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Abstract

When fitting a particular Economic model on a sample of data, the model

may turn out to be heavily misspecified for some observations. This can happen

because of unmodelled idiosyncratic events, such as an abrupt but short-lived

change in policy. These outliers can significantly alter estimates and inferences.

A robust estimation is desirable to limit their influence. For skewed data, this

induces another bias which can also invalidate the estimation and inferences. This

paper proposes a robust GMM estimator with a simple bias correction that does

not degrade robustness significantly. The paper provides finite-sample robustness

bounds, and asymptotic uniform equivalence with an oracle that discards all

outliers. Consistency and asymptotic normality ensue from that result. An

application to the “Price-Puzzle,” which finds inflation increases when monetary

policy tightens, illustrates the concerns and the method. The proposed estimator

finds the intuitive result: tighter monetary policy leads to a decline in inflation.
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1 Introduction

Empirical data is routinely used to fit and test Economic models or predictions. Although the

model may explain much of the variation in the data, it may also turn out to be particularly

misspecified for some observations. This can result from sudden, yet temporary, changes

in policy. To illustrate: monetary policy is often measured via changes in interest rates.

Between 1979 and 1982, the Federal Reserve no longer fixed the Federal Funds Rate as

a policy tool, targetting monetary aggregates instead (Coibion, 2012, p3). Sharp changes

in interest rates during that period generate significant identifying power on the effects of

monetary policy. Yet, misspecification threatens the validity of the resulting estimates and

inferences. Other factors that can cause occasional misspecification include imperfect data

matching, or some rare - but significant - prediction errors when generating regressors.

A robust estimator is desirable in these scenarios: being less sensitive to influential

outliers. However, robust estimates can be biased and inconsistent when the underlying data

is asymmetric. To illustrate: the sample median is more robust than the mean; however, it

estimates a different quantity when the data is skewed. This is relevant as many economic

variables – income, prices, and quantity, to name a few – tend to be skewed. When symmetric

data is contaminated asymmetrically, both the mean and median are biased. Further, in a

linear regression context, Hamilton (1992) stresses that robust M-estimators are “designed

for protection against wild errors or y-outliers. x-outliers are its Achilles’ heel.” Leverage

characterizes x-outliers, which is bounded for ordinary least-squares. In the example above:

sharp changes in interest rates imply high leverage around 1979-1982. The issue is even more

pronounced in non-linear regressions where leverage is not necessarily bounded (St Laurent

and Cook, 1992). This superleverage can further exacerbate the influence of outliers.

This paper proposes a robust Generalized Method of Moments (GMM) estimator with a

simple bias-correction step. Building on Ronchetti and Trojani (2001), the sample moments

are estimated robustly; here using a penalized student log-likelihood criterion. The particu-

lar choice of criterion makes the asymptotic asymmetry bias tractable. A linear combination,

known as Richardson extrapolation, of two robust moment estimates is asymptotically un-

biased. The bias, which depends on higher-order moments, is not estimated. The correction

does not degrade robustness significantly. Also, in linear regressions, robust GMM estimates

are robust against x-outlier, unlike M-estimates which only screen for large residuals. Given

these moment estimates, the model is estimated in the same fashion as a standard GMM.

Finite and large sample results describe the properties of the method against adversarial

contamination. First, uniform finite-sample exponential bounds, for cross-sections and mix-
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ing time-series, measure how robust moment estimates deviate from their biased target. This

provides a worst-case global robustness guarantee for a given level of data contamination.

The combination of the student likelihood, which is neither convex nor bounded but has a

bounded influence function, with the particular choice of penalty is key for this result.

The large-sample results require the number of outliers to increase more slowly than the

sample size. Their influence can grow rapidly: non-robust estimates may be inconsistent,

or diverge. This captures the finite-sample setting where a few observations overwhelm the

estimation. The bias-corrected robust moment and parameter estimates are shown to be first-

order equivalent to an oracle which discards all outliers. Asymptotic normality follows from

standard regularity conditions on the oracle. For linear models, the robust GMM estimates

can be expressed as weighted least-squares or weighted two-stage least-squares. The weights

are easy to compute and report, highlighting which observations were downweighted in the

process. This should reduce concerns about black-box results.

Simulations illustrate the small sample properties of the proposed estimator in the pres-

ence of x-outliers, which have high leverage. OLS is very sensitive. A robust M-estimator

packaged in R is biased and sensitive. Without correction, the procedure is more robust

but biased. Bias correction reduces estimation error and improves coverage of t-tests. As

the proportion of outliers increases, its performance degrades but remains better than the

benchmarks. Undersmoothing, sometimes suggested in the literature, is also less robust than

bias correction. Three empirical applications illustrate the relevance of the procedure.

The first estimates the effect of a monetary policy shock on inflation using a structural

Vector Autoregressive (VAR) model as in Stock and Watson (2001). OLS estimates a “Price-

Puzzle:” predicting an inflation increase when monetary policy tightens. Two historical

sub-periods of unusual monetary policy – including 1979-1982 – significantly influence this

result. The proposed estimates find the intuitive result: a negative impact on inflation. The

weights reveal that the two historical subperiods are downweighted to get this result. Robust

estimates overweight some observations. Bias correction re-adjusts towards equal weighting.

Recently, Young (2022) found that many instrumental variable (IV) results involve highly

leveraged regressions, and are very sensitive to outliers. Two applications illustrate the

methodology in this setting. The first considers the relationship between trade openness

and inflation (Romer, 1993). The second is about the effect of segregation on the quality

of government (Alesina and Zhuravskaya, 2011). Both regressions are highly influenced by

a few observations. Robust estimates have significantly smaller standard errors, producing

more precise inferences. Bias correction reveals non-negligible bias in robust estimates.

2



Structure of the paper. Section 2 motivates the paper with the Price Puzzle example.

Section 3 surveys the existing literature. Section 4 introduces the setting, sampling assump-

tions, and the estimator. Derivations for a simplified estimator give insights for the finite

and large sample results. Section 5 provides finite-sample bounds and asymptotic results.

Simulated and empirical applications are in Section 6. Appendices A, B give the proofs for

the main results and preliminary ones. Supplemental Appendices C, D, E, F, G, H provide

proofs for the preliminary results, simple derivations with leveraged outliers, derivations for

influence and leverage in IV regressions, additional simulation and empirical results, and

detailed numerical Algorithms to perform the estimation.

2 Motivating Example: the Price Puzzle

To illustrate the issues considered in this paper, consider estimating the impact of monetary

policy with a recursive vector autoregressive (VAR) model as in Stock and Watson (2001).

There are three variables: inflation (πt), unemployment rate (ut), and the federal funds rate

(Rt). The VAR is estimated by OLS with four lags on U.S. data from 1960Q1 to 2000Q4.

Panel a) in Figure 1 plots the estimated response of inflation to a unit increase in Rt. It

shows a positive and significant increase in inflation for nearly four consecutive quarters. This

was first observed by Sims (1992) and immediately coined as a ‘Price Puzzle’ by Eichenbaum

(1992). It has since been studied extensively. Rusnák et al. (2013) performed a meta-analysis

of 1000 estimates and put forward several potential forms of model misspecification to explain

the puzzle. The number of specifications they explore is several times greater than the sample

size so there should be some concerns about overfitting, however.

The following presents some simple diagnostics that indicate two time periods strongly

influence the estimates. The puzzle begins with a positive and significant initial impact. It

is measured by β1 in the regression:

πt = β0 + β1Rt−1 + β2ut−1 + β3πt−1 + · · ·+ β10Rt−4 + β11ut−4 + β12πt−4 + eπ,t. (1)

Figure 1 investigates this regression more closely. Panel a) plots the residuals êπ,t over

time. Besides some increased volatility between 1970-1982, there are no obvious outliers

in the series. In fact, the skewness and kurtosis are 0.36 and 3.78, respectively, not far

from a normal distribution. Panel c) approximates the contribution of each t to β̂1. Since

β̂n =
∑n

t=1(X
′X/n)−1xtyt/n is a sample mean, (X ′X/n)−1xtyt approximates the contribution

of each t to the mean. Some observations stand out: for instance, 1981Q1 alone positively
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contributes ≈ 75/n = 0.47 to β̂1 = 0.21, about 3.5 standard errors.1

Figure 1: Recursive VAR: Impulse Response, Diagnostics

Note: a) Estimated response of inflation π to a unit increase in interest rate R, shaded = estimates ± one

standard error, b) Standardized Residuals = êπ,t/σ̂êπ , c) Contribution of observation t to β̂n measured by

(X ′X/n)−1xtπt, xt is the vector of regressors. b,c) Shaded vertical bars = NBER recession dates.

Panels b,c) show that, although none of the residuals êπ,t are particularly large, two time

periods, around 1974-1975 and 1979-1982, have a disproportionate influence on the results.

The latter has historical significance: the Federal Reserve changed to non-borrowed reserves

targeting where the interest rate Rt was no longer a fixed policy instrument, as discussed in

the introduction.Richmond FED President, Robert P. Black, summarized the tactical change

during the October 1979 FOMC meeting as follows:

“I often think of our position as being analogous to that of a monopolist in the

sense that we control the money supply. A monopolist has a choice of controlling

either price or quantity but he can never control both. I believe we’ve been trying

to control the quantity of money by setting the price and we have misjudged.

We’ve jiggled the price, in terms of the federal funds rate, one way or the other,

and we‘ve usually met with less than complete success in judging what quantity

of money will be forthcoming from that.” (FOMC, 1979, p23)

This has several implications for the VAR estimates. First, Rt was no longer a direct

measure of monetary policy: the recursive VAR may not correctly identify monetary shocks

1Most coefficients in (1) are strongly influenced by a few observations as shown in Table G9. The
contribution reported here is related to Cook’s distance which measures changes in predicted values ŷt when
observation t is excluded in the estimation (Cook, 1977). Here, the effect of observation t on the estimated
regression coefficients is the object of interest – this will be referred to as contribution.
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during that time period. Importantly, this goes beyond parameter instability. Time-varying

parameters, regime-switching, or structural break models would still require Rt to provide a

measure of monetary policy shocks. As emphasized by Robert Black, monetary policy was

conducted on monetary aggregates at that time, not interest rates. Second, interest rates

were significantly more volatile with the policy change;2 producing significant regression

leverage. This, as highlighted in Figure 1, gives excess influence to these observations.

Misspecification arises because the central bank relies on multiple policy instruments,

the VAR only uses Rt. Friedman and Schwartz (1963) argued that well-known historical

events clearly identify large monetary shocks. This narrative approach was popularized by

Romer and Romer (1989), Romer and Romer (2004). Narrative and VAR estimates can

differ when the central bank relies on different instruments throughout the sample (Coibion,

2012; Monnet, 2014). Narrative estimates, however, aggregate multiple types of monetary

policies; results cannot be interpreted as e.g. an interest rate shock.

To identify the effect of an interest rate shock, a robust estimation is desirable. However,

as noted in the introduction robust M-estimates may be biased and may not be robust to

these x-outliers. Because residuals are small, robust M-estimates with Huber loss and high-

breakdown MM estimates (rlm, lmRob in R) are nearly identical to Figure 1 (not reported).

Diagnostics, as presented above, are useful to assess whether the estimation might present

some irregularities. A robust estimation, presented below, is meant to reduce the influence

of abnormal observations. The two are complementary, see Huber and Ronchetti (2011,

Ch1.2.4) for further discussion.

Figure 2 re-estimates the effect on the same data, with the same model specification:

using OLS (panel a), the proposed robust estimator without bias correction (panel b), with

bias correction (panel c), with bias correction and a small sample correction (panel d).

Without bias correction, the price puzzle remains – but does not last 4 quarters anymore.

With bias correction, the price puzzle disappears; the initial effect is not significant. With

the additional adjustment, the effect is qualitatively larger and negative.

As discussed above, the estimates can be seen as weighted least-squares. Figure 3 com-

pares the weights, for each time period, used by each method on a regular and a log-scale

(resp. top, bottom). OLS uses equal weighting (black/dashed). Without bias correction,

robust estimates downweigh the leveraged outliers, especially 1979-1982, but overweigh other

periods (black/solid). Bias correction re-adjusts towards equal weighting (blue/dot). The

small sample adjustment further re-adjusts in that direction (purple/triangle).

2This was anticipated and monitored by board members as shown by FOMC Transcripts of 1979-1982.
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Figure 2: Recursive VAR, IRF: OLS, Robust and Bias-Corrected Estimates

Note: a) OLS estimates, b) θ̂n robust estimates without bias correction, c) θ̃n robust estimates with bias

correction, d) ˜̃θn robust estimates with repeated bias correction. b,c,d) Estimates computed with tuning

parameter ν̂n = 8.99. Results for other ν in Appendix G. Bands: estimates ± one standard error.

Figure 3: Recursive VAR, Estimation Weights: OLS, Robust, and Bias-Corrected Estimates

Note: Top and bottom panels: levels and log scale, respectively. Estimation weights ωt, implicitly used to

estimate θ. OLS (dashed/black): ωt = 1/n. Robust estimates θ̂n (solid/black). Bias-corrected robust esti-

mates θ̃n (solid/circle/blue). Repeated bias-corrected robust estimates ˜̃θn (solid/triangle/purple). Shaded

vertical bars = NBER recession dates.

6



3 Related Literature

The paper is mainly related to the literature on robust estimation, mostly developed in statis-

tics. Textbook references such as Huber and Ronchetti (2011) and Maronna et al. (2019)

survey a wide range of estimators and their properties. To focus the discussion, consider a

linear regression: yt = x′tθ+et. Robust M-estimators minimize the loss
∑n

t=1 ψ(yt−x′tθ) over
θ. While OLS uses a quadratic ψ, least-absolute deviation (LAD), and the Huber (1964) loss

are non-quadratic. They increase linearly with large residuals |yt−x′tθ|. This reduces the in-
fluence of y-outliers. Winsorizing and trimming are popular alternatives. Huber (1964, p80)

notes that trimming can be sensitive around the cutoffs. The first-order condition implies

the solution θ̂n satifies
∑n

t=1 xtψ
′(yt − x′tθ̂n). Large residuals êt = yt − x′tθ̂n are handled by

ψ′. However, x-outliers with a large xt, are not screened by ψ′. When the distribution of et

is symmetric and the sample is contaminated symmetrically, robust estimates are consistent

and asymptotically normal under regularity conditions. Symmetry is critical. Jaeckel (1971)

derived, for estimating a location parameter, with asymmetric contamination of symmetric

data, an asymptotic bias of order n−1/2 when the proportion of outliers is O(n−1/2) – i.e.

no = O(n1/2). no is the number of outliers.

For asymmetric data, the estimator is generally not consistent, see Carroll and Welsh

(1988) for linear regressions. Quasi-Maximum Likelihood estimation, with a student distri-

bution for the errors, is commonly used to estimate volatility models. Newey and Steigerwald

(1997) show that the estimates may not be consistent without symmetry conditions. In a

parametric setup, Cantoni and Ronchetti (2001) provide analytical bias formulas for gen-

eralized linear models, used to correct the first-order condition of the M-estimation. Here,

parametric assumptions are not required. Zhou et al. (2018) derive bias bounds and expo-

nential inequalities for linear regressions with the Huber loss when et has finite variance.

They do not consider sample contamination and require sub-gaussian regressors - i.e. no

x-outliers. These two issues are particularly relevant for the Price Puzzle. Another approach

bounds the asymptotic bias in a local neighborhood of the model using the influence curve

(IC) of Hampel (1974), see e.g. Huber and Ronchetti (2011, Ch4.9). Andrews (1986) relates

the IC to the stability of estimators. Recently, several papers have used the IC to study

and bound local misspecification bias for GMM, e.g. Andrews et al. (2017), Armstrong and

Kolesár (2021), Bonhomme and Weidner (2022). Under these local asymptotics, the esti-

mator remains consistent and asymptotically normal with a bias proportional to sampling

uncertainty. In this paper, the model is grossly misspecified, but only for 1 ≤ no ≪ n out-

liers. Non-robust estimates can be inconsistent, or diverge: a robust estimation is required.
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Christensen and Connault (2023) propose global sensitivity analyses on distributional as-

sumptions, the model is otherwise correctly specified. It is common in Economics to apply

more robust testing to non-robust estimates, assuming consistency, asymptotic normality –

unlike here. One can adjust standard errors (e.g. MacKinnon, 2012), critical values (e.g.

Müller, 2020; Pötscher and Preinerstorfer, 2023), or both. Sasaki and Wang (2023) propose

a test for finite moments at a point, as required for consistency and central limit theory.

Cowell and Victoria-Feser (1996) and Cowell and Flachaire (2007) consider the robustness

properties of inequality measures, e.g. Gini coefficient. Surveying a large number of empiri-

cal results, Young (2022) finds that many IV regressions are highly leveraged and sensitive

to a few observations, or clusters of observations.

Ronchetti and Trojani (2001) proposed a robust GMM estimator that is locally asymptot-

ically robust, using the IC criteria. Hill and Renault (2010), Č́ıžek (2016) consider trimming

in GMM estimation. Rohatgi and Syrgkanis (2022) use a filter algorithm to screen out

outliers in GMM estimation. The median-of-means is popular in prediction problems, which

could also be considered here: the dataset is split into K ≥ 2 subsamples of m = n/K

observations. K sample means are computed. The median of the K means is the estimator.

The estimate is robust for up to no ≤ K/2 − 1 outliers, see e.g. Lecué and Lerasle (2020),

Laforgue et al. (2021). To accommodate an increasing no, having K → ∞ as n → ∞ is

necessary. This introduces a bias, bounded above by σ/
√
m = σ

√
K/n.3 Even for K fixed,

an asymptotic bias can arise. Without a tractable expression for the bias, it is not clear

how one would correct the asymptotic bias. Here, the choice of loss function makes the

asymptotic bias tractable. An alternative is undersmoothing where the tuning parameter

diverges fast enough that the bias is asymptotically negligible. It only requires to bound the

asymptotic bias. Section 6.1 illustrates that it is less robust than bias-correction.

4 Models, Sample, Estimator

This paper considers estimations from unconditional moment restrictions:

EP [g (zt; θ)] = 0 ⇔ θ = θ0, (2)

where zt
d∼ P and the solution θ0 ∈ Θ, a compact subset of Rk. OLS regressions correspond to

g(zt; θ) = xt(yt − x′tθ) where zt = (yt, xt) collects the dependent variable and the regressors.

For instrumental variable regressions, take g(zt; θ) = wt(yt − x′tθ) where zt = (yt, xt, wt)

3For any distribution, the median and the mean differ by at most: |median(X)− E(X)| ≤ σ(X).
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collects the dependent variable, the regressors and the instruments. Non-linear estimations

also fit into this framework. Concave Likelihood maximization, such as Probit or Logit,

would set (2) to be the first-order condition. The main examples are linear.

The dataset consists of n observations but zt ∼ P may not hold for all t = 1, . . . , n. This

is presented in the following Assumption.

Assumption 1 (Sample). There are n = nP + no observations such that

i) for t ∈ {1, . . . , nP}, zt ∼ P for which (2) holds, are either iid or strictly stationary,

β-mixing with rate βm ≤ a exp(−bm) for 0 < a, b <∞;

ii) for t ∈ {nP + 1, . . . , n} and 0 < A,α <∞:

zt ∈ On := {z s.t. sup
θ∈Θ

∥g(z; θ)∥2 ≤ Anα}. (3)

The first nP observations are such that (2) holds. However, the last no observations,

or outliers, can be arbitrary in On. The ordering between observations simplifies notation

and, for time-series, preserves the dependence structure of the good nP observations. The

mixing condition typically holds for stationary VAR models, as in the motivating example.

