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1 Introduction

Consider the common empirical setting for which a researcher is interested in estimating the causal

effect of one variable on another via a linear regression in the presence of one or more observed

potential control variables. The researcher believes that a regression including this full set of

controls should not suffer from omitted variables bias but is uncertain whether it is necessary to

include them all to overcome this bias. To obtain more informative inference, the researcher would

prefer not to include controls unnecessarily and knows that if some of these controls indeed influence

the outcome variable, it must be in a known positive or negative direction. Indeed, typical heuristic

explanations for the potential inclusion of a control variable to mitigate omitted variables bias

involve a known direction for the effect of the omitted variable on the outcome of interest.1 In this

paper, we develop confidence intervals (CIs) with desirable properties for these types of settings.

More specifically, we develop CIs for a parameter of interest in the presence of nuisance

parameters with a known sign. Our CIs are designed to have uniformly correct (asymptotic)

coverage and desirable length properties across the entire parameter space while becoming par-

ticularly short when these nuisance parameters are small or zero. In the regression context, this

latter property is motivated by common practical situations for which the researcher believes the

regression coefficients on a subset of control variables with known partial effect directions are

likely to be small or zero. In general, our CIs can be used for inference on a parameter in any

well-behaved finite-dimensional model with a large-sample normally distributed estimator when

some nuisance parameters are restricted above or below by zero (possibly after a location shift).

This includes regression models estimated by ordinary, generalized and two stage least squares as

1In such cases, it is often implicitly assumed that the regression model is equal to the

conditional expectation function, which facilitates interpretation of the regression coefficients.

We note, however, that even if that assumption is correct the coefficient on a control variable

may not equal its causal effect. See the regression example in Section 3 for a discussion of this

that includes several empirical examples where sign restrictions are plausible.
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well as models with bounded parameter spaces such as (G)ARCH (see e.g., Bollerslev, 1986) and

random coefficient models (see e.g., Berry et al., 1995; Andrews, 1999). Even though the standard

“constrained” estimator is not normally distributed in large samples when the true parameter

vector is at (or close to) the boundary of the parameter space (see e.g., Andrews, 1999), there

often exists a “quasi-unconstrained” estimator that is (Ketz, 2018). While noting this generality,

we mainly focus on regression models for ease of exposition.

To construct our CIs, we use the fact that knowledge of the signs of control variable coefficients,

in addition to a standard consistent estimator of the covariance matrix of the underlying coefficient

estimates, can be used to determine the sign of the corresponding omitted variables biases incurred

by omitting the corresponding control variables. In turn, standard one-sided CIs for the coefficient

of interest based on regressions that omit some of these control variables maintain correct coverage.

We show that a particular form of these latter CIs is expected excess length-optimal (among affine

CIs—see Proposition 2 for details) when the corresponding control coefficients are equal to zero. It

also has low expected excess length when the control coefficients are small but its expected excess

length grows without bound as the control coefficients grow larger. On the other hand, we show that

standard one-sided CIs based upon the regression including all controls have the minimal maximum

expected excess length (among affine CIs) over the parameter space that imposes the sign of the con-

trol coefficients.2 They also have correct coverage and expected excess length that does not depend

upon the true values of the control coefficients. We propose adaptive one-sided CIs that utilize the

strengths of both of these types of CIs by intersecting them. We make use of the same logic for con-

structing two-sided CIs essentially by intersecting our lower- and upper- one-sided CIs. Lending fur-

ther theoretical support to the use of our CIs, we also show numerically that both our one- and two-

sided CIs imply “nearly optimal” (NO) hypothesis tests in the sense of Elliott et al. (2015) (EMW).

In particular, we propose a computationally trivial method to find the subset of controls that is

able to produce the largest expected (excess) length reductions when using the above intersection

2In fact, we show that these two types of CIs are optimal at each quantile of the excess length dis-

tribution greater than one minus their nominal coverage probabilities. See Proposition 2 for details.

2



principle. In addition, the restricted parameter space implies that the coverage of these intersected

CIs is lowest at its boundary. This feature allows us to provide the user a simple means to compute

the smallest critical values that yield correct coverage uniformly across the parameter space via

response surface regression output, rather than using a conservative Bonferroni correction. Using

our reported response surface regression coefficients, the user can immediately compute these

critical values as a function of one or two empirical correlation parameters, depending upon

whether they are forming a one- or two-sided CI. A Stata package available in the SSC archive

automatically computes the CIs we propose.3

We show that our proposed CIs are uniformly asymptotically valid and characterize their length

properties. The latter depend upon the correlation structure of the underlying data and the true

values of the unknown control coefficients. For extreme values of correlation between the estimators

of the coefficient of interest and sign-restricted controls, the expected (excess) length of our CIs can

be close to 100% smaller than that of standard CIs based upon the regression including all controls.

For correlation values more likely to be encountered in practice, these expected (excess) length

reductions can still exceed 30% for commonly used confidence levels. On the other hand, for a

confidence level of 95%, for example, our proposed two-sided CIs cannot be more than 2.28% longer

than the corresponding standard CI for any realization of the data and the expected excess length

of our one-sided CIs cannot be more than 3.07% longer than that of the corresponding standard CI.

A leading example of where our proposed CIs should prove useful is in the context of factorial

(or cross-cutting) designs in field experiments. Take, for example, the 2×2 factorial design where

two treatments are administered independently such that there are three treatment arms, the

two “main” treatments (separately) and the combination of the two, and a control arm. The

corresponding treatment effects can be consistently estimated by OLS using the “long” regression,

i.e., the regression of the outcome variable on a constant and three dummy variables, one for

each treatment arm.4 In many cases, researchers have prior knowledge about the signs of the

3The package name is “ssci”. Corresponding Matlab code is available on the authors’ webpage.

4Recently, Muralidharan et al. (2020) have highlighted the importance of using the long
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main treatment effects. For example, ethics boards for research grants are unlikely to fund

experiments unless they are very likely to entail non-negative average treatment effects. Moreover,

experimenters often conduct pilot studies prior to conducting full scale experiments in part to

confirm their prior beliefs about the direction of average treatment effects.5 Such prior knowledge

can then be used to obtain sign restrictions on the corresponding regression coefficients. In this

context, our proposed CIs will be short if the estimated effects of the main treatments are small

and/or have the “wrong” sign, which is likely to occur if the unknown population effects are small

or zero. To illustrate the potential usefulness of our CIs in the context of factorial designs, we

revisit Blattman et al. (2017) who study the effect of “therapy” and “cash” on violent and criminal

behavior in Liberia using a 2×2 factorial design. Indeed, for some of the treatment effects under

study, we find our proposed CIs to be up to 35% shorter than the corresponding standard CIs.

1.1 Relationship with the Literature

Several results in the statistics and econometrics literatures provide bounds on the ability for CIs

to simultaneously maintain uniformly correct coverage over a class of data-generating processes

(DGPs) while adapting to a given subclass. Here we develop CIs with this very goal in mind: our

CIs maintain correct coverage for the parameter of interest uniformly across the parameter space

for the nuisance parameters while becoming shorter when these nuisance parameters are equal

to zero. Although most of this literature is devoted to nonparametric methods (e.g., Low, 1997;

regression, as opposed to the “short” regression, i.e., the regression of the outcome variable on

a constant and a dummy for the treatment of interest, to avoid omitted variable biases and

accompanying size distortions.

5For example, possible negative effects of a treatment may be closely monitored during the

pilot phase and, if realized, even lead to early termination of the experiment. Note also that

imposing the absence of any negative effects on individual participants (that could be associated

with the treatment) is stronger than necessary, because our CIs only require sign restrictions

on average (treatment) effects in this context.
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Cai and Low, 2004), the recent work of Armstrong and Kolesár (2018) has produced similar

implications for parametric models like those in the asymptotic versions of the problems we study.

Indeed, Armstrong et al. (2020) provide bounds on the ability to shorten CIs while maintaining

correct coverage for regression coefficients at points for which potential control coefficients are

zero. However, all of the aforementioned results rely upon an assumption of symmetry about

zero for the underlying parameter space (among others). Because we are interested in problems

with sign-restricted nuisance parameters, the underlying parameter space is asymmetric and

these results do not apply, allowing for us to achieve the goal of constructing CIs that become

significantly shorter at empirically-relevant parameter values.

Depending on the application, it may, of course, be possible that a researcher has prior knowl-

edge on the magnitude of the control variables’ coefficients rather than their sign. In this case, the

recent work by Armstrong et al. (2020) can be employed (see also Li and Müller, 2021). Indeed,

Muralidharan et al. (2020) study and suggest (among others) the CI proposed by Armstrong

et al. (2020) as a means to improve over standard CIs in the context of factorial designs. In

particular, they argue that researchers may, depending on the application, be willing to assume

prior knowledge of the maximum (absolute) value of an “interaction effect”, i.e., the effect of

providing two treatments jointly minus the sum of the two main treatment effects. Here, we

provide complementary results to be applied in settings for which it is natural for researchers to

know the direction, rather than the magnitude, of control variables’ coefficients.

This is certainly not the first paper to produce CIs that adapt to subclasses of DGPs while

retaining uniform control of coverage probability. Several authors have provided such adaptive

CIs for various smoothness classes and shape constraints in the nonparametric literature. See,

e.g., Cai and Low (2004), Cai et al. (2013), Armstrong (2015) and Kwon and Kwon (2020a,b).

Given our focus on finite-dimensional models, we are not concerned with the rate of convergence

adaptation in this literature but rather finite-sample length adaptation for CIs. Nevertheless, our

CIs share some similarities with some of the CIs in this literature. Like the ones we propose, the

CIs of Cai and Low (2004) and Kwon and Kwon (2020a,b) are obtained by intersecting CIs that
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are optimal under different subclasses of DGPs. Within this literature, Kwon and Kwon (2020a,b)

are probably the closest studies to ours as they focus on nonparametric regression models with

coordinate-wise monotone regression functions. In addition, both studies provide a means of

shortening adaptive nonparametric CIs relative to simple Bonferroni corrections in a similar spirit

to our CI endpoints computed from response surface regression output. However, in contrast

to the existing literature on adaptive CIs for nonparametric models, we prove that our CIs are

uniformly asymptotically valid without assuming Gaussian disturbances or fixed regressors.

Finally, our work is related to the literature on uniform inference when nuisance parameters

may be at or near a boundary, e.g., Andrews and Guggenberger (2009), McCloskey (2017) and Ketz

(2018). While CIs with uniform asymptotic validity could in principle be computed by inverting

the tests in this literature, this is often computationally prohibitive, especially when the nuisance

parameter exceeds one or two dimensions. Similarly, inverting weighted average power (WAP) max-

imizing tests such as those of Moreira and Moreira (2013) or EMW is computationally intractable

for most realistic applications. In contrast, our CIs are direct and trivial to compute since they do

not rely on test inversion. Moreover, our CIs are designed to have length properties that are desir-

able from a practical perspective without requiring the user to specify weights or tuning parameters

to optimize over and indeed imply NO tests (in the sense of EMW) for certain sets of weights.

1.2 Outline of Paper

The remainder of this paper is organized as follows. Section 2 imparts the basic intuition of our

CI constructions in a stylized asymptotic version of the inference problem we consider before

providing computationally trivial algorithms for constructing the one- and two-sided CIs we

propose in a general asymptotic setting and providing formal results on their validity. Section

3 then shows how our CIs are constructed in practical finite-sample applications. In Section

4, we illustrate the usefulness of our CIs in an empirical application of inference on treatment

effects in a factorial design field experiment while Section 5 examines their finite-sample properties

in a simulation study calibrated to the empirical application. Proofs as well additional results,

including theoretical results that establish the uniform asymptotic validity of our CIs across a
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wide variety of applications, are collected in the Online Appendix.

Throughout this paper, we use the following notational conventions. For any two column

vectors a and b, we sometimes write (a,b) instead of (a′,b′)′ and let a≥b denote the element-by-

element inequality. Let R+ =[0,∞), R+,∞=R+∪{∞}, R∞=R∪{∞}∪{−∞} and zξ denote the

ξth quantile of the standard normal distribution. For a square matrix A, Diag(A) denotes the

diagonal matrix with the same diagonal entries as A.

2 Large Sample Problem

Under standard conditions, estimators of commonly-employed (semi-)parametric models are

asymptotically normally distributed with a consistently-estimable covariance matrix. Examples

of these models include regression models, instrumental variables models, maximum likelihood

models and models estimated by the generalized method of moments.6 In these settings, estimators

can be scale-normalized by consistent estimators of their standard deviations so that inference

on a finite-dimensional parameter is asymptotically equivalent to inference on the unknown mean

vector θ from a single observation of a Gaussian random variable Y
d∼N (θ,Ω), where Ω is a known

correlation matrix.

It is often the case in econometric applications that the researcher is interested in constructing

a CI for a scalar parameter of interest in the presence of nuisance parameters. In addition, the

researcher often has knowledge about the sign of the nuisance parameters. For example, when

6The conditions implying asymptotic Gaussianity of estimators require the model to be

well-behaved. For example, in the context of instrumental variables models or models estimated

by the generalized method of moments, weak instruments or other forms of weak identification

have to be ruled out. As alluded to in the Introduction, even in models that may not be defined

outside the parameter space, such as the random coefficients logit (Berry et al., 1995) and

(G)ARCH models for which variance parameters must be non-negative, it is often possible to

construct an asymptotically normal estimator (Ketz, 2018). Indeed, such models provide other

natural applications for the CIs we introduce in this paper.
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performing inference on a single coefficient in the linear regression model when control variables

may be included in the regression to mitigate potential omitted variable bias, the researcher often

knows the direction of the partial effects of some of the controls from economic theory or logical

reasoning. In the large sample problem, this corresponds to conducting inference on a scalar β

from a single observation  Yβ

Yδ

∼N

 β

δ

,Ω
, (1)

where Ω is a known positive-definite correlation matrix and δ is a finite-dimensional nuisance

parameter whose elements are known to be greater than or equal to zero.7,8

In many contexts, it is natural for the researcher to desire a CI with the following properties: (i)

correct coverage 1−α (coverage of at least 1−α) across the entire δ≥ 0 parameter space, (ii)

good length properties across the entire δ ≥ 0 parameter space and (iii) shortness when δ is

7The restriction δ≥0 is without loss of generality because parameters without sign restrictions

may be dropped from the analysis in the limiting problem and limiting Gaussian random variables

corresponding to parameters restricted to be greater/less than or equal to a known number may

be linearly transformed to conform to (1).

8At a broad conceptual level, we can think of sign restrictions on nuisance parameters as

providing overidentifying restrictions that may yield efficiency gains and more informative inference.

In some cases, imposing inequality constraints (such as sign restrictions) can lower the variance

and mean squared error of an estimator and “improve” tests and confidence sets based on it; see

e.g., Moon and Schorfheide (2009) in the context of overidentifying inequality moment conditions.

In the case at hand, it follows from Section 3.4 of Rothenberg (1973) that the maximum likelihood

estimator of θ=(β,δ′)′ that incorporates the restrictions on the parameter space, say Ỹ , has lower

(weighted) mean squared error than the unrestricted estimator Y =(Yβ,Y
′
δ )
′. However, it is not

advisable to restrict oneself to the use of Ỹ in the construction of inference procedures: Ỹ takes

the form of a projection of Y onto the (restricted) parameter space for θ, discarding potentially

useful information. See Andrews and Shapiro (2021) for a related discussion.
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small or equal to zero. For example, if it is not obvious whether a regressor should enter as a

control variable or not, it is sensible to desire an especially short CI when the unknown population

regression coefficient is equal to or near zero (reflecting the researcher’s uncertainty about whether

it is an important variable) while maintaining correct coverage and decent length no matter

the coefficient’s magnitude. In this section, we provide CI constructions for the large sample

problem with this very goal in mind. Before proceeding, we note that although the CIs we propose

have good length properties over the entire δ≥ 0 parameter space, they converge to standard

CIs evaluated at slightly higher nominal coverage levels than desired as the elements of δ grow

large. We therefore recommend using only nuisance parameters that are expected to be small

or moderately-sized as inputs for constructing our CIs and dropping the rest from the analysis.

We begin by describing the intuition for the CIs in the simplest version of the problem and

subsequently provide general formulations for both one- and two-sided CIs.

2.1 Basic Intuition

To communicate the basic intuition for our CIs, we specialize the large sample problem (1) to

the case for which δ is one-dimensional and the correlation between Yβ and Yδ is positive:

 Yβ

Yδ

∼N

 β

δ

,
 1 ρ

ρ 1


,

where ρ>0, β is unrestricted and δ≥0. Consider the formation of an upper one-sided CI for β

with the goal of satisfying properties (i)–(iii) above. To illustrate the tension between properties

(ii) and (iii), note that the standard CI that ignores the information in Yδ, i.e.,

CIu(Yβ)=[Yβ−z1−α,∞),
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satisfies (ii) but not (iii) since its expected excess length is always simply equal to z1−α.9 On a more

technical level, we show in Proposition 2(i) below that this CI achieves the minimal maximum

excess length quantile for all quantiles larger than α across the δ≥0 parameter space. That is,

the standard CI is minimax for the problem we are interested in. On the other hand, Proposition

2(ii) below shows that the CI that is excess length-optimal for all excess length quantiles larger

than α when δ is known to equal zero is equal to

C̃Iu(Yβ,ρYδ)=
[
Yβ−ρYδ−

√
1−ρ2z1−α,∞

)
.

This CI satisfies (iii) but not (ii) since its expected excess length is equal to ρδ+
√

1−ρ2z1−α,

which diverges as δ→∞.10

In order to attain property (iii) but not at the expense of property (ii), we propose CIs with

length performance designed to adapt to the data. Consider intersecting the two CIs CIu(Yβ) and

C̃Iu(Yβ,ρYδ), at different confidence levels that ensure property (i) holds, to simultaneously retain

property (ii) of the former and property (iii) of the latter:

ĈIu

(
Yβ,ρYδ;z1−α+γ,

√
1−ρ2z1−γ

)
=[Yβ−z1−α+γ,∞)∩

[
Yβ−ρYδ−

√
1−ρ2z1−γ,∞

)
=
[
Yβ−min

{
z1−α+γ,ρYδ+

√
1−ρ2z1−γ

}
,∞
)

for some γ ∈ (0,α). Note that ĈIu

(
Yβ,ρYδ;z1−α+γ,

√
1−ρ2z1−γ

)
maintains correct coverage

probability over the parameter space:

P
(
β∈ĈIu

(
Yβ,ρYδ;z1−α+γ,

√
1−ρ2z1−γ

))
=P
(
β≥Yβ−min

{
z1−α+γ,ρYδ+

√
1−ρ2z1−γ

})
9Expected excess length of an upper one-sided CI for β is defined as E[β− lb], where lb

denotes the lower bound of the CI.

10Both CIs satisfy (i) in this context since we have assumed ρ>0, see equation (2).
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=1−P
(
β<Yβ−min

{
z1−α+γ,ρYδ+

√
1−ρ2z1−γ

})
≥1−P(β<Yβ−z1−α+γ)−P

(
β<Yβ−ρYδ−

√
1−ρ2z1−γ

)
≥1−(α−γ)−γ=1−α (2)

for all (β,δ)∈R×R+, where the first inequality follows from the Bonferroni inequality and the

second inequality uses the fact that

P
(
β<Yβ−ρYδ−

√
1−ρ2z1−γ

)
=P

(
β<β−ρδ+Z̃ρ−

√
1−ρ2z1−γ

)
=P

(
Z̃ρ<−ρδ−

√
1−ρ2z1−γ

)
≤P

(
Z̃ρ<−

√
1−ρ2z1−γ

)
=γ

with

Z̃ρ=Yβ−ρYδ−(β−ρδ) d∼N (0,1−ρ2),

where the inequality uses the fact that ρδ≥0.

