001 0.645
400 0.009 0.004 0.062 0.150 0.004 0.137 0.004 0.000 0.622

100
100 0.022 0.006 0.148 0.151 0.006 0.110 0.006 0.000 0.364
200 0.009 0.003 0.083 0.152 0.003 0.112 0.003 0.000 0.289
400 0.006 0.003 0.006 0.150 0.003 0.078 0.003 0.000 0.203
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Table 2. Mean Absolute Error (MAE) and misclassification results: σ2 = 4, M = 1

G = 2

T N
Mean Absolute Error Misclassification

S P-S LS Pen NN I-GFE GFE Oracle S GFE

20
100 0.026 0.005 0.018 0.153 0.005 0.005 0.005 0.000 0.000
200 0.015 0.003 0.014 0.159 0.003 0.003 0.003 0.000 0.000
400 0.009 0.002 0.009 0.157 0.002 0.002 0.002 0.000 0.000

50
100 0.015 0.003 0.014 0.156 0.003 0.003 0.003 0.000 0.000
200 0.009 0.002 0.009 0.157 0.002 0.002 0.002 0.000 0.000
400 0.007 0.001 0.007 0.144 0.001 0.001 0.001 0.000 0.000

100
100 0.010 0.002 0.007 0.140 0.002 0.002 0.002 0.000 0.000
200 0.007 0.001 0.006 0.063 0.001 0.001 0.001 0.000 0.000
400 0.004 0.001 0.005 0.011 0.001 0.001 0.001 0.000 0.000

G = 7

T N
Mean Absolute Error Misclassification

S P-S LS Pen NN I-GFE GFE Oracle S GFE

20
100 0.055 0.005 0.099 0.155 0.004 0.055 0.004 0.000 0.154
200 0.029 0.003 0.035 0.158 0.003 0.073 0.003 0.000 0.216
400 0.016 0.002 0.013 0.158 0.002 0.060 0.002 0.000 0.195

50
100 0.026 0.003 0.014 0.157 0.003 0.049 0.003 0.000 0.135
200 0.012 0.002 0.009 0.157 0.002 0.048 0.002 0.000 0.138
400 0.007 0.002 0.006 0.157 0.002 0.071 0.002 0.000 0.219

100
100 0.023 0.002 0.011 0.156 0.002 0.048 0.002 0.000 0.122
200 0.009 0.001 0.007 0.161 0.001 0.062 0.001 0.000 0.165
400 0.005 0.001 0.004 0.158 0.001 0.036 0.001 0.000 0.101
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Table 3. Mean Absolute Error (MAE) and misclassification results: σ2 = 1, M = 2

G = 2

T N
Mean Absolute Error Misclassification

S P-S LS Pen NN I-GFE GFE Oracle S GFE

20
100 0.048 0.019 0.016 0.171 0.015 0.016 0.014 0.015 0.004
200 0.028 0.009 0.011 0.169 0.008 0.008 0.008 0.004 0.005
400 0.019 0.007 0.008 0.169 0.007 0.007 0.006 0.003 0.003

50
100 0.022 0.008 0.010 0.168 0.008 0.008 0.008 0.000 0.000
200 0.016 0.007 0.007 0.168 0.007 0.007 0.007 0.000 0.000
400 0.009 0.003 0.006 0.168 0.003 0.003 0.003 0.000 0.000

100
100 0.013 0.005 0.008 0.168 0.005 0.005 0.005 0.000 0.000
200 0.011 0.004 0.005 0.169 0.004 0.004 0.004 0.000 0.000
400 0.006 0.003 0.004 0.167 0.003 0.003 0.003 0.000 0.000

G = 7

T N
Mean Absolute Error Misclassification

S P-S LS Pen NN I-GFE GFE Oracle S GFE

20
100 0.104 0.069 0.146 0.167 0.015 0.166 0.012 0.169 0.639
200 0.075 0.057 0.108 0.169 0.012 0.159 0.009 0.144 0.641
400 0.038 0.046 0.040 0.170 0.014 0.153 0.006 0.103 0.608

50
100 0.050 0.013 0.094 0.169 0.009 0.081 0.009 0.004 0.204
200 0.024 0.006 0.011 0.168 0.005 0.014 0.005 0.002 0.019
400 0.014 0.004 0.006 0.167 0.004 0.004 0.004 0.000 0.000

100
100 0.025 0.006 0.011 0.166 0.006 0.017 0.006 0.000 0.019
200 0.012 0.004 0.006 0.168 0.004 0.004 0.004 0.000 0.000
400 0.007 0.003 0.003 0.168 0.003 0.003 0.003 0.000 0.000
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Table 4. Mean Absolute Error (MAE) and misclassification results: σ2 = 4, M = 2

G = 2

T N
Mean Absolute Error Misclassification

S P-S LS Pen NN I-GFE GFE Oracle S GFE

20
100 0.036 0.005 0.006 0.167 0.005 0.005 0.005 0.000 0.000
200 0.017 0.003 0.004 0.169 0.003 0.003 0.003 0.000 0.000
400 0.012 0.003 0.004 0.167 0.003 0.003 0.003 0.000 0.000

50
100 0.016 0.003 0.004 0.122 0.003 0.003 0.003 0.000 0.000
200 0.012 0.002 0.003 0.087 0.002 0.002 0.002 0.000 0.000
400 0.006 0.001 0.002 0.038 0.001 0.001 0.001 0.000 0.000

100
100 0.009 0.002 0.003 0.030 0.002 0.002 0.002 0.000 0.000
200 0.007 0.002 0.002 0.009 0.002 0.002 0.002 0.000 0.000
400 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000

G = 7

T N
Mean Absolute Error Misclassification

S P-S LS Pen NN I-GFE GFE Oracle S GFE

20
100 0.103 0.006 0.007 0.164 0.004 0.004 0.004 0.003 0.000
200 0.063 0.003 0.005 0.169 0.003 0.003 0.003 0.000 0.000
400 0.028 0.002 0.004 0.169 0.002 0.002 0.002 0.000 0.000

50
100 0.036 0.003 0.005 0.171 0.003 0.003 0.003 0.000 0.000
200 0.015 0.002 0.003 0.169 0.002 0.002 0.002 0.000 0.000
400 0.011 0.001 0.002 0.168 0.001 0.001 0.001 0.000 0.000

100
100 0.021 0.002 0.003 0.173 0.002 0.002 0.002 0.000 0.000
200 0.010 0.001 0.002 0.167 0.001 0.001 0.001 0.000 0.000
400 0.005 0.001 0.001 0.166 0.001 0.001 0.001 0.000 0.000
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