In practice, the user does not know which observations are drawn from P and those that are

not. The no outliers could be allocated anywhere within the sample. The outliers will be

chosen in an adversarial fashion, looking at the least-favorable collection (znP+1, . . . , zn) ∈ On

for each θ, without restrictions on dependence.

The goal here is to derive finite-sample robustness properties against the worst-case

realization of the no outliers. Ex-ante, if the no outliers are randomly distributed, such that

P(supθ∈Θ ∥g(zt; θ)∥ > t) ≤ t−ε for some ε > 0. Then P(zt ∈ On for each t = nP +1, . . . , n) ≥
1−A−εnon

−αε, can be made arbitrarily close to 1 setting α large enough. In practice, the user

does not specify (A,α). For random data contamination, Assumption 1 can be interpreted

as conditioning on a realization with no outliers in the set On which has arbitrarily high-

probability given an appropriate choice of no, A and α.4

Outliers can take many forms in (3). Figure 1 illustrates that residuals yt−x′tθ are not the
only source of influence, captured here by xt(yt − x′tθ). High leverage observations are only

influential if |yt−x′tθ| ≫ 0. Likewise, xt(yt−x′tθ) can be large when neither yt−x′tθ nor xt are
individually large but their product is non-negligible. This implies that screening residuals

and regressors separately, as suggested in Hamilton (1992), can be insufficient. The influence

4See also Remark 1 in Laforgue et al. (2021).
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of a single observation can also vary depending on the model specification: a regression that

is linear in xt is typically less leveraged than in a quadratic specification with (xt, x
2
t ) as

regressors. Collinearity also plays a role on influence, as (X ′X/n)−1xtyt, reported in Figure

1, can be greatly inflated by the collinearity factor (X ′X/n)−1. In the motivating example,

the regressors are lagged variables which are autocorrelated, i.e. collinear. A rotation in-

variance property is important to ensure robustness when there are multiple regressors. For

instrumental variable regressions, the relevant quantity wt(yt−x′tθ) involves the instruments

wt and the residual. In the context of time-series, one concern would be innovation outliers

associated with a large shock yt− x′tθ. Another, similar to the description in the motivating

example, would be additive outliers. Here the effect is isolated, as in a different regime that

occurs only once within the sample.

The main concern here is that the sample mean gn(θ) = 1/n
∑n

t=1 g(zt; θ) is not a con-

sistent estimator for EP [g(zt; θ)] when (non
α)/n ̸→ 0. This allows to capture the concern

that a minority of observations has significant influence, even as the sample size n increases.

For no = 1, α = 1/2 the estimates are consistent but asymptotically biased, standard error

estimates are also affected.5 For no = 1, α = 1 estimates are inconsistent. They diverge

when α > 1. Mild outliers are also problematic: for no = n1/4 and α = 1/4 estimates are

asymptotically biased.

To handle contaminated samples, Ronchetti and Trojani (2001) showed that a robust

estimate of EP [g(zt; θ)] is required. The following first computes a robust estimate of µ(θ) =

EP [g(zt; θ)], then corrects the first-order asymptotic bias, and finally solves for µ(θ) = 0.

Step 1. For each θ ∈ Θ, find ψ̂n(θ; ν) which minimizes the sample criterion:

Qn(ψ; θ) =
ν + p

n

n∑
t=1

log

(
1 +

∥g(zt; θ)− µ∥2Σ−1

ν

)
+ log |Σ|+ κ1

ν
∥µ∥2Σ−1 +

κ2
ν
trace(Σ), (4)

where ψ = (µ,Σ) and p = dim(g(zt; θ)). The location and scale parameters are estimated

jointly to ensure the first is invariant to rotation and less sensitive to re-scaling. The loss

Qn consists of a student quasi-likelihood plus two penalization terms. The tuning parameter

ν > 0 controls the robustness of the estimates. Here, it is not estimated and acts as a

critical value. For observations such that ∥g(zt; θ) − µ∥2Σ ≪ ν, the loss is approximately

quadratic ν+p
n

∑n
t=1 log

(
1 + ∥g(zt; θ)− µ∥2Σ−1/ν

)
≃ ∥g(zt; θ)− µ∥2Σ−1/n which approximates

the Gaussian log-likelihood. In contrast, for observations such that ∥g(zt; θ) − µ∥2Σ−1 ≫ ν

5This is illustrated in Appendix D.
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the loss is logarithmic ν+p
n

∑n
t=1 log

(
1 + ∥g(zt; θ)− µ∥2Σ−1/ν

)
≃ ν/n[2 log(∥g(zt; θ)−µ∥Σ−1)−

log(ν)]. Large discrepancies, as measured by ∥g(zt; θ)− µ∥2Σ−1 , have less impact than using

a Gaussian log-likelihood. To fully capture robustness, the parameter space Ψ for ψ is

unbounded:

Ψ = {(µ,Σ), µ ∈ Rp, 0 < s0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ +∞},

where s0 is such that s0 ≤ λmin(varP [g(zt; θ)]) < +∞ for all θ ∈ Θ. In the presence of

outliers, the main concern is in estimating a large µ̂n and/or Σ̂n. Here, setting s0 > 0

simplifies some derivations to focus on finite-sample upper bounds.

Without regularization, setting κ1 = κ2 = 0, the derivative ∂µQn(ψ; θ) = 0 for ∥µ∥ = +∞
and any Σ. This can cause numerical instability when fitting data using a student log-

likelihood. For non-zero κ1, κ2, ∂µQn(ψ; θ) → ∞ when ∥µ∥ → ∞, the solution is bounded

as shown in the next Section. The self-normalization ∥µ∥Σ−1 is invariant to rotations of the

moments and less sensitive to scale. At the solution θ = θ0, µ(θ0) = EP [g(zt; θ0)] = 0 holds.

This motivates penalizing towards zero in this particular setting.

Simultaneously estimating the location and scale parameters can seem problematic. A

large Σ̂n is effectively similar to using a large ν, leading to less robust location estimates

µ̂n. The second penalty trace(Σ) is important in that regard, as it ensures Σ̂n cannot be too

large in finite samples. This is shown in the next Section.

Step 2. For each θ ∈ Θ, compute:

µ̃n(θ; ν) = 2µ̂n(θ; ν)− µ̂n(θ; ν/2). (5)

This type of adjustment is known as Richardson extrapolation in numerical analysis. Unlike

the sample mean, the estimator µ̂n(θ; ν) is typically biased for ν < +∞. Taking ν → ∞ with

n→ ∞ at an appropriate rate, the adjustment 2µ̂n(θ; ν)− µ̂n(θ; ν/2) corrects the first-order

asymptotic bias. The bias depends on higher order moments (see below). Estimating it is

not straightforward: estimating the first moment is already a challenge in this setting. The

correction (5) does not compute the bias, is simple to implement and widely applicable.

Step 3. Find θ̃n such that:

∥µ̃n(θ̃n; ν)∥2Wn
≤ inf

θ∈Θ
∥µ̃n(θ; ν)∥2Wn

+ op(n
−1). (6)

The estimated θ̃n inherits the asymptotic bias properties of the corrected µ̃n.
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Step 1. continuously updates both µ and Σ with θ. The scaling Σ̂n(θ; ν) used to normalize

the estimation of µ̂n(θ; ν) adapts to the value of θ. Appendix H gives generic Algorithms 1,

2 used to compute ψ̂n, θ̃n in the applications. µ̃n(θ; ν) is as smooth as g(zt; θ) – cf. implicit

function Theorem. Gradient-based optimizers, e.g. gradient-descent or Gauss-Newton, can

be used. They are globally convergent under rank conditions (Forneron and Zhong, 2023,

Th1,2). Unlike trimmed moments, the estimated µ̃n(θ; ν) varies continuously with ν. This

implies that the estimates θ̃n can be less sensitive to small changes in tuning parameters.

Figures G5-G7 reproduce Figure 2 with larger values of ν, illustrating that the estimated

impulse response function changes gradually with ν.

Numerical software typically proceeds iteratively, see e.g. Huber and Ronchetti (2011,

Ch7.8). Fix a tuning parameter and fit an initial regression θ̂1n. Then, update the scale

parameter - here Σ̂1
n, re-estimate the regression θ̂2n, re-estimate the scale parameter, and

repeat until convergence. The same scaling is applied for all θ at each stage. For least-

squares, rreg in Stata and rlm in R proceed this way. Stata’s rreg is initialized with a

non-robust OLS estimate. The properties of the estimates after many iterations are not

easy to derive, especially as scale estimates are less robust than those of location. Here,

uniform-in-θ non-asymptotic concentration inequalities for the joint parameter ψ̂n(θ; ν) are

derived. This gives some finite-sample guarantees for step 1. above.

Intuition for the results. To better understand the role of the tuning parameter ν and

the bias-correction step, consider estimating a scalar parameter θ0 = EP (zt) using:

µ̂n(ν) =
1

n

n∑
t=1

zt
1 + |zt|2/ν

,

which simplifies the first-order condition of Qn with respect to µ.6 For any z, |z|
1+|z|2/ν ≤

√
ν
2

bounds the influence of a single observation. Let µ(ν) = EP (zt/(1 + |zt|2/ν)). If zt are iid

for t ∈ {1, . . . , nP}, regardless of the remaining no observations:
7

P
(

sup
zt∈On,t>nP

|µ̂n(ν)− µ(ν)| ≥
√
νno
n

+
nP
n

x
√
nP

)
≤ 2 exp

− x2

2σ2
ν +

2
3

√
ν
nP
x

 ,

6The first-order condition ∂µQn = 0 reads ν+p
νn

∑n
t=1

zt−µ
1+∥zt−µ∥2

Σ−1/ν
+ κ1µ

ν = 0.

7This inequality implies P(supzt∈On,t>nP
|µ̂n(ν)−µ(ν)| ≥

√
νno

n +C nP

n [
√

x
nP

+ x
nP

]) ≤ 2 exp(−x) for some

constant C. This is the form used in a later Theorem.

12



using Bernstein’s inequality, with σ2
ν = varP

(
zt

1+|zt|2/ν

)
→ varP (zt) as ν → ∞. The right-

hand-side is approximately sub-Gaussian for x ≪
√
nP/ν and sub-exponential for x ≫√

nP/ν. The factor
√
ν/nP indicates the rate at which the estimator becomes sub-Gaussian.

As expected, outliers introduce a bias. The worst-case bias is at most
√
νno/n. Consis-

tency of µ̂n requires (
√
ν/n)no = o(1) and asymptotic normality (

√
ν/n)no = o(1). More

contamination no requires a smaller ν to compensate. The same ν introduces another bias:

µ(ν) = θ0 −
1

ν
EP
(

z3t
1 + z2t /ν

)
,

as measured by the last term. It is typically non-zero when the distribution is not symmetric

around 0. The bias is at most EP (|zt|3)/ν or EP (|zt|2)/(2
√
ν) if, respectively, the third or

second moment is finite. Consistency requires ν → ∞ and asymptotic normality
√
n/ν =

o(1). There is some tradeoff between the outlier bias
√
νno/n, which mandates a smaller ν,

and this robustness bias, which compels using a larger ν. A bias reduction that does not

significantly degrade robustness can be achieved using µ̃n = 2µ̂n(ν)− µ̂n(ν/2), since:

µ̃(ν) = 2µ(ν)− µ(ν/2) = θ0 −
1

ν2
EP
(

z5t
(1 + z2t /ν)(1 + 2z2t /ν)

)
.

Now the bias is at most EP (|zt|5)/ν2 or EP (|zt|4)/ν3/2 if, respectively, the fifth or fourth

moment is finite. For the former, asymptotic normality only requires
√
n/ν2 = o(1). The

effect of a single observation on the estimate µ̃n is no more than
√
2ν +

√
ν/2, compared to√

ν/2 for the non-corrected µ̂n. The bias correction does require more regularity from the

uncontaminated data in terms of moments - 5 instead of 3 finite ones.

Higher-order Richardson extrapolation could further reduce the order of the asymptotic

bias. Simulations suggest the following can give better results in small samples. Applying

the correction once more using ˜̃µn = 2µ̃n(ν)− µ̃n(ν/2) flips the sign of the asymptotic bias

and can have some small sample effects:

˜̃µ(ν) = θ0 +
2

ν2
EP
(

z5t (1− 4z4t /ν
2)

(1 + z2t /ν)(1 + 2z2t /ν)(1 + 2z2t /ν)(1 + 4z2t /ν)

)
.

To illustrate, take zt = θ0 constant. Then µ̃(ν) = θ0 if, and only if, θ0 = 0 whereas ˜̃µ(ν) = θ0

if θ0 ∈ {θ0,−
√
ν/2,

√
ν/2}. For finite ν, the bias of ˜̃µ has two additional roots. Simulations

in Section 6.1 indicate small-sample improvements for estimation and inference.8

8Note that averaging 2/3µ̃(ν)+1/3˜̃µ(ν) = θ0+ o(ν−2) can reduce the asymptotic bias, by the dominated
convergence Theorem. This is not pursued here.
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5 Properties of the Estimator

5.1 Finite Sample Bounds

The following Lemma shows the importance of the penalization κ1, κ2 in (4) which effectively

bounds the parameter space Ψ.

Lemma 1. For any θ ∈ Θ and ν > 0, the minimizer ψ̂n = (µ̂n, Σ̂n) of (4) over Ψ satisfies:

∥Σ̂−1/2
n µ̂n∥ ≤ ν3/2(1 + p/ν)

2κ1
, trace(Σ̂n) ≤

ν2(1 + p/ν)

κ2
+
ν4(1 + p/ν)2

4κ1κ2
+
pν

κ2
. (7)

The dependence of ψ̂n on θ, ν is omitted to simplify notation. Lemma 1 implies ∥µ̂n∥ ≤
ν7/2 and Σ̂n ≤ ν4, up to constants. Although Ψ is unbounded, the estimates are bounded

with probability 1. In the following, Ψ will be replaced with:

Ψn = {(µ,Σ) ∈ Ψ s.t. (7) holds},

without loss of generality. The upper bounds increase rapidly. With Lemma A1, they

imply an envelope function of size ν17 which diverges too quickly to directly apply standard

empirical process results, e.g. van der Vaart and Wellner (1996, Th2.14.1). Instead, the

results directly rely on the functional form of (4) and the following assumption to derive

exponential inequalities under cross-sectional and time-series dependence (Lemma A2).

Assumption 2. zt ∼ P , a distribution such that for two 0 ≤M2,M4 <∞:

i. supθ∈Θ EP (∥g(zt; θ)∥2) ≤ M2, ii. for all (θ1, θ2) ∈ Θ, ∥g(zt; θ1)− g(zt; θ2)∥ ≤ Gt∥θ1 − θ2∥
with EP (∥Gt∥2) ≤ M2, iii. supθ∈Θ EP (∥g(zt; θ)∥4) ≤ M4. In ii. Gt = G(zt) is either iid or

strictly stationary and mixing with rate βm found in Assumption 1 i.

Let Qν = EP (Qn) be the population analog of Qn without any contamination:

Qν(ψ; θ) = EP
[
(ν + p) log

(
1 + ∥g(zt; θ)− µ∥2Σ−1/ν

)]
+ log |Σ|+ κ1

ν
∥µ∥2Σ−1 +

κ2
ν
trace(Σ).

Proposition 1. Take x ≥ 0 and 1 ≤ ν ≤ n, suppose Assumptions 1 and 2 i-ii hold with zt

iid for t ∈ {1, . . . , nP}. For each θ ∈ Θ, let ψ̂n(θ; ν) be the minimizer of (4) and ψ(θ; ν) the

minimizer of Qν on Ψ. Set Cn = 1 + (k + 2p2)[log(p) + log(ν) + log(nP )], with p = dim(g)
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and k = dim(θ) then:

P

(
sup
θ∈Θ

sup
zt∈On,t>nP

{
Qν(ψ̂n(θ; ν); θ)−Qν(ψ(θ; ν); θ)

}
≥ CO

no(ν + p)

n
[1 + log(n)]

+ L
nP
n
(ν + p) log(1 + νp)

[√
x

nP
+

x

nP
+

√
Cn
nP

+
Cn
nP

])
≤ 4 exp(−x),

for a constant L which depends on s0, κ1, κ2,M2 and CO depends on s0,M2, κ1, A, α. If zt is

strictly stationary and β-mixing for t ∈ {1, . . . , nP}, then:

P

(
sup
θ∈Θ

sup
zt∈On,t>nP

{
Qν(ψ̂n(θ; ν); θ)−Qν(ψ(θ; ν); θ)

}
≥ CO

no(ν + p)

n
[1 + log(n)]

+ L̃
nP
n
(ν + p) log(1 + νp)

√(x+ Cn)x

nP
+

(x+ Cn)x

nP
+

√
Cn
nP

+
Cn
nP

) ≤ 12 exp(−x),

for L̃ which additionally depends on the mixing coefficients a, b.

Because ψ(θ; ν) is a minimizer, Qν(ψ̂n(θ; ν); θ)−Qν(ψ(θ; ν); θ) ≥ 0 always holds. Propo-

sition 1 gives exponential inequalities for deviations from the biased solutions ψ(θ; ν), uni-

formly in both parameters θ and outliers zt ∈ On, with respect to the loss Qν . The bounds

only require finite second moments, allowing for heavy tails under P . This is important in

macroeconomic and financial applications since P typically does not have sub-exponential,

or Gaussian, tails.9 The worst-case contamination bias is of order n0(ν + p)/n[1 + log(n)]

which depends on the proportion of outliers no/n and the tuning parameter ν. It differs

from the (
√
ν/n)no term for the simple estimator above. The proofs indicate that (ν/n)no

corresponds to the influence of outliers when estimating Σ.

For iid data, similar to Bernstein’s inequality, the tails are thin: approximately sub-

Gaussian for small x ≪ √
nP and sub-exponential for large x ≫ √

nP .
10 For time-series

data, the tails are thicker: approximately sub-Gaussian for x ≪ Cn, sub-exponential for

Cn ≪ x≪ √
nP and sub-Weibull for x≫ √

nP with tail parameter 1/2 (Vladimirova et al.,

2020). This is comparable to Bernstein inequalities for sample means of bounded β-mixing

processes in Doukhan (1994).

9Heavy-tailed distributions, unlike the exponential and Gaussian distributions, may not have all finite
moments. Student and Pareto are both heavy-tailed distributions.

10The inequality P(Z ≥
√
x/n + x/n + an) ≤ 4 exp(−x) implies P(Z ≥ u/

√
n + an) ≤

4min[exp(−u2), exp(−
√
nu)] which is sub-Gaussian for u ≪

√
n and sub-exponential for u ≫

√
n.
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Estimating both µ and Σ consistently requires (ν/n) log(n)no → 0. This is more restric-

tive than (
√
ν/n)no → 0 which appears under local asymptotics for µ. This is related to the

discussion above on iterative procedures and joint estimation of ψ. The dependence on the

number of moment conditions p is made explicit to show how it affects the bounds. The p2

term in Cn comes from estimating p(p+ 1)/2 coefficients in Σ. For the large sample results

below, the number of parameters k and moments p will be assumed to be fixed and finite.