Since ĈIu

(
Yβ,ρYδ;z1−α+γ,

√
1−ρ2z1−γ

)
makes use of a multiplicity correction based upon the

Bonferroni bound, for similar reasons used to motivate the adjusted Bonferroni critical values of

McCloskey (2017), it is possible to decrease the excess length of ĈIu

(
Yβ,ρYδ;z1−α+γ,

√
1−ρ2z1−γ

)
while retaining uniform control of coverage probability. In particular, fix γ∈(0,α) and find the

constant c∗∈ [0,
√

1−ρ2z1−γ] that solves

P(Z1>min{z1−α+γ,ρZ2+c})=α (3)

in c, where  Z1

Z2

∼N

 0

0

,
 1 ρ

ρ 1


.

The CI ĈIu(Yβ,ρYδ;z1−α+γ,c
∗) is contained in ĈIu

(
Yβ,ρYδ;z1−α+γ,

√
1−ρ2z1−γ

)
and maintains
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correct coverage probability over the parameter space:

P
(
β∈ĈIu(Yβ,ρYδ;z1−α+γ,c

∗)
)

=P(β≥Yβ−min{z1−α+γ,ρYδ+c
∗})

=P(Z1≤min{z1−α+γ,ρδ+ρZ2+c∗})

≥P(Z1≤min{z1−α+γ,ρZ2+c∗})

=1−P(Z1>min{z1−α+γ,ρZ2+c∗})=1−α

for all (β,δ)∈R×R+, where the second equality follows from the fact that (Yβ,Yδ)
d∼(β,δ)+(Z1,Z2)

and the inequality again uses the fact that ρδ≥0. The problem (3) is computationally straight-

forward and can, for example, be solved by means of Monte Carlo simulations.

Finally, it is interesting to note that ĈIu(Yβ,ρYδ;z1−α+γ,c
∗) can be viewed as a CI that results

from a model selection procedure designed for inference. In the context of the regression model

example, we can view the model selection procedure as follows:

1. If Yδ>(z1−α+γ−c∗)/ρ, construct the CI for β from the “full” regression that includes the

sign-restricted control variable using the critical value z1−α+γ.

2. If Yδ≤(z1−α+γ−c∗)/ρ, construct the CI for β from the “short” regression that omits the

sign-restricted control variable using the critical value c∗.

The model selection pretest rule Yδ>(z1−α+γ−c∗)/ρ is analogous to using a t-test as a pretest,

for which Yδ is the t-statistic for testing whether the sign-restricted control coefficient is equal

to zero, but with a nonstandard critical value that incorporates both the two-step nature of the

inference procedure as well as the dependence between the (scaled) estimators of the coefficient of

interest Yβ and the control coefficient Yδ. Note that as ρ→1, this nonstandard pretest approaches

a standard t-test pretest that compares the t-statistic Yδ to a standard normal quantile critical

value z1−α+γ. Unlike standard model selection procedures, this procedure is designed for inference

in the sense that (i) it uniformly controls coverage probability by directly incorporating the model

selection uncertainty in its construction and (ii) it is designed to yield low excess length rather
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than a different notion of risk (such as mean squared error).11

2.2 One-Sided Confidence Intervals

In this section, we focus on forming analogous adaptive one-sided CIs but now allowing δ≥0 to

be multidimensional so that the large sample problem corresponds to (1), where

Ω=

 1 Ωβδ

Ωδβ Ωδδ

. (4)

Without loss of generality, we focus on upper one-sided CIs for β since lower one-sided CIs may

be attained analogously upon multiplying Yβ by negative one. The optimal (1−α)-level upper

one-sided CI for β when δ=0 is equal to

[
Yβ−ΩβδΩ

−1
δδ Yδ−z1−α

√
1−ΩβδΩ

−1
δδ Ωδβ,∞

)
.

The CI that intersects this CI with the standard CI for β that ignores the information in Yδ will not

maintain coverage in general. More specifically, the argument in (2) for showing correct coverage

only generalizes when all of the elements of ΩβδΩ
−1
δδ are non-negative. In the case that this condition

does not hold, we can still find adaptive CIs with potential length improvements by “dropping”

elements of Yδ from consideration. In what follows, we propose an algorithm that is designed to

do just that while maintaining particularly low excess length when δ is small or equal to zero.

For γ∈(0,α), define the function c : [0,1)→ [0,z1−γ] such that

P(Z1>min{z1−α+γ,Z̃2+c(ω)})=α, (5)

11Though some recent post-selection inference procedures (e.g., Belloni et al., 2014; McCloskey,

2017) uniformly control coverage probability/size, the selection procedures used in their

construction are not designed to yield CIs with desirable length properties.
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where  Z1

Z̃2

∼N
0,

 1 ω

ω ω


.

Note that c(0) = z1−α. The following result ensures that c : [0,1)→ [0,z1−γ] is well-defined and

continuous.

Proposition 1

For α∈(0,1/2), c : [0,1)→ [0,z1−γ] as defined in (5) exists and is continuous.

[Figure 1 here.]

Figure 1 shows the expected excess length of ĈIu(Z1,Z̃2;z1−α+γ,c(ω)) as a function of ω for

α∈{0.1,0.05,0.01} and our recommended value of γ=α/10.12 This expected excess length is strictly

decreasing in ω. Now, let Y
(s)
δ denote an arbitrary subvector of Yδ, including the empty one, with

 Yβ

Y
(s)
δ

∼N

 β

δ(s)

,
 1 Ωβδ(s)

Ωδ(s)β Ωδ(s)δ(s)


,

where by convention δ(s), Ωβδ(s) and Ωδ(s)δ(s), as well as Ωβδ(s)Ω
−1
δ(s)δ(s)

and Ωβδ(s)Ω
−1
δ(s)δ(s)

Ωδ(s)β, are

set equal to zero when Y
(s)
δ =∅. Next, consider

ĈIu(Yβ,Ωβδ(s)Ω
−1
δ(s)δ(s)

Y
(s)
δ ;z1−α+γ,c

(
Ωβδ(s)Ω

−1
δ(s)δ(s)

Ωδ(s)β

)
),

which has correct coverage for all δ≥0 as long as all elements of Ωβδ(s)Ω
−1
δ(s)δ(s)

are non-negative.

Since the expected excess length of ĈIu(·) does not depend on β and is smallest at δ=0 for a

subvector Y
(s)
δ that maximizes Ωβδ(s)Ω

−1
δ(s)δ(s)

Ωδ(s)β (cf. Figure 1), we propose the following algorithm.

Algorithm One-Sided

Amongst all subvectors of Yδ such that the elements of Ωβδ(s)Ω
−1
δ(s)δ(s)

are non-negative, find a

12Expected excess length is obtained numerically on the following grid of values:

ω∈{0,0.001,0.002,...,0.999}. See Appendix F for computational details.
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subvector Y
(s∗)
δ such that Ωβδ(s)Ω

−1
δ(s)δ(s)

Ωδ(s)β is maximized at s=s∗. Then, construct

ĈI
∗
u(Yβ,Yδ,Ω)≡ĈIu(Yβ,Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Y

(s∗)
δ ;z1−α+γ,c

(
Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)β

)
). �

It is worth noting that (i) c(ω) for ω∈(0,1) is very simple to compute via Monte Carlo simula-

tion, while c(0)=z1−α, and (ii) Algorithm One-Sided only requires one to evaluate the function c(·)

at the single point Ωβδ(s
∗)Ω−1

δ(s
∗)δ(s

∗)Ωδ(s
∗)β. Therefore, the algorithm carries very low computational

cost. In order to make practical implementation computationally trivial for the user, requiring no

Monte Carlo simulation, we approximate c(ω) via a polynomial response surface regression. For

each α∈{0.01,0.05,0.1}, we fit a 6th order polynomial on the grid Ω̄u={0,0.001,0.002,...,0.999};

the corresponding R2 values are all greater than 0.999.

[Table 1 here.]

Table 1 reports the corresponding coefficients, where the intercepts have been adjusted

to yield minimal coverage probabilities of exactly 1−α over Ω̄u.
13 We also note that c

(
Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)β

)
can always be replaced by

√
1−Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)βz1−γ in the algorithm to yield a CI with

correct coverage but worse excess length (in analogy with the CI using the Bonferroni correction

in the previous section).

In addition to the above motivation for the selection of a subvector Y
(s∗)
δ to form ĈI

∗
u(Yβ,Yδ,Ω),

Algorithm One-Sided is also justified on theoretical grounds as it entails the intersection of CIs

that are optimal over two different subclasses of DGPs like those of e.g., Cai and Low (2004) and

Kwon and Kwon (2020a,b). More specifically, the following proposition applies a general result

of Armstrong and Kolesár (2018) to the current inference setting to formalize what we mean by

“optimal” here.

13The probabilities underlying the computation of c(ω) as well as the minimal coverage

probabilities are evaluated using 1,000,000 simulation draws; see Appendix F for details.
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Proposition 2

For inference on β in (1), the following statements hold for α∈(0,1):

(i) among all upper one-sided CIs with coverage of at least (1−α) for all δ≥0, the CI that

minimizes all maximum excess length quantiles over the δ≥0 parameter space at quantile levels

greater than α is equal to

[Yβ−z1−α,∞),

(ii) among all upper one-sided CIs with coverage of at least (1−α) for all δ≥0, the CI that

minimizes all excess length quantiles at the point δ=0 and quantile levels greater than α is equal to

[
Yβ−Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Yδ(s∗)−z1−α

√
1−Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)β,∞
)
.

In particular, this proposition implies that for α<1/2 the CIs in (i) and (ii) above minimize

maximum median excess length across δ≥0 and median excess length at δ=0, respectively. Since

median and expected excess length coincide for CIs that are affine in the data (Y ), we also have

that the CIs in (i) and (ii) minimize maximum expected excess length across δ≥0 and expected

excess length at δ=0 among all affine CIs, respectively, if α<1/2. Algorithm One-Sided computes

a CI that intersects two optimal CIs of these forms while making a non-conservative multiplicity

correction that improves upon the conservative Bonferroni adjustment.

A natural question is whether the resulting CI is also optimal in some sense. Although

uniformly most powerful tests do not exist in the context at hand, we may compare the test

implied by ĈI
∗
u(Yβ,Yδ,Ω) to the NO test of EMW that nearly maximizes WAP. The corresponding

hypothesis testing problem that we consider is

H0 :β=0, δ≥0 vs. H1 :β>0, δ≥0, (6)

where δ is scalar. The weights underlying the NO test we consider have β taking value 2 with

probability 1 and δ uniformly distributed over [0,9]. These weights are inspired by the running
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example in EMW, which considers the two-sided version of the testing problem in (6).

[Figure 2 here.]

Figure 2 shows the rejection frequency of the test implied by ĈI
∗
u(Yβ,Yδ,Ω) using γ=α/10, the

NO test and the standard one-sided t-test (for comparison) for testing (6) at α=0.05, as a function

of β for different values of δ when ρ=0.7; see Appendix D for implementation details. The power

functions of the test implied by ĈI
∗
u(Yβ,Yδ,Ω) and the NO test are visually indistinguishable,

making the test implied by ĈI
∗
u(Yβ,Yδ,Ω) NO as well.14

We now provide a formal theoretical result establishing lower and upper bounds on the coverage

probability of the upper one-sided CI we propose in Algorithm One-Sided.

Theorem 1

For any δ≥0, α∈(0,1/2) and γ∈(0,α),

1−α≤P
(
β∈ĈI

∗
u(Yβ,Yδ,Ω)

)
≤1−α+γ.

This result shows not only that our proposed CI has correct coverage but also that by choosing

γ to be “small” reduces how conservative the CI can be. However, there is a tradeoff in the choice

of γ: although a smaller γ leads to a CI that is closer to having exact 1−α coverage for any δ≥0,

it also allows for less length gains when the elements of δ are close or equal to zero.

As can be seen from Figure 1, extreme values of ω such as 0.999 can lead to expected excess

lengths of our one-sided CI close to zero, entailing expected excess length reductions of nearly 100%

relative to the expected excess length of the standard CI. At more empirically-relevant values of ω,

such as say 0.7, Figure 1 still implies expected excess length reductions of more than 30% for α=0.05.

On the other hand, the expected excess length of our one-sided CI is bounded above by z1−α+γ=

14The underlying upper bound on WAP (evaluated using 100,000 simulation draws) equals

64.35% and the test implied by ĈI
∗
u(Yβ,Yδ,Ω) is within ε=0.0131 (using the notation in EMW)

of this bound.
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1.6954 for α=0.05, γ=α/10 and any value of ω. This implies that the expected excess length

of our recommended CI relative to the standard one-sided CI is bounded above by z1−α+γ/z1−α=

1.6954/1.6449≈1.0307 for α=0.05. That is the expected excess length increase of our recommended

CI relative to the standard CI is bounded above by 3.07% for α=0.05 and any value of ω.15

[Figure 3 here.]

Figure 3 plots the expected excess length of ĈIu(Z1,Z̃2+
√
ωδ;z1−α+γ,c(ω)) using γ=α/10,

the minimax standard one-sided CI (CIu(Z1)) and the CI that is optimal when δ=0 (C̃Iu(Z1,Z̃2+

√
ωδ)) as a function of δ, for α=0.05 and several values of ω. Similarly to Figure 1, Figure 3 shows

that the gains in expected excess length of our one-sided CI compared to the standard one-sided

CI are more pronounced for larger values of ω. Furthermore, Figure 3 illustrates the adaptive

nature of our one-sided CI: at the endpoints of the parameter space, δ=0 and δ=∞, its expected

excess length approaches those of the optimal CI at δ=0 and the minimax standard one-sided CI.

A different choice of γ from α/10 would entail different tradeoffs for our CI over the δ≥0 param-

eter space. For example, a larger choice of γ would yield lower expected excess length when δ is small

by bringing it “closer” to the optimal CI at δ=0. Conversely, such a choice for γ would yield higher

expected excess length at large values of δ. In fact, the user of our CI could choose γ according to

how much of an increase in expected excess length they are willing to tolerate relative to the standard

CI at large values of δ since the ratio of the expected excess length of our CI relative to the standard

CI is bounded above by z1−α+γ/z1−α. For example, the choice of γ=α/2 would entail an expected

excess length increase relative to the standard CI bounded above by about 19% for α=0.05 since

z1−α+γ/z1−α=1.96/1.6449≈1.1916. However, we note that the near optimality of the test implied

15For α equal to 0.01 and 0.1 (and γ=α/10), the expected excess length of our one-sided CI is

bounded above by 2.3656 and 1.3408 and the expected excess length of the standard one-sided CI

is equal to 2.3263 and 1.2816, respectively. This implies that the expected excess length increase

of our CI relative to the standard CI is bounded above by 1.69% and 4.62% for α= 0.01 and

α=0.1, respectively.
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by ĈI
∗
u(·) when using γ=α/10 provides an additional argument for this particular choice of γ.

2.3 Two-Sided Confidence Intervals

In this section, we focus on forming analogous adaptive two-sided CIs allowing δ ≥ 0 to be

multidimensional in the large sample problem characterized by (1) and (4). These two-sided CIs

use the same basic logic as the one-sided CIs of the previous section but work to shorten each

side of the CI separately while maintaining correct coverage.

To illustrate our two-sided CIs, temporarily suppose that δ is two-dimensional and that the

correlation matrix of (Yβ,Yδ1,Yδ2)
′,


1 ρ1 ρ2

ρ1 1 ρ12

ρ2 ρ12 1

,

has ρ1≥0 and ρ2≤0. Define16

ĈIt(Yβ,ρ1Yδ1,ρ2Yδ2;z1−(α−γ)/2,c`(ω̃),cu(ω̃))

=
[
Yβ−min

{
z1−(α−γ)/2,ρ1Yδ1 +c`(ω̃)

}
,Yβ+min

{
z1−(α−γ)/2,−ρ2Yδ2 +cu(ω̃)

}]
,

where ω̃= (ω12,ω13,ω23) = (ρ2
1,ρ

2
2,ρ12ρ1ρ2) and c`(ω̃) and cu(ω̃) minimize the expected length of

ĈIt((Yβ,ρ1Yδ1,ρ2Yδ2;z1−(α−γ)/2,·,·) at δ=0 subject to correct coverage for all δ1,δ2≥0; see Appendix

A for details on the construction of c`(ω̃) and cu(ω̃). Note that the coverage probability of ĈIt(·)

is lowest over δ1,δ2≥0 when δ1 =δ2 =0 since ρ1δ1≥0 and −ρ2δ2≥0.

Before introducing the construction of our two-sided CIs in the general case for which the

16While it is possible for ĈIt(·) to be empty, this is of little empirical relevance as the

corresponding probability is very small. For α=0.05, for example, the probability that ĈIt(·) is

empty (evaluated over Ω̄t, defined below, using 100,000 simulation draws) is less than 0.1%, 0.01%

and 0.001% as long as ω12 =ρ2
1 and ω13 =ρ2

2 are both less than 0.9, 0.75 and 0.65, respectively.
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dimension of δ is arbitrary, we illustrate several of its features in low-dimensional examples. First,

ĈIt(·) offers potential improvements over the standard two-sided CI [Yβ±z1−α/2] even if there is

only one sign-restricted nuisance parameter. This can be seen by noting that if there is only one sign-

restricted nuisance parameter and the correlation ρ between Yβ and Yδ is positive (negative), our

two-sided CI is equal to ĈIt(Yβ,ρYδ,0;z1−(α−γ)/2,c`(ω̃),cu(ω̃)) (ĈIt(Yβ,0,ρYδ;z1−(α−γ)/2,c`(ω̃),cu(ω̃))).

This CI can improve upon the length of the standard CI by using a larger lower bound (smaller

upper bound) when the realizations of Yδ are small or negative. Similarly, in the above case

of two sign-restricted nuisance parameters with correlations of opposite sign, ρ1>0 and ρ2<0,

ĈIt(Yβ,ρ1Yδ1,ρ2Yδ1;·) can improve upon the length of the standard CI by using a larger lower

bound and/or a smaller upper bound when the realizations of Yδ1 and/or Yδ2 are small or negative.

[Figure 4 here.]

Figure 4 shows the fitted surface of a 6th order polynomial regression of the expected

length of ĈIt(Yβ,ρ1Yδ1,ρ2Yδ2;z1−(α−γ)/2,c`(ω̃),cu(ω̃)) at δ1 = δ2 = 0 on ω12 and ω13 alone, for

α = 0.05 and γ = α/10. The values of ω̃ on which this regression is based are given by

Ω̄t=S̄∩G2×−G∪G∪{−0.99,−0.98,...,0.99}, where

G={0,0.005,0.01,0.02,...,0.1,0.15,...,0.9,0.91,...,0.99,0.995}

and −G={g :−g∈G}.17 The corresponding R2 is greater than 0.999, implying that the expected

length is nearly invariant to ω23. Similarly, the maximum difference between the largest and the

smallest expected length over the set Ω̄t for any given (ω12,ω13) is equal to 0.0289. Furthermore,

we note that the fitted expected length in Figure 4 is strictly decreasing in ω12 and ω13.

Now, let δ be of arbitrary dimension and let Y
(s1)
δ and Y

(s2)
δ denote two arbitrary (possibly

17See Appendix A for the definition of S̄.
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empty) subvectors of Yδ with


Yβ

Y
(s1)
δ

Y
(s2)
δ

∼N



β

δ(s1)

δ(s2)

,


1 Ωβδ(s1) Ωβδ(s2)

Ωδ(s1)β Ωδ(s1)δ(s1) Ωδ(s1)δ(s2)

Ωδ(s2)β Ωδ(s2)δ(s1) Ωδ(s2)δ(s2)


,

where by convention, δ(s1) (δ(s2)), Ωβδ(s1) (Ωβδ(s2)), Ωδ(s1)δ(s1) (Ωδ(s2)δ(s2)) and Ωδ(s1)δ(s2), as well

as Ωβδ(s1)Ω−1
δ(s1)δ(s1) (Ωβδ(s2)Ω−1

δ(s2)δ(s2)), Ωβδ(s1)Ω−1
δ(s1)δ(s1)Ωδ(s1)β (Ωβδ(s2)Ω−1

δ(s2)δ(s2)Ωδ(s2)β) and Ωβδ(s1)Ω−1
δ(s1)δ(s1)Ωδ(s1)δ(s2)Ω−1

δ(s2)δ(s2)Ωδ(s2)β,

are set equal to zero when Y
(s1)
δ =∅ (Y

(s2)
δ =∅). Next, consider

ĈIt(Yβ,Ωβδ(s1)Ω−1
δ(s1)δ(s1)Y

(s1)
δ ,Ωβδ(s2)Ω−1

δ(s2)δ(s2)Y
(s2)
δ ;z1−(α−γ)/2,c`(Ω̃

(s1,s2)),cu(Ω̃
(s1,s2))),

where

Ω̃(s1,s2) =(Ωβδ(s1)Ω−1
δ(s1)δ(s1)Ωδ(s1)β,Ωβδ(s2)Ω−1

δ(s2)δ(s2)Ωδ(s2)β,Ωβδ(s1)Ω−1
δ(s1)δ(s1)Ωδ(s1)δ(s2)Ω−1

δ(s2)δ(s2)Ωδ(s2)β),

which has correct coverage for all δ≥0 as long as all elements of Ωβδ(s1)Ω−1
δ(s1)δ(s1) are non-negative

and all elements of Ωβδ(s2)Ω−1
δ(s2)δ(s2) are non-positive. Since the expected length of ĈIt(·) does not

depend on β and is approximately smallest at δ=0 for subvectors Y
(s1)
δ and Y

(s2)
δ that maximize

Ωβδ(s1)Ω−1
δ(s1)δ(s1)Ωδ(s)β and Ωβδ(s2)Ω−1

δ(s)δ(s2)Ωδ(s2)β (cf. Figure 4), we propose the following algorithm.

Algorithm Two-Sided

Amongst all pairs of subvectors of Yδ (including the empty ones) such that the elements of

Ωβδ(s1)Ω−1
δ(s1)δ(s1) are non-negative and the elements of Ωβδ(s2)Ω−1

δ(s2)δ(s2) are non-positive, find a

subvector pair Y
(s∗1)
δ and Y

(s∗2)
δ such that Ωβδ(s1)Ω−1

δ(s1)δ(s1)Ωδ(s1)β and Ωβδ(s2)Ω−1
δ(s2)δ(s2)Ωδ(s2)β are

maximized at s1 =s∗1 and s2 =s∗2.
18 Then, construct

ĈI
∗
t (Yβ,Yδ,Ω)

18Note that the pair of subvectors Y
(s∗1)
δ and Y

(s∗2)
δ may contain overlapping components of Yδ.
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≡ĈIt(Yβ,Ωβδ(s
∗
1)Ω−1

δ(s
∗
1)δ(s

∗
1)Y

(s∗1)
δ ,Ω

βδ(s
∗
2)Ω−1

δ(s
∗
2)δ(s

∗
2)Y

(s∗2)
δ ;z1−(α−γ)/2,c`(Ω̃

(s∗1,s
∗
2)),cu(Ω̃

(s∗1,s
∗
2))). �

While one could directly choose a subvector pair Y
(s1)
δ and Y

(s2)
δ to minimize the expected

length of ĈIt(·) at δ = 0, Algorithm Two-Sided has the advantage that it only requires the

computation of the expected length of ĈIt(·) once, namely to compute c`(Ω̃
(s∗1,s

∗
2)) and cu(Ω̃

(s∗1,s
∗
2)).

And even this computational step can be avoided by using the following polynomial response

surface approximation of cu(ω̃). For α∈{0.01,0.05,0.1}, we fit a 6th order polynomial on the grid

Ω̄t in ω12 and ω13 alone. Again, the corresponding R2 values are all greater than 0.999, which

is remarkable as it implies that cu(·) is nearly invariant to ω23.

[Table 2 here.]

Table 2 provides the coefficients for the 6th order polynomial approximation of cu(ω̃) for α=0.05,

where again the intercept has been adjusted to yield a minimal coverage probability exactly equal

to 1−α over Ω̄t.
19 Tables 6 and 7 in Appendix E provide the corresponding coefficients for α=0.01

and α=0.1, respectively. The following proposition shows that one can also approximate c`(ω̃) using

Table 2 (and Tables 6 and 7) by simply reversing the roles of ω12 and ω13 in the computation of cu(ω̃).

Proposition 3

The critical value functions c`(·) and cu(·) are related through the following symmetry condition:

c`(ω13,ω12,ω23)=cu(ω12,ω13,ω23).

In the two-sided case, supporting theoretical results analogous to those in Proposition 2 do not

exist since the CI that minimizes expected length at the point δ=0 depends upon the true value

of β (see Pratt, 1961). Nevertheless, the test implied by ĈI
∗
t (Yβ,Yδ,Ω) is NO for the two-sided

version of the testing problem given in (6); see Appendix D.

Similarly to the one-sided case above, Figure 4 shows that the expected length of our two-sided

CI can be very small for extreme values of Ω
βδ(s

∗
1)Ω−1

δ(s
∗
1)δ(s

∗
1)Ωδ(s

∗
1)β

and Ω
βδ(s

∗
2)Ω−1

δ(s
∗
2)δ(s

∗
2)Ωδ(s

∗
2)β

. At

19The probabilities underlying the computation of cu(ω̃) as well as the minimal coverage

probabilities are evaluated using 100,000 simulation draws; see Appendix F for details.
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the same time, for any realization of the data, the realized length of our two-sided CI cannot

exceed 2×z1−(α−γ)/2 =4.009 for α=0.05 and γ=α/10. This implies that the length increase of

our recommended CI cannot exceed 2.28% relative to the fixed length 2×z1−α/2 = 3.92 of the

standard two-sided CI.20

Mirroring Theorem 1 for our one-sided CI, we now provide a formal theoretical result estab-

lishing lower and upper bounds on the coverage probability of the two-sided CI we propose in

Algorithm Two-Sided.

Theorem 2

For any δ≥0, α∈(0,1/2) and γ∈(0,α),

1−α≤P
(
β∈ĈI

∗
t (Yβ,Yδ,Ω)

)
≤1−α+γ.

Analogous implications for the choice of γ in the one-sided case also apply to our two-sided

CI constructions.

3 Finite Sample Problem of Restricted Nuisance Parameters

Consider inference on a scalar parameter of interest b∈R in a well-behaved model with a vector

nuisance parameter d∈Rk+ for some k≥1 that is known to have all elements greater than or equal

to zero. For a standard parameter estimator (̂b,d̂′)′, as the number of observations n in the sample

grows, standard assumptions imply21

√
n

 b̂−b

d̂−d

 d−→N (0,Σ) with Σ=

 Σbb Σbd

Σdb Σdd

, (7)

20For α equal to 0.01 and 0.1, the length of our two-sided CI cannot exceed 5.224 and 3.391

and the length of the standard two-sided CI is equal to 5.152 and 3.290, respectively. This implies

a maximum length increase of 1.41% and 3.07%, respectively.

21For simplicity of notation, we suppress the dependence of certain finite-sample quantities

on the sample size n until Section 3.2.
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where Σ is a consistently estimable covariance matrix. Note that this setting accommodates regres-

sion models, instrumental variables models, maximum likelihood models and models estimated by

the generalized method of moments under standard assumptions when some nuisance parameters

are known to be greater or less than a given bound via simple reparameterization of the nuisance

parameters. For example, say that the researcher knows from economic theory that the nuisance

parameter d̃ is less than or equal to c̃ for some known constant c̃∈R. Then d=−(d̃−c̃) is the

simple reparameterization that fits this setting.

Example: Regression with Sign-Restricted Control Coefficients

One of the most common examples that fits this setting is inference on a regression coefficient

of interest b in the standard linear regression model for observations i=1,...,n

yi=bzi+x
′
id+w′ic+εi,

where yi is the dependent variable, zi is the scalar regressor of interest, xi∈Rk are control variables

with known positive partial effects d≥ 0 on yi, wi ∈Rl are control variables with unrestricted

partial effects c and εi is the error term. The ordinary least squares estimator (̂b,d̂′)′ satisfies (7)

under standard assumptions on the linear regression model.

Researchers must be careful when imposing sign restrictions in the linear regression context.

In the context of regressions based on randomized experiments, regression coefficients indeed

typically represent causal effects and are therefore more straightforward to interpret and sign. See

the empirical application in Section 4 for example. On the other hand, in regressions based upon

observational data regression coefficients often do not have a causal interpretation. Nevertheless,

it may still be possible to determine their sign, particularly in settings where the regression model

corresponds to a conditional expectation function. For example, in the context of Mincer-type

regressions it may be reasonable to assume that the partial effect of experience is (weakly) concave,

i.e., the sign of the linear term is non-negative and the sign of the quadratic term is non-positive. In

a related context, Hanushek et al. (2015) provide arguments for why the partial effect of schooling
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in a regression of wages on their measure of cognitive skills and schooling should be non-negative.

Further examples for which researchers may know the direction of partial effects can be found in

growth regressions. Squicciarini and Voigtländer (2015), for example, (indirectly) argue that the

partial effects of their proxies for average human capital are non-negative in a regression where

the variable of interest is a proxy for knowledge elites.

3.1 Implementation

For a consistent covariance matrix estimator Σ̂, (7) suggests the following large-sample distribu-

tional approximation consistent with (1) and (4):

Diag
(

Σ̂
)−1/2√

n

 b̂

d̂

 a∼N


 β

δ

,Ω
, (8)

where β =
√
nb/
√

Σbb, δ = Diag(Σdd)
−1/2
√
nd and Ω = Diag(Σ)−1/2ΣDiag(Σ)−1/2. Note, how-

ever, that Ω is not typically known in practice but can be consistently estimated by Ω̂ =

Diag(Σ̂)−1/2Σ̂Diag(Σ̂)−1/2. Let δ̂(s) = Diag(Σ̂
(s)
dd )−1/2

√
nd̂(s), ŝ∗ denote the subset of the set of

indices {1,...,k} that maximizes Ω̂bd(s)Ω̂−1
d(s)d(s)Ω̂d(s)b amongst all subsets of indices s⊆{1,...,k}

such that the elements of Ω̂bd(s)Ω̂−1
d(s)d(s) are non-negative and (ŝ∗1,ŝ

∗
2) denote the subsets of the

set of indices {1,...,k} that maximize Ω̂bd(s1)Ω̂−1
d(s1)d(s1)Ω̂d(s1)b and Ω̂bd(s2)Ω̂−1

d(s2)d(s2)Ω̂d(s2)b amongst all

subsets of indices s1,s2⊆{1,...,k} such that the elements of Ω̂bd(s1)Ω̂−1
d(s1)d(s1) are non-negative and

the elements of Ω̂bd(s2)Ω̂−1
d(s2)d(s2) are non-positive.

The distributional approximation in (8) and the availability of the consistent estimator Ω̂

suggest that we can use

CIu,n

(
b̂,d̂,Σ̂

)
=

√
Σ̂bb√
n
ĈI
∗
u

 √nb̂√
Σ̂bb

,Diag(Σ̂dd)
−1/2
√
nd̂;Ω̂


=

[
b̂− Σ̂bb√

n
min
{
z1−α+γ,Ω̂bd(ŝ∗)Ω̂−1

d(ŝ∗)d(ŝ∗)δ̂
(ŝ∗)+c(Ω̂bd(ŝ∗)Ω̂−1

d(ŝ∗)d(ŝ∗)Ω̂d(ŝ∗)b)
}
,∞

)
(9)
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and

CIt,n

(
b̂,d̂,Σ̂

)
=

√
Σ̂bb√
n
ĈI
∗
t

 √nb̂√
Σ̂bb

,Diag(Σ̂dd)
−1/2
√
nd̂;Ω̂


=

[
b̂− Σ̂bb√

n
min

{
z1−α−γ

2
,Ω̂

bd(ŝ∗1)Ω̂−1

d(ŝ∗1)d(ŝ∗1)δ̂
(ŝ∗1)+c`

(̂̃Ω(ŝ∗1 ,̂s
∗
2)
)}

,

b̂+
Σ̂bb√
n

min

{
z1−α−γ

2
,−Ω̂

bd(ŝ∗2)Ω̂−1

d(ŝ∗2)d(ŝ∗2)δ̂
(ŝ∗2)+cu

(̂̃Ω(ŝ∗1 ,̂s
∗
2)
)}]

(10)

as upper one-sided and two-sided CIs for the parameter b, where ĈI
∗
u(·) and ĈI

∗
t (·) are defined

in Algorithms One-Sided and Two-Sided.

Even though Ω̂ is consistent for Ω, the signs of the elements of Ω̂bd(s)Ω̂−1
d(s)d(s) are not consistent

for the signs of the elements of Ωbd(s)Ω−1
d(s)d(s) when they are equal to zero. Nevertheless, for

one-sided CIs, any choice of subvector s used to construct our CIs in finite samples will lead to

asymptotically correct coverage as long as Ω∗
bd(s)Ω

∗−1
d(s)d(s)≥0. This means that the use of ŝ∗ that

either converges to a subvector s with this property or does not converge but takes values in

the set of subvectors with this property with probability approaching one will lead to a CI with

asymptotically correct coverage. This is indeed the case for the choice of ŝ∗ that we propose. The

analogous argument holds for two-sided CIs. Indeed, the theoretical results in Appendix C formally

confirm that these CIs attain uniformly correct asymptotic coverage under weak conditions.

3.2 Practical Discussion

We now make some remarks in order to summarize and clarify the properties of our CIs for the

applied user. We focus on one-sided CIs in this discussion because analogous remarks apply to

our two-sided CIs. First, we note that at any given value of ω∈ [0,1), the value c(ω) defined by

(5) used to construct our CIs can be computed by simulating the bivariate normal random vector

(Z1,Z̃2)
′ or by numerically evaluating the integral that defines the probability on the left hand

side of (5). However, our response surface approximation, based upon our own simulation-based

calculations of c(ω) over a fine grid of ω values, allows the user to directly compute a very accurate
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approximation of c(ω) as a deterministic function of ω from Table 1. This obviates the need for

an applied researcher to perform any simulations or numerical integration themself.

Second, we note that since ω is one-dimensional, the accuracy of our response surface approx-

imation of c(ω) does not change depending upon the dimensionality of the vector of nuisance

parameters d. However, if the dimension of d relative to the sample size n is large, estimation of

Σ can become difficult and since our CIs require an accurate estimator of Σ, such a scenario could

induce finite-sample coverage distortions. We therefore view our CI construction approaches as

applicable to problems involving low- to moderate-dimensional sign-restricted nuisance parameters.

Third, our algorithms involve computing quantities across all subvectors of a vector of dimen-

sion equal to the dimension of the sign-restricted nuisance parameter k. The number of such

subvectors is equal to 2k. If k is very large, this computation can become demanding. However, a

typical empirical application is unlikely to involve very many sign-restricted nuisance parameters

(that are all expected to be small) and we again view our CI construction approaches as applicable

to the empirically-relevant cases involving low- to moderate-dimensional sign-restricted nuisance

parameters.

Fourth, we note that CIs constructed according to (9) using the value c(ω) defined by (5) have

correct asymptotic coverage uniformly across general empirically-relevant parameter spaces for

which the parameter estimator (̂b,d̂′)′ is asymptotically normal and has a consistently estimable

covariance matrix. Theorem 3 in Appendix C formally shows this.

Finally, by plotting the expected excess length of our CIs as a function of Ωβδ(s)Ω
−1
δ(s)δ(s)

Ωδ(s)β, we

find that a subvector of the nuisance parameter that yields the largest value of Ωβδ(s)Ω
−1
δ(s)δ(s)

Ωδ(s)β

(subject to Ωβδ(s)Ω
−1
δ(s)δ(s)

being non-negative) minimizes the expected excess length of our CIs at

the point for which the nuisance parameter is equal to zero. This choice of subvector is further

supported by the theoretical results of Proposition 2, which tell us that it is theoretically optimal

for minimizing the excess length of the CIs that our CIs intersect the standard CI [Yβ−z1−α+γ,∞)

with. We note, however, that correct coverage of our CIs does not depend upon using this

particular subvector choice so long as c(·) is evaluated at Ωβδ(s)Ω
−1
δ(s)δ(s)

Ωδ(s)β for the subvector
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being used in the construction of our CIs. In other words, Theorem 1 continues to hold when

δ(s∗) is replaced by any subvector δ(s) such that Ωβδ(s)Ω
−1
δ(s)δ(s)

is non-negative in the construction

of a one-sided CI. The analogous statement holds for our two-sided CIs and Theorem 2.

4 Empirical Application of Sign-Restricted Regression

For our proposed CIs to be able to improve upon the length of standard CIs in the standard

linear regression context, the researcher must know the sign of at least one of the control vari-

ables’ coefficients, the estimator of the coefficient of interest must be (asymptotically) correlated

with the estimator of the sign-restricted control variables’ coefficients and the true values of the

sign-restricted control variables’ coefficients must be small. These conditions are often satisfied in

the context of treatment effect regressions for cross-cutting/factorial designs in field experiments.

Take, for example, the 2×2 factorial design:

Y =α0+α1T1+α2T2+α3T1×T2+u, (11)

where E[u|T1,T2]=0 and T1 and T2 denote two independent, randomly assigned treatments with

Ti∈{0,1} for i∈{1,2}. Here, α1 and α2 are the treatment effects of T1 and T2 “relative to a business-

as-usual counterfactual” (Muralidharan et al., 2020) and α3 is the “interaction effect”, i.e., the

treatment effect of jointly providing both treatments minus the sum of the treatment effects of T1

and T2.
22 If Y is a “positive” outcome, it is often reasonable to assume that α1≥0 and α2≥0. For

example, a research ethics committee is unlikely to clear an experimental design if this is not the case.

Furthermore, the OLS estimators of the three treatment effects are likely to be highly correlated in

this setting. For example, if each treatment is assigned with probability 1/2 and the error term u is

22Using the potential outcomes notation, where Yt1,t2 is the potential outcome of Y when T1 =t1

and T2 = t2, the three treatment effects can be written as α1 =E[Y1,0−Y0,0], α2 =E[Y0,1−Y0,0]

and α3 =E[Y1,1−Y0,0]−(E[Y1,0−Y0,0]+E[Y0,1−Y0,0]).
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conditionally homoskedastic, then the asymptotic correlation matrix of
√
n(α̂1,α̂2,α̂3)

′ is given by


1 1/2 −1/

√
2

1/2 1 −1/
√

2

−1/
√

2 −1/
√

2 1

.

Lastly, the coefficients α1 and α2 are likely to be small, motivating the field experiment to begin with.