5.2 Asymptotic Properties

The following builds on Proposition 1 to derive uniform consistency and then oracle equiva-

lence results which involve the amount of contamination no and the bias. The large-sample

results can be used to compute standard errors and compute confidence intervals the usual

way (i.e. reporting θ̃n ± 1.96se(θ̃n)).

Corollary 1. Suppose the conditions for Proposition 1, Assumption 2 iii hold, and:

no = o

(
n

ν log(n)

)
, ν log(ν) = o

(√
n

log(n)

)
.

Let ψ(θ;∞) denote the pair µ(θ;∞) = EP [g(zt; θ)], Σ(θ;∞) = varP [g(zt; θ)], then:

sup
θ∈Θ

(
sup

zt∈On,t>nP

∥ψ̂n(θ; ν)− ψ(θ;∞)∥
)

= op(1).

Proposition 1 and the following two bounds: |Qν(ψ; θ) − Q∞(ψ; θ)| ≤ O(ν−1) and

∥ψ(θ; ν) − ψ(θ;∞)∥ ≤ O(ν−1), uniformly in θ, imply the uniform consistency result above.

Taking the supremum over On ensures the result is robust against the least favorable outliers.

Proposition 2. Suppose the conditions of Corollary 1 hold. Let max[EP (∥g(zt; θ0)∥r+δ),EP (|Gt|r+δ)] :=
Mr,δ for r ≥ 1 and δ > 0. Let gnP

(θ) = 1
nP

∑nP

t=1 g(zt; θ), if M3,δ is finite for some δ > 0:

sup
θ∈Θ

(
sup

zt∈On,t>nP

∥µ̂n(θ; ν)− gnP
(θ)∥

)
= Op

(
max

[
1

ν
,

√
νno
n

])
If, in addition M5,δ is finite for some δ > 0:

sup
θ∈Θ

(
sup

zt∈On,t>nP

∥µ̃n(θ; ν)− gnP
(θ)∥

)
= Op

(
max

[
1

ν2
,

√
νno
n

])
.

Using the same two inequalities, and a bound on the score, Proposition 2 shows that

the robust and bias-corrected estimates are uniformly close to an oracle that computes the
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sample mean using only the good nP observations. An empirical researcher might want to

trim out outliers without altering, as much as possible, the rest of the sample. This oracle

result precisely states this property. In that sense, it gives a more desirable characterization

than limit theorems for µ̂n(θ; ν)− µ(θ;∞) and µ̃n(θ; ν)− µ(θ;∞).

Similar to non-parametric regressions which derive bias from smoothness, stronger mo-

ment conditions are needed to derive faster rates of convergence. Without outliers, OLS

estimates are asymptotically normal for iid data when EP (∥xtyt∥2),EP (∥xt∥4) < ∞. Here

the condition is more restrictive, it reads EP (∥xtyt∥5+δ),EP (∥xt∥10+2δ) <∞.

The worst-case impact of outliers is of order (
√
ν/n)no, with and without bias correction.

Note that the estimator µ̂n is “redescending.” The maximal influence of a single observation

z given by (
√
ν/2)/n, is attained at ∥g(z; θ)− µ∥Σ−1 =

√
ν and then monotonically declines

to zero as ∥g(z; θ) − µ∥Σ−1 increases.11 The result requires Σ̂n(θ; ν) uniformly convergent.

Importantly, the influence function is not redescending for Σ: it is strictly increasing and

bounded above by ν >
√
ν. Hence, consistency of Σ̂n is more restrictive: (ν/n)no → 0.

Assumption 3. i. EP [g(zt; ·)] is continuously differentiable in θ ∈ Θ, ii. EP [g(zt; θ)] = 0 if,

and only if, θ = θ0 ∈ int(Θ), iii. G(θ0) := ∂θEP [g(zt; θ0)] has full rank, iv. for any δnP
→ 0,

sup∥θ−θ0∥≤δnP

√
nP∥gnP

(θ)− gnP
(θ0)− ∂θEP [g(zt; θ0)](θ− θ0)∥/[1 +

√
nP∥θ− θ0∥] = op(1), v.

√
nPgnP

(θ0)
d→ N (0,Σ0), vi. Wn

p→ W positive definite.

Assumption 2 repeats conditions from Newey and McFadden (1994), only for the good nP

observations. They imply consistency and asymptotic normality of θ̂nP
, an oracle estimator.

Theorem 1. Suppose Assumption 3 and the conditions of Proposition 2 hold with M5,δ finite

for some δ > 0. Suppose no and ν are such that:

√
n

ν2
= o(1), and

√
ν

n
no = o(1).

Let θ̂nP
= argminθ∈Θ∥gnP

(θ)∥Wn, the estimator θ̃n satisfies:

sup
zt∈On,t>nP

∥
√
nP (θ̃n − θ̂nP

)∥ = op(1), and
√
nP (θ̃n − θ0)

d→ N (0, V )

for any sequence zt ∈ On, t = nP + 1, . . . , n, where V = (G′WG)−1G′WΣ0WG(G′WG)−1,

G = ∂θEP [g(zt; θ0)].
11This is also discussed in McDonald and Newey (1988, p432), Huber and Ronchetti (2011, Ch4.8).
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Theorem 1 presents the main result: the bias-corrected estimates are asymptotically

equivalent to the oracle θ̂nP
. They inherit its asymptotic properties. The supremum over

On ensures robustness against least favorable outliers. The bias is asymptotically negligible

if ν2 = o(
√
n). If no were known, setting ν ≍ (n/no)

2/5 would achieve the optimal rate in

Proposition 2. For this choice of ν, the condition
√
n/ν2 = o(1) reads no = o(n3/8). Setting

ν = O(n1/4 log(n)) is nearly optimal when no becomes arbitrarily close to this bound as

it requires implies no = o(n3/8/
√
log(n)). A data-driven rule is given below to select ν in

practice while enforcing this rate. The large sample properties of ˜̃µn(θ; ν) = 2µ̃n(θ; ν) −
µ̃n(θ; ν/2), from Section 4, and the resulting ˜̃θn follow from those of µ̃(θ; ν), θ̃n.

With the oracle result (Proposition 2) and the regularity conditions (Assumption 3),

further results could be derived. One could consider two-step GMM with robust weighting

Wn = Σ̂n(θ̃n; ν)
−1 in the second step, robust overidentifying restrictions, quasi-Likelihood

Ratio and Lagrange multiplier tests, etc. This is not pursued here.

Proposition 3. Suppose the assumptions for Theorem 1 hold. For each θ ∈ Θ and ν > 0,

the estimates µ̂n(θ; ν), µ̃n(θ; ν) satisfy:

µ̂n(θ; ν) =
n∑
t=1

ωt(θ; ν)g(zt; θ), µ̃n(θ; ν) =
n∑
t=1

ω̃t(θ; ν)g(zt; θ)

where the weights are given by ωt(θ; ν) = (1+p/ν)/n[1+qt(θ;ν)/ν]−1

(1+p/ν)/n
∑n

t=1[1+qt(θ;ν)/ν]
−1+κ1/ν

and ω̃t(θ; ν) =

2ωt(θ; ν)− ωt(θ; ν/2) using qt(θ; ν) = ∥g(zt; θ)− µ̂n∥2Σ̂−1
n
.

Let ε̂t(θ) = g(zt; θ)− µ̂n(θ; ν), ε̃t(θ) = g(zt; θ)− µ̃n(θ; ν). The following weighted variance

estimators are consistent:

Σ̂n,ω(θ) =
n∑
t=1

ωt(θ; ν)ε̂t(θ)ε̂t(θ)
′ p→ Σ(θ), Σ̃n,ω(θ) =

n∑
t=1

ω̃t(θ; ν)ε̃t(θ)ε̃t(θ)
′ p→ Σ(θ),

where Σ(θ) = varP (g(zt; θ)) here denotes the short-run variance under P .

For cross-sections and serially uncorrelated moments, Σ̂n(θ̂n, ν) can be used to estimate

Σ0 in Theorem 1. Because of the penalty κ2 > 0 on Σ, it tends to be downward biased.

An alternative is to use the same weights as µ̃n to match the properties of the estimator

more closely. Proposition 3 above shows that such an estimator is also consistent for the

short-run variance. Long-run variance estimates, required for serially correlated moments,

are not considered here.

The weighted average representation further implies, for linear models, that θ̃n are
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weighted least-squares estimates since µ̃n(θ̃n; ν) =
∑n

t=1 ω̃(θ̃n; ν)xt(yt − x′tθ̃n) = 0 ⇒ θ̃n =

(
∑n

t=1 ω̃(θ̃n; ν)xtx
′
t)

−1
∑n

t=1 ω̃(θ̃n; ν)xtyt. The weighting can be used to interpret the results.

Data-driven choice of tuning parameter ν. The following describes a data-driven

procedure to select the tuning parameter ν. Take 0 < a0 < a1 < · · · < aJ and νj =

ajn
s with 1/4 < s < 1/2 or νj = ajn

s log(n) with 1/4 ≤ s < 1/2. The simulated and

empirical examples use s = 1/4 and 0.5 = log(a0) < · · · < log(aJ) = 35 so that each

νj = O(n1/4 log(n)) satisfies the requirements for Theorem 1.

Using ν = ν0 as a baseline, compute a preliminary estimate θ̂n and the corresponding mo-

ment estimates ψ̂n(θ̂n; ν0). In the absence of outliers, it can be shown that |Qn(ψ̂n(θ̂n; ν0); νj)−
Qn(ψ̂n(θ̂n; ν0);∞)| = Op(ν

−1
j ). This implies that, in the absence of outliers, the fit should be

comparable accross different values of ν: |Qn(ψ̂n(θ̂n; ν0); νj)−Qn(ψ̂n(θ̂n; ν0); ν0)| ≤ Op(ν
−1
0 ).

The selection rule picks the largest value of νj such that the fit remains comparable:

ν̂n = max

{
νj, s.t. |Qn(ψ̂n(θ̂n; ν0); νj)−Qn(ψ̂n(θ̂n; ν0); ν0)| ≤

1 + log(n)

ν0

}
.

The parameters and the moments are only estimated once, to reduce computation, at the

smallest ν0 which produces the most robust estimate of the grid ν0, . . . , νJ .

By design, ν̂n has rate O(ns) or O(ns log(n)) which satisfies the conditions of Theorem 1

given restrictions on no. The following heuristic motivates the choice of criteria. As discussed

above, the outliers have an asymptotic impact on non-robust estimates if non
α/n ̸→ 0, and

the estimator is robust as long as no = o(
√
n/ν). Set no = c

√
n/ν0 then the sum over

outliers in Qn(·; ν) increases proportionally to νc
√
ν0/n log(1 + n2α/ν) ∼ cν

√
ν0/n log(n).

The change over the nP terms is a Op(ν
−1
0 ). For ν0 relatively small, the upper bound in the

criteria above conservatively minors the sum of these two bounds.

6 Simulated and Empirical Applications

All the estimations below use the same κ1 = κ2 = 10−2, giving wide bounds in Lemma 1.

With the data-driven choice of ν̂n, the results are not too sensitive to this choice of penalty.

6.1 Simulated Example

To illustrate the finite sample properties of the procedure, consider a linear regression yt =

x′tθ0 + et. There are three regressors xt = (1, x1t, x2t, x3t), each xjt and et is drawn from
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(χ2
5 − 5)/

√
10 has mean zero and unit variance, θ0 = (0, 1, 1, 1). Sample size is n = 150,

several no = 0, 1, 5, 10 are reported where each outlier has xjt =
√
n and yt = x′tθ†, θ† =

(0, 1/2, 1/2, 1/2). In this example, outliers are leveraged to mimic the motivating example.

The simulations compares full sample θ̂olsn , an oracle which discards outliers θ̂olsnP
, R’s

robust regression estimates θ̂rlmn with θ̂n, θ̃n,
˜̃θn computed using ν̂n as described above. A

further θ̂unn is computed using ν̂2n to illustrate undersmoothing as opposed to bias correction

used in this paper. ˜̃θn applies the correction step twice as discussed at the end of Section 4.

Table 1: Small sample properties of the estimators (n = 150)

100× RMSE Rejection Rate
no = 0

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 8.05 8.05 12.00 11.84 9.31 8.11 7.94 0.04 0.04 0.24 0.29 0.14 0.05 0.06
θ1 8.00 8.00 7.15 7.97 7.79 7.78 7.92 0.06 0.06 0.06 0.11 0.08 0.07 0.06
θ2 8.10 8.10 7.46 8.45 8.21 8.11 8.06 0.04 0.04 0.05 0.10 0.06 0.05 0.05
θ3 8.19 8.19 7.43 8.55 8.30 8.16 8.14 0.06 0.06 0.06 0.10 0.07 0.06 0.06

no = 1

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 10.71 8.04 13.01 14.18 10.97 8.52 10.32 0.03 0.04 0.20 0.46 0.23 0.08 0.08
θ1 38.57 8.07 15.23 8.27 7.97 7.87 32.24 0.00 0.06 0.01 0.14 0.10 0.07 0.40
θ2 38.39 8.11 15.09 8.73 8.36 8.14 32.08 0.01 0.04 0.01 0.12 0.06 0.06 0.38
θ3 39.94 8.20 15.75 8.83 8.49 8.27 33.47 0.00 0.06 0.00 0.12 0.09 0.07 0.39

no = 5

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 11.98 8.14 16.57 16.98 13.38 9.82 13.45 0.10 0.04 0.24 0.59 0.38 0.13 0.16
θ1 47.57 8.40 47.17 9.02 8.62 8.40 46.72 0.99 0.06 0.99 0.12 0.08 0.06 0.99
θ2 47.48 8.26 48.25 9.28 8.80 8.53 47.14 0.99 0.04 1.00 0.12 0.05 0.03 1.00
θ3 49.17 8.28 49.48 9.33 8.94 8.72 48.65 0.98 0.06 0.98 0.10 0.08 0.04 0.98

no = 10

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 12.21 8.21 17.33 16.78 13.27 10.35 14.13 0.09 0.04 0.23 0.47 0.22 0.07 0.17
θ1 49.14 8.54 48.38 10.22 11.68 19.76 48.65 0.99 0.04 0.99 0.01 0.01 0.09 1.00
θ2 49.05 8.31 49.67 10.76 12.40 20.28 48.92 0.99 0.04 0.99 0.01 0.01 0.09 1.00
θ3 50.52 8.51 50.70 11.04 13.00 20.96 50.19 0.98 0.06 0.98 0.00 0.01 0.09 0.99

Legend: θ̂olsn full sample OLS, θ̂olsnP
oracle OLS, θ̂rlmn robust M-estimator, θ̂n robust estimates without bias

correction, θ̃n robust estimates with bias correction, ˜̃θn robust estimates with repeated bias correction, θ̂unn
undersmoothed robust estimates with ν̂2n. 200 Monte-Carlo replications. no = number of outliers. Rejection
rate for t-test at the 5% significance level. Average ν̂n: 35.85, 16.00, 11.00, 10.71 for n0 = 0, 1, 5, 10
respectively. Each ν̂n is selected on a grid [ν0, . . . , νJ ] where ν0 = 8.77, νJ = 584.69.

Table 1 shows that without outliers (no = 0) the performance of bias-corrected and under-

smoothed estimates is comparable to full sample OLS. The robust M-estimates of the inter-

cept θ0 are biased, because the errors are skewed. The performance of OLS degrades as soon
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as no = 1, as expected. The undersmoothed and rlm estimates are also less accurate. The

non-corrected estimates θ̂n are more robust but biased. Bias correction, θ̃n and ˜̃θn, improves

accuracy and rejection rates. The estimators still perform well for no = 5. Performance

degrades for no = 10. This is perhaps not too surprising since log(no)/ log(n) ≃ 0.45 > 3/8

for no = 10. Additional results for n = 500 are reported in Table F8, Appendix F. Tables

F6, F7 has results with ν = O(n1/3) in the same Appendix.

6.2 Empirical Applications

Two empirical applications further illustrate robust-GMM estimator in instrumental variable

regression settings.

6.2.1 Trade Openness and Inflation

The second empirical application is also inflation-related. Romer (1993) estimates the re-

lationship between trade openness and inflation using country time averages between 1973

and 1993. Trade openness, measured by the share of imports to GDP, can be considered

as endogenous given that monetary policy affects both inflation and exchange rates. He

considers the following specification:

πt = θ0 + θ1opent + θ2 log(pcinc)t + et,

where π measures inflation, pcinc is per-capita income in 1980, assumed exogenous. Romer

(1993) further adds dummies in some specifications, these are not included here. The instru-

ment for openness is log(land) measuring the log of the square-mile surface of the country.

The idea is that smaller land area economics should be more open to imports. Romer (1993)

notes that “A few countries in the sample have extremely high average inflation rates.” and

is concerned that “the parameter estimates from a linear regression would be determined

almost entirely by a handful of observations.” As a remedy, he estimates the regression using

the log of average inflation log(π/100). The influence of outliers in linear IV regressions is

not intuitive because leverage can be either positive or negative (Lemma E3). As a result,

unlike OLS, the influence may not have the same sign as the residual: the impact of an

outlier is less predictable than with OLS.

Similar to the motivating example, Table 2 provides diagnostics for both specifications.

For y = π/100, the greatest contributors tend to be severely indebted countries that were

particularly affected by the 1980s debt crisis. Terra (1998) argues that these countries
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Table 2: Romer (1993): 10 Largest Contributors to θ̂IV1n , Sample Moments

Dependent variable: y = log( π
100) Dependent variable: y = π

100
Country Contr. log( π

100) Open. Country Contr. π
100 Open.

Malta -60.75 -3.17 0.92 Bolivia -11.27 2.07 0.23
Singapore -56.77 -3.32 1.64 Argentina -11.01 1.17 0.09
Bahrain -49.65 -3.04 0.91 Brazil -9.40 0.74 0.07
Barbados -40.74 -2.23 0.73 Israel 4.28 0.75 0.57
United States 39.32 -2.78 0.09 Peru -3.18 0.49 0.20
Canada 38.08 -2.65 0.25 Chile -3.15 0.59 0.23
Hong Kong -37.30 -2.49 0.82 Mexico -2.73 0.33 0.11
Luxembourg -32.86 -2.80 0.76 Zaire -2.57 0.43 0.40
Australia 31.24 -2.35 0.17 Barbados 1.95 0.11 0.73
Mauritius -29.07 -2.02 0.57 Mauritius 1.92 0.13 0.57

Sample Moments Sample Moments
Mean -1.25 -2.10 0.37 Mean -0.34 0.17 0.37
Stdev 15.57 0.71 0.24 Stdev 1.93 0.24 0.24
Skewness -1.12 1.25 2.09 Skewness -3.91 5.34 2.09
Kurtosis 6.32 5.38 9.89 Kurtosis 22.22 38.10 9.89

Note: Contr.: Contribution = (Z ′X/n)−1ziyi to coefficient θ̂IV1n . Open.: Openness. π = average inflation.

Sample size n = 114. Countries sorted in decreasing order of contribution, in absolute values.

overborrowed in the 1980s and had “less pre-commitment in monetary policy” resulting

in higher inflation during the debt crisis.12 In contrast, for y = log(π/100), the greatest

contributors are less indebted and other countries Terra (1998, p647) which have low average

inflation.13 The log increases the influence of low-inflation countries, as one might expect.