Under the assumption that α1 ≥ 0 and α2 ≥ 0, it is reasonable to be interested in upper

one-sided CIs for α1 and α2 and a two-sided CI for α3. We note that the above correlation

structure implies that our upper one-sided CIs for α1 and α2 have the potential to improve upon

the length of standard upper one-sided CIs. Similarly, our two-sided CI for α3 has the potential

to improve upon the length of the standard two-sided CI through a smaller upper bound.

Sometimes researchers are interested in the following alternative specification of the above

regression:

Y =α0+α1(T1−T1×T2)+α2(T2−T1×T2)+α∗3T1×T2+u, (12)

where α∗3 =α3+α1+α2 is the effect of “both” treatments provided jointly, relative to a business-as-

usual counterfactual.23 This regression again results in high correlation: under the same conditions

as in the example above, the asymptotic correlation matrix of
√
n(α̂1,α̂2,α̂

∗
3)
′ is given by


1 1/2 1/2

1/2 1 1/2

1/2 1/2 1

.

In this case, our two-sided CI for α∗3 has the potential to improve upon the length of the standard

two-sided CI through a larger lower bound. While it may be reasonable to assume that α∗3≥0 in

some cases, we note that it is beneficial to not impose this constraint in the construction of our CIs if

there is reason to believe that α∗3 is large. This is likely to be the case if T1 and T2 are complements.

23That is α∗3 =E[Y1,1−Y0,0].
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To illustrate the usefulness of our proposed CIs, we apply them in the context of a field

experiment where a 2×2 factorial design was used. In particular, we revisit Blattman et al. (2017)

(BJS) who recruited 999 poor young men in Liberia who exhibited “high rates of violence, crime,

and other antisocial behaviors” to participate in an experiment. The two treatments are “therapy”,

an eight-week program of group cognitive behavior therapy, and “cash”, a $200 grant corresponding

to roughly three months’ wages. In simple terms, the main research question is whether “therapy”

and “cash” can help reduce violent, criminal and other antisocial behaviors. The hypothesized

channels are improved noncognitive skills such as self-control (“therapy”) and an increase in legal

work (“cash”). BJS conducted two follow-up surveys, the first 2–5 weeks and the second 12–13

months after the intervention to elicit “short-term” and “long-term” impacts, respectively.

[Table 3 here.]

Table 3 reproduces the results concerning the treatments’ long-term impact on a summary

index of antisocial behaviors (times minus one) (cf. the first row of Panel B of Table 2 in BJS). The

table includes one of the main findings of BJS: while the two treatments do not have statistically

significant long-term effects in isolation, they do have a joint positive long-term effect on the index

of antisocial behaviors. Column 1 (̂b) shows the OLS point estimates for “therapy” (T), “cash” (C),

“both” (B) and “interaction” (I) as defined above and column 2 (SE) reports the corresponding

(heteroskedasticity-robust) standard errors. Note that BJS only consider the specification given

in equation (12), i.e., they only estimate the effect of “both” treatments and not the “interaction”

effect.24 Column 3 (SSCI—Simple and Short Confidence Interval) shows our proposed CIs for

α=0.05, which are upper one-sided for T and C and two-sided for B and I, when assuming that

24In fact, BJS consider the specification given in equation (12) augmented by a set of additional

controls. For the purpose of this analysis, we take the signs of these additional controls as

unknown. See BJS for more information on the additional controls.
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the treatment effects of “therapy” and “cash” are a priori known to be non-negative.25,26 They

are constructed using Algorithms One-Sided and Two-Sided in combination with the response

surface approximations.27 Column 5 (SCI—Standard Confidence Interval) shows the corresponding

standard CIs. Columns 4 and 6 (both (E)L) give the (“excess”) lengths of SSCI and SCI, where

the “excess” length of one-sided CIs here is computed as the difference between b̂ and the CI’s lower

bound.28 Column 7 (Ratio) computes the ratio of the (“excess”) length of SSCI relative to SCI. We

find that, while our proposed CI is marginally longer than the standard CI for C—its “excess” length

reaching the bound on expected excess length increase of ∼3%, it is much shorter for T, B and I.

25Given the knowledge that α1 and α2 are non-negative, we could alternatively report the inter-

section of the above one-sided CIs with [0,∞). Here, we report the “uncensored” CIs for illustrative

purposes: a researcher may, for example, only feel comfortable imposing a non-negativity constraint

on “therapy” (“cash”) but still be interested in obtaining a one-sided CI for “cash” (“therapy”).

26Table 8 in Appendix E reports the corresponding results when it is assumed that the treatment

effect of “both” is also known to be non-negative, i.e., when the constraint α∗3≥0 is also imposed.

27The estimated (asymptotic) correlation matrices for the estimator of the effects of i) T, C

and B and ii) T, C and I are given by


1.0000 0.5238 0.6104

0.5238 1.0000 0.5543

0.6104 0.5543 1.0000

 and


1.0000 0.5238 −0.7154

0.5238 1.0000 −0.7699

−0.7154 −0.7699 1.0000

,

respectively. We augmented the corresponding regressions by the same set of controls as BJS,

cf. footnote 24.

28We write “excess” in quotes to emphasize the fact that this is not equal to the true excess

length that cannot be computed here in the absence of knowledge of the true value of the

regression coefficients.
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5 Calibrated Simulations for Sign-Restricted Regression

To illustrate the finite-sample properties of our proposed CIs, we perform a Monte Carlo study

calibrated to the BJS factorial design regression of the previous section. In particular, we create

10,000 bootstrap samples by drawing with replacement from the sample of n=947 men underlying

the regression results in Table 3. In each bootstrap sample, we estimate the regressions (11) and (12).

Since the expected value of the treatment effect of “cash” under the empirical distribution is equal

to the point estimate in the original sample, -0.1316, it is outside of the sign-restricted parameter

space α2 ≥ 0. We therefore recenter the estimates of the treatment effect of “cash” over the

bootstrap samples to have mean zero (by adding 0.1316). For each bootstrap sample, we construct

our proposed CIs, using Algorithms One-Sided and Two-Sided in combination with the response

surface approximations, standard CIs, the (excess) length of each CI and whether they cover the true

parameter value, i.e., the corresponding (re-centered) point estimate in the original sample. All CIs

are constructed using standard heteroskedasticity-robust covariance matrix estimators computed

within each bootstrap sample. Since the empirical distribution of the estimator across bootstrap

samples is not normally distributed and the covariance matrix is estimated, this simulation exercise

captures the effect on CI coverage of departures from the large sample problem of Section 2.

[Table 4 here.]

Table 4 reports the coverage frequencies (CF) of our proposed CI and of the standard CI

across bootstrap samples for all four treatment effects, T, C, B and I. It also reports the average

(excess) lengths (A(E)L) of these CIs across the bootstrap samples. In addition to the above

DGP, we also consider a modification where the true value of the treatment effect of “therapy”

is set equal to zero (by subtracting the point estimate in the original sample, 0.0829, from the

corresponding estimates in the bootstrap samples). The corresponding results for the effect of

“both” treatments and the “interaction” effect are given in the last two columns, B0 and I0.

We observe that our proposed CIs have good finite-sample coverage, comparable to that of

the standard CIs, with little coverage distortion despite the non-normally distributed estimator
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and estimated covariance matrix. In terms of average (excess) length, most of our proposed CIs

offer sizeable improvements over standard CIs, with average (excess) length improvements of up

to 17% for this particular data calibration.
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Figure 1: Expected excess length of ĈIu(Z1,Z̃2,z1−α+γ,c(ω)) as a function of ω for α∈{0.01,0.05,0.1}
and γ=α/10.
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Figure 2: Rejection frequency as a function of β of standard one-sided t-test (t - solid), test implied

by ĈI
∗
u(Yβ,Yδ,Ω) using γ=α/10 (SSCI - dashed) and the NO test (NO - dotted) for testing (6) with

d=0,1,2 from left to right for α=0.05 and ρ=0.7.
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Figure 3: Expected excess length of ĈIu(Z1,Z̃2 +
√
ωδ;z1−α+γ,c(ω)) using γ = α/10, CIu(Z1) and

C̃Iu(Z1,Z̃2+
√
ωδ) as a function of δ for ω equal to 0.1, 0.3, 0.5 and 0.7 from left to right and α=0.05.
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Table 1: Coefficients for 6th order polynomial approximations of c(ω) for γ=α/10

α 1 ω ω2 ω3 ω4 ω5 ω6

0.01 2.3476 2.5073 -19.6229 65.0489 -122.0242 112.9814 -40.9895
0.05 1.6597 2.4813 -16.1007 52.6998 -98.9348 91.7646 -33.3628
0.1 1.2917 2.4250 -14.1041 46.0326 -86.7946 80.8189 -29.4840

The table lists the coefficients for the 6th order polynomial approximation of c(ω) for α∈ {0.01,0.05,0.1} and

γ=α/10. For example, the coefficient on the term ω3 equals 52.6998 for α=0.05.
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Figure 4: Expected length of ĈIt(Yβ,ρ1Yδ,ρ2Yδ;z1−(α−γ)/2,c`(ω̃),cu(ω̃)) at δ1 =δ2 =0 as a function of
ω12 =ρ2

1 and ω13 =ρ2
2 for α=0.05 and γ=α/10.
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Table 2: Coefficients for 6th order polynomial approximation of cu(ω̃) for α=0.05 and γ=α/10

1 ω12 ω2
12 ω3

12 ω4
12 ω5

12 ω6
12

1 1.9749 1.3388 −4.5110 11.7294 −18.8756 15.5342 −5.2786
ω13 1.1289 −0.8006 1.1262 −1.1742 2.1281 −0.5511
ω2

13 −12.2929 0.0090 0.9084 −3.2329 0.1723
ω3

13 45.6505 0.5939 0.8153 1.7625
ω4

13 −92.3587 −1.0048 −0.9854
ω5

13 89.5045 0.2851
ω6

13 −33.3683

The table lists the coefficients for the 6th order polynomial approximation of cu(ω̃) in terms of ω12 and ω13 for

α=0.05 and γ=α/10. For example, the coefficient on the interaction term ω4
12×ω2

13 equals 0.1723.
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Table 3: 95% confidence intervals for treatment effects on summary index of antisocial behaviors (times
minus one)

b̂ SE SSCI (E)L SCI (E)L Ratio
T 0.0829 0.0929 [−0.0168,∞) 0.0997 [−0.0700,∞) 0.1529 0.6524
C −0.1316 0.0969 [−0.2959,∞) 0.1643 [−0.2910,∞) 0.1594 1.0307
B 0.2468 0.0883 [0.0969,0.4238] 0.3269 [0.0737,0.4198] 0.3462 0.9443
I 0.2955 0.1255 [0.0439,0.4127] 0.3688 [0.0495,0.5415] 0.4920 0.7496

The table shows point estimates (̂b), standard errors (SE), our proposed CIs (SSCI), standard CIs (SCI), the

corresponding (“excess”) lengths ((E)Ls), and their ratio (Ratio) for the treatment effects of “therapy” (T), “cash”

(C), “both” (B) and “interaction” (I). The CIs are upper one-sided for T and C and two-sided for B and I and it is

assumed that the treatment effects of T and C are known to be non-negative.
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Table 4: Coverage frequencies and average (excess) lengths of proposed CI and standard CI across
bootstrap samples

T C B I B0 I0

CF
SSCI 94.27 94.49 95.34 94.81 95.08 94.10
SCI 94.30 93.96 94.78 94.49 94.78 94.49

A(E)L
SSCI 0.14 0.16 0.35 0.45 0.33 0.41
SCI 0.15 0.16 0.36 0.50 0.36 0.50

Ratio 0.9357 1.0088 0.9764 0.8954 0.9264 0.8283

The table shows the coverage frequencies (CF) of our proposed CI (SSCI) and the standard CI (SCI) across

bootstrap samples, the corresponding average (excess) lengths (A(E)L) and the ratio of the latter (Ratio) for the

treatment effects of “therapy” (T), “cash” (C), “both” (B), “interaction” (I), “both” and “interaction” when the

treatment effect of T is 0 (B0 and I0, respectively). The CIs are upper one-sided for T and C and two-sided for B,

I, B0 and I0 and it is assumed that the treatment effects of T and C are known to be non-negative.
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Online Appendix for

Short and Simple Confidence Intervals when the

Directions of Some Effects are Known

Philipp Ketz Adam McCloskey

October 12, 2022

This Online Appendix contains supplemental material for the paper “Short and Simple Con-

fidence Intervals when the Directions of Some Effects are Known.” Appendix A details the

construction of the critical value functions that enter our two-sided confidence intervals (CIs).

Appendix B provides the mathematical proofs of our theoretical results in the general asymptotic

setting. Appendix C provides theoretical results that establish the uniform asymptotic validity

of our CIs across a wide variety of applications and specifies a parameter space for the standard

linear regression model that satisfies the requirements for uniform asymptotic validity to hold.

Appendix D contains implementation details for the “nearly optimal” (NO) test of Elliott et al.

(2015) (EMW) and the near optimality results for the two-sided version of the testing problem

given in (6). Appendix E contains additional tables referenced in the paper. Lastly, Appendix

F provides details on the numerical computations underlying some of the results in the paper.

A Construction of Critical Values for Two-Sided Confidence Interval

Let 
Z1

Z̃2

Z̃3

∼N
0,


1 ω12 ω13

ω12 ω12 ω23

ω13 ω23 ω13


 (13)
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and C̃= {(cu,ω̃)∈R∞×S̄ : cu ∈ [cu(ω̃),∞]}, where S̄ =S∪{(x,y,z)∈R3 : x∈ [0,1),y= z= 0}∪

{(x,y,z)∈R3 :y∈(0,1),x=z=0} with S={(x,y,z)∈R3 :x,y∈(0,1),−z2+2xyz+xy−x2y−xy2>

0},29 where cu :S̄→R is implicitly defined by

P(−min{z1−(α−γ)/2,−Z̃3+cu(ω̃)}≤Z1≤z1−(α−γ)/2)=1−α. (14)

For γ∈(0,α), consider the function c̃ : C̃→R∞ implicitly defined by

P(−min{z1−(α−γ)/2,−Z̃3+cu}≤Z1≤min{z1−(α−γ)/2,Z̃2+c̃(cu,ω̃)})=1−α (15)

at points (cu,ω̃)∈C̃ for which ω12,ω13 6=0. The domain C̃ of c̃(·) is defined in terms of the lower

bound cu(ω̃) on cu in (14) so that for any given ω̃, the solution to (15) exists. More specifically,

the lower bound cu(ω̃) rules out cu values that are too small to admit a solution to (15). Next, for

(cu,ω̃)∈C̃ with ω12 =0, define c̃(cu,ω̃)=limω̄12→0c̃(cu,ω̄12,ω13,ω23) and for (cu,ω̃)∈C̃ with ω13 =0,

define c̃(cu,ω̃)=limω̄13→0c̃(cu,ω12,ω̄13,ω23).
30 Finally, define the correspondence c̃u :S̄⇒R∞ as

c̃u(ω̃)=argmincu∈[cu(ω̃),∞]E[max{min{z1−(α−γ)/2,Z̃2+c̃(cu,ω̃)}+min{z1−(α−γ)/2,−Z̃3+cu},0}].

(16)

29In terms of arguments (x,y,z), the definition of S is equivalent to the positive definiteness

of the matrix 
1 x y

x x z

y z y

.

30The limits in these definitions exist by the continuity of c̃(cu, ω̃) at all (cu, ω̃) ∈ C̃ with

ω12,ω13 6=0. See Lemma 4 in Appendix B. We define c̃(cu,ω̃) at ω12 =0 and ω13 =0 in terms of

limits because multiple values of c̃(cu,ω̃) satisfy (15) when ω12 =0 and we wish to treat ω12 and

ω13 symmetrically in light of Proposition 3.
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Note that c̃u(0)=z1−α/2. The following proposition ensures that c̃u :S̄⇒R∞ is well-defined and

possesses some desirable properties.31

Proposition 4

For any ω̃∈S̄, c̃u(ω̃)⊂R∞ defined in (16) is non-empty and compact and c̃u : S̄⇒R∞ is upper

hemicontinuous.

Define cu(ω̃)∈ c̃u(ω̃) and c`(ω̃)= c̃(cu(ω̃),ω̃).

B Proofs

Proof of Proposition 1. Consider the function f : [0,1)×[0,z1−γ] such that for (Z1,Z̃2) defined in (5),

f(ω,c)=P(Z1>min{z1−α+γ,Z̃2+c})−α.

For ω∈(0,1) and c∈ [0,z1−γ],

f(ω,c)=

∫ ∞
−∞
P(Z1>min{z1−α+γ,Z̃2+c}|Z̃2 = z̃2)

1√
ω
φ(z̃2/

√
ω)dz̃2−α

=

∫ ∞
−∞

Φ

(
z̃2−min{z1−α+γ,z̃2+c}√

1−ω2

)
1√
ω
φ(z̃2/

√
ω)dz̃2−α

=

∫ z1−α+γ−c

−∞
Φ

(
− c√

1−ω2

)
1√
ω
φ(z̃2/

√
ω)dz̃2+

∫ ∞
z1−α+γ−c

Φ

(
z̃2−z1−α+γ√

1−ω2

)
1√
ω
φ(z̃2/

√
ω)dz̃2−α

=Φ

(
− c√

1−ω2

)
Φ

(
z1−α+γ−c√

ω

)
+

∫ ∞
z1−α+γ−c

Φ

(
z̃2−z1−α+γ√

1−ω2

)
1√
ω
φ(z̃2/

√
ω)dz̃2−α.

Clearly, f(ω,c) is continuously differentiable for all ω∈(0,1) and c∈ [0,z1−γ]. In addition,

∂f(ω,c)

∂c
=− 1√

1−ω2
φ

(
− c√

1−ω2

)
Φ

(
z1−α+γ−c√

ω

)
<0

for all ω∈(0,1) and c∈ [0,z1−γ] since γ∈(0,α).

31In our numerical work, we have found the solution to (16) to be a singleton and c̃u to be

a continuous function when ω12,ω13 6=0.
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Finally, note that for any ω∈(0,1), there exists c∈ [0,z1−γ] such that f(ω,c)=0 since f(ω,·)

is continuously strictly decreasing,

f(ω,0)=P(Z1>min{z1−α+γ,Z̃2})−α>P(Z1−Z̃2>0)−α=1/2−α>0

and

f(ω,z1−γ)=P(Z1>min{z1−α+γ,Z̃2+z1−γ})−α≤P(Z1>z1−α+γ)−α=−γ<0.

In conjunction with the fact that c(0)=z1−α=limω→0c(ω), the statement of the proposition then

follows from the implicit function theorem.

The next lemmata are used to prove Proposition 2.

Lemma 1

For conformable matrices E, F , G, H, J and K, let

X=


E F G

F ′ H J

G′ J ′ K

.

Then, assuming the relevant inverse matrices exist, we have

X−1 =


E−1+E−1[FA−1F ′+US−1U ′]E−1 −E−1[F−US−1B′]A−1 −E−1US−1

−A−1[F ′−BS−1U ′]E−1 A−1+A−1BS−1B′A−1 −A−1BS−1

−S−1U ′E−1 −S−1B′A−1 S−1

,

where A = H − F ′E−1F , B = J − F ′E−1G, D = K − G′E−1G, S = D − B′A−1B and

U=G−FA−1B.

Proof. The proof follows from repeated application of the formula for blockwise inversion of a

matrix.
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Lemma 2

For conformable matrices Y and Z, assuming the relevant inverse matrices exist, we have

(Y +Z)−1 =Y −1−Y −1Z(Y +Z)−1.

Proof. The proof follows directly from the Woodbury identity.

Lemma 3

Let δ(s) and δ(−s) be two arbitrary subvectors of δ such that δ=(δ(s),δ(−s)), where the order of the

elements is without loss of generality. Furthermore, let


1 Ωβδ(s) Ωβδ(−s)

Ωδ(s)β Ωδ(s)δ(s) Ωδ(s)δ(−s)

Ωδ(−s)β Ωδ(−s)δ(s) Ωδ(−s)δ(−s)

 and


Ωββ Ωβδ(s) Ωβδ(−s)

Ωδ(s)β Ωδ(s)δ(s) Ωδ(s)δ(−s)

Ωδ(−s)β Ωδ(−s)δ(s) Ωδ(−s)δ(−s)


be conformable partitions of Ω and Ω−1, respectively. Then, we have

(i) Ωβδ(s) −Ωβδ(−s)(Ωδ(−s)δ(−s))−1Ωδ(−s)δ(s) = −(Ωββ −Ωβδ(−s)(Ωδ(−s)δ(−s))−1Ωδ(−s)β)Ωβδ(s)Ω
−1
δ(s)δ(s)

and

(ii) 1=(Ωββ−Ωβδ(−s)(Ωδ(−s)δ(−s))−1Ωδ(−s)β)(1−Ωβδ(s)Ω
−1
δ(s)δ(s)

Ωδ(s)β).

Proof. (i) Using Lemma 1, we show the equivalent result that

X12−X13(X33)−1X32+(X11−X13(X33)−1X31)X12X
−1
22 =0,

where we use the same notational convention concerning sub- and superscripts as for Ω and Ω−1.

We have

X12−X13(X33)−1X32+(X11−X13(X33)−1X31)X12X
−1
22

=−E−1[F−US−1B′]A−1−E−1US−1B′A−1

5



+
[
E−1+E−1[FA−1F ′+US−1U ′]E−1−E−1US−1U ′E−1

]
FH−1

=E−1FH−1−E−1FA−1+E−1FA−1F ′E−1FH−1

=E−1F [H−1−A−1+A−1F ′E−1FH−1]=0,

where the last equality follows from the fact that H−1−A−1+A−1F ′E−1FH−1 =0 which, in turn,

follows from Lemma 2 using Y =A=H−F ′E−1F and Z=F ′E−1F .

(ii) Using Lemma 1, we show the equivalent result that

(X11−X13(X33)−1X31)(X11−X12X
−1
22 X21)=I,

where we again use the same notational convention as for Ω and Ω−1. We have

(X11−X13(X33)−1X31)(X11−X12X
−1
22 X21)

=[E−1+E−1FA−1F ′E−1][E−FH−1F ′]

=I−E−1FH−1F ′+E−1FA−1F ′−E−1FA−1F ′E−1FH−1F ′

=I−E−1F [H−1−A−1+A−1F ′E−1FH−1]F ′=I,

where we used again that H−1−A−1+A−1F ′E−1FH−1 =0.

Proof of Proposition 2. Note that the problem of forming a CI for β when we observe Y ∼N (θ,Ω)

with θ=(β,δ′)′, δ≥0 and known Ω is equivalent to forming a CI for β in the setting of Armstrong

and Kolesár (2018) (AK):

Ỹ =Xθ+ε, ε∼N (0,Ik+1)

where Ỹ =Ω−1/2Y , X=Ω−1/2 and k is the dimension of δ. In what follows, we appeal to Theorem

3.1 of AK.

(i) In order to form the CI in this theorem, we must first form the affine estimator L̂δ̃,F,G in (23)

of AK, for F=G={(β,δ′)′∈Rk+1 :δ≥0}. The modulus of continuity defined on p. 667 of AK
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specialized to our setting is

ω(δ̃;F,G)=sup
γ1,θ
{γ1−β}

s.t. (γ1−β,γ′1−δ′)Ω−1(γ1−β,γ′−1−δ′)′≤ δ̃2, γ−1≥0, δ≥0,

where we use the partition γ≡(γ1,γ
′
−1)
′. Let

Ω−1 =

 Ωββ Ωβδ

Ωδβ Ωδδ


so that the constraints for the modulus problem can be written as

(γ1−β)2Ωββ+2(γ1−β)Ωβδ(γ−1−δ)+(γ−1−δ)′Ωδδ(γ−1−δ)≤ δ̃2, γ−1≥0, δ≥0.

For any θ and γ that solve this optimization problem when dropping the final two constraints, we

may simply add (c,...,c)′ for a large constant c to both θ and γ and obtain the same value without

dropping the final two constraints on γ−1 and δ. Thus, these final two constraints do not affect

the optimal procedure and we may instead focus on the modulus problem that drops them with

the understanding that the solutions in γ−1 and δ must be large and positive.

After dropping these constraints, the first order condition wrt δ in the modulus problem is

−2λ[(γ1−β)Ωβδ+(γ−1−δ)′Ωδδ]=0,

where λ>0 is the KKT multiplier associated with the remaining constraint. Using the formula for

blockwise inversion of a matrix, the optimal solution to the modulus problem must therefore satisfy

(γ−1−δ)′=−(γ1−β)Ωβδ(Ωδδ−ΩδβΩβδ).
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The modulus problem thus simplifies to

ω(δ̃;F,G)=sup
γ1,β
{γ1−β}

s.t. (γ1−β)2Ωββ−(γ1−β)2Ωβδ(Ωδδ−ΩδβΩβδ)Ω
δβ≤ δ̃2,

where the constraint further simplifies to

s.t. (γ1−β)2≤ δ̃2,

by the formula for blockwise inversion of a matrix. Thus, we have

ω(δ̃;F,G)= δ̃

with a solution given by

γ∗
δ̃,F,G=

 δ̃/2

δ∗+δ̃Ωδβ

, θ∗
δ̃,F,G=

 −δ̃/2
δ∗


and midpoint

θ∗
M,δ̃,F,G=(θ∗

δ̃,F,G+γ∗
δ̃,F,G)/2=

 0

δ∗+δ̃Ωδβ/2


for some large and positive δ∗, where we use the fact that Ωβδ(Ωδδ−ΩδβΩβδ) =−Ωβδ by the

formula for blockwise inversion of a matrix. Formula (23) of AK thus yields

L̂δ̃,F,G= δ̃−1(γ∗
δ̃,F,G−θ

∗
δ̃,F,G)

′Ω−1(Y −θ∗
M,δ̃,F,G)

=(1,Ωβδ)

 Ωββ Ωβδ

Ωδβ Ωδδ


 Yβ

Yδ−δ∗−δ̃Ωδβ/2


=(Ωββ+ΩβδΩ

δβ)Yβ+(Ωβδ+ΩβδΩ
δδ)Yδ−(Ωβδ+ΩβδΩ

δδ)(δ∗+δ̃/2)Ωδβ
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=Yβ,

where the final equality follows from the facts Ωββ+ΩβδΩ
δβ = 1 and Ωβδ+ΩβδΩ

δδ = 0 by the

formula for blockwise inversion of a matrix. Theorem 3.1 of AK then provides that among all

upper one-sided CIs with coverage of at least (1−α) for all δ≥0

[Yβ−z1−α,∞)

minimizes all maximum excess length quantiles over the δ≥0 parameter space at quantile levels

greater than α.

(ii) We first form the affine estimator L̂δ̃,F,G in (23) of AK, for F={(β,δ′)′∈Rk+1 :δ≥0} and

G={(β,δ′)′∈Rk+1 :δ=0}. The modulus of continuity in this setting is

ω(δ̃;F,G)=sup
γ1,θ
{γ1−β}

s.t. (γ1−β)2Ωββ−2(γ1−β)Ωβδδ+δ′Ωδδδ≤ δ̃2, δ≥0. (17)

Here, the first order condition wrt δi is

−2λ[(γ1−β)Ωβδ
i −Ωδδ

i,·δ]−µi=0,

where λ>0 is the KKT multiplier associated with the first constraint, µi≥0 is the KKT multiplier

associated with the constraint δi≥0 that satisfies the complementary slackness condition µiδi=0

and Ωδδ
i,· denotes the ith row of Ωδδ. The solution to the modulus problem must therefore satisfy

Ωδδ
i,·δ=(γ1−β)Ωδβ

i +µ̃i (18)

for i=1,...,k and some constants µ̃i≥0 such that µ̃iδi=0. The solution to the modulus problem

thus maximizes (γ1−β) amongst all γ1,θ values that satisfy (17) and (18) for i=1,...,k and some
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constants µ̃i≥0 such that µ̃iδi=0.

Next, we consider the candidate solutions to the modulus problem. Let δ(s) (δ(−s)) denote a

(possibly empty) subvector of δ that satisfies δ(s) =0 (δ(−s)≥0) with µ̃(s)>0 (µ̃(−s) =0). Then,

using the notational conventions introduced in Lemma 3 in what follows, the set of equations

given in (18) implies

δ(−s) =(γ1−β)(Ωδ(−s)δ(−s))−1Ωδ(−s)β, (19)

where we use the convention that (Ωδ(−s)δ(−s))−1Ωδ(−s)β=0 for δ(s) =δ, and the modulus problem

simplifies to

ω(δ̃;F,G)=sup
γ1,β
{γ1−β}

s.t. (γ1−β)2(Ωββ−Ωβδ(−s)(Ωδ(−s)δ(−s))−1Ωδ(−s)β)≤ δ̃2.

Recall that, given the definition of δ(s) and δ(−s), the constraint δ≥0 is satisfied. Thus, we have

ω(δ̃;F,G)= δ̃/

√
Ωββ−Ωβδ(−s∗∗)(Ωδ(−s∗∗)δ(−s∗∗))−1Ωδ(−s∗∗)β,

where s∗∗ is such that δ(−s∗∗) maximizes Ωβδ(−s)(Ωδ(−s)δ(−s))−1Ωδ(−s)β (subject to δ≥ 0), with a

solution given by

γ∗
δ̃,F,G=

 δ̃/(2
√

Ωββ−Ωβδ(−s∗∗)(Ωδ(−s∗∗)δ(−s∗∗))−1Ωδ(−s∗∗)β)

0k×1

,
θ∗
δ̃,F,G=

 −δ̃/(2
√

Ωββ−Ωβδ(−s∗∗)(Ωδ(−s∗∗)δ(−s∗∗))−1Ωδ(−s∗∗)β)

δ∗∗


and midpoint

θ∗
M,δ̃,F,G=(θ∗

δ̃,F,G+γ∗
δ̃,F,G)/2=(0,δ∗∗′/2)′,
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where δ∗∗ has elements δ(s∗∗) and δ(−s∗∗). Formula (23) of AK thus yields

L̂δ̃,F,G=

(
δ̃

√
Ωββ−Ωβδ(−s∗∗)(Ωδ(−s∗∗)δ(−s∗∗))−1Ωδ(−s∗∗)β

)−1

(γ∗
δ̃,F,G−θ

∗
δ̃,F,G)

′Ω−1(Y −θ∗
M,δ̃,F,G)

=
(

Ωββ−Ωβδ(−s
∗∗)

(Ωδ(−s
∗∗)δ(−s

∗∗)

)−1Ωδ(−s
∗∗)β
)−1

(1,δ̈′)

 Ωββ Ωβδ

Ωδβ Ωδδ


 Yβ

Yδ−δ∗∗/2


=Yβ+

Ωβδ(s
∗∗)−Ωβδ(−s

∗∗)
(Ωδ(−s

∗∗)δ(−s
∗∗)

)−1Ωδ(−s
∗∗)δ(−s

∗∗)

Ωββ−Ωβδ(−s∗∗)(Ωδ(−s∗∗)δ(−s∗∗))−1Ωδ(−s∗∗)β
Y

(s∗∗)
δ

=Yβ−Ωβδ(s
∗∗)Ω−1

δ(s
∗∗)δ(s

∗∗)Y
(s∗∗)
δ ,

where δ̈=
√

Ωββ−Ωβδ(−s∗∗)(Ωδ(−s∗∗)δ(−s∗∗))−1Ωδ(−s∗∗)βδ∗∗/δ̃ and the last equality follows from Lemma

3. Similarly, Lemma 3 implies that

ω(δ̃;F,G)= δ̃
√

1−Ωβδ(s
∗∗)Ω−1

δ(s
∗∗)δ(s

∗∗)Ωδ(s
∗∗)β.

Theorem 3.1 of AK then provides that among all upper one-sided CIs with coverage of at least

(1−α) for all δ≥0

[Yβ−Ωβδ(s
∗∗)Ω−1

δ(s
∗∗)δ(s

∗∗)Yδ−z1−α

√
1−Ωβδ(s

∗∗)Ω−1
δ(s

∗∗)δ(s
∗∗)Ωδ(s

∗∗)β,∞) (20)

minimizes all excess length quantiles at δ=0 and quantile levels greater than α.

Next, we show that s∗∗=s∗. First, note that the excess length of any CI of the form given

in (20)—for some δ(s∗∗)—at δ=0 and any quantile greater than α is equal to

c
√

1−Ωβδ(s
∗∗)Ω−1

δ(s
∗∗)δ(s

∗∗)Ωδ(s
∗∗)β

for some c>0. Furthermore, recall (from the discussion in the main text) that for any CI of this

form to have coverage of at least (1−α) for all δ≥0 we need Ω−1
δ(s

∗∗)δ(s
∗∗)Ωδ(s

∗∗)β≥0.32 Therefore,

32Note that the condition Ω−1
δ(s)δ(s)

Ωδ(s)β≥0 can also be derived from the modulus problem. To

11



the CI that minimizes excess length at δ=0 and all quantiles greater than α, among all upper

one-sided CIs with coverage of at least (1−α) for all δ≥0, must also be equal to

[Yβ−Ωβδ(s
∗)Ω−1

δ(s
∗)δ(s

∗)Y
(s∗)
δ −

√
1−Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)βz1−α,∞),

where δ(s∗) is a subvector of δ that maximizes Ωβδ(s)Ω
−1
δ(s)δ(s)

Ωδ(s)β amongst all subvectors for which

Ω−1
δ(s)δ(s)

Ωδ(s)β≥0.

Proof of Theorem 1. To prove the lower bound, note that

P
(
β∈ĈI

∗
u(Yβ,Yδ,Ω)

)
=P

(
β≥Yβ−min

{
z1−α+γ,Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Y

(s∗)
δ +c

(
Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)β

)})
=P

(
Z1≤min

{
z1−α+γ,Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Y

(s∗)
δ +c

(
Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)β

)})
,

see this, note that the set of equations in (18) implies

Ωδ(s)δ(−s)δ(−s) =(γ1−β)Ωδ(s)β+µ̃(s).

Plugging in the formula for δ(−s) in equation (19), we get

(γ1−β)Ωδ(s)δ(−s)(Ωδ(−s)δ(−s))−1Ωδ(−s)β =(γ1−β)Ωδ(s)β+µ̃(s)

⇔ − µ̃(s)

γ1−β =Ωδ(s)β−Ωδ(s)δ(−s)(Ωδ(−s)δ(−s))−1Ωδ(−s)β

⇔ µ̃(s)

(γ1−β)(Ωββ−Ωβδ
(−s)

(Ωδ
(−s)δ(−s))−1Ωδ

(−s)β)
=Ω−1

δ(s)δ(s)
Ωδ(s)β,

where the last step uses Lemma 3 (with sub- and superscripts interchanged). As the left hand

side is non-negative, we conclude that Ω−1
δ(s)δ(s)

Ωδ(s)β≥0.

12



where  Z1

Y
(s∗)
δ

∼N

 0

δ(s∗)

,
 1 Ωβδ(s

∗)

Ωδ(s
∗)β Ωδ(s

∗)δ(s
∗)


.

Since Ωβδ(s
∗)Ω−1

δ(s
∗)δ(s

∗)δ
(s∗)≥0,

P
(
Z1≤min

{
z1−α+γ,Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Y

(s∗)
δ +c

(
Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)β

)})
=P

(
Z1≤min

{
z1−α+γ,Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)δ

(s∗)+Z̃2+c
(
Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)β

)})
≥P

(
Z1≤min

{
z1−α+γ,Z̃2+c

(
Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)β

)})
=1−α (21)

by the definition of c(·) in (5), where

 Z1

Z̃2

∼N

 0

0

,
 1 Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)β

Ωβδ(s
∗)Ω−1

δ(s
∗)δ(s

∗)Ωδ(s
∗)β Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)Ωδ(s

∗)β


,

yielding the lower bound in the statement of the theorem for ĈI
∗
u(·).

To prove the upper bound, note that for the probability to the left of the inequality in (29),

P
(
Z1≤min

{
z1−α+γ,Ωβδ(s

∗)Ω−1
δ(s

∗)δ(s
∗)δ

(s∗)+Z̃2+c
(

Ωβδ(s
∗)Ω−1

δ(s
∗)δ(s

∗)Ω
∗
δ(s

∗)β

)})
≤P(Z1≤z1−α+γ)=1−α+γ.

Proof of Proposition 3. Let (Z∗1 ,Z̃
∗
2 ,Z̃
∗
3)′=(−Z1,−Z̃3,−Z̃2)

′ and note that

P(−min{z1−(α−γ)/2,−Z̃3+cu(ω̃12,ω̃13,ω̃23)}≤Z1≤min{z1−(α−γ)/2,Z̃2+c`(ω̃12,ω̃13,ω̃23)})=1−α

and

E[max{min{z1−(α−γ)/2,Z̃2+c`(ω̃12,ω̃13,ω̃23)}+min{z1−(α−γ)/2,−Z̃3+cu(ω̃12,ω̃13,ω̃23)},0}]

13



are equivalent to

P(−min{z1−(α−γ)/2,−Z̃∗3 +c`(ω̃12,ω̃13,ω̃23)}≤Z∗1≤min{z1−(α−γ)/2,Z̃
∗
2 +cu(ω̃12,ω̃13,ω̃23)})=1−α

and

E[max{min{z1−(α−γ)/2,Z̃
∗
2 +cu(ω̃12,ω̃13,ω̃23)}+min{z1−(α−γ)/2,−Z̃∗3 +c`(ω̃12,ω̃13,ω̃23)},0}].

The result then follows by noting that (Z∗1 ,Z̃
∗
2 ,Z̃
∗
3)′∼(Z1,Z̃3,Z̃2)

′.

The following lemmata are used in the proofs of Theorems 2 and 3 and Proposition 4.

Lemma 4

The function c̃ : C̃→R∞ exists and is continuous.

Proof. Consider the function f :R∞×C̃→ [α−1,α] such that for (Z1,Z̃2,Z̃3) defined in (13),

f (̃c,cu,ω̃)=P(−min{z1−α−γ
2
,−Z̃3+cu}≤Z1≤min{z1−α−γ

2
,Z̃2+c̃})−(1−α).