Table 3: Romer (1993): IV, Robust and Bias-Corrected Estimates

Dependent variable: y = log( π
100)

θ̂IV0n θ̂IV1n θ̂IV2n θ̂0n θ̂1n θ̂2n θ̃0n θ̃1n θ̃2n
˜̃θ0n

˜̃θ1n
˜̃θ2n

est -1.21 -1.25 -5.64 -1.19 -1.13 -6.82 -1.18 -1.21 -6.42 -1.19 -1.29 -5.70
se 0.42 0.40 5.60 0.37 0.36 5.01 0.40 0.38 5.41 0.43 0.41 5.70

Dependent variable: y = π
100

θ̂IV0n θ̂IV1n θ̂IV2n θ̂0n θ̂1n θ̂2n θ̃0n θ̃1n θ̃2n
˜̃θ0n

˜̃θ1n
˜̃θ2n

est 0.27 -0.34 0.38 0.21 -0.08 -0.74 0.22 -0.10 -0.75 0.23 -0.13 -0.63
se 0.11 0.16 1.36 0.04 0.04 0.53 0.05 0.05 0.65 0.06 0.06 0.81

Note: θ̂IVn : IV estimates, θ̂n: robust estimates, θ̃n: bias-corrected robust estimates, ˜̃θn: repeated

bias-corrected robust estimates. ν̂n = 38.33, 14.10 for y = log(π/100) and π/100, respectively. Estimates

for θ2 reported using log(pcinc)/100 as a regressor. Sample size n = 114.

The kurtosis indicates the log-transformed regression is less prone to outliers, the stan-

dard deviation suggests the estimates will be significantly less accurate. This reflects the

12Terra (1998, p647) classifies Argentina, Bolivia, Brazil, Peru, Mexico, Zaire as severely indebted.
13Singapore is the country with the lowest average inflation in the sample.
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larger volatility of log-inflation compared to inflation. Also, the log transformation changes

the interpretation of the coefficient θ1 which may not be desirable. The following replicates

the original results and estimates the regression in levels, as in Wooldridge (2002, Ch16), to

get the desired coefficient interpretation.

Table 3 confirms that the log-transformed regression is less prone to outliers as the IV

and robust estimates are very similar after bias-correction.14 The non-transformed regression

is, as Romer (1993) suspected, sensitive to some datapoints. Robust and bias-corrected

estimates indicate IV overestimates the relationship between trade openness and inflation.

Standard errors indicate the bias-corrected estimates are more accurate than the IV ones.

The estimated effect is about one-third of the non-robust one. The bias correction adjusts

the estimates by half to a full standard error. The full dataset of weights used to compute

the estimates when y = π/100 are reported in Tables G10, G11, Appendix G.

6.2.2 Segregation and the Quality of Government

The third application considers the relationship between racial and religious discrimination

and the quality of government. Alesina and Zhuravskaya (2011) constructed a new dataset

on ethnic, linguistic, and religious segregation and fractionalization for a large number of

countries. Mobility within a country, which determines segregation, can be endogenous to

government quality. To address this particular issue, the authors predict segregation from

neighboring country data. The main idea is that when a sub-population is at the border of

the neighboring country, the same sub-group is more likely to be located near that border

(see Alesina and Zhuravskaya, 2011, Figure 1, p1980). They illustrate using Switzerland as

an example: most French speakers live near the French border, and Protestants are more

commonly found near the German border. This is one of the papers surveyed in Young

(2022), which finds that published IV regressions tend to be highly leveraged and sensitive

to a few observations. The following revisits some of the main results in the original paper.

The regression specification is given by:

Rule of lawi = θ0 + θ1Segregationi + θ2Fractionalizationi + Controls + ui,

where Segregation and Fractionalization are measured with respect to one of Ethnicity,

Language, or Religion leading to three separate IV regressions. The controls are the same as

in Table 6, Column 2 of Alesina and Zhuravskaya (2011, p1897). Fractionalization controls

14Estimates using a smaller ν = 12 are nearly identical for the log regression (not reported here).
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for group heterogeneity in each dimension (ethnicity, language, and religion) as measured by

a Herfindahl index. If there is only one group in the population, the index is zero. If there

are many equal-sized groups, the measure is closer to 1. See Alesina and Zhuravskaya (2011,

pp1779-1780) for further details.

Table 4: Alesina and Zhuravskaya (2011): 10 Largest Contributors to θ̂1n, θ̂2n, Sample
Moments, for each Measure of Segregation (ranked on coefficient θ1)

Ethnicity Language Religion
Country θ1 θ2 Country θ1 θ2 Country θ1 θ2
Zimbabwe -99.76 19.98 USA 142.04 -22.93 Kazakhstan -139.56 -2.67
Israel 78.21 -9.10 Zimbabwe -110.37 20.86 Uzbekistan 76.49 -1.62
Belgium 61.05 6.76 Austria 106.92 -7.21 Cambodia 53.48 7.31
Cote d’Ivoire -53.93 1.56 Belgium 76.80 -0.48 Indonesia -51.20 6.27
Guatemala -32.69 3.02 Canada -58.79 17.34 Switzerland 46.39 -4.31
Ecuador -27.86 1.57 New Zealand -58.21 -0.22 Netherlands 45.01 -1.37
UK -27.12 -2.17 Togo -44.16 6.20 CAR -43.58 11.92
Tajikistan -26.56 6.03 UK -40.78 -6.84 Canada -41.44 12.29
France -25.16 1.47 Kyrgyzstan -38.44 2.41 Kenya -41.28 4.92
Spain -25.12 9.11 Rwanda -36.45 11.63 Israel 41.10 -4.39

Sample Moments Sample Moments Sample Moments
Mean -2.47 0.18 Mean -1.80 0.31 Mean -0.87 0.40
Stdev 19.11 5.08 Stdev 28.82 6.06 Stdev 30.53 5.85
Skewness -0.52 0.74 Skewness 1.31 0.67 Skewness -1.00 0.39
Kurtosis 12.63 5.11 Kurtosis 12.58 7.46 Kurtosis 7.17 4.21

Note: CAR = Central African Republic.

Table 4 shows the 10 highest contributors for the coefficient θ1 in each regression as

well as the sample moments of coefficient contribution. The regressions for ethnicity and

language display somewhat heavy tails, as measured by the kurtosis. This indicates that the

baseline results – estimated coefficients, standard errors, or both – may be sensitive to a few

observations. Table 5 reports standard IV and robust estimates with(out) bias correction.

Robust estimates tend to produce more precise inferences, as measured by standard errors.

The baseline results indicate that both ethnic and language segregation have a significant,

negative impact on the rule of law in a given country.

Robust results indicate that ethnic segregation if the only significant determinant of the

rule of law. Unlike the previous example, the estimate implies a larger effect than standard

IV. Notice that because the controls are correlated with the instrument, the direction of the

change from standard to robust estimates does not necessarily coincide with the contribution
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to θ1 in Table 4.15 Diagnostics can inform if the results are sensitive to some observations

but, as explained in Huber and Ronchetti (2011), are not a substitute for robust estimation.

Although non-significant, the coefficient θ2 for fractionalization does change from positive

to negative in the first two regressions. Again, the full dataset of weights used in the three

regressions is reported in Tables G12, G13, G14 of Appendix G.

Table 5: Alesina and Zhuravskaya (2011): IV, Robust and Bias-Corrected Estimates

Ethnicity

θ̂IV1n θ̂IV2 θ̂1n θ̂2n θ̃1n θ̃2n
˜̃θ1n

˜̃θ2n
est -2.47 0.18 -3.18 -0.13 -3.19 -0.13 -2.75 -0.09
se 0.60 0.24 0.33 0.10 0.39 0.14 0.38 0.17

Language

θ̂IV1n θ̂IV2 θ̂1n θ̂2n θ̃1n θ̃2n
˜̃θ1n

˜̃θ2n
est -1.80 0.31 -0.65 -0.21 -0.65 -0.22 -0.59 -0.20
se 0.80 0.24 0.23 0.06 0.35 0.08 0.54 0.11

Religion

θ̂IV1n θ̂IV2 θ̂1n θ̂2n θ̃1n θ̃2n
˜̃θ1n

˜̃θ2n
est -0.87 0.40 -0.04 -0.02 0.09 0.10 0.34 0.16
se 1.82 0.23 0.52 0.12 0.69 0.16 0.86 0.16

Note: θ̂IVn : IV estimates, θ̂n: robust estimates, θ̃n: bias-corrected robust estimates, ˜̃θn: repeated

bias-corrected robust estimates. ν̂n = 10.71, 8.55, 11.80 and sample size n = 97, 92, 78 for Ethnicity,

Language and Religion, respectively. Sample sizes vary because of missing values.

7 Conclusion

It is important to assess the robustness of empirical findings. Without symmetry restrictions,

large differences between robust and non-robust estimates could be attributed to 1) improved

resilience, or 2) significant asymmetry bias (or a combination of the two). This paper pro-

poses a procedure with a simple asymptotic bias correction so that 2) is less likely. Reporting

the implicit estimation weights makes the final results transparent and interpretable. This

is illustrated in three empirical applications.

15If an outlier affects a coefficient on the controls and there is collinearity with the instrument, then robust
estimates of θ1 will change with the coefficients on the controls, as they are correlated. Diagnostics may not
fully reflect the multivariate effect of the outliers. In addition, when there are multiple outliers, the direction
of change depends on the combined effect of the outliers.
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Appendix A Preliminary Results

Lemma A1. Let qt(ψ; θ) = (ν+p) log(1+∥g(zt; θ)−µ∥2Σ−1/ν). For all θ ∈ Θ: supψ∈Ψn
∥∂µqt(ψ; θ)∥ ≤

s
−1/2
0 (1 + p/ν)ν1/2, supψ∈Ψn

∥∂Σqt(ψ; θ)∥ ≤ ν
(
ν2(1+p/ν)

κ2
+ ν4(1+p/ν)2

4κ1κ2
+ pν

κ2

)3
.

Lemma A2. Suppose zt ∼ P satisfying Assumption 2, for t ∈ {1, . . . , n}, take 1 ≤ ν ≤ n.

Let:

∆n(ψ; θ) =
1

n

n∑
t=1

(
log

(
1 +

∥g(zt; θ)− µ∥2Σ−1

ν

)
− EP

[
log

(
1 +

∥g(zt; θ)− µ∥2Σ−1

ν

)])
for any θ, ψ ∈ Θ×Ψn.

1) If zt are iid, then there exists a constant L > 0 which depends on s0, κ1, κ2,M2,M4

such that for all t ≥ 0:

P

(
sup

θ∈Θ,ψ∈Ψn

|∆n(ψ, θ)| ≥ L log(1 + pν)

[√
t

n
+
t

n
+

√
Cn
n

+
Cn
n

])
≤ 4 exp(−t), (A.1)

where Cn = 1 + (k + 2p2)[log(p) + log(ν) + log(n)].

2) If zt is strictly stationary with mixing coefficient βm ≤ a exp(−bm) for a, b > 0, then

for another constant L̃ > 0 which further depends on a, b such that:

P

(
sup

θ∈Θ,ψ∈Ψn

|∆n(ψ, θ)| ≥ L̃ log(1 + pν)

[√
(t+ Cn)t

n
+

(t+ Cn)t

n
+

√
Cn
n

+
Cn
n

])
(A.1’)

≤ 12 exp(−t),

for the same Cn as 1).

Appendix B Proofs for the Main Results

Proof of Lemma 1. Note that Qn(ψ) → +∞ when trace(Σ) → +∞ so the solution is

s.t. trace(Σ̂n) < +∞, likewise ∥µ̂n∥ <∞. The first-order condition (foc) wrt µ implies:

−ν + p

νn

n∑
t=1

Σ̂−1
n (g(Zt; θ)− µ̂n)

1 + ∥g(Zt; θ)− µ̂n∥2Σ̂−1
n
/ν

+
κ1
ν
Σ̂−1
n µ̂n = 0.
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Pre-multiply by Σ
1/2
n and re-arrange terms to find:

∥Σ̂−1/2
n µ̂n∥ ≤ ν

κ1
(1 + p/ν)max

t

∥g(Zt; θ)− µ̂n∥Σ̂−1
n

1 + ∥g(Zt; θ)− µ̂n∥2Σ̂−1
n
/ν
,

where maxx≥0
x

1+x2/ν
=

√
ν/2 yields the desired inequality. Take the foc wrt to Σ−1:

ν + p

νn

n∑
t=1

(g(Zt; θ)− µ̂n)(g(Zt; θ)− µ̂n)
′

1 + ∥g(Zt; θ)− µ̂n∥2Σ̂−1
n
/ν

+
κ1
ν
µ̂nµ̂

′
n −

κ2
ν
Σ2
n − Σn = 0.

Pre and post-multiply by Σ
−1/2
n , re-arrange terms and compute the trace to find:

trace(Σ̂n) ≤
ν

κ2

(
(1 + p/ν)max

t

∥g(Zt; θ)− µ̂n∥2Σ̂−1
n

1 + ∥g(Zt; θ)− µ̂n∥2Σ̂−1
n
/ν

+
κ1
ν
∥Σ̂−1/2

n µ̂n∥2 + p

)
.

The max is bounded above by supx≥0
x2

1+x2/ν
= ν. Plug-in the bound for ∥Σ̂−1/2

n µ̂n∥ to get

the desired inequality.

Proof of Proposition 1. First, note that ψ(θ; ν) ∈ Ψn for all θ ∈ Θ. By minimization,

we have for all θ ∈ Θ:

0 ≤ Qν(ψ̂n(θ; ν); θ)−Qν(ψ(θ; ν); θ) = Qn(ψ̂n(θ; ν); θ)−Qn(ψ(θ; ν); θ)︸ ︷︷ ︸
≤0

+ (Qν −Qn)(ψ̂n(θ; ν); θ)− (Qν −Qn)(ψ(θ; ν); θ)

≤ 2 sup
θ∈Θ,ψ∈Ψn

|(Qν −Qn)(ψ; θ)|,

where Qn − Qν = (ν + p)∆n used in Lemma A2. There are two bounds to derive: one for

the no outliers and another for the remaining nP observations. For any z ∈ On, ψ ∈ Ψn,

1 ≤ ν ≤ n:

0 ≤ log(1 + ∥g(z; θ)− µ∥2Σ−1/ν) ≤ log(1 + 3s−1
0 A2n2α/ν) + log(1 + 3/2κ−1

1 ν1/2).

We also have Qν = no/nQν + nP/nQν , the second is the centering term for well-behaved

observations. We need to bound the first:

0 ≤ (ν+ p)EP [log(1+ ∥g(zt; θ)−µ∥2Σ−1/ν)] ≤ 3(1+ p/ν)s−1
0 M2+(ν+ p) log(1+3/2κ−1

1 ν1/2),
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for any (θ, ψ) ∈ Θ × Ψn, using log(1 + x) ≤ x for x ≥ 0, Assumption 2 and Lemma 1.

Combine the two bounds to find:

2
∣∣∣ν + p

n

n∑
t=nP+1

log(1 + ∥g(zt; θ)− µ∥2Σ−1/ν)−
no
n
Qν(ψ; θ)

∣∣∣ ≤ CO
no(ν + p)

n
[1 + log(n)],

where CO only depends on s0,M2, κ1, A, α. Define QnP
to be the sample average over the

nP uncontaminated observations, QnP
− Qν = (ν + p)∆nP

which satisfies the conditions of

Lemma A2. Pre-multiply by nP/n to get the uncontaminated part of Qn−Qν and multiply

by 2. Replace L, L̃ from Lemma A2 with 2L, 2L̃ to get the desired result.

Proof of Corollary 1. Proceed in several steps: 1) show uniform convergence under the

pseudo-distance Qν and that it implies some compactness restrictions, 2) derive a norm

equivalence on compact sets, 3) combine these two steps with a uniform convergence for

∥ψ(θ; ν)− ψ(θ;∞)∥ as ν → ∞.

Step 1. Uniform convergence is implied by Proposition 1 and the rate conditions. The

following shows that this implies: supθ∈Θ ∥ψ̂n(θ; ν)∥ ≤ K with probability approaching 1

(wpa1), for some constant K > 0. Then, all pairs (ψ̂n(θ; ν), ψ(θ; ν))θ∈Θ will be in a bounded

compact subset of Ψ wpa1. First, note that for 1 ≤ ν:

Qν(ψ; θ) ≤ (1 + p)EP
[
∥g(zt; θ)∥2Σ−1)

]
+ log |Σ|+ κ1∥µ∥2Σ−1 + κ2trace(Σ),

which implies that supθ∈Θ,ν≥1 (infψ∈ΨQν(ψ; θ)) ≤ K1 for some constant K1 which is less or

equal to the largest (over θ) minimal (over ψ) value of the upper bound which is finite by

compactness, continuity and strict convexity, wrt ψ, of the upper bound.

Qν(ψ; θ) ≥ EP
[
(ν + p) log(1 + ∥g(zt; θ)∥2Σ−1/ν)

]
+ log |Σ| ≥ log(λmax(Σ)) ≥ 2K1,

for any θ, ν, µ as soon as λmax(Σ) ≥ exp(2K1) := s1. Assumption 2 ii and compactness of Θ

implies that:

∥µ(θ;∞)∥ = ∥EP [g(zt; θ)]∥ ≤ K2,

for some constant K2 which depends on M2, M4 and diam(Θ). In addition, for any M > 0,

Chebychev’s inequality implies:

sup
θ∈Θ

P (∥g(zt; θ)− µ(θ;∞)∥ ≥M) ≤M2/M := ε > 0.
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For λmax(Σ) ≤ s1 above, this implies for any θ ∈ Θ and all ∥µ∥ ≥ 2M +K2:

Qν(ψ; θ) ≥ (ν+p)(1−ε) log(1+s−1
1 M/ν)+p log(s0) ≥ (1+p)

(1− ε)s−1
1 M

1 + s−1
1 M/ν

+p log(s0) ≥ 2K1,

for M and ν ≥ ν ≥ 1 sufficiently large.

The uniform convergence then implies that supθ∈Θ ∥Qν(ψ̂n(θ; ν); θ)∥ ≤ supθ∈Θ ∥Qν(ψ(θ; ν); θ)∥+
op(1) ≤ 2K1, wpa1. This implies that supθ∈Θ ∥µ̂n(θ; ν)∥ ≤ K2+2M and supθ∈Θ ∥λmax(Σ̂n(θ; ν))∥ ≤
exp(2K1) wpa1, which implies the desired result. The same holds for ψ(θ; ν).

Step 2. First, for any x ≥ 0 we have x
1+x

≤ log(1+x) ≤ x which implies | log(1+x)−x| ≤
x2

1+x
. Take (θ, ψ) ∈ Θ×Ψ, this implies:∣∣∣∣∣Ep

[
(ν + p) log(1 + ∥g(zt; θ)− µ∥2Σ−1/ν)−

ν + p

ν
∥g(zt; θ)− µ∥2Σ−1

] ∣∣∣∣∣
≤ ν + p

ν2
EP
[
∥g(zt; θ)− µ∥4Σ−1

]
≤ 9s−2

0

ν + p

ν2
[
M4 + ∥µ∥4

]
,

using Assumption 2 iii. to bound the 4th moment. This implies that supθ∈Θ |Qν(ψ; θ) −
Q∞(ψ; θ)| ≤ O(ν−1) with respect to ψ on bounded compact sets.

Step 3. Given that supθ∈Θ(∥ψ̂n(θ; ν)∥ + ∥ψ(θ; ν)∥) ≤ 2K from Step 1, Step 2 and the

triangular inequality imply:

sup
θ∈Θ

|Q∞(ψ̂n(θ; ν); θ)−Q∞(ψ(θ; ν); θ)| = op(1).