For (̃c,cu,ω̃)∈R∞×C̃ with ω12,ω13 6=0,

f (̃c,cu,ω̃)

=

∫ ∞
−∞

∫ ∞
−∞
P(−min{z1−α−γ

2
,−Z̃3+cu}≤Z1≤min{z1−α−γ

2
,Z̃2+c̃}|Z̃2 = z̃2,Z̃3 = z̃3)g(z̃2,z̃3)dz̃2dz̃3−(1−α)

=

∫ ∞
−∞

∫ ∞
−∞

[
Φ

(
min{z1−α−γ

2
,z̃2+c̃}−µ(z̃2,z̃3)

σ(ω̃)

)
−Φ

(
−min{z1−α−γ

2
,−z̃3+cu}−µ(z̃2,z̃3)

σ(ω̃)

)]

×1(min{z1−α−γ
2
,z̃2+c̃}≥−min{z1−α−γ

2
,−z̃3+cu})g(z̃2,z̃3)dz̃2dz̃3−(1−α)

=

∫ ∞
−∞

[∫ z
1−α−γ2

−c̃

−∞
Φ

(
z̃2+c̃−µ(z̃2,z̃3)

σ(ω̃)

)
1(z̃2+c̃≥−min{z1−α−γ

2
,−z̃3+cu})

+

∫ ∞
z
1−α−γ2

−c̃
Φ

(
z1−α−γ

2
−µ(z̃2,z̃3)

σ(ω̃)

)
1(z1−α−γ

2
≥−min{z1−α−γ

2
,−z̃3+cu})

g(z̃2,z̃3)dz̃2dz̃3

14



−
∫ ∞
−∞

[∫ cu−z
1−α−γ2

−∞
Φ

(
−z1−α−γ

2
−µ(z̃2,z̃3)

σ(ω̃)

)
1(min{z1−α−γ

2
,z̃2+c̃}≥−z1−α−γ

2
)

+

∫ ∞
cu−z

1−α−γ2

Φ

(
z̃3−cu−µ(z̃2,z̃3)

σ(ω̃)

)
1(min{z1−α−γ

2
,z̃2+c̃}≥ z̃3−cu)

g(z̃2,z̃3)dz̃3dz̃2−(1−α)

=

∫ cu−z
1−α−γ2

−∞

∫ z
1−α−γ2

−c̃

−z
1−α−γ2

−c̃
Φ

(
z̃2+c̃−µ(z̃2,z̃3)

σ(ω̃)

)
g(z̃2,z̃3)dz̃2z̃3

+

∫ ∞
cu−z

1−α−γ2

∫ z
1−α−γ2

−c̃

z̃3−cu−c̃
Φ

(
z̃2+c̃−µ(z̃2,z̃3)

σ(ω̃)

)
g(z̃2,z̃3)dz̃2z̃3

+

∫ cu+z
1−α−γ2

−∞

∫ ∞
z
1−α−γ2

−c̃
Φ

(
z1−α−γ

2
−µ(z̃2,z̃3)

σ(ω̃)

)
g(z̃2,z̃3)dz̃2z̃3

−
∫ cu−z

1−α−γ2

−∞

∫ ∞
−z

1−α−γ2
−c̃

Φ

(
−z1−α−γ

2
−µ(z̃2,z̃3)

σ(ω̃)

)
g(z̃2,z̃3)dz̃2z̃3

−
∫ cu+z

1−α−γ2

cu−z
1−α−γ2

∫ ∞
z
1−α−γ2

−c̃
Φ

(
z̃3−cu−µ(z̃2,z̃3)

σ(ω̃)

)
g(z̃2,z̃3)dz̃2z̃3

−
∫ ∞
cu−z

1−α−γ2

∫ z
1−α−γ2

−c̃

z̃3−cu−c̃
Φ

(
z̃3−cu−µ(z̃2,z̃3)

σ(ω̃)

)
g(z̃2,z̃3)dz̃2z̃3−(1−α),

where g(·) denotes the probability density function of (Z̃2,Z̃3), µ(z̃2,z̃3)=(ω12,ω13)Σ
−1
22 (z̃2,z̃3)

′ and

σ(ω̃)=
√

1−(ω12,ω13)Σ
−1
22 (ω12,ω13)′ with

Σ22 =

 ω12 ω23

ω23 ω13

.
This function is clearly continuously differentiable. In addition,

∂f (̃c,cu,ω̃)

∂c̃
=

∫ ∞
cu+z

1−α−γ2

[
Φ

(
z̃3−cu−µ(z1−α−γ

2
−c̃,z̃3)

σ(ω̃)

)

−Φ

(
z1−α−γ

2
−µ(z1−α−γ

2
−c̃,z̃3)

σ(ω̃)

)]
g(z1−α−γ

2
−c̃,z̃3)dz̃3

+

∫ cu−z
1−α−γ2

−∞

∫ z
1−α−γ2

−c̃

−z
1−α−γ2

−c̃

1

σ(ω̃)
φ

(
z̃2+c̃−µ(z̃2,z̃3)

σ(ω̃)

)
g(z̃2,z̃3)dz̃2dz̃3
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+

∫ ∞
cu−z

1−α−γ2

∫ z
1−α−γ2

−c̃

z̃3−cu−c̃

1

σ(ω̃)
φ

(
z̃2+c̃−µ(z̃2,z̃3)

σ(ω̃)

)
g(z̃2,z̃3)dz̃2dz̃3>0

for all (̃c,cu,ω̃)∈R×C̃ with ω12,ω13 6=0 since all three integrals are stricly positive.

Next, note that for any (cu,ω̃)∈C̃ with ω12,ω13 6=0, there exists c̃∈R∞ such that f (̃c,cu,ω̃)=0

since f(·,cu,ω̃) is continuously strictly increasing,

lim
c̃→−∞

f (̃c,cu,ω̃)=−(1−α)<0

and

lim
c̃→∞

f (̃c,cu,ω̃)=P(−min{z1−α−γ
2
,−Z̃3+cu}≤Z1≤z1−α−γ

2
)−(1−α)≥0

by (14) and the fact that P(−min{z1−α−γ
2
,−Z̃3+cu}≤Z1≤z1−α−γ

2
) is increasing in cu.

Thus, the implicit function theorem implies that c̃(cu,ω̃) is continuous at all (cu,ω̃)∈C̃ with

ω12,ω13 6=0 and is therefore continuous at all (cu,ω̃)∈C̃ by the definition of c̃(cu,ω̃) at (cu,ω̃)∈C̃

with ω12 =0 or ω13 =0.

Lemma 5

For any (cu,ω̃)∈C̃ with ω12 =0 or ω13 =0,

P(−min{z1−(α−γ)/2,−Z̃3+cu}≤Z1≤min{z1−(α−γ)/2,Z̃2+c̃(cu,ω̃)})=1−α.

Proof. By (15),

P(−min{z1−(α−γ)/2,−Z̃3+cu}≤Z1≤min{z1−(α−γ)/2,Z̃2+c̃(cu,ω̃)})=1−α

for all (cu,ω̃)∈C̃ with ω12,ω13 6=0. Since the probability on the left hand side of this equality is

continuous in ω̃ by Lemma 4 and the continuity of the density function of (Z1,Z̃2,Z̃3) in ω̃, the

result immediately follows.
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Proof of Theorem 2. To prove the lower bound, note that

P
(
β∈ĈI

∗
t (Yβ,Yδ,Ω)

)
=P

(
Yβ−min

{
z1−α−γ

2
,Ω

βδ(s
∗
1)Ω−1

δ(s
∗
1)δ(s

∗
1)Y

(s∗1)
δ +c`

(
Ω̃(s∗1,s

∗
2)
)}
≤β

≤Yβ+min
{
z1−α−γ

2
,−Ω

βδ(s
∗
2)Ω−1

δ(s
∗
2)δ(s

∗
2)Y

(s∗2)
δ +cu

(
Ω̃(s∗1,s

∗
2)
)})

=P
(
−min

{
z1−α−γ

2
,−Ω

βδ(s
∗
2)Ω−1

δ(s
∗
2)δ(s

∗
2)Y

(s∗2)
δ +cu

(
Ω̃(s∗1,s

∗
2)
)}
≤Yβ−β

≤min
{
z1−α−γ

2
,Ω

βδ(s
∗
1)Ω−1

δ(s
∗
1)δ(s

∗
1)Y

(s∗1)
δ +c̃

(
cu

(
Ω̃(s∗1,s

∗
2)
)
,Ω̃(s∗1,s

∗
2)
)})

.

(22)

Since Ω
βδ(s

∗
1)Ω−1

δ(s
∗
1)δ(s

∗
1)δ

(s∗1)≥0 and Ω
βδ(s

∗
2)Ω−1

δ(s
∗
2)δ(s

∗
2)δ

(s∗2)≤0, (22) can be bounded:

P
(
−min

{
z1−α−γ

2
,−Ω

βδ(s
∗
2)Ω−1

δ(s
∗
2)δ(s

∗
2)Y

(s∗2)
δ +cu

(
Ω̃(s∗1,s

∗
2)
)}

≤Z1≤min
{
z1−α−γ

2
,Ω

βδ(s
∗
1)Ω−1

δ(s
∗
1)δ(s

∗
1)Y

(s∗1)
δ +c̃

(
cu

(
Ω̃(s∗1,s

∗
2)
)
,Ω̃(s∗1,s

∗
2)
)})

=P
(
−min

{
z1−α−γ

2
,−Ω

βδ(s
∗
2)Ω−1

δ(s
∗
2)δ(s

∗
2)δ

(s∗2)−Z̃3+cu

(
Ω̃(s∗1,s

∗
2)
)}

≤Z1≤min
{
z1−α−γ

2
,Ω

βδ(s
∗
1)Ω−1

δ(s
∗
1)δ(s

∗
1)δ

(s∗1)+Z̃2+c̃
(
cu

(
Ω̃(s∗1,s

∗
2)
)
,Ω̃(s∗1,s

∗
2)
)})

≥P
(
−min

{
z1−α−γ

2
,−Z̃3+cu

(
Ω̃(s∗1,s

∗
2)
)}

≤Z1≤min
{
z1−α−γ

2
,Z̃2+c̃

(
cu

(
Ω̃(s∗1,s

∗
2)
)
,Ω̃(s∗1,s

∗
2)
)})

=1−α (23)

by the definition of c̃(·) in (15) and Lemma 5, where


Z1

Z̃2

Z̃3

∼N



0

0

0

,


1 Ω∗
βδ(s

∗
1) Ω∗

βδ(s
∗
2)

Ω∗
δ(s

∗
1)β

Ω∗
δ(s

∗
1)δ(s

∗
1) Ω∗

δ(s
∗
1)δ(s

∗
2)

Ω∗
δ(s

∗
2)β

Ω∗
δ(s

∗
2)δ(s

∗
1) Ω∗

δ(s
∗
2)δ(s

∗
2)


.

To prove the upper bound, note that for the probability to the left of the equality in (23),

P
(
−min

{
z1−α−γ

2
,−Ω

βδ(s
∗
2)Ω−1

δ(s
∗
2)δ(s

∗
2)Y

(s∗2)
δ +cu

(
Ω̃(s∗1,s

∗
2)
)}

≤Z1≤min
{
z1−α−γ

2
,Ω

βδ(s
∗
1)Ω−1

δ(s
∗
1)δ(s

∗
1)Y

(s∗1)
δ +c̃

(
cu

(
Ω̃(s∗1,s

∗
2)
)
,Ω̃(s∗1,s

∗
2)
)})
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≤P
(
−z1−α−γ

2
≤Z1≤z1−α−γ

2

)
=1−α+γ.

Proof of Proposition 4. Very similar arguments to those given in the proof of Lemma 4 provide

that cu : S̄ → R exists and is continuous. Thus, [cu(·),∞] is nonempty, compact-valued and

continuous when treated as a correspondence from S̄ into R∞ (see above).

Next, note that the minimand in (16) is

E[max{min{z1−(α−γ)/2,Z̃2+c̃(cu,ω̃)}+min{z1−(α−γ)/2,−Z̃3+cu},0}]

=

∫ ∞
−∞

∫ ∞
−∞

max{min{z1−(α−γ)/2,z̃2+c̃(cu,ω̃)}+min{z1−(α−γ)/2,−z̃3+cu},0}g(z̃2,z̃3)dz̃2dz̃3

=

∫ cu−z1−(α−γ)/2

−∞

∫ z1−(α−γ)/2−c̃(cu,ω̃)

−z1−(α−γ)/2−c̃(cu,ω̃)

(z̃2+c̃(cu,ω̃)+z1−(α−γ)/2)g(z̃2,z̃3)dz̃2dz̃3

+

∫ ∞
cu−z1−(α−γ)/2

∫ z1−(α−γ)/2−c̃(cu,ω̃)

z̃3−c̃(cu,ω̃)−cu
(z̃2−z̃3+c̃(cu,ω̃)+cu)g(z̃2,z̃3)dz̃2dz̃3

+

∫ cu−z1−(α−γ)/2

−∞

∫ ∞
z1−(α−γ)/2−c̃(cu,ω̃)

2z1−(α−γ)/2g(z̃2,z̃3)dz̃2dz̃3

+

∫ cu+z1−(α−γ)/2

cu−z1−(α−γ)/2

∫ ∞
z1−(α−γ)/2−c̃(cu,ω̃)

(z1−(α−γ)/2−z̃3+cu)g(z̃2,z̃3)dz̃2dz̃3,

where g(·) denotes the probability density function of (Z̃2,Z̃3). When treated as a function from

C̃ into R+, this expression is clearly continuous in (cu,ω̃) since c̃ : C̃→R∞ is continuous by Lemma

4. The maximum theorem then implies the statement of the proposition.

C Theoretical Uniformity Results

We now present theoretical results ensuring the uniformly correct asymptotic coverage of both the

one- and two-sided finite-sample CIs defined in (9) and (10), as well as a uniform upper bound on

their asymptotic coverage, under a set of widely-applicable sufficient conditions on the parameter

space. In particular, let the parameter λ index the true distribution of the observations used to

construct the CIs and decompose λ as follows: λ= (b,d,Σ,F), where b is the scalar parameter
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of interest, d is the nuisance parameter known to have all elements greater than zero, Σ is the

asymptotic variance corresponding to the parameter estimator (̂bn,d̂
′
n)
′ used by the researcher

and F is a (potentially) infinite-dimensional parameter that, along with (b,d), determines the

distribution of the observed data.33 We assume that we have a consistent estimator Σ̂n of Σ at

our disposal. In what follows, let λmin(A) and λmax(A) denote the smallest and largest eigenvalues

of the matrix A, respectively.

The parameter space Λ for λ is defined to include parameters λ=(b,d,Σ,F ) such that for some

finite κ>0, the following assumptions hold.

Assumption 1

b∈R and d∈Rk+ for some positive integer k.

Assumption 2

Σ∈Φ, λmin(Σ)≥κ and λmax(Σ)≤κ−1, where Φ denotes the set of all positive definite covariance

matrices.

Assumption 3

Under any sequence of parameters {λn,b,d,Σ∗ =(bn,b,dn,d,Σn,Σ∗,Fn,b,d,Σ∗):n≥1} in Λ such that

√
n(bn,b,dn,d)→(b,d), (24)

Σn,Σ∗→Σ∗ (25)

for some (b,d,Σ∗)∈R∞×Rk+,∞×Φ, the following conditions hold:

(i) Σ̂n exists and λmin(Σ̂n)>0 with probability 1 for all n≥1 and Σ̂n
p−→Σ∗;

(ii)
√
n(̂bn−bn,b,d̂′n−d′n,d)′

d−→N (0,Σ∗).

Assumptions 1–3 are a set of high-level conditions on the underlying DGP that are straightfor-

ward to verify in particular estimation contexts. More specifically, Assumptions 1 and 2 are standard

33We note that it is technically redundant to specify Σ as a separate element of the parameter λ

from F since Σ is a function of F . However, we maintain this convention for notational convenience.
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parameter space assumptions while Assumption 3 can typically be verified under standard depen-

dence and moment conditions on the underlying data via laws of large numbers and central limit

theorems. Importantly, although Assumption 3 is stated in terms of parameter sequences, it can

be verified in terms of primitive conditions that do not involve parameter sequences. We refer the

interested reader to Appendix C.1 for details in the context of the standard linear regression model.

With the relevant parameter space defined, we may now state the theoretical result that estab-

lishes lower and upper bounds on the uniform asymptotic coverage probability of the CIs we propose.

Theorem 3

For α∈(0,1/2) and γ∈(0,α) and a parameter space Λ satisfying Assumptions 1–3,

liminf
n→∞

inf
λ∈Λ

Pλ

(
b∈CI·,n(̂bn,d̂n,Σ̂n)

)
≥1−α

and

limsup
n→∞

sup
λ∈Λ

Pλ

(
b∈CI·,n(̂bn,d̂n,Σ̂n)

)
≤1−α+γ,

where CI·,n(·) is equal to either CIu,n(·) or CIt,n(·).

Proof. Under Assumptions 1 and 2, standard subsequencing arguments in the uniform inference

literature (see e.g., Andrews and Guggenberger, 2010) provide that showing

1−α≤ lim
n→∞

Pλn,b,d,Σ∗

(
bn,b∈CI·,n(̂bn,d̂n,Σ̂n)

)
≤1−α+γ (26)

under all sequences {λn,b,d,Σ∗ :n≥1} in Λ satisfying (24)–(25) such that the limit in (26) exists

is sufficient for proving the statement of the theorem.

First, we verify (26) for CIu,n(·). Let Ω∗=Diag(Σ∗)−1/2Σ∗Diag(Σ∗)−1/2. For any {λn,b,d,Σ∗ :

n≥1} in Λ satisfying (24)–(25) such that the limit in (26) exists, the latter is equal to

lim
n→∞

Pλn,b,d,Σ∗

bn,b≥ b̂n−
√

Σ̂n,bb
√
n

min{z1−α+γ,
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Ω̂n,bd(ŝ∗)Ω̂−1
n,d(ŝ∗)d(ŝ∗)Diag(Σ̂n,d(ŝ∗)d(ŝ∗))−1/2

√
nd̂(ŝ∗)

n +c
(

Ω̂n,bd(ŝ∗)Ω̂−1
n,d(ŝ∗)d(ŝ∗)Ω̂n,d(ŝ∗)b

)})
= lim
n→∞

Pλn,b,d,Σ∗

√n(̂bn−bn,b)√
Σ̂n,bb

≤min{z1−α+γ,

Ω̂n,bd(ŝ∗)Ω̂−1
n,d(ŝ∗)d(ŝ∗)Diag(Σ̂n,d(ŝ∗)d(ŝ∗))−1/2

√
nd̂(ŝ∗)

n +c
(

Ω̂n,bd(ŝ∗)Ω̂−1
n,d(ŝ∗)d(ŝ∗)Ω̂n,d(ŝ∗)b

)})

Note that if Ω∗
bd(s)Ω

∗−1
d(s)d(s)�0, Pλn,b,d,Σ∗(ŝ∗=s)→0 since, by Assumption 3(i), ŝ∗ maximizes

Ω̂n,bd(s)Ω̂−1
n,d(s)d(s)Ω̂n,d(s)b1(Ω̂n,bd(s)Ω̂−1

n,d(s)d(s)≥0)

over s⊆{1,...,k}. Thus, we can bound the term in the middle of (26) from below by

lim
n→∞

min
s⊆{1,...,k}:Ω∗

bd(s)
Ω∗−1

d(s)d(s)
≥0
Pλn,b,d,Σ∗

√n(̂bn−bn,b)√
Σ̂n,bb

≤min{z1−α+γ,

Ω̂n,bd(s)Ω̂−1
n,d(s)d(s)Diag(Σ̂n,d(s)d(s))−1/2

√
nd̂(s)

n +c
(

Ω̂n,bd(s)Ω̂−1
n,d(s)d(s)Ω̂n,d(s)b

)})
. (27)

Now, note that for any s⊆{1,...,k} such that Ω∗
bd(s)Ω

∗−1
d(s)d(s)≥0,

Pλn,b,d,Σ∗

√n(̂bn−bn,b)√
Σ̂n,bb

≤min{z1−α+γ,

Ω̂n,bd(s)Ω̂−1
n,d(s)d(s)Diag(Σ̂n,d(s)d(s))−1/2

√
nd̂(s)

n +c
(

Ω̂n,bd(s)Ω̂−1
n,d(s)d(s)Ω̂n,d(s)b

)})

→


P
(
Z1≤min

{
z1−α+γ,Ω

∗
bd(s)Ω

∗−1
d(s)d(s)Y

(s)
δ +c

(
Ω∗
bd(s)Ω

∗−1
d(s)d(s)Ω

∗
d(s)b

)})
if ‖d(s)‖<∞,

P(Z1≤z1−α+γ) if ‖d(s)‖=∞
(28)

by Assumptions 2 and 3 and Proposition 1, where

 Z1

Y
(s)
δ

∼N

 0

δ(s)

,
 1 Ω∗

bd(s)

Ω∗
d(s)b

Ω∗
d(s)d(s)



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with δ(s) = Diag(Σ∗
d(s)d(s))

−1/2d(s). Now for the ‖d(s)‖ <∞ case, since Ω∗
bd(s)Ω

∗−1
d(s)d(s)δ

(s) ≥ 0 by

Assumptions 1, 2 and 3(i),

P
(
Z1≤min

{
z1−α+γ,Ω

∗
bd(s)Ω

∗−1
d(s)d(s)Y

(s)
δ +c

(
Ω∗bd(s)Ω

∗−1
d(s)d(s)Ω

∗
d(s)b

)})
=P

(
Z1≤min

{
z1−α+γ,Ω

∗
bd(s)Ω

∗−1
d(s)d(s)δ

(s)+Z̃2+c
(
Ω∗bd(s)Ω

∗−1
d(s)d(s)Ω

∗
d(s)b

)})
≥P

(
Z1≤min

{
z1−α+γ,Z̃2+c

(
Ω∗bd(s)Ω

∗−1
d(s)d(s)Ω

∗
d(s)b

)})
=1−α (29)

by the definition of c(·) in (5), where

 Z1

Z̃2

∼N

 0

0

,
 1 Ω∗

bd(s)Ω
∗−1
d(s)d(s)Ω

∗
d(s)b

Ω∗
bd(s)Ω

∗−1
d(s)d(s)Ω

∗
d(s)b

Ω∗
bd(s)Ω

∗−1
d(s)d(s)Ω

∗
d(s)b


.