Note that Q∞ is the Gaussian negative log-likelihood which is strictly convex for each θ ∈ Θ,

so this also implies ∥ψ̂n(θ; ν) − ψ(θ; ν)∥ = op(1) uniformly in θ. Since we are actually

interested in ψ(θ;∞):

0 ≤ sup
θ∈Θ

{Q∞(ψ(θ; ν); θ)−Q∞(ψ(θ;∞); θ)} ≤ sup
θ∈Θ

{Qν(ψ(θ; ν); θ)−Qν(ψ(θ;∞); θ)︸ ︷︷ ︸
≤0

}

+ sup
θ∈Θ

[Q∞(ψ(θ; ν); θ)−Qν(ψ(θ; ν); θ)−Q∞(ψ(θ;∞); θ) +Qν(ψ(θ;∞); θ)]

≤ O(ν−1),

using Step 2 and the compactness from Step 1. This implies the uniform convergence result

∥ψ̂n(θ; ν)− ψ(θ;∞)∥ = op(1).
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Proof of Proposition 2. The foc wrt µ̂n(θ; ν) reads (the dependence on θ, ν is omitted

for brievety):

1

n

n∑
t=1

xt,θ − µ̂n
1 + ∥xt,θ − µ̂n∥2Σ̂−1

n
/ν

+ κ1
µ̂n
ν

= 0,

where xt,θ = g(zt; θ) as in the proof of Lemma A2. Re-arrange terms to find:

µ̂n =
1

nP

nP∑
t=1

xt,θ︸ ︷︷ ︸
(A)

− 1

νnP

nP∑
t=1

(xt,θ − µ̂n)∥xt,θ − µ̂n∥2Σ̂−1
n

1 + ∥xt,θ − µ̂n∥2Σ̂−1
n
/ν︸ ︷︷ ︸

(B)

+
κ1n

nP

µ̂n
ν︸ ︷︷ ︸

(C)

+
1

nP

∑
t>nP

Σ
1/2
n Σ

−1/2
n (xt,θ − µ̂n)

1 + ∥xt,θ − µ̂n∥2Σ̂−1
n
/ν︸ ︷︷ ︸

(D)

,

where (A) = gnP
(θ) and ∥(C)∥ = Op(ν

−1) uniformly in θ when nP/n→ 1 using Corollary 1.

Then, we have:

sup
θ∈Θ

∥(B)∥ ≤ (sup
θ∈Θ

λmax(Σ(θ;∞)) + op(1))
−2 1

νnP

nP∑
t=1

8

(
sup
θ∈Θ

∥xt,θ∥3 + sup
θ∈Θ

∥µ̂n∥3
)

≤ (sup
θ∈Θ

λmax(Σ(θ;∞)) + op(1))
−2 1

νnP

nP∑
t=1

(
64∥xt,θ0∥3 + 64diam(Θ)3G3

t + 8 sup
θ∈Θ

∥µ̂n∥3
)

= Op(ν
−1),

by uniform consistency of µ̂n and a strong law of large numbers applied to the sample mean

of ∥xtθ0∥3 +G3
t (White, 2001, Cor3.48). We also have:

sup
θ∈Θ

∥(D)∥ ≤
[
sup
θ∈Θ

λmax(Σ(θ;∞)) + op(1)

]1/2 √
νno
2nP

= o(n−1/2),

if no = o(
√
ν/n). Corollary 1 required ν = o(

√
n), this yields the first result:

sup
θ∈Θ

∥µ̂n(θ; ν)− gnP
(θ)∥ = Op

(
max

[
ν−1,

√
νno
n

])
.
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To derive results for the bias-corrected estimates, we additionally need convergence rates for

Σ̂n, take the foc wrt Σ−1 and re-arrange terms:

Σ̂n =
1

n

nP∑
t=1

(xt,θ − µ̂n)(xt,θ − µ̂n)
′ (A)

− p

νn

nP∑
t=1

(xt,θ − µ̂n)(xt,θ − µ̂n)
′ (B)

− ν + p

ν2n

nP∑
t=1

(xt,θ − µ̂n)(xt,θ − µ̂n)
′∥xt,θ − µ̂n∥2Σ̂−1

n

1 + ∥xt,θ − µ̂n∥2Σ̂−1
n
/ν

(C)

+
ν + p

νn

∑
t>nP

Σ̂
1/2
n Σ̂

−1/2
n (xt,θ − µ̂n)(xt,θ − µ̂n)

′Σ̂
−1/2
n Σ̂

1/2
n

1 + ∥xt,θ − µ̂n∥2Σ̂−1
n
/ν

(D)

+ κ1
µ̂nµ̂

′
n

ν
− κ2

Σ̂2
n

ν
, (E)

where supθ∈Θ ∥(E)∥ = Op(ν
−1) by uniform convergence. supθ∈Θ ∥(B)∥ = Op(ν

−1) by apply-

ing a uniform law of large numbers to xt,θ, x
2
t,θ and uniform convergence of µ̂n. Then, we

have:

sup
θ∈Θ

∥(C)∥ ≤ (sup
θ∈Θ

λmax(Σ(θ;∞)) + op(1))
−21 + p

νnP

nP∑
t=1

16(∥xt,θ∥4 + ∥µ̂n∥4) = Op(ν
−1),

using a strong law of large numbers for ∥xt,θ0∥4, G4
t , as in the bound on (B) for µ̂n above.

Finally, supθ∈Θ ∥(D)∥ ≤ (supθ∈Θ λmax(Σ(θ;∞)) + op(1))ν(1 + p)no

n
= Op

(
νno

n

)
. Importantly,

we also have:

1

n

nP∑
t=1

[(xt,θ − µ̂n(θ; ν))(xt,θ − µ̂n(θ; ν))
′ − (xt,θ − µ̂n(θ; ν/2))(xt,θ − µ̂n(θ; ν/2))

′]

= Op

(
max

[
ν−1,

√
νno
n

])
,

since µ̂n(θ, ν)−µ̂n(θ, ν/2) = Op(max
[
ν−1,

√
νno

n

]
) uniformly in θ. This implies that Σ̂n(θ; ν)−

Σ̂n(θ; ν/2) = Op(max[ν−1, νno

n
]) uniformly in θ. We now have all the ingredients to expand
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the bias-corrected estimates µ̃n(θ; ν) = 2µ̂n(θ; ν)− µ̂n(θ; ν/2), omit their dependence on θ:

µ̃n(ν)

=
2

nP

nP∑
t=1

xt,θ −
1

nP

nP∑
t=1

xt,θ (A)

− 2

νnP

nP∑
t=1

[
(xt,θ − µ̂n(ν))∥xt,θ − µ̂n(ν)∥2Σ̂−1

n (ν)

1 + ∥xt,θ − µ̂n(ν)∥2Σ̂−1
n (ν)

/ν
−

(xt,θ − µ̂n(
ν
2
))∥xt,θ − µ̂n(

ν
2
)∥2

Σ̂−1
n ( ν

2
)

1 + 2∥xt,θ − µ̂n(
ν
2
)∥2

Σ̂−1
n ( ν

2
)
/ν

]
(B)

+ 2κ1
µ̂n(ν)− µ̂n(

ν
2
)

ν
(C)

+
2

nP

∑
t>nP

Σ
1/2
n (ν)Σ

−1/2
n (ν)(xt,θ − µ̂n(ν))

1 + ∥xt,θ − µ̂n(ν)∥2Σ̂−1
n (ν)

/ν
− 1

nP

∑
t>nP

Σ
1/2
n (ν

2
)Σ

−1/2
n (ν

2
)(xt,θ − µ̂n(

ν
2
))

1 + 2∥xt,θ − µ̂n(
ν
2
)∥2

Σ̂−1
n ( ν

2
)
/ν

. (D)

Clearly (A) = gnP
(θ) and ∥(D)∥ ≤ Op(

√
νno

n
) uniformly in θ ∈ Θ as previously shown.

Likewise, ∥(C)∥ ≤ Op(max[ν−2, no√
νn
]) ≤ Op(max[ν−2,

√
νno

n
]), uniformly.

Remains to bound the longer term:

(B) =
−2

νnp

nP∑
t=1

(xt,θ − µ̂n(ν))∥xt,θ − µ̂n(ν)∥2Σ̂−1
n (ν)

− (xt,θ − µ̂n(
ν
2
))∥xt,θ − µ̂n(

ν
2
)∥2

Σ̂−1
n ( ν

2
)

(1 + ∥xt,θ − µ̂n(ν)∥2Σ̂−1
n (ν)

/ν)(1 + 2∥xt,θ − µ̂n(
ν
2
)∥2

Σ̂−1
n ( ν

2
)
/ν)

(B1)

+
2

ν2np

nP∑
t=1

(xt,θ − µ̂n(
ν
2
))∥xt,θ − µ̂n(

ν
2
)∥2

Σ̂−1
n ( ν

2
)
∥xt,θ − µ̂n(ν)∥2Σ̂−1

n (ν)

(1 + ∥xt,θ − µ̂n(ν)∥2Σ̂−1
n (ν)

/ν)(1 + 2∥xt,θ − µ̂n(
ν
2
)∥2

Σ̂−1
n ( ν

2
)
/ν)

(B2)

− 2

ν2np

nP∑
t=1

(xt,θ − µ̂n(ν))∥xt,θ − µ̂n(ν)∥2Σ̂−1
n (ν)

∥xt,θ − µ̂n(
ν
2
)∥2

Σ̂−1
n ( ν

2
)

(1 + ∥xt,θ − µ̂n(ν)∥2Σ̂−1
n (ν)

/ν)(1 + 2∥xt,θ − µ̂n(
ν
2
)∥2

Σ̂−1
n ( ν

2
)
/ν)

, (B3)

where ∥(B2), (B3)∥ = Op(ν
−2) using a uniform of large numbers for ∥xt,θ∥5 and uniform

convergence of µ̂n(ν), µ̂n(ν/2). The last step is to show that the numerator in (B1) is a
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Op(max[ν−1,
√
νno

n
]), let δn = ν−1 + νno

n
:

∥(xt,θ − µ̂n(ν))∥xt,θ − µ̂n(ν)∥2Σ̂−1
n (ν)

− (xt,θ − µ̂n(
ν

2
))∥xt,θ − µ̂n(

ν

2
)∥2

Σ̂−1
n ( ν

2
)
∥

≤ Op(δn)∥xt,θ − µ̂n(ν)∥2Σ̂−1
n (ν)

+ ∥xt,θ − µ̂n(
ν

2
)∥
[
∥xt,θ − µ̂n(ν)∥2Σ̂−1

n (ν)
− ∥xt,θ − µ̂n(

ν

2
)∥2

Σ̂−1
n ( ν

2
)

]
≤ Op(δn)∥xt,θ − µ̂n(ν)∥2Σ̂−1

n (ν)
+Op(δn)s

−2
0 ∥xt,θ − µ̂n(

ν

2
)∥3

+ ∥xt,θ − µ̂n(
ν

2
)∥s−2

0

[
∥µ̂n(ν)− µ̂n(

ν

2
)∥ × ∥2xt,θ − µ̂n(ν)− µ̂n(

ν

2
)∥
]

≤ Op(δn)

(
∥xt,θ − µ̂n(ν)∥2Σ̂−1

n (ν)
+ s−2

0 ∥xt,θ − µ̂n(
ν

2
)∥3

+ s−2
0 ∥xt,θ − µ̂n(

ν

2
)∥(∥xt,θ − µ̂n(ν)∥+ ∥xt,θ − µ̂n(

ν

2
)∥)

)
.

Apply a uniform law of large numbers to ∥xt,θ∥2, ∥xt,θ∥3, and invoke uniform convergence of

µ̂n(ν), µ̂n(ν/2) to get since the denominator in (B1) is less or equal than 1: supθ∈Θ ∥(B1)∥ ≤
Op(ν

−1δn) = Op(max[ν−2,
√
νno

n
]) as desired. Putting everything together, we get the desired

result:

sup
θ∈Θ

∥µ̃n(θ; ν)− gnP
(θ)∥ ≤ Op

(
max

[
ν−2,

√
νno
n

])
.

Proof of Theorem 1. By definition: ∥µ̃n(θ̃n)∥2Wn
≤ infθ∈Θ ∥µ̃n(θ)∥2Wn

+ op(n
−1). Proposi-

tion 2 implies that, uniformly in θ ∈ Θ:

∥gnP
(θ)∥Wn − op(n

−1/2) ≤ ∥µ̃n(θ)∥Wn ≤ ∥gnP
(θ)∥Wn + op(n

−1/2).

In particular the asymptotic equivalence and approximate minimization properties imply:

∥gnP
(θ̃n)∥Wn ≤ ∥µ̃n(θ̃n)∥Wn+op(n

−1/2) ≤ ∥µ̃n(θ̂n)∥Wn+op(n
−1/2) ≤ ∥gnP

(θ̂nP
)∥Wn+op(n

−1/2),

which implies that θ̃n is an approximate minimizer of ∥gnP
(·)∥Wn . Assumption 3 then implies

continuity and asymptotic normality for both θ̃n and θ̂nP
, e.g. Newey and McFadden (1994,

Th2.6, Th7.2) in the iid setting. The results then follow from a first-order expansion of the

two estimators, e.g.:
√
nP (θ̃n − θ0) = −(G′WG)−1G′WgnP

(θ0) + op(1).
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Proof of Proposition 3. The weighted average representation follows from the first-order

condition ∂µQn(ψ̂n; θ) = 0, which can be re-written as:

0 =
1 + p/ν

n

n∑
t=1

µ̂n − g(zt; θ)

1 + ∥g(zt; θ)− µ̂n∥2Σ̂−1
n
/ν

+
κ1
ν
µ̂n.

Re-arrange terms to find µ̂n =
∑n

t=1 ωt(θ; ν)g(zt; θ) as in the Proposition. Since µ̃n(θ; ν) =

2µ̂n(θ; ν)− µ̂n(θ; ν/2) we have also have µ̃n(θ; ν) =
∑n

t=1[2ωt(θ; ν)− ωt(θ; ν/2)]g(zt; θ).

Let ω̄n(θ; ν) = (1 + p/ν)/n
∑n

t=1[1 + qt/ν]
−1 + κ1/ν, we have:

ω̄n(θ; ν)Σ̂n,ω(θ) =
n∑
t=1

1 + p/ν

n

ε̂tε̂
′
t

1 + ∥ε̂t∥2Σ̂−1
n
/ν

=

nP∑
t=1

1 + p/ν

n
ε̂tε̂

′
t︸ ︷︷ ︸

(A)

−
nP∑
t=1

1 + p/ν

nν

ε̂tε̂
′
t∥ε̂t∥2Σ̂−1

n

1 + ∥ε̂t∥2Σ̂−1
n
/ν︸ ︷︷ ︸

(B)

+
n∑

t=nP+1

1 + p/ν

n

ε̂tε̂
′
t

1 + ∥ε̂t∥2Σ̂−1
n
/ν︸ ︷︷ ︸

(C)

p→ Σ(θ).

To get the result, note that ∥(C)∥ ≤ λmax(Σ̂n)(1 + p/ν)noν/n = op(1). Likewise, ∥(B)∥ ≤
ν−1(1 + p/ν)s−1

0 [1/n
∑nP

t=1 ∥ε̂t∥4] = Op(ν
−1) using µ̂n

p→ EP (g(zt; θ)) and a law of large

numbers for ∥g(zt; θ)∥4. Similarly, a law of large numbers implies (A)
p→ Σ(θ). Using

qt ≥ 0, we have ω̄n(θ; ν) = (1 + p/ν)/n
∑nP

t=1 1 − (1 + p/ν)/[nν]
∑nP

t=1 qt/[1 + qt/ν] + (1 +

p/ν)/n
∑n

t=nP+1[1 + qt/ν]
−1. The first term converges to 1, the second term is a Op(ν

−1)

using a law of large numbers, and the third term is less or equal than no/n(1 + p/ν) = o(1).

This implies ω̄n(θ; ν)
p→ 1. Combine the results to find Σ̂n,ω(θ)

p→ Σ(θ).

To prove consistency for Σ̃n,ω(θ), we will first prove consistency for
∑n

t=1 ωt(θ; ν)ε̃t(θ)ε̃t(θ)
′

and
∑n

t=1 ωt(θ; ν/2)ε̃t(θ)ε̃t(θ)
′. Since Σ̃n,ω(θ) equals two times the first minus the second,

consistency follows. First, note that ε̃t = ε̂t + µ̂n − µ̃n, where µ̂n − µ̃n = op(1) by Corollary

1.

n∑
t=1

ωt(θ; ν)ε̃t(θ)ε̃t(θ)
′ =

n∑
t=1

ωt(θ; ν)ε̂t(θ)ε̂t(θ)
′

+ 2
n∑
t=1

ωt(θ; ν)ε̂t(θ)(µ̃n − µ̂n) + ω̄n(θ; ν)(µ̃n − µ̂n)(µ̃n − µ̂n)
′

p→ Σ0(θ),
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because the first term is consistent for Σ0(θ) from the previous result. The last term is

a op(1) since ω̄n(θ) = 1 + op(1) is multiplied by a op(1). The second term is equal to

2µ̂nop(1)−2ω̄n(θ)µ̂nop(1) = op(1). Follow the same steps for
∑n

t=1 ωt(θ; ν/2)ε̃t(θ)ε̃t(θ)
′ using

µ̂n(θ; ν/2) instead of µ̂n(θ; ν) to derive the result and conclude the proof.
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Appendix C Proofs for the Preliminary Results

Proof of Lemma A1. Take derivates wrt µ:

∂µqt(ψ) = −2Σ−1/2ν + p

ν

Σ−1/2(xt − µ)

1 + ∥xt − µ∥2Σ−1/ν
,

where λmax(Σ
−1/2) ≤ s

−1/2
0 . Use ∥Σ−1/2(xt − µ)∥/(1 + ∥xt − µ∥2Σ−1/ν) ≤

√
ν/2 to get the

first inequality. Take derivates wrt Σ:

∂Σqt(ψ) = −Σ3/2ν + p

ν

Σ−1/2(xt − µ)(xt − µ)′Σ−1/2

1 + ∥xt − µ∥2Σ−1/ν
Σ3/2.

This implies ∥∂Σqt(ψ)∥ ≤ λmax(Σ)
3(1+p/ν)ν where λmax(Σ) ≤ trace(Σ), bounded in (7).

Proof of Lemma A2 - 1) IID Setting. Let xt,θ = g(zt; θ) and ∆t(ψ; θ) = log(1+∥xt,θ−
µ∥2Σ−1/ν)−EP [log(1+∥xt,θ−µ∥2Σ−1/ν)], ∆n(ψ; θ) = 1/n

∑n
t=1∆t(ψ, θ). For any pair (ψj, θj),

we have:

|∆n(ψ; θ)| ≤ |∆n(ψ; θ)−∆n(ψj; θ)|︸ ︷︷ ︸
(A)

+ |∆n(ψj; θ)−∆n(ψj; θj)|︸ ︷︷ ︸
(B)

+ |∆n(ψj; θj)|︸ ︷︷ ︸
(C)

.

The following bounds each one of (A), (B), and (C), either deterministically or in probability.