On the other hand, for the ‖d(s)‖=∞ case,

P(Z1≤z1−α+γ)=1−α+γ>1−α. (30)

Together, (27)–(30) yield the lower bound in (26) for CIu,n(·).

To prove the upper bound in (26) for CIu,n(·), note that the term in the middle of (26) is

bounded above by

lim
n→∞

Pλn,b,d,Σ∗

√n(̂bn−bn,b)√
Σ̂n,bb

≤z1−α+γ,

=1−α+γ.

Next, we show (26) holds for CIt,n(·). Using analogous reasoning to the CIu,n(·) case above, for

any {λn,b,d,Σ∗ :n≥1} in Λ satisfying (24)–(25) such that the limit in (26) exists, the latter is equal to

lim
n→∞

Pλn,b,d,Σ∗

b̂n−
√

Σ̂n,bb
√
n

min
{
z1−α−γ

2
,

Ω̂
n,bd(ŝ∗1)Ω̂−1

n,d(ŝ∗1)d(ŝ∗1)Diag(Σ̂
n,d(ŝ∗1)d(ŝ∗1))−1/2

√
nd̂(ŝ∗1)

n +c`

(̂̃Ω(ŝ∗1 ,̂s
∗
2)

n

)}
≤bn,b≤ b̂n
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+

√
Σ̂n,bb
√
n

min

{
z1−α−γ

2
,−Ω̂

n,bd(ŝ∗2)Ω̂−1

n,d(ŝ∗2)d(ŝ∗2)Diag(Σ̂
n,d(ŝ∗2)d(ŝ∗2))−1/2

√
nd̂(ŝ∗2)

n +cu

(̂̃Ω(ŝ∗1 ,̂s
∗
2)

n

)}
= lim
n→∞

Pλn,b,d,Σ∗

(
−min

{
z1−α−γ

2
,−Ω̂

n,bd(ŝ∗2)Ω̂−1

n,d(ŝ∗2)d(ŝ∗2)Diag(Σ̂
n,d(ŝ∗2)d(ŝ∗2))−1/2

√
nd̂(ŝ∗2)

n +cu

(̂̃Ω(ŝ∗1 ,̂s
∗
2)

n

)}
≤
√
n(̂bn−bn,b)√

Σ̂n,bb

(31)

≤min

{
z1−α−γ

2
,Ω̂

n,bd(ŝ∗1)Ω̂−1

n,d(ŝ∗1)d(ŝ∗1)Diag(Σ̂
n,d(ŝ∗1)d(ŝ∗1))−1/2

√
nd̂(ŝ∗1)

n +c̃

(
cu

(̂̃Ω(ŝ∗1 ,̂s
∗
2)

n

)
,̂̃Ω(ŝ∗1 ,̂s

∗
2)

n

)})

and can be bounded below by

lim
n→∞

min
s1,s2⊆{1,...,k}:Ω∗

bd(s1)
Ω∗−1

d(s1)d(s1)
≥0,Ω∗

bd(s2)
Ω∗−1

d(s2)d(s2)
≤0
Pλn,b,d,Σ∗

(
−min

{
z1−α−γ

2
,

−Ω̂n,bd(s2)Ω̂−1
n,d(s2)d(s2)Diag(Σ̂n,d(s2)d(s2))−1/2

√
nd̂(s2)

n +cu

(̂̃Ω(s1,s2)

n

)}
≤
√
n(̂bn−bn,b)√

Σ̂n,bb

(32)

≤min

{
z1−α−γ

2
,Ω̂n,bd(s1)Ω̂−1

n,d(s1)d(s1)Diag(Σ̂n,d(s1)d(s1))−1/2
√
nd̂(s1)

n +c̃

(
cu

(̂̃Ω(s1,s2)

n

)
,̂̃Ω(s1,s2)

n

)})
.

Since ̂̃Ω(s1,s2)

n

p−→Ω̃∗(s1,s2) under {λn,b,d,Σ∗ :n≥1} as n→∞ by Assumptions 2 and 3(i), there exists

a subsequence {ln :n≥1} of {n :n≥1} such that ̂̃Ω(s1,s2)

ln

a.s.−→ Ω̃∗(s1,s2) under {λln,b,d,Σ∗ :n≥1} as

ln→∞. Next, by the properties of c̃u :S̄⇒R given in Proposition 4, there exists a subsequence

{hn :n≥1} of {ln :n≥1} for which the subsequence

{
cu

(̂̃Ω(s1,s2)

hn

)
:n≥1

}
of

{
cu

(̂̃Ω(s1,s2)

ln

)
:n≥1

}
is such that cu

(̂̃Ω(s1,s2)

hn

)
∈ c̃u

(̂̃Ω(s1,s2)

hn

)
for all n≥1 and cu

(̂̃Ω(s1,s2)

hn

)
a.s.−→c∗u

(
Ω̃∗(s1,s2)

)
for some

c∗u

(
Ω̃∗(s1,s2)

)
∈ c̃u

(
Ω̃∗(s1,s2)

)
as n→∞. In conjunction with Lemma 4, this implies that

lim
n→∞

Pλn,b,d,Σ∗

(
−min

{
z1−α−γ

2
,−Ω̂n,bd(s2)Ω̂−1

n,d(s2)d(s2)Diag(Σ̂n,d(s2)d(s2))−1/2
√
nd̂(s2)

n +cu

(̂̃Ω(s1,s2)

n

)}
≤
√
n(̂bn−bn,b)√

Σ̂n,bb

≤min

{
z1−α−γ

2
,Ω̂n,bd(s1)Ω̂−1

n,d(s1)d(s1)Diag(Σ̂n,d(s1)d(s1))−1/2
√
nd̂(s1)

n +c̃

(
cu

(̂̃Ω(s1,s2)

n

)
,̂̃Ω(s1,s2)

n

)})
= lim
n→∞

Pλhn,b,d,Σ∗

(
−min

{
z1−α−γ

2
,−Ω̂hn,bd(s2)Ω̂−1

hn,d(s2)d(s2)Diag(Σ̂hn,d(s2)d(s2))−1/2
√
hnd̂

(s2)
hn

+c∗u

(
Ω̃∗(s1,s2)

)}
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≤
√
hn(̂bhn−bhn,b)√

Σ̂hn,bb

(33)

≤min
{
z1−α−γ

2
,Ω̂hn,bd(s1)Ω̂−1

hn,d(s1)d(s1)Diag(Σ̂hn,d(s1)d(s1))−1/2
√
hnd̂

(s1)
hn

+c̃
(
c∗u

(
Ω̃∗(s1,s2)

)
,Ω̃∗(s1,s2)

)})
.

For Ω∗
bd(s1)Ω

∗−1
d(s1)d(s1)≥0 and Ω∗

bd(s2)Ω
∗−1
d(s2)d(s2)≤0, Ω∗

bd(s1)Ω
∗−1
d(s1)d(s1)δ

(s1)≥0 and Ω∗
bd(s2)Ω

∗−1
d(s2)d(s2)δ

(s2)≤

0 so that if ‖d(s1)‖,‖d(s2)‖<∞, by Assumptions 1, 2 and 3(i), (33) is equal to

P
(
−min

{
z1−α−γ

2
,−Ω∗

bd(s2)Ω
∗−1
d(s2)d(s2)Y

(s2)
δ +c∗u

(
Ω̃∗(s1,s2)

)}
≤Z1≤min

{
z1−α−γ

2
,Ω∗

bd(s1)Ω
∗−1
d(s1)d(s1)Y

(s1)
δ +c̃

(
c∗u

(
Ω̃∗(s1,s2)

)
,Ω̃∗(s1,s2)

)})
=P

(
−min

{
z1−α−γ

2
,−Ω∗

bd(s2)Ω
∗−1
d(s2)d(s2)δ

(s2)−Z̃3+c∗u

(
Ω̃∗(s1,s2)

)}
≤Z1≤min

{
z1−α−γ

2
,Ω∗

bd(s1)Ω
∗−1
d(s1)d(s1)δ

(s1)+Z̃2+c̃
(
c∗u

(
Ω̃∗(s1,s2)

)
,Ω̃∗(s1,s2)

)})
≥P

(
−min

{
z1−α−γ

2
,−Z̃3+c∗u

(
Ω̃∗(s1,s2)

)}
≤Z1≤min

{
z1−α−γ

2
,Z̃2+c̃

(
c∗u

(
Ω̃∗(s1,s2)

)
,Ω̃∗(s1,s2)

)})
=1−α (34)

using the definition of c̃(·) in (15) and Lemma 5, where


Z1

Z̃2

Z̃3

∼N



0

0

0

,


1 Ω∗
bd(s1) Ω∗

bd(s2)

Ω∗
d(s1)b

Ω∗
d(s1)d(s1) Ω∗

d(s1)d(s2)

Ω∗
d(s2)b

Ω∗
d(s2)d(s1) Ω∗

d(s2)d(s2)


.

For Ω∗
bd(s1)Ω

∗−1
d(s1)d(s1)≥0 and Ω∗

bd(s2)Ω
∗−1
d(s2)d(s2)≤0, Ω∗

bd(s1)Ω
∗−1
d(s1)d(s1)δ

(s1)≥0 so that if ‖d(s1)‖<∞ and

‖d(s2)‖=∞, by Assumptions 1, 2 and 3(i), (33) is equal to

P
(
−z1−α−γ

2
≤Z1≤min

{
z1−α−γ

2
,Ω∗

bd(s1)Ω
∗−1
d(s1)d(s1)Y

(s1)
δ +c̃

(
c∗u

(
Ω̃∗(s1,s2)

)
,Ω̃∗(s1,s2)

)})
≥P

(
−z1−α−γ

2
≤Z1≤min

{
z1−α−γ

2
,Z̃2+c̃

(
c∗u

(
Ω̃∗(s1,s2)

)
,Ω̃∗(s1,s2)

)})
(35)

≥P
(
−min

{
z1−α−γ

2
,−Z̃3+c∗u

(
Ω̃∗(s1,s2)

)}
≤Z1≤min

{
z1−α−γ

2
,Z̃2+c̃

(
c∗u

(
Ω̃∗(s1,s2)

)
,Ω̃∗(s1,s2)

)})
=1−α
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by the definition of c̃(·) in (15) and Lemma 5. For Ω∗
bd(s1)Ω

∗−1
d(s1)d(s1)≥0 and Ω∗

bd(s2)Ω
∗−1
d(s2)d(s2)≤0,

Ω∗
bd(s2)Ω

∗−1
d(s2)d(s2)δ

(s2)≤0 so that if ‖d(s1)‖=∞ and ‖d(s2)‖<∞, by Assumptions 1, 2 and 3(i), (33)

is equal to

P
(
−min

{
z1−α−γ

2
,−Ω∗

bd(s2)Ω
∗−1
d(s2)d(s2)Y

(s2)
δ +c∗u

(
Ω̃∗(s1,s2)

)}
≤Z1≤z1−α−γ

2

)
≥P

(
−min

{
z1−α−γ

2
,−Z̃3+c∗u

(
Ω̃∗(s1,s2)

)}
≤Z1≤z1−α−γ

2

)
(36)

≥P
(
−min

{
z1−α−γ

2
,−Z̃3+c∗u

(
Ω̃∗(s1,s2)

)}
≤Z1≤min

{
z1−α−γ

2
,Z̃2+c̃

(
c∗u

(
Ω̃∗(s1,s2)

)
,Ω̃∗(s1,s2)

)})
=1−α

by the definition of c̃(·) in (15) and Lemma 5. Finally, if ‖d(s1)‖,‖d(s2)‖=∞, for Ω∗
bd(s1)Ω

∗−1
d(s1)d(s1)≥0

and Ω∗
bd(s2)Ω

∗−1
d(s2)d(s2)≤0, (33) is equal to

P
(
z1−α−γ

2
≤Z1≤z1−α−γ

2

)
=1−α+γ>1−α. (37)

by Assumptions 2 and 3. Together, (31)–(37) yield the lower bound in (26) for CIt,n(·).

To prove the upper bound in (26) for CIt,n(·), note that the term in the middle of (26) is

bounded above by

lim
n→∞

Pλn,b,d,Σ∗

z1−α−γ
2
≤
√
n(̂bn−bn,b)√

Σ̂n,bb

≤z1−α−γ
2
,

=1−α+γ.

C.1 Parameter Space for the Standard Linear Regression Model

In this section, we provide details for parameter spaces satisfying the high level conditions of

Assumptions 1–3 above in the context of the standard linear regression model. Recall in this

setting we are interested in conducting inference on a regression coefficient of interest b in the

standard linear regression model for observations i=1,...,n

yi=bzi+x
′
id+w′ic+εi,
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where yi is the dependent variable, zi is the scalar regressor of interest, xi∈Rk are control variables

with known positive partial effects d≥ 0 on yi, wi ∈Rl are control variables with unrestricted

partial effects c and εi is the error term.

Define hi=(zi,x
′
i,w
′
i)
′ so that the ordinary least squares estimator of (b,d′)′, (̂bn,d̂

′
n)
′, is equal

to the first k+1 entries of (
∑n

i=1hih
′
i)
−1
∑n

i=1hiyi. Let F denote the joint distribution of the

stationary random vectors {(h′i,εi)′ : i≥ 1} and define the parameter λ̃= (b,d,c,V,Q,F). The

parameter space Λ̃ for λ̃ is assumed to include parameters λ̃=(b,d,c,V,Q,F) such that for some

finite κ>0, the following conditions hold.

Assumption Reg1

b∈R, d∈Rk+ and c∈Rl.

Assumption Reg2

limn→∞n
−1
∑n

i=1

∑n
j=1EF [hih

′
jεiεj] exists and equals V∈Φ with λmax(V)≤κ−1.

Assumption Reg3

EF [hih
′
i] exists and equals Q∈Φ with λmin(Q)≥κ.

Assumption Reg4

Under any sequence of parameters {λ̃n,b,d,V∗,Q∗ =(bn,b,dn,d,Vn,V∗,Qn,Q∗,Fn,b,d,V∗,Q∗):n≥1} in Λ̃ such

that (24) holds, Vn,V∗→V∗ and Qn,Q∗→Q∗ for some V∗,Q∗∈Φ, the following conditions hold:

(i) V̂n and Q̂n≡n−1
∑n

i=1hih
′
i exist and λmin(n−1

∑n
i=1hih

′
i)>0 with probability one for all n≥1;

(ii) V̂n
p−→V∗;

(iii) Q̂n
p−→Q∗;

(iv) n−1/2
∑n

i=1hiεi
d−→N (0,V∗).

Assumption Reg1 imposes known sign restrictions for the nuisance coefficients d while letting

the coefficient of interest b and the other nuisance coefficients c remain unrestricted. Assumptions

Reg2 and Reg3 are standard conditions ensuring the existence of asymptotic covariance matrices

while Assumptions Reg4(i)–(iii) are high level conditions that guarantee consistent estimators of

these covariance matrices are available, typically shown via application of a law of large numbers.
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Finally, Assumption Reg4(iv) is a high level assumption that directly assumes a central limit

theorem holds for the product of the regressors and error term in the regression model, a result

that is typically invoked when proving asymptotic normality of ordinary least squares estimators.

Note that for Σ equal to the upper left (k+1)×(k+1) submatrix of Q−1VQ−1 and Σ̂n equal to

the upper left (k+1)×(k+1) submatrix of Q̂−1
n V̂nQ̂−1

n , Assumptions Reg1–Reg4 on the parameter

space Λ̃ imply Assumptions 1–3 for the parameter space Λ. More specifically, Assumption Reg1

implies Assumption 1, Assumptions Reg2 and Reg3 imply Assumption 2, Assumptions Reg4(i)–(iii)

imply Assumption 3(i) and Assumptions Reg4(iii) and (iv) imply Assumption 3(ii).

Assumptions Reg1–Reg4 on the parameter space Λ̃ are written at such a level of generality

to allow for heteroskedasticity and/or weak dependence in the data, enabling the use of our CIs

in both cross-sectional and time series settings. For completeness, we reproduce here two sets

of weak low-level sufficient conditions from Section 3 of McCloskey (2020) that guarantee the

high-level Assumption Reg4 holds when using standard covariance matrix estimators in the context

of estimation robust to heteroskedasticity for randomly sampled data and estimation robust to

heteroskedasticity and autocorrelation for time series data. We refer the interested reader to

McCloskey (2020) for a discussion of how these conditions imply that Assumption Reg4 holds.

For the first set of conditions, applicable to randomly sampled data, suppose that V̂n is equal

to the heteroskedasticity-robust estimator of White (1980) and that F satisfies the following

conditions for some fixed constants C<∞ and ϑ>0.

Assumption RS1

{(h′i,εi)′ : i≥1} are i.i.d. under F .

Assumption RS2

EF |hi,jhi,mε2
i |1+ϑ≤C for j,m=1,...,k+l+1.

Assumption RS3

EF |hi,j|4+ϑ,EF |εi|2+ϑ≤C for j=1,...,k+l+1.

For the second set of conditions, applicable to dependent data, suppose that V̂n is equal to
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the heteroskedasticity and autocorrelation-robust estimator of Newey and West (1987) and that

(along with the conditions in Newey and West (1987) imposed on user-chosen parameters) F

satisfies the following conditions for some fixed constants C<∞, ϑ>τ >2, r≥1 and δ>0.

Assumption TS1

{(h′i,ei)′ : i≥1} are stationary strong mixing under F with strong mixing numbers αF (m).

Assumption TS2

αF (m)=O(m−ϑτ/(ϑ−τ)) as m→∞ and EF |hi,j|ϑ,EF |hi,jei|ϑ≤C for j=1,...,k+l+1.

Assumption TS3

αF (m)=O(m−2r/(r−1)) as m→∞ and EF |hi,j|2+δ,EF |hi,jei|4(r+δ)≤C for j=1,...,k+l+1.

D Near optimality results

The NO (switching) tests whose power functions are displayed in Figures 2, 5 and 6 are obtained

using the algorithm given in Section A.2.2. of EMW.34 We closely follow the implementation of

their running example for which the testing problem is given by

H0 :β=0, δ≥0 vs. H1 :β 6=0, δ≥0, (38)

where δ is scalar. In particular, we use the same discretization of the null parameter space (given

by uniform distributions on the intervals {[0,0.04],[0,0.5],[0.5,1],[1,1.5],...,[12,12.5]}), the same

number of simulation draws (i.e., N0 =20,000 and N1 =100,000), the same switching rule (i.e.,

“switch to the standard test” when Yδ>6) and we also choose ε=0.005.35

For the two-sided testing problem given in (38), we first compare the test implied by

ĈI
∗
t (Yβ,Yδ,Ω) to the NO (switching) test that uses the same weights as EMW, i.e., β takes

values -2 and 2 with equal probability and δ is uniformly distributed on [0,9].

34The rejection frequencies in Figures 2, 5 and 6 are obtained using 20,000 simulation draws.

The underlying grid of β values is {−4,−3.9,...,3.9,4}.
35Here, we borrow the notation from EMW for ease of reference.
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Figure 5: Rejection frequency as a function of β of standard two-sided t-test (t - solid), test implied

by ĈI
∗
t (Yβ,Yδ,Ω) using γ=α/10 (SSCI - dashed) and the NO test (NO - dotted) for testing (38) with

d=0,1,2 from left to right for α=0.05 and ρ=0.7.

Figure 5 shows the rejection frequency of the test implied by ĈI
∗
t (Yβ,Yδ,Ω) using γ=α/10,

the aforementioned NO test and the standard two-sided t-test (for comparison) for testing (38)

at α= 0.05, as a function of β for different values of d when ρ= 0.7. Here, in contrast to the

one-sided case depicted in Figure 2, the power functions of the test implied by ĈI
∗
t (Yβ,Yδ,Ω)

and the NO test are somewhat different. The test implied by ĈI
∗
t (Yβ,Yδ,Ω) is almost unbiased,

while the NO test sacrifices power at small negative values of β when δ is (close to) zero, even

introducing some bias, for greater power at positive positive values of β. Furthermore, given the

above weights, the weighted average power (WAP) of the test implied by ĈI
∗
t (Yβ,Yδ,Ω) only comes

within ε=0.0278 of the upper bound, which equals 53.34%. Therefore, we cannot claim the test

implied by ĈI
∗
t (Yβ,Yδ,Ω) to be NO with respect to the above weights.

Although the test implied by ĈI
∗
t (Yβ,Yδ,Ω) is not NO with respect to the weights used by

EMW, the power function of the NO test using these weights may not be desirable for practical

use. For example, a researcher may desire more symmetric power over the β alternatives or a less

biased test. For this reason, we construct an “alternative” set of weights and show that the test

implied by ĈI
∗
t (Yβ,Yδ,Ω) is NO with respect to these weights. These “alternative” weights specify

a discrete distribution over “support points” in the alternative space and are given in Table 5.

Figure 6 is analogous to Figure 5 except that the NO test uses the “alternative” weights given

in Table 5. Here, the power functions of the test implied by ĈI
∗
t (Yβ,Yδ,Ω) and the NO test are

visually indistinguishable. Furthermore, the WAP of the test implied by ĈI
∗
t (Yβ,Yδ,Ω) is within
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Figure 6: Rejection frequency as a function of β of standard two-sided t-test (t - solid), test implied

by ĈI
∗
t (Yβ,Yδ,Ω) using γ=α/10 (SSCI - dashed) and the NO test using “alternative” weights (NOAW

- dotted) for testing (38) with d=0,1,2 from left to right for α=0.05 and ρ=0.7.

ε=0.0066 of the upper bound, which equals 17.85%.36 Thus, the test implied by ĈI
∗
t (Yβ,Yδ,Ω)

is NO with respect to these “alternative” weights that yield arguably a more desirable power

function than the weights examined by EMW.

36Note that the upper bound on WAP is somewhat smaller with respect to the “alternative”

weights because the latter give non-zero weight to values of β that are closer to the null hypothesis,

presumably an empirically important region of the parameter space.
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Table 5: Support points and probabilities for F (using the notation in EMW)

β δ prob
-2.0000 0.0000 0.0114
-1.0000 0.0000 0.0486
-0.5000 0.0000 0.1072
-0.3000 0.0000 0.1201
-0.1000 0.0000 0.0935
0.1000 0.0000 0.0666
0.3000 0.0000 0.0500
0.5000 0.0000 0.0292
1.0000 0.0000 0.0042
2.0000 0.0000 0.0024

-2.0000 1.0000 0.0085
-1.0000 1.0000 0.0172
1.0000 1.0000 0.0319
2.0000 1.0000 0.0031

-2.0000 2.0000 0.0043
-1.0000 2.0000 0.0133
1.0000 2.0000 0.0307
2.0000 2.0000 0.0315

-2.0000 3.0000 0.0068
-1.0000 3.0000 0.0112
1.0000 3.0000 0.0153
2.0000 3.0000 0.0151

-2.0000 4.0000 0.0101
-1.0000 4.0000 0.0151
1.0000 4.0000 0.0112
2.0000 4.0000 0.0041

-2.0000 5.0000 0.0150
-1.0000 5.0000 0.0226
1.0000 5.0000 0.0168
2.0000 5.0000 0.0042

-2.0000 6.0000 0.0063
-1.0000 6.0000 0.0187
1.0000 6.0000 0.0171
2.0000 6.0000 0.0074

-2.0000 7.0000 0.0065
-1.0000 7.0000 0.0123
1.0000 7.0000 0.0163
2.0000 7.0000 0.0066

-2.0000 8.0000 0.0072
-1.0000 8.0000 0.0135
1.0000 8.0000 0.0164
2.0000 8.0000 0.0063

-2.0000 9.0000 0.0072
-1.0000 9.0000 0.0145
1.0000 9.0000 0.0162
2.0000 9.0000 0.0063

The table lists support points, indexed by β and δ, and corresponding probabilities (prob) for the weighting function

F .
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E Additional Tables

Table 6: Coefficients for 6th order polynomial approximation of cu(ω̃) for α=0.01 and γ=α/10

1 ω12 ω2
12 ω3

12 ω4
12 ω5

12 ω6
12

1 2.6091 1.4378 −4.7977 12.2591 −20.5823 18.2815 −6.5866
ω13 1.1854 −1.1672 3.6035 −2.5234 0.2467 0.6751
ω2

13 −16.4621 −2.1843 −2.6765 0.8411 −0.6847
ω3

13 63.1856 8.4153 1.0849 0.7850
ω4

13 −128.0372 −9.2032 −0.3625
ω5

13 123.3096 3.1479
ω6

13 −45.5050

The table lists the coefficients for the 6th order polynomial approximation of cu(ω̃) in terms of ω12 and ω13 for

α=0.01 and γ=α/10. For example, the coefficient on the interaction term ω4
12×ω2

13 equals -0.6847.

Table 7: Coefficients for 6th order polynomial approximation of cu(ω̃) for α=0.1 and γ=α/10

1 ω12 ω2
12 ω3

12 ω4
12 ω5

12 ω6
12

1 1.6552 1.2890 −4.8501 14.0485 −23.9082 20.3891 −7.0186
ω13 1.2271 0.0224 −0.6555 0.7875 1.0308 −0.5813
ω2

13 −11.7243 −2.0585 3.7550 −5.0051 1.5399
ω3

13 43.6253 3.2898 −1.7097 1.1221
ω4

13 −87.8291 −2.6854 0.6640
ω5

13 84.6893 0.5102
ω6

13 −31.4176

The table lists the coefficients for the 6th order polynomial approximation of cu(ω̃) in terms of ω12 and ω13 for

α=0.1 and γ=α/10. For example, the coefficient on the interaction term ω4
12×ω2

13 equals 1.5399.

Table 8: 95% confidence intervals for treatment effects on summary index of antisocial behaviors (times
minus one) imposing α∗3≥0

b̂ SE SSCI EL SCI EL Ratio
T 0.0829 0.0929 [−0.0747,∞) 0.1576 [−0.0700,∞) 0.1529 1.0307
C −0.1316 0.0969 [−0.2959,∞) 0.1643 [−0.2910,∞) 0.1594 1.0307
B 0.2468 0.0883 [0.1025,∞) 0.1442 [0.1015,∞) 0.1453 0.9929

The table shows point estimates (̂b), standard errors (SE), our proposed CIs (SSCI), standard CIs (SCI), the

corresponding (“excess”) lengths ((E)L), and their ratio (Ratio) for the treatment effects of “therapy” (T), “cash”

(C) and “both” (B). All CIs are upper one-sided and it is assumed that all treatment effects are known to be

non-negative.
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F Computational details

F.1 One-sided CI

Some of the results in the paper rely on the function c(ω) implicitly defined by (5) and the expected

excess length of our proposed CI. Next, we give a detailed description of how we numerically

compute them.

F.1.1 c(ω)

In order to compute c(ω), we need to compute the probability P(Z1>min{z1−α+γ,Z̃2+c}) for

some c∈R+. Instead of simulating from a bivariate normal we use a “conditioning argument”

and simulate from a univariate normal. This serves two purposes: First, it makes the numerical

approximation of P(Z1>min{z1−α+γ,Z̃2+c}) smooth, as a function of c. Second, it improves the

accuracy of the approximation for a given number of simulation draws. Note that

P(Z1>min{z1−α+γ,Z̃2+c})=

∫ ∞
−∞
P(Z1>min{z1−α+γ,z̃2+c}|Z̃2 = z̃2)φ(z̃2|0,ω)dz̃2,

where φ(·|µ,σ2) denotes the pdf of a normal with mean µ and variance σ2. Furthermore, note

that Z1|Z̃2 = z̃2∼N(z̃2,1−ω) such that

P(Z1>min{z1−α+γ,z̃2+c}|Z̃2 = z̃2)=


P(Z1>z1−α+γ|Z̃2 = z̃2) if z̃2+c>z1−α+γ

P(Z1>z̃2+c|Z̃2 = z̃2) if z̃2+c<z1−α+γ

=


Φ
(
z̃2−z1−α+γ√

1−ω

)
if z̃2+c>z1−α+γ

Φ
(
− c√

1−ω

)
if z̃2+c<z1−α+γ

.

Therefore, P(Z1>min{z1−α+γ,Z̃2+c}) is equal to

∫ z1−α+γ−c

−∞
Φ

(
− c√

1−ω

)
φ(z̃2|0,ω)dz̃2+

∫ ∞
z1−α+γ−c

Φ

(
z̃2−z1−α+γ√

1−ω

)
φ(z̃2|0,ω)dz̃2. (39)

33



We compute P(Z1>min{z1−α+γ,Z̃2+c}) based on (39) using 1,000,000 draws from a univariate

normal.

F.1.2 Expected excess length

Let ψ = Ωβδ(s)Ω
−1
δ(s)δ(s)

and ω = Ωβδ(s)Ω
−1
δ(s)δ(s)

Ωδ(s)β. Then, the expected excess length of [Yβ−

ψY
(s)
δ −c,∞) is given by

−E[Yβ−min{z1−α+γ,ψY
(s)
δ +c}−β]

=E[min{z1−α+γ,ψY
(s)
δ +c}]

=z1−α+γP(ψY
(s)
δ +c>z1−α+γ)+E[ψY

(s)
δ +c|ψY (s)

δ +c≤z1−α+γ]

×P(ψY
(s)
δ +c≤z1−α+γ)

=z1−α+γ

[
1−Φ

(
z1−α+γ−ψδ(s)−c√

ω

)]
+

[
ψδ(s)+c−

√
ωλ

(
z1−α+γ−ψδ(s)−c√

ω

)]
×Φ

(
z1−α+γ−ψδ(s)−c√

ω

)
,

where λ(x)≡φ(x)/Φ(x).

F.2 Two-sided CI

Some of the results in the paper rely on the probability underlying (15) and the expected length

of our proposed CI. Next, we give a detailed description of how we numerically compute them.

F.2.1 Probability underlying (15)

We need to compute P(−min{z1−(α−γ)/2,−Z̃3 + cu} ≤ Z1 ≤min{z1−(α−γ)/2,Z̃2 + c`}) for some

cu,c`∈R+. In what follows, let z·=z1−(α−γ)/2. As before, note that

P(−min{z·,−Z̃3+cu}≤Z1≤min{z·,Z̃2+c`})

=

∫
R2

P(−min{z·,−z̃3+cu}≤Z1≤min{z·,z̃2+c`}|Z̃2 = z̃2,Z̃3 = z̃3)

φ(z̃2,z̃3|0,0,ω12,ω13,ω23)dz̃2dz̃3, (40)
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where φ(·,·|µ1,µ2,σ
2
1,σ

2
2,σ12) denotes the pdf of a bivariate normal. Furthermore, note that

Z1|Z̃2 = z̃2,Z̃3 = z̃3∼N(ψ1z̃2+ψ2z̃3,1−ω∗),

where

(ψ1 ψ2)=(ω12 ω13)

 ω12 ω23

ω23 ω13


−1

and ω∗=(ω12 ω13)

 ω12 ω23

ω23 ω13


−1 ω12

ω13

.
Therefore, we have

P(−min{z·,−z̃3+cu}≤Z1≤min{z·,z̃2+c`}|Z̃2 = z̃2,Z̃3 = z̃3)

=



P(−z·≤Z1≤z·|Z̃2 = z̃2,Z̃3 = z̃3) if −z̃3+cu>z· and z̃2+c`>z·

P(z̃3−cu≤Z1≤z·|Z̃2 = z̃2,Z̃3 = z̃3) if −z·<−z̃3+cu<z· and z̃2+c`>z·

P(−z·≤Z1≤ z̃2+c`|Z̃2 = z̃2,Z̃3 = z̃3) if −z̃3+cu>z· and −z·<z̃2+c`<z·

P(z̃3−cu≤Z1≤ z̃2+c`|Z̃2 = z̃2,Z̃3 = z̃3) if −z2−c`<−z̃3+cu<z· and z̃2+c`<z·

0 otherwise,

(41)

where, for example,

P(−z·≤Z1≤z·|Z̃2 = z̃2,Z̃3 = z̃3)=Φ

(
z·−(ψ1z̃2+ψ2z̃3)√

1−ω∗

)
−Φ

(
−z·−(ψ1z̃2+ψ2z̃3)√

1−ω∗

)
.

We compute P(−min{z·,−Z̃3+cu}≤Z1≤min{z·,Z̃2+c`}) based on (40) and (41) using 100,000

draws from a bivariate normal.

F.2.2 Expected length

Let ψ1 = Ωβδ(s1)Ω−1
δ(s1)δ(s1) and ω12 = Ωβδ(s1)Ω−1

δ(s1)δ(s1)Ωδ(s1)β , as well as ψ2 = Ωβδ(s2)Ω−1
δ(s2)δ(s2) and

ω13 =Ωβδ(s2)Ω−1
δ(s2)δ(s2)Ωδ(s2)β . Furthermore, let Ỹ2 =ψ1Y

(s1)
δ , Ỹ3 =ψ2Y

(s2)
δ and ω23 =ψ1Ωδ(s1)δ(s2)ψ′2.
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The expected length of [Yβ−min{z·,Ỹ2+c`},Yβ+min{z·,−Ỹ3+cu}] is given by

E[max{min{z·,Ỹ2+c`}+min{z·,−Ỹ3+cu},0}]

=E[E[max{min{z·,ỹ2+c`}+min{z·,−Ỹ3+cu},0}|Ỹ2 = ỹ2]].

Note that

Ỹ3|Ỹ2 = ỹ2∼N(m3(ỹ2),σ
2
3),

where m3(ỹ2)=ψ2δ
(s2)+ ω23

ω12
(ỹ2−ψ1δ

(s1)) and σ2
3 =ω13− ω2

23

ω12
. In what follows, we use that

E[Z|a<Z<b]=− φ(b)−φ(a)

Φ(b)−Φ(a)
,

where Z∼N(0,1). Next, note that

E[max{min{z·,ỹ2+c`}+min{z·,−Ỹ3+cu},0}|Ỹ2 = ỹ2]

is equal to

E[max{z·+min{z·,−Ỹ3+cu},0}|Ỹ2 = ỹ2],

if ỹ2+c`>z·, which, in turn, is equal to

2z·×P(−Ỹ3+cu>z·|Ỹ2 = ỹ2)

+
[
z·+cu−E[Ỹ3|−z·<−Ỹ3+cu<z·,Ỹ2 = ỹ2]

]
×P(−z·<−Ỹ3+cu<z·|Ỹ2 = ỹ2)

=2z·×Φ

(
−z·+cu−m3(ỹ2)

σ3

)

+

z·+cu−m3(ỹ2)+σ3

φ
(
z·+cu−m3(ỹ2)

σ3

)
−φ
(
−z·+cu−m3(ỹ2)

σ3

)
Φ
(
z·+cu−m3(ỹ2)

σ3

)
−Φ
(
−z·+cu−m3(ỹ2)

σ3

)


×
[
Φ

(
z·+cu−m3(ỹ2)

σ3

)
−Φ

(
−z·+cu−m3(ỹ2)

σ3

)]
. (42)
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Similarly,

E[max{min{z·,ỹ2+c`}+min{z·,−Ỹ3+cu},0}|Ỹ2 = ỹ2]

is equal to

E[max{ỹ2+c`+min{z·,−Ỹ3+cu},0}|Ỹ2 = ỹ2],

if ỹ2+c`<z·, which, in turn, is equal to 1(−ỹ2−c`<z·) times

[ỹ2+c`+z·]×P(−Ỹ3+cu>z·|Ỹ2 = ỹ2)

+
[
ỹ2+c`+cu−E[Ỹ3|−ỹ2−c`<−Ỹ3+cu<z·,Ỹ2 = ỹ2]

]
×P(−ỹ2−c`<−Ỹ3+cu<z·|Ỹ2 = ỹ2)

=[ỹ2+c`+z·]×Φ

(
−z·+cu−m3(ỹ2)

σ3

)

+

ỹ2+c`+cu−m3(ỹ2)+σ3

φ
(
ỹ2+c`+cu−m3(ỹ2)

σ3

)
−φ
(
−z·+cu−m3(ỹ2)

σ3

)
Φ
(
ỹ2+c`+cu−m3(ỹ2)

σ3

)
−Φ
(
−z·+cu−m3(ỹ2)

σ3

)


×
[
Φ

(
ỹ2+c`+cu−m3(ỹ2)

σ3

)
−Φ

(
−z·+cu−m3(ỹ2)

σ3

)]
. (43)

We compute E[max{min{z·,Ỹ2+c`}+min{z·,−Ỹ3+cu},0}] based on (42) and (43) using 100,000

draws from a univariate normal (equal to the subset of draws used to compute P(−min{z·,−Z̃3+

cu}≤Z1≤min{z·,Z̃2+c`}) that corresponds to Z̃2).
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