1. Bound for (A). Lemma A1 implies that for any ψ = (µ,Σ), ψj = (µj,Σj) in Ψn:

| log(1 + ∥xt,θ − µ∥2Σ−1/ν)− log(1 + ∥xt,θ − µj∥2Σ−1
j
/ν)| ≤ p3ν12L1∥ψ − ψj∥,

where L1 depends on s0, κ1, κ2. Taking either sample averages or expectations, yields:

(A) ≤ 2p3ν12L1∥ψ − ψj∥, (C.2)

since the bound is deterministic.
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2. Bound for (B). Suppose, without loss of generality that ∥xt,θ−µ∥Σ−1 ≥ ∥xt,θj −µ∥Σ−1 ,

then:16

0 ≤ log(1 + ∥xt,θ − µ∥2Σ−1/ν)− log(1 + ∥xt,θj − µ∥2Σ−1/ν)

≤ log(1 + ∥xt,θ − µ∥2Σ−1/ν − ∥xt,θj − µ∥2Σ−1/ν).

Using properties of inner-products: 0 ≤ ∥xt,θ − µ∥2Σ−1/ν − ∥xt,θj − µ∥2Σ−1/ν ≤ ∥xt,θ −
xt,θj∥Σ−1∥xt,θ+xt,θj −2µ∥Σ−1/ν.17 Assumption (2) implies ∥xt,θ−xt,θj∥Σ−1 ≤ s

−1/2
0 Gt∥θ−θj∥

and ∥xt,θ + xt,θj∥Σ−1 ≤ 2s
−1/2
0 Gtdiam(Θ). Also ψ ∈ Ψn implies ∥2µ∥Σ−1 ≤ ν3/2(1 + p/ν)κ−1

1 .

Hence, for some constant L2 which depends on s0, κ1 and diam(Θ):

| log(1 + ∥xt,θ − µ∥2Σ−1/ν)− log(1 + ∥xt,θj − µ∥2Σ−1/ν)| ≤ log(1 + νpL2(1 +Gt)
2∥θ − θj∥),

and then taking expectations and using log(1 + x) ≤ x for x ≥ 0:

EP | log(1 + ∥xt,θ − µ∥2Σ−1/ν)− log(1 + ∥xt,θj − µ∥2Σ−1/ν)| ≤ 3νpL2(1 +M2)∥θ − θj∥,

by taking expectations over (1 + Gt)
2 ≤ 3(1 + G2

t ). Take ε > 0 and ∥θ − θj∥ ≤ ε, denote

ℓt,ε = log(1 + νpL2(1 +Gt)
2ε), then:

sup
ψ∈Ψn,∥θ−θj∥≤ε

|∆n(ψj; θ)−∆n(ψj; θj)|︸ ︷︷ ︸
(B)

≤ |ℓn,ε − EP (ℓt,ε)|+ 6νpL2(1 +M2)ε.

Take u1 ≥ 1, we have:

EP (exp[ℓt,ε/u1]) ≤ EP ([1 + νεpL2(1 +Gt)
2]1/u1) ≤ [1 + 3νεpL2(1 +M2)]

1/u1 ≤ 2,

if u1 = max
(
1, log(1 + νεp(1 +M

1/2
4 )2)

)
, using E(X1/u1) ≤ E(X)1/u1 for u1 ≥ 1 and X ≥ 0.

This implies that the sub-exponential norm of ℓt,ε is at most u1. Because centering preserves

sub-exponentiality, Bernstein’s inequality (Vershynin, 2018, Cor2.8.3) implies:

P

(
|ℓn,ε − EP (ℓt,ε)| ≥ u1

√
t

n
+ u1

t

n

)
≤ 2 exp(−Ct),

16For any x ≥ y ≥ 0, 0 ≤ log(1+x)− log(1+ y) = log(1+ (1+x)/(1+ y)− 1) = log(1+ (x− y)/(1+ y)) ≤
log(1 + x− y).

17For any two vectors a, b, we have ⟨a, a⟩ − ⟨b, b⟩ = ⟨a− b, a+ b⟩ ≤ ∥a− b∥ × ∥a+ b∥.
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for some universal constant C > 0. From this we deduce that:

P

(
sup

ψ∈Ψn,∥θ−θj∥≤ε
|∆n(ψj; θ)−∆n(ψj; θj)| ≥ u1

√
t

n
+ u1

t

n
+ 6νpL2(1 +M2)ε

)
≤ 2 exp(−Ct). (C.3)

3. Bound for (C). The first step is to show that (C) is a sample average over a centered

sub-exponential random variable. By Assumption 2, supθ∈Θ EP (∥xt,θ∥2) ≤M2 <∞. For any

θ ∈ Θ, ψ ∈ Ψn: 0 ≤ log(1+ ∥xt,θ − µ∥2Σ−1/ν) ≤ log(1+ 3s−1
0 ∥xt,θ∥2/ν) + log(1+ 3/2κ−1

1 ν(1+

p/ν)). This inequality implies that for any u2 ≥ 1:

EP (exp[log(1+∥xt,θ−µ∥2Σ−1/ν)/u2]) ≤ EP [1+3s−1
0 ∥xt,θ∥2/ν]1/u2 exp[log(1+3/2κ−1

1 ν(1+p/ν))/u2].

Take u2 = max
(
1,

log(1+3/2κ−1
1 ν(1+p/ν))

1/2 log(2)
, 3M2

1/2 log(2)s0ν

)
. We have EP ([1 + 3s−1

0 ∥xt∥2/ν]1/u2) ≤
(EP [1 + 3s−1

0 ∥xt∥2/ν])1/u2 ≤
√
2 and exp(log[1 + 3/2κ−1

1 ν(1 + p/ν)]/u) ≤
√
2, making the

product less than 2. This implies that the sub-exponential norm of log(1 + ∥xt,θ − µ∥2Σ−1/ν)

is at most u2 for any ψ, θ. Apply Bernstein’s inequality to find:

P

(
|∆n(ψ, θ)| ≥ u2

√
t

n
+ u2

t

n

)
≤ 2 exp(−Ct), (C.4)

for the same universal constant C > 0 as above, and for any (ψ, θ) ∈ Ψn ×Θ.

4. Overall Bound. Take ε > 0 and N(ε) denote the smallest N ≥ 1 such that there

exists (ψj, θj) ∈ Ψn × Θ such that supψ,θ∈Ψn×Θ(infj=1,...,N [∥ψ − ψj∥ + ∥θ − θj∥]) ≤ ε. Using

this cover and a union bound, we have:

P

(
sup

j=1,...,N(ε)

|∆n(ψj, θj)| ≥ u2

√
t+ log[N(ε)]

Cn
+ u2

t+ log[N(ε)]

Cn

)
≤ 2 exp(−t). (C.4’)

Take u = u1 + u2 and combine the bounds to find:

P

(
sup

θ∈Θ,ψ∈Ψn

|∆n(ψ, θ)| ≥ 2u

√
t

Cn
+ u

t

Cn
+ u

[√
log[N(ε)]

Cn
+

log[N(ε)]

Cn

]
+ L3ν

12p3ε

)
(C.5)

≤ 4 exp(−t).
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Let k = dim(θ) and p = dim(µ). Lemma 1 implies that for some L4 > 0 which depends on

κ1, κ2, we have for any (µ,Σ) ∈ Ψn that ∥ψ∥ = ∥µ∥+∥Σ∥ ≤ L4p
2ν4. This yields the following

bound log[N(ε)] ≤ k log(3diam(Θ)/ε)+ 2p2 log(3L4p
2ν4/ε). Pick ε = ν−12p−2n−1/2, then for

some constant L5 > 0 which depends on L4 and diam(Θ): log[N(ε)] ≤ L5(k + 2p2)[log(p) +

log(ν) + log(n)]. For the same choice of ε, we have u ≤ log(1 + νp), up to a constant that

depends on κ1, κ2,M2, s0. This implies for some constant L > 0:

P

(
sup

θ∈Θ,ψ∈Ψn

|∆n(ψ, θ)| ≥ L log(1 + pν)

[√
t

n
+
t

n
+

√
Cn
n

+
Cn
n

])
≤ 4 exp(−t), (A.1)

where Cn = 1 + (k + 2p2)[log(p) + log(ν) + log(n)].

Proof of Lemma A2 - 2) Dependent Setting. The core of the proof is similar to the

iid setting, the main differences occur in the sub-exponential inequalities for (B)-(C) in the

inequality:

|∆n(ψ; θ)| ≤ |∆n(ψ; θ)−∆n(ψj; θ)|︸ ︷︷ ︸
(A)

+ |∆n(ψj; θ)−∆n(ψj; θj)|︸ ︷︷ ︸
(B)

+ |∆n(ψj; θj)|︸ ︷︷ ︸
(C)

.

1. Bound for (A). Same as iid setting.

2. Bound for (B). The following relies on a proof reduction technique by Bosq (1991).18

Take an integer q ≥ 1 and a real number m ∈ (0, n) such that m = n
2q
. Take ε > 0,

ℓt,ε = log(1 + νpL2(1 + Gt)
2ε) from the iid setting, and, for t ∈ [0, n], let Lt,ε = ℓ[t+1],ε

be its continuous-time extension. By design, ℓn,ε = 1
n

∫ n
0
Lv,εdv. Let Ui =

∫ (2i−1)m

2(i−1)m
Lv,εdv,

Vi =
∫ 2im

(2i−1)m
Lv,εdv befine non-overlapping blocks; each containsm consecutive discrete-time

observations. By construction, ℓn,ε =
1
n

∑q
i=1(Ui + Vi).

Both Ui and Vi are strictly stationary and β-mixing. Berbee’s Lemma (Bosq, 1998,

Lem1.1) implies that there exists (U∗
i ,V∗

i )i=1,...,q iid such that (U∗
i ,V∗

i )
d
= (Ui,Vi) and P(Ui ̸=

U∗
i ) ≤ β[m] (likewise for Vi,V∗

i ). The next step is to compute the sub-exponential norm of

Ui, Vi. For any i ∈ {1, . . . , q} and ũ1 ≥ m ≥ 1, Jensen’s inequality and Fubini’s Theorem

imply:

EP
(
exp

[∫ 2im

2(i−1)m

Lv,εdv/ũ1
])

≤
[∫ 2im

2(i−1)m

EP (exp [Lv,εm/ũ1]) dv
]
/m,

18See also Doukhan (1994), Bosq (1998).
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which is less than 2 if the integrand itself is less than 2 for all v. Following the proof in the

iid setting, this is true whenever ũ1 ≥ mmax (1, log[1 + 3νεp(1 +M2)]). Take u1 = ũ1/m

After recentering, Bernstein’s inequality applied to the iid sequence U∗
i yields for the same

choice of u1 as the iid setting:

P
(
|U∗

i − EP (U∗
i )| ≥ mu1

√
t

q
+mu1

t

q

)
≤ 2 exp(−Ct),

for the same universal constant C > 0 used in the iid setting, the same holds for V∗
i . To get

the bound for (B), we need a tail inequality for ℓn,ε −EP (ℓt,ε) = 1
n

∑q
i=1(Ui + Vi −EP (Ui)−

EP (Vi)):19

P
(
n

2q
|ℓn, ε− EP (ℓt,ε)| ≥ mu1

√
t

q
+mu1

t

q

)
≤ 2P

(
|U i − EP (Ui)| ≥ mu1

√
t

q
+mu1

t

q

)
≤ 2P

(
|U∗

i − EP (U∗
i )| ≥ mu1

√
t

q
+mu1

t

q

)
+ 2qβ[m].

The mixing condition and the definition of m imply that 2qβ[m] ≤ na
m
exp(−b[m]). Then, we

can re-write for m ≥ 1:

P

(
|ℓn,ε − EP (ℓt,ε)| ≥ 2u1

√
mt

n
+ 2u1

mt

n

)
≤ 4 exp (−Ct) + na

exp(b)
exp(−bm) = 6 exp (−Ct) ,

for m = 1 + [Ct+ log(an)]/b. Note that the effect of m on the tail inequality is comparable

to the bounded case found in e.g. Doukhan (1994, Ch1.4), Rio (1999, Ch6). Going back to

(B) itself, following the same steps from the above inequality to the result yields:

P

(
sup

ψ∈Ψn,∥θ−θj∥≤ε
|∆n(ψj; θ)−∆n(ψj; θj)| ≥ u1

√
mt

n
+ u1

mt

n
+ 6νpL2(1 +M2)ε

)
≤ 6 exp(−Ct), (C.3)

where m depends on t and n as stated above.

19The derivation relies on the inequality: P(
∑q

i=1(Ui+Vi−EP (Ui)−EP (Vi)) ≥ 2t) ≤ P(
∑q

i=1(Ui−EP (Ui) ≥
t) + P(

∑q
i=1(Vi − EP (Ui)) ≥ t) = 2P(

∑q
i=1(Ui − EP (Ui) ≥ t).
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3. Bound for (C). Using the same steps as above, we can take m = 1+ [Ct+ log(an)]/b

and the same u2 found in the iid setting to get the inequality:

P

(
|∆n(ψ; θ)| ≥ u2

√
mt

n
+ u2

mt

n

)
≤ 6 exp(−Ct), (C.4)

for the same universal constant C > 0 and for any (ψ, θ) ∈ Ψn ×Θ.

4. Overall Bound. Using the same collection (ψj, θj) ∈ Ψn × Θ as in the iid case, we

have:

P

(
sup

j=1,...,N(ε)

|∆n(ψj; θj)| ≥ u2

√
m2t+m2 log[N(ε)]

Cn
+ u2

m2t+m2 log[N(ε)]

Cn

)
≤ 6 exp(−t), (C.4’)

using m2 = 1 + [t+ log[N(ε)] + log(an)]/b = m+ log[N(ε)]/b.

Take u = u1 + u2 and combine these bounds:

P

(
sup

θ∈Θ,ψ∈Ψn

|∆n(ψ, θ)| ≥ 2u

√
(m+m2)t

Cn
+ u

(m+m2)t

Cn
+ u

[√
log[N(ε)]

Cn
+

log[N(ε)]

Cn

]
(C.5)

+ L3ν
12p3ε

)
≤ 12 exp(−t).

Take ε = ν−12p−2n−1/2 as in the iid case so that log[N(ε)] ≤ L5(k + 2p2)[log(p) + log(ν) +

log(n)]. This implies that t ≤ (m+m2)t = t+t2/b+log[N(ε)]t/b+log(an)t/b ≤ tL̃5 (t+ Cn),

for some constant L̃5 which depends on a, b and L5. As in the iid setting u ≤ log(1 + νp),

up to a constant and for some constant L̃ > 0:

P

(
sup

θ∈Θ,ψ∈Ψn

|∆n(ψ, θ)| ≥ L̃ log(1 + pν)

[√
(t+ Cn)t

n
+

(t+ Cn)t

n
+

√
Cn
n

+
Cn
n

])
(A.1’)

≤ 12 exp(−t), (C.6)

where Cn = 1 + (k + 2p2)[log(p) + log(ν) + log(n)].
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Appendix D Leveraged outliers: an illustration

Before introducing the estimator, the following illustrates the asymptotic effect of excess

leverage. Consider a single regressor linear model:

yt = β0 + β1xt + et,

for t = 1, . . . , n − 1 where xt ∼ (0, σ2
x), et ∼ (0, σ2

e) are iid with finite fourth moment.

The last observation is yn = β0 + (β1 + c)xn. Here c measures misspecification, and xn

is such that x2n =
√
nσ2

x. Because of leverage, (yn, xn) has some influence asymptotically,
xn(yn−ȳn)∑n
t=1(xt−x̄n)2

≈ x2n(β1+c)
nσ2

x
= β1+c√

n
, so that the estimator is asympotically biased:

√
n(β̂1 − β1)

d→ N (c, σ2
e/σ

2
x),

with homoskedastic errors. The outlier further inflates heteroskedasticity-robust standard

errors: V̂β̂1
p→ c2 + σ2

e/σ
2
x. The misspecification c affects the t-statistic tn through both

estimates and standard errors:

tn =
β̂1 − β1

se(β̂1)

d→ N

(
c√

c2 + σ2
e/σ

2
x

,
1√

c2σ2
x/σ

2
e + 1

)
.

Figure D4 shows the coverage of 95% and 66% confidence intervals when c increases.

Figure D4: Leveraged outlier: asymptotic size for 95% and 66% confidence intervals

Note: Solid line: rejection probability, dashed line: nominal size.

Appendix E Leverage in IV Regressions

The following Lemma gives a measure of influence and leverage in just-identified linear

instrumental variable regressions. The model is yt = x′tθ + et, let θ̂n be the IV estimates,

ŷt = x′tθ̂n the predicted value and ỹt = x′tθ̂−t the leave-one-out predicted value. Using

standard notation, Z, X and y refer the to matrix of instruments, regressors and the vector

of outcomes.
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Lemma E3. For each t, the difference between the full sample and the leave-one-out predicted

value is:

ŷt − ỹt = x′t(Z
′X)−1ztẽt,

where ẽt = yt − ỹt. Using the terminology from OLS, leverage is given by ht = x′t(Z
′X)−1zt

and influence is htẽt. Leverage can be positive or negative. Unlike OLS, the sign of influence

may not coincide with the sign of the residual ẽt.

Proof of Lemma E3. The derivations are similar to OLS. The full sample θ̂n = (Z ′X)−1Z ′y,

the leave-one-out θ̂−t = (Z ′X−ztx′t)−1(Z ′y−ztyt). Pre-multiply the latter by (Z ′X)−1(Z ′X−
ztx

′
t) to find:

θ̂−t − (Z ′X)−1ztỹt = θ̂n − (Z ′X)−1ztyt.

Re-arrange terms and pre-multiply by x′t to find:

ŷt − ỹt = x′t(Z
′X)−1ztẽt︸ ︷︷ ︸

Influence

.

For OLS, ht = x′t(X
′X)−1xt ≥ 0, here ht = x′t(Z

′X)−1zt < 0 can occur.
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Appendix F Additional Simulation Results

Table F6: Small sample properties of the estimators (n = 150) – ν = O(n1/3)

100× RMSE Rejection Rate

no = 0

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 8.05 8.05 12.00 11.84 9.31 8.11 7.94 0.04 0.04 0.24 0.29 0.13 0.05 0.06

θ1 8.00 8.00 7.15 7.96 7.78 7.78 7.92 0.06 0.06 0.06 0.11 0.08 0.07 0.06

θ2 8.10 8.10 7.46 8.44 8.20 8.10 8.06 0.04 0.04 0.05 0.10 0.06 0.05 0.05

θ3 8.19 8.19 7.43 8.55 8.30 8.15 8.15 0.06 0.06 0.06 0.10 0.07 0.06 0.06

no = 1

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 10.71 8.04 13.01 14.17 10.95 8.52 10.32 0.03 0.04 0.20 0.46 0.23 0.08 0.08

θ1 38.57 8.07 15.23 8.27 7.97 7.87 32.28 0.00 0.06 0.01 0.14 0.10 0.07 0.39

θ2 38.39 8.11 15.09 8.73 8.36 8.13 32.12 0.01 0.04 0.01 0.12 0.06 0.06 0.37

θ3 39.94 8.20 15.75 8.82 8.49 8.26 33.52 0.00 0.06 0.00 0.12 0.09 0.07 0.39

no = 5

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 11.98 8.14 16.57 16.96 13.36 9.79 13.44 0.10 0.04 0.24 0.59 0.38 0.13 0.16

θ1 47.57 8.40 47.17 9.03 8.63 8.41 46.72 0.99 0.06 0.99 0.12 0.08 0.06 0.99

θ2 47.48 8.26 48.25 9.26 8.78 8.51 47.14 0.99 0.04 1.00 0.11 0.04 0.03 1.00

θ3 49.17 8.28 49.48 9.34 8.95 8.72 48.64 0.98 0.06 0.98 0.10 0.08 0.04 0.98

no = 10

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 12.21 8.21 17.33 16.84 13.37 10.98 14.11 0.09 0.04 0.23 0.47 0.22 0.07 0.17

θ1 49.14 8.54 48.38 10.45 12.31 23.20 48.65 0.99 0.04 0.99 0.01 0.01 0.16 1.00

θ2 49.05 8.31 49.67 11.02 13.09 24.58 48.92 0.99 0.04 0.99 0.01 0.01 0.16 1.00

θ3 50.52 8.51 50.70 11.32 13.68 24.91 50.19 0.98 0.06 0.98 0.00 0.01 0.16 0.99

Legend: θ̂olsn full sample OLS, θ̂olsnP
oracle OLS, θ̂rlmn robust M-estimator, θ̂n robust estimates without bias

correction, θ̃n robust estimates with bias correction, ˜̃θn robust estimates with repeated bias correction, θ̂unn
undersmoothed robust estimates with ν̂2n. 200 Monte-Carlo replications. no = number of outliers. Rejection
rate for t-test at the 5% significance level. Average ν̂n: 32.8, 18.0, 11.0, 10.8, 10.8 for n0 = 0, 1, 5, 10, 20
respectively. Each ν̂n is selected on a grid [ν0, . . . , νJ ] where ν0 = 8.82, νJ = 177.16.
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Table F7: Small sample properties of the estimators (n = 500) – ν = O(n1/3)

100× RMSE Rejection Rate

no = 0

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 4.59 4.59 10.67 9.29 6.29 4.70 4.56 0.07 0.07 0.65 0.51 0.21 0.07 0.07

θ1 4.21 4.21 3.93 4.57 4.50 4.44 4.21 0.04 0.04 0.05 0.09 0.07 0.07 0.04

θ2 4.76 4.76 4.21 4.65 4.61 4.60 4.72 0.06 0.06 0.07 0.09 0.09 0.07 0.07

θ3 4.51 4.51 4.09 4.66 4.56 4.52 4.48 0.09 0.09 0.07 0.13 0.10 0.09 0.09

no = 1

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 5.40 4.58 10.87 10.92 7.41 4.87 4.88 0.03 0.07 0.64 0.67 0.30 0.09 0.04

θ1 38.16 4.22 7.98 4.67 4.60 4.56 22.53 0.00 0.04 0.01 0.10 0.07 0.07 0.02

θ2 38.00 4.77 7.95 4.74 4.68 4.67 22.66 0.00 0.07 0.00 0.10 0.09 0.09 0.04

θ3 37.38 4.50 7.42 4.73 4.59 4.52 21.92 0.00 0.08 0.01 0.13 0.09 0.08 0.03

no = 5

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 5.90 4.60 11.52 13.86 9.89 5.89 6.60 0.07 0.06 0.30 0.91 0.56 0.17 0.09

θ1 47.49 4.20 45.53 4.84 4.77 4.80 46.01 1.00 0.04 0.47 0.11 0.09 0.07 1.00

θ2 47.41 4.82 45.67 4.93 4.84 4.84 45.96 1.00 0.07 0.46 0.12 0.10 0.08 1.00

θ3 46.66 4.51 44.65 4.94 4.75 4.67 45.21 1.00 0.07 0.46 0.15 0.10 0.08 1.00

no = 10

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 5.95 4.60 11.69 15.11 11.06 6.62 7.43 0.07 0.05 0.42 0.94 0.71 0.23 0.13

θ1 48.95 4.19 49.02 4.89 4.81 4.86 48.44 1.00 0.03 1.00 0.12 0.07 0.04 1.00

θ2 48.98 4.85 49.27 5.05 4.95 4.96 48.58 1.00 0.07 1.00 0.11 0.10 0.08 1.00

θ3 48.15 4.56 48.22 5.12 4.89 4.80 47.69 1.00 0.07 1.00 0.16 0.10 0.07 1.00

no = 20

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 6.06 4.61 12.26 16.15 12.03 7.30 15.63 0.06 0.05 0.45 0.95 0.78 0.27 0.79

θ1 49.71 4.24 49.63 4.97 4.88 4.97 49.20 1.00 0.04 1.00 0.10 0.05 0.04 1.00

θ2 49.92 4.96 50.07 5.25 5.13 5.15 49.69 1.00 0.07 1.00 0.10 0.04 0.02 1.00

θ3 48.85 4.56 48.78 5.17 4.89 4.79 48.55 1.00 0.06 1.00 0.14 0.06 0.02 1.00

Legend: θ̂olsn full sample OLS, θ̂olsnP
oracle OLS, θ̂rlmn robust M-estimator, θ̂n robust estimates without bias

correction, θ̃n robust estimates with bias correction, ˜̃θn robust estimates with repeated bias correction, θ̂unn
undersmoothed robust estimates with ν̂2n. 200 Monte-Carlo replications. no = number of outliers. Rejection
rate for t-test at the 5% significance level. Average ν̂n: 37.46, 26.39, 16.09, 13.18, 10.79 for n0 = 0, 1, 5, 10,
20 respectively. Each ν̂n is selected on a grid [ν0, . . . , νJ ] where ν0 = 8.83, νJ = 264.64.
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Table F8: Small sample properties of the estimators (n = 500), with ν = O(n1/4 log(n))

100× RMSE Rejection Rate

no = 0

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 4.59 4.59 10.67 8.53 5.83 4.67 4.57 0.07 0.07 0.65 0.42 0.18 0.07 0.07

θ1 4.21 4.21 3.93 4.52 4.45 4.39 4.21 0.04 0.04 0.05 0.08 0.07 0.07 0.04

θ2 4.76 4.76 4.21 4.63 4.61 4.62 4.73 0.06 0.06 0.07 0.09 0.08 0.07 0.07

θ3 4.51 4.51 4.09 4.61 4.52 4.49 4.48 0.09 0.09 0.07 0.12 0.10 0.09 0.09

no = 1

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 5.40 4.58 10.87 10.30 6.93 4.75 5.05 0.03 0.07 0.64 0.62 0.27 0.07 0.04

θ1 38.16 4.22 7.98 4.64 4.58 4.52 27.54 0.00 0.04 0.01 0.09 0.07 0.06 0.14

θ2 38.00 4.77 7.95 4.70 4.65 4.64 27.44 0.00 0.07 0.00 0.09 0.09 0.07 0.17

θ3 37.38 4.50 7.42 4.69 4.57 4.51 26.86 0.00 0.08 0.01 0.12 0.09 0.07 0.14

no = 5

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 5.90 4.60 11.52 12.93 9.02 5.41 6.44 0.07 0.06 0.30 0.89 0.49 0.14 0.09

θ1 47.49 4.20 45.53 4.78 4.72 4.72 46.45 1.00 0.04 0.47 0.10 0.09 0.06 1.00

θ2 47.41 4.82 45.67 4.89 4.81 4.80 46.41 1.00 0.07 0.46 0.10 0.09 0.06 1.00

θ3 46.66 4.51 44.65 4.87 4.70 4.62 45.64 1.00 0.07 0.46 0.14 0.10 0.07 1.00

no = 10

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 5.95 4.60 11.69 12.57 8.59 5.10 7.01 0.07 0.05 0.42 0.86 0.43 0.09 0.10

θ1 48.95 4.19 49.02 4.74 4.68 4.69 48.66 1.00 0.03 1.00 0.07 0.04 0.03 1.00

θ2 48.98 4.85 49.27 4.90 4.83 4.84 48.81 1.00 0.07 1.00 0.09 0.07 0.04 1.00

θ3 48.15 4.56 48.22 4.91 4.73 4.64 47.91 1.00 0.07 1.00 0.12 0.07 0.03 1.00

no = 20

θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn θ̂olsn θ̂olsnP
θ̂rlmn θ̂n θ̃n

˜̃θn θ̂unn
θ0 6.06 4.61 12.26 13.32 9.14 5.22 15.91 0.06 0.05 0.45 0.89 0.47 0.10 0.78

θ1 49.71 4.24 49.63 4.80 4.77 4.86 49.23 1.00 0.04 1.00 0.03 0.02 0.01 1.00

θ2 49.92 4.96 50.07 5.09 5.02 5.09 49.71 1.00 0.07 1.00 0.03 0.02 0.00 1.00

θ3 48.85 4.56 48.78 4.91 4.71 4.67 48.58 1.00 0.06 1.00 0.03 0.01 0.00 1.00

Legend: θ̂olsn full sample OLS, θ̂olsnP
oracle OLS, θ̂rlmn robust M-estimator, θ̂n robust estimates without bias

correction, θ̃n robust estimates with bias correction, ˜̃θn robust estimates with repeated bias correction, θ̂unn
undersmoothed robust estimates with ν̂2n. 200 Monte-Carlo replications. no = number of outliers. Rejection
rate for t-test at the 5% significance level. Average ν̂n: 48.78, 28.88, 18.34, 17.95, 14.69 for n0 = 0, 1, 5, 10,
20 respectively. Each ν̂n is selected on a grid [ν0, . . . , νJ ] where ν0 = 14.69, νJ = 979.86.
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Appendix G Additional Empirical Results

G.1 Additional Results for the Price Puzzle

Table G9: Regression (1): contribution to each coefficient (moments)

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10 β̂11 β̂12
skewness -0.56 3.24 -0.30 1.30 -2.99 0.95 0.74 -1.48 -0.78 0.52 -2.93 -0.24 0.54

kurtosis 4.42 27.81 8.98 7.88 36.70 9.77 8.41 27.78 6.95 7.76 32.66 9.29 7.24

Figure G5: Recursive VAR: OLS, Robust and Bias-Corrected Estimates (ν = 10)

Note: a) OLS estimates, b) θ̂n robust estimates without bias correction, c) θ̃n robust estimates with bias

correction, d) ˜̃θn robust estimates with repeated bias correction. Bands: estimates ± one standard error.
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Figure G6: Recursive VAR: OLS, Robust and Bias-Corrected Estimates (ν = 15)

Note: a) OLS estimates, b) θ̂n robust estimates without bias correction, c) θ̃n robust estimates with bias

correction, d) ˜̃θn robust estimates with repeated bias correction. Bands: estimates ± one standard error.

Figure G7: Recursive VAR: OLS, Robust and Bias-Corrected Estimates (ν = 20)

Note: a) OLS estimates, b) θ̂n robust estimates without bias correction, c) θ̃n robust estimates with bias

correction, d) ˜̃θn robust estimates with repeated bias correction. Bands: estimates ± one standard error.
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Figure G8: Recursive VAR, Estimation Weights: OLS, Robust, and Bias-Corrected Esti-
mates (ν = 10)

Note: Estimation weights ωt implicitely used to estimate θ. OLS (dashed/black): ωt = 1/n. Robust

estimates θ̂n (solid/black). Bias-corrected robust estimates θ̃n (solid/circle/blue). Repeated bias-corrected

robust estimates ˜̃θn (solid/triangle/purple). Shaded vertical bars = NBER recession dates.

Figure G9: Recursive VAR, Estimation Weights: OLS, Robust, and Bias-Corrected Esti-
mates (ν = 15)

Note: Estimation weights ωt implicitely used to estimate θ. OLS (dashed/black): ωt = 1/n. Robust

estimates θ̂n (solid/black). Bias-corrected robust estimates θ̃n (solid/circle/blue). Repeated bias-corrected

robust estimates ˜̃θn (solid/triangle/purple). Shaded vertical bars = NBER recession dates.

Figure G10: Recursive VAR, Estimation Weights: OLS, Robust, and Bias-Corrected Esti-
mates (ν = 20)

Note: Estimation weights ωt implicitely used to estimate θ. OLS (dashed/black): ωt = 1/n. Robust

estimates θ̂n (solid/black). Bias-corrected robust estimates θ̃n (solid/circle/blue). Repeated bias-corrected

robust estimates ˜̃θn (solid/triangle/purple). Shaded vertical bars = NBER recession dates.
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Figure G11: Recursive VAR, Estimation Weights: OLS, Robust, and Bias-Corrected Esti-
mates (ν = 10, log scale)

Note: Estimation weights ωt implicitely used to estimate θ. OLS (dashed/black): ωt = 1/n. Robust

estimates θ̂n (solid/black). Bias-corrected robust estimates θ̃n (solid/circle/blue). Repeated bias-corrected

robust estimates ˜̃θn (solid/triangle/purple). Shaded vertical bars = NBER recession dates.

Figure G12: Recursive VAR, Estimation Weights: OLS, Robust, and Bias-Corrected Esti-
mates (ν = 15, log scale)

Note: Estimation weights ωt implicitely used to estimate θ. OLS (dashed/black): ωt = 1/n. Robust

estimates θ̂n (solid/black). Bias-corrected robust estimates θ̃n (solid/circle/blue). Repeated bias-corrected

robust estimates ˜̃θn (solid/triangle/purple). Shaded vertical bars = NBER recession dates.

Figure G13: Recursive VAR, Estimation Weights: OLS, Robust, and Bias-Corrected Esti-
mates (ν = 20, log scale)

Note: Estimation weights ωt implicitely used to estimate θ. OLS (dashed/black): ωt = 1/n. Robust

estimates θ̂n (solid/black). Bias-corrected robust estimates θ̃n (solid/circle/blue). Repeated bias-corrected

robust estimates ˜̃θn (solid/triangle/purple). Shaded vertical bars = NBER recession dates.
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G.2 Additional Results for Inflation and Openness

Table G10: Weights used in estimation (y = π/100) – 1/2

Country θ̂IVn θ̂n θ̃n
˜̃θn Country θ̂IVn θ̂n θ̃n

˜̃θn
Algeria 0.88 1.04 0.95 0.78 Ethiopia 0.88 0.58 0.83 1.14

Argentina 0.88 0.02 0.04 0.09 Fiji 0.88 1.05 0.90 0.81

Australia 0.88 0.97 1.08 1.24 Finland 0.88 1.04 0.94 0.78

Austria 0.88 0.87 1.02 1.09 France 0.88 1.01 1.01 0.92

Bahrain 0.88 0.98 0.95 0.82 Gabon 0.88 1.06 0.89 0.86

Bangladesh 0.88 1.05 0.92 0.81 Gambia 0.88 0.90 1.02 0.91

Barbados 0.88 0.91 1.03 0.99 Germany 0.88 0.80 1.03 1.22

Belgium 0.88 0.98 0.98 0.85 Ghana 0.88 0.25 0.45 0.82

Benin 0.88 1.03 0.93 0.81 Greece 0.88 1.01 0.97 0.81

Bolivia 0.88 0.01 0.02 0.05 Guatemala 0.88 1.06 0.89 0.83

Botswana 0.88 1.06 0.89 0.85 Guyana 0.88 1.05 0.93 0.81

Brazil 0.88 0.04 0.07 0.16 Haiti 0.88 0.75 0.95 1.13

Burkina Faso 0.88 0.95 1.00 0.91 Honduras 0.88 0.96 0.97 0.86

Burma 0.88 0.71 0.95 1.20 Hong Kong 0.88 1.04 0.94 0.82

Burundi 0.88 0.70 0.91 1.14 Iceland 0.88 0.23 0.40 0.74

Cameroon 0.88 1.03 0.94 0.80 India 0.88 0.79 1.03 1.31

Canada 0.88 0.84 1.07 1.35 Indonesia 0.88 1.06 0.88 0.85

Central Afr. Rep. 0.88 0.98 1.01 0.98 Iran 0.88 1.04 0.94 0.84

Chile 0.88 0.16 0.30 0.59 Ireland 0.88 1.05 0.91 0.84

Colombia 0.88 0.93 1.12 0.91 Israel 0.88 0.03 0.05 0.09

Congo 0.88 1.06 0.88 0.87 Italy 0.88 1.05 0.90 0.86

Costa Rica 0.88 0.77 1.00 1.10 Ivory Coast 0.88 1.06 0.89 0.84

Cyprus 0.88 1.06 0.89 0.83 Jamaica 0.88 0.79 1.01 1.05

Denmark 0.88 0.99 0.99 0.94 Japan 0.88 0.78 1.02 1.27

Dominican Republic 0.88 1.06 0.89 0.81 Jordan 0.88 1.06 0.90 0.82

Ecuador 0.88 0.96 1.05 0.87 Kenya 0.88 1.03 0.94 0.81

Egypt 0.88 1.02 0.97 0.81 Korea 0.88 1.06 0.89 0.86

El Salvador 0.88 1.06 0.88 0.85 Kuwait 0.88 1.06 0.91 0.81

Note: θ̂IVn : IV estimates, θ̂n: robust estimates, θ̃n: bias-corrected robust estimates, ˜̃θn: repeated

bias-corrected robust estimates. ν̂n = 12.62. Estimates for θ2 reported using log(pcinc)/100 as a regressor.

Sample size n = 114. All weights were multiplied by 100 for formatting.
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Table G11: Weights used in estimation (y = π/100) – 2/2

Country θ̂IVn θ̂n θ̃n
˜̃θn Country θ̂IVn θ̂n θ̃n

˜̃θn
Lesotho 0.88 0.90 1.02 1.14 Sierra Leone 0.88 0.83 1.02 0.91

Liberia 0.88 1.00 0.94 0.81 Singapore 0.88 0.86 0.93 1.02

Luxembourg 0.88 1.02 0.93 0.80 Somalia 0.88 0.56 0.90 1.25

Madagascar 0.88 1.06 0.89 0.82 South Africa 0.88 1.06 0.88 0.84

Malawi 0.88 1.03 0.94 0.82 Spain 0.88 1.06 0.88 0.85

Malaysia 0.88 1.00 0.97 0.77 Sri Lanka 0.88 1.06 0.88 0.86

Malta 0.88 0.85 1.03 0.85 Sudan 0.88 0.85 1.10 0.94

Mauritania 0.88 1.06 0.88 0.86 Suriman 0.88 1.06 0.88 0.87

Mauritius 0.88 0.92 1.01 0.87 Swaziland 0.88 0.89 1.02 1.03

Mexico 0.88 0.44 0.78 1.37 Sweden 0.88 1.03 0.96 0.80

Morocco 0.88 1.02 0.94 0.79 Switzerland 0.88 0.74 0.96 1.18

Nepal 0.88 0.90 1.00 1.03 Syria 0.88 1.06 0.89 0.87

Netherlands 0.88 0.88 1.02 1.04 Taiwan 0.88 0.97 0.97 0.88

New Zealand 0.88 1.06 0.88 0.83 Tanzania 0.88 1.04 0.90 0.86

Nicaragua 0.88 0.34 0.55 0.92 Thailand 0.88 0.98 1.01 0.86

Niger 0.88 1.06 0.88 0.85 Togo 0.88 1.00 0.95 0.81

Nigeria 0.88 1.06 0.88 0.86 Trinidad & Tobago 0.88 0.91 1.01 0.82

Norway 0.88 1.03 0.96 0.79 Tunisia 0.88 1.03 0.91 0.81

Oman 0.88 1.06 0.88 0.84 Turkey 0.88 0.66 1.04 1.47

Pakistan 0.88 1.02 0.97 0.84 Uganda 0.88 0.17 0.32 0.63

Panama 0.88 0.95 0.98 0.87 U.A. Emirates 0.88 1.06 0.89 0.79

Papua New Guinea 0.88 1.03 0.92 0.79 United Kingdom 0.88 1.06 0.90 0.78

Paraguay 0.88 1.05 0.91 0.85 United States 0.88 0.68 0.94 1.27

Peru 0.88 0.26 0.48 0.90 Uruguay 0.88 0.28 0.48 0.86

Philippines 0.88 1.06 0.88 0.87 Venezuela 0.88 1.06 0.90 0.86

Portugal 0.88 0.89 1.04 0.96 Yemen 0.88 1.06 0.90 0.85

Rwanda 0.88 0.85 0.99 1.13 Zaire 0.88 0.10 0.18 0.36

Saudi Arabia 0.88 1.06 0.91 0.76 Zambia 0.88 0.97 1.02 0.83

Senegal 0.88 1.06 0.89 0.84 Zimbabwe 0.88 1.04 0.92 0.80

Note: θ̂IVn : IV estimates, θ̂n: robust estimates, θ̃n: bias-corrected robust estimates, ˜̃θn: repeated

bias-corrected robust estimates. ν̂n = 12.62. Estimates for θ2 reported using log(pcinc)/100 as a regressor.

Sample size n = 114. All weights were multiplied by 100 for formatting.
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G.3 Additional Results for Segregation and Government Quality

Table G12: Weights used in Estimation (Ethnicity)

Country θ̂IVn θ̂n θ̃n
˜̃θn Country θ̂IVn θ̂n θ̃n

˜̃θn
Afghanistan 1.03 0.22 0.59 2.1 Kenya 1.03 0.95 1.51 2.2
Argentina 1.03 0.08 0.15 0.29 Korea 1.03 0.05 0.07 0.13
Armenia 1.03 2.57 1.99 0.39 Kyrgyzstan 1.03 1.87 2.22 1.45
Australia 1.03 0.93 0.97 1.29 Latvia 1.03 2.59 1.06 0.78
Austria 1.03 0.23 2.55 1.62 Lesotho 1.03 0.11 0.17 0.23
Bahrain 1.03 1.93 2.37 0.94 Lithuania 1.03 2.27 2.14 1.17
Bangladesh 1.03 0.02 0.03 0.08 Macedonia 1.03 2.59 1.82 1.33
Belarus 1.03 0.07 0.14 0.35 Malawi 1.03 2.59 1.69 0.63
Belgium 1.03 0.06 0.08 0.17 Mali 1.03 0.6 1.12 1.58
Belize 1.03 0.04 0.07 0.09 Mexico 1.03 2.59 1.04 0.58
Benin 1.03 0.09 0.15 0.28 Morocco 1.03 0.08 0.13 0.23
Bolivia 1.03 0.71 1.05 1.28 Nepal 1.03 2.1 1.89 0.44
Brazil 1.03 0.28 0.52 1.07 Netherlands 1.03 2.58 1.97 0.38
Bulgaria 1.03 0.15 0.22 0.35 New Zealand 1.03 0.29 0.47 1.33
Burkina faso 1.03 0.04 0.19 0.3 Niger 1.03 1.98 2.21 1.86
Cambodia 1.03 2.28 1.24 1.97 Norway 1.03 2.42 2.73 3.22
Cameroon 1.03 0.17 0.3 0.57 Pakistan 1.03 2.48 1.51 1.79
Canada 1.03 1.92 1.93 0.43 Panama 1.03 1.27 1.88 1.69
Central African Republic 1.03 0.06 0.1 0.15 Paraguay 1.03 0.03 0.06 0.12
Chile 1.03 0.1 0.17 0.26 Peru 1.03 2 2.26 1.93
China 1.03 0.04 0.07 0.09 Philippines 1.03 2.56 1.17 0.95
Colombia 1.03 1.09 1.59 1.27 Portugal 1.03 2.55 1.84 1.08
Costa Rica 1.03 1.85 2.19 1.73 Qatar 1.03 0.05 0.09 0.29
Cote d’Ivoire 1.03 1.55 2.22 0.92 Romania 1.03 2.56 1.86 1.45
Croatia 1.03 2.59 1.15 0.96 Russia 1.03 0.59 1.16 1.47
Czech Republic 1.03 1.19 1.57 1.61 Rwanda 1.03 1.18 1.67 1.8
Denmark 1.03 0.94 2.37 2.85 Saudi Arabia 1.03 0.06 0.12 0.36
Ecuador 1.03 0.25 0.48 1.63 Senegal 1.03 1.3 2.15 1.85
Estonia 1.03 2.59 2.23 1.98 Slovakia 1.03 2.53 1.58 1.62
Ethiopia 1.03 0.05 0.08 0.14 Slovenia 1.03 0.92 1.32 1.9
Finland 1.03 0.11 0.05 0.26 South Africa 1.03 0.31 0.68 0.62
France 1.03 0.76 1.11 1.41 Spain 1.03 0.08 0.14 0.3
Gabon 1.03 0.05 0.1 0.22 Sri Lanka 1.03 0.37 0.86 1.69
Germany 1.03 0.19 0.13 0.18 Sweden 1.03 0.02 0.01 0.07
Ghana 1.03 2.16 2.19 1.38 Switzerland 1.03 0.04 0.24 1.44
Greece 1.03 0.1 0.27 0.5 Taiwan 1.03 0.07 0.09 0.12
Guatemala 1.03 0.34 0.65 1.75 Tajikistan 1.03 0.19 0.28 0.48
Guinea 1.03 2.41 1.75 0.86 Tanzania 1.03 0.06 0.13 0.23
Honduras 1.03 2.22 1.34 1.4 Togo 1.03 2.33 2.2 1.09
Hungary 1.03 0.36 0.63 0.79 Turkey 1.03 0.06 0.13 0.72
Iceland 1.03 0.01 0.01 0.06 Uganda 1.03 0.01 0.03 0.05
India 1.03 0.41 0.56 0.93 Ukraine 1.03 0.2 0.42 0.92
Indonesia 1.03 2.5 1.03 0.87 United Kingdom 1.03 1.82 1.62 1.72
Ireland 1.03 0.85 1.64 2.16 USA 1.03 0.79 1.65 1.91
Israel 1.03 0.34 1.69 1.84 Uzbekistan 1.03 0.16 0.28 0.8
Italy 1.03 0.52 1.01 1.6 Vietnam 1.03 0.11 0.17 0.19
Japan 1.03 2.59 1.29 2.54 Zambia 1.03 2.52 2.1 1.18
Jordan 1.03 2.45 1.29 1.92 Zimbabwe 1.03 2.45 2.25 2.01
Kazakhstan 1.03 0.18 0.32 0.79
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Table G13: Weights used in Estimation (Language)

Country θ̂IVn θ̂n θ̃n
˜̃θn Country θ̂IVn θ̂n θ̃n

˜̃θn
Afghanistan 1.09 2.5 2.66 1.32 Lesotho 1.09 2.94 2.41 0.95
Armenia 1.09 0.26 0.4 0.52 Lithuania 1.09 0.03 0.07 0.22
Australia 1.09 2.28 2.58 2.14 Macedonia 1.09 3.1 1.38 1.45
Austria 1.09 0.01 0.02 0.62 Malawi 1.09 1.37 1.66 2.15
Bangladesh 1.09 0.01 0.01 0.04 Mali 1.09 0.12 0.23 0.45
Belarus 1.09 0.01 0.02 0.04 Mauritius 1.09 1.83 2.4 2.34
Belgium 1.09 2.98 1.61 0.43 Mexico 1.09 1.7 2.53 2.74
Belize 1.09 0.01 0.03 0.07 Morocco 1.09 0.01 0.02 0.06
Benin 1.09 0.05 0.11 0.26 Mozambique 1.09 0.12 0.24 0.55
Bolivia 1.09 0.24 0.57 1.65 Namibia 1.09 0.04 0.09 0.2
Brazil 1.09 0.12 0.26 0.91 Nepal 1.09 0.23 0.4 0.49
Bulgaria 1.09 0.79 1.65 2.51 New Zealand 1.09 0.05 0.11 0.29
Burkina Faso 1.09 0.07 0.1 4.06 Nicaragua 1.09 0.54 1.14 2.76
Cambodia 1.09 2.62 2.63 0.95 Niger 1.09 3.12 1.85 2.65
Cameroon 1.09 1.25 2.19 2.76 Nigeria 1.09 0.01 0.03 0.08
Canada 1.09 1.63 2.55 2.43 Norway 1.09 0.02 0.05 2.95
Central African Republic 1.09 0.04 0.09 0.2 Pakistan 1.09 0.02 0.04 0.1
Chile 1.09 0.01 0.03 0.06 Panama 1.09 0.47 0.77 1.2
China 1.09 0.03 0.08 0.22 Paraguay 1.09 0.06 0.12 0.35
Colombia 1.09 0.06 0.12 0.33 Peru 1.09 3.12 1.97 1.88
Costa Rica 1.09 3.12 1.73 2.34 Philippines 1.09 2.34 2.53 2.62
Cote d’Ivoire 1.09 3.1 1.19 0.42 Portugal 1.09 1.81 2.53 2.67
Croatia 1.09 0.61 1.13 1.39 Romania 1.09 2.9 2.58 2.17
Czech Republic 1.09 1.49 2.47 2.6 Russia 1.09 0.01 0.02 0.05
Denmark 1.09 0.07 0.16 3.39 Rwanda 1.09 0.03 0.05 0.12
Ecuador 1.09 0.25 0.56 1.78 Saudi Arabia 1.09 2.57 2.6 1.65
Estonia 1.09 2.77 2.54 0.54 Senegal 1.09 0.07 0.14 0.27
Ethiopia 1.09 0.02 0.04 0.1 Slovakia 1.09 1.83 2.54 1.45
Finland 1.09 0.25 0.51 0.11 Slovenia 1.09 3.11 1.71 1.56
Gabon 1.09 0.35 0.82 1.46 South Africa 1.09 0.01 0.02 0.03
Ghana 1.09 2.34 2.61 2.73 Spain 1.09 0.07 0.14 0.3
Guatemala 1.09 3.01 2.12 0.62 Sweden 1.09 0.01 0.02 0.13
Guinea 1.09 0.88 1.57 2.27 Switzerland 1.09 0 0.01 0.06
Haiti 1.09 0.02 0.04 0.1 Tajikistan 1.09 0.04 0.08 0.23
Honduras 1.09 2.01 2.7 0.27 Tanzania 1.09 0.01 0.02 0.05
Hungary 1.09 0.22 0.43 0.67 Thailand 1.09 0.02 0.03 0.07
Iceland 1.09 3.13 3.81 0.16 Togo 1.09 2.99 1.91 0.89
India 1.09 2.8 2.62 2.13 Turkey 1.09 3.07 1.12 0.68
Indonesia 1.09 3.08 1.65 1.76 Uganda 1.09 0 0.01 0.02
Italy 1.09 0.38 0.68 1.28 Ukraine 1.09 0.02 0.04 0.09
Japan 1.09 3 3.8 0.09 United Kingdom 1.09 2.44 2.48 2.49
Kazakhstan 1.09 0.06 0.1 0.24 USA 1.09 1.75 2.72 1.14
Kenya 1.09 0.26 0.61 1.52 Uzbekistan 1.09 0.02 0.04 0.12
Korea 1.09 0 0.01 0.01 Vietnam 1.09 0.06 0.14 0.35
Kyrgyzstan 1.09 3.01 2.6 2.74 Zambia 1.09 3.12 2.36 2.67
Latvia 1.09 1.56 2.42 1.96 Zimbabwe 1.09 0.01 0.01 0.02
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Table G14: Weights used in Estimation (Religion)

Country θ̂IVn θ̂n θ̃n
˜̃θn Country θ̂IVn θ̂n θ̃n

˜̃θn
Armenia 1.09 2.5 2.66 1.32 Malawi 1.09 0.38 0.68 1.28
Australia 1.09 0.26 0.4 0.52 Mali 1.09 3 3.8 0.09
Austria 1.09 2.28 2.58 2.14 Mauritius 1.09 0.06 0.1 0.24
Bangladesh 1.09 0.01 0.02 0.62 Mexico 1.09 0.26 0.61 1.52
Belize 1.09 0.01 0.01 0.04 Mozambique 1.09 0 0.01 0.01
Benin 1.09 0.01 0.02 0.04 Namibia 1.09 3.01 2.6 2.74
Brazil 1.09 2.98 1.61 0.43 Nepal 1.09 1.56 2.42 1.96
Bulgaria 1.09 0.01 0.03 0.07 Netherlands 1.09 2.94 2.41 0.95
Burkina Faso 1.09 0.05 0.11 0.26 New Zealand 1.09 0.03 0.07 0.22
Cambodia 1.09 0.24 0.57 1.65 Nicaragua 1.09 3.1 1.38 1.45
Cameroon 1.09 0.12 0.26 0.91 Niger 1.09 1.37 1.66 2.15
Canada 1.09 0.79 1.65 2.51 Nigeria 1.09 0.12 0.23 0.45
Central African Republic 1.09 0.07 0.1 4.06 Pakistan 1.09 1.83 2.4 2.34
Chile 1.09 2.62 2.63 0.95 Paraguay 1.09 1.7 2.53 2.74
Cote d’Ivoire 1.09 1.25 2.19 2.76 Peru 1.09 0.01 0.02 0.06
Croatia 1.09 1.63 2.55 2.43 Philippines 1.09 0.12 0.24 0.55
Czech Republic 1.09 0.04 0.09 0.2 Portugal 1.09 0.04 0.09 0.2
Dominican Republic 1.09 0.01 0.03 0.06 qatar 1.09 0.23 0.4 0.49
Egypt 1.09 0.03 0.08 0.22 Romania 1.09 0.05 0.11 0.29
Estonia 1.09 0.06 0.12 0.33 Russia 1.09 0.54 1.14 2.76
Ethiopia 1.09 3.12 1.73 2.34 Rwanda 1.09 3.12 1.85 2.65
Gabon 1.09 3.1 1.19 0.42 Sao Tome 1.09 0.01 0.03 0.08
Ghana 1.09 0.61 1.13 1.39 Senegal 1.09 0.02 0.05 2.95
Guatemala 1.09 1.49 2.47 2.6 Slovakia 1.09 0.02 0.04 0.1
Guinea 1.09 0.07 0.16 3.39 Slovenia 1.09 0.47 0.77 1.2
Haiti 1.09 0.25 0.56 1.78 South Africa 1.09 0.06 0.12 0.35
Hungary 1.09 2.77 2.54 0.54 Sri Lanka 1.09 3.12 1.97 1.88
India 1.09 0.02 0.04 0.1 Switzerland 1.09 2.34 2.53 2.62
Indonesia 1.09 0.25 0.51 0.11 Tanzania 1.09 1.81 2.53 2.67
Iran 1.09 0.35 0.82 1.46 Thailand 1.09 2.9 2.58 2.17
Ireland 1.09 2.34 2.61 2.73 Togo 1.09 0.01 0.02 0.05
Israel 1.09 3.01 2.12 0.62 Turkey 1.09 0.03 0.05 0.12
Japan 1.09 0.88 1.57 2.27 Uganda 1.09 2.57 2.6 1.65
Kazakhstan 1.09 0.02 0.04 0.1 United Kingdom 1.09 0.07 0.14 0.27
Kenya 1.09 2.01 2.7 0.27 USA 1.09 1.83 2.54 1.45
Korea 1.09 0.22 0.43 0.67 Uzbekistan 1.09 3.11 1.71 1.56
Kyrgyzstan 1.09 3.13 3.81 0.16 Vietnam 1.09 0.01 0.02 0.03
Lithuania 1.09 2.8 2.62 2.13 Zambia 1.09 0.07 0.14 0.3
Madagascar 1.09 3.08 1.65 1.76 Zimbabwe 1.09 0.01 0.02 0.13

Appendix H Algorithms for computing ψ̂n(θ; ν), θ̂n, θ̃n

The following describes the algorithm used to compute ψ̂n in the simulated and empirical

examples. Algorithm 1 relies on explicit gradient calculations with respect to µ and Σ. The

updates preserve symmetry and positive definiteness for Σ which makes the iterations more

stable than a direct implementation of gradient-descent for instance. A line search is used to

update ψb → ψb+1, in practice searching over γ ∈ {0.1, 1} provides good results more quickly.

The initial µ0 = 0 is chosen specifically because µ̂n(θ̂n; ν) = 0 is eventually the solution so
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that Algorithm 1 tends to speed up as θ gets closer to θ̂n.

Algorithm 1 Computing ψ̂n(θ; ν)

1) Inputs (a) κ1, κ2 > 0, ν ≥ 1 (b) tol > 0, maxit ≥ 1, (c) µ0 = 0, Σ0 = Id.
2) Iterations
set b = 0, ψ0 = (µ0,Σ0)
repeat

compute δt = ∥g(zt; θ)− µb∥2Σ−1
b

, wt = (1 + p/ν)(1 + δt/ν),

normalize wt =
wt

κ1/ν+
∑

t wt
, compute µ̄b+1 =

∑
twtg(zt; θ)

compute S̄ = (Id + κ2Σb/ν)
−1, center x̄t = g(zt; θ)− µ

compute Σ̄b+1 = S̄ (
∑

twtx̄tx̄
′
t + κ1µµ

′/ν) S̄
minimize Qn(γψb + (1− γ)ψ̄b+1; ν) over γ ∈ [0, 1), ψ̄b+1 = (µ̄b+1, Σ̄b+1)
compute ψb+1 = γ⋆ψb + (1− γ⋆)ψ̄b+1, γ

⋆ is the arg-minimizer of Qn above
increment b := b+ 1

until |Qn(ψb)−Qn(ψb+1)| < tol, or b > maxit
3) Output estimates ψ̂n(θ; ν) = ψb+1, weights wt

Algorithm 2 describes more specifically the steps used to minimize ∥µ̃n(θ)∥2Wn
. It is a

Gauss-Newton algorithm where the Jacobian is approximated using the weighted average

representation rather than a more costly computation based on the implicit function The-

orem. For OLS, G̃n(θ) = −
∑

t w̃t(θ; ν)xtx
′
t, and IV G̃n(θ) = −

∑
t w̃t(θ; ν)ztx

′
t. Although

the Jacobian G̃n(θ) is inexact, the Gauss-Newton algorithm performed well in the simulated

and empirical applications. The Algorithm is essentially the same when computing θ̂n or ˜̃θn.

Algorithm 2 Computing θ̃n

1) Inputs (a) κ1, κ2 > 0, ν ≥ 1 (b) tol > 0, maxit ≥ 1, γ ∈ (0, 1) (c) inital guess θ0.
2) Iterations
set b = 0,
repeat

compute ψ̂n(θb; ν), ψ̂n(θb; ν/2)
compute µ̃n(θ) = 2µ̂n(θ; ν)− µ̂n(θ; ν/2) and w̃t(θ; ν) = 2wt(θ; ν)− wt(θ; ν/2)
compute G̃n(θ) =

∑
t w̃t(θ; ν)∂θg(zt; θ)

update θb+1 = θb − γ
(
G̃n(θ)

′WnG̃n(θ)
)−1

G̃n(θ)
′Wnµ̃n(θb)

increment b := b+ 1
until ∥µ̃n(θb+1)∥Wn < tol, or b > maxit
3) Output estimates θ̃n = θb+1, weights w̃t
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