
Journal of Econometrics 207 (2018) 285–306

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Subvector inference when the true parameter vector may be
near or at the boundary✩

Philipp Ketz
Paris School of Economics, 48 Boulevard Jourdan, 75014 Paris, France

a r t i c l e i n f o

Article history:
Received 12 May 2016
Received in revised form 8 January 2018
Accepted 23 August 2018
Available online 5 September 2018

JEL classification:
C12

Keywords:
Boundary
Asymptotic normality
Admissibility
Random coefficients

a b s t r a c t

Extremum estimators are not asymptotically normally distributed when the estimator
satisfies the restrictions on the parameter space – such as the non-negativity of a variance
parameter – and the true parameter vector is near or at the boundary. This possible lack of
asymptotic normality makes it difficult to construct tests for testing subvector hypotheses
that control asymptotic size in a uniform sense and have good local asymptotic power
irrespective of whether the true parameter vector is at, near, or far from the boundary.
We propose a novel estimator that is asymptotically normally distributed even when the
true parameter vector is near or at the boundary and the objective function is not defined
outside the parameter space. The proposed estimator allows the implementation of a
new test based on the Conditional Likelihood Ratio statistic that is easy-to-implement,
controls asymptotic size, and has good local asymptotic power properties. Furthermore, we
show that the test enjoys certain asymptotic optimality properties when the parameter of
interest is scalar. In an application of the random coefficients logit model (Berry, Levinsohn
and Pakes, 1995) to the European car market, we find that, for most parameters, the new
test leads to tighter confidence intervals than the two-sided t-test commonly used in
practice.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that extremum estimators are not asymptotically normally distributed when the true parameter vector
is at the boundary of the parameter space (see e.g., Geyer, 1994; Andrews, 1999, and references therein). While there
exist tests that account for this lack of asymptotic normality (Andrews, 2001), they require knowledge about whether
nuisance parameters, which are not specified under the null hypothesis, are at the boundary or not. This knowledge is
‘‘required’’ because the asymptotic distributions of the underlying test statistics display a discontinuity at the boundary.
In practice, however, this knowledge is not available and tests suffer from (asymptotic) under- or overrejection, depending
on the choice of the test statistic and the exact specification of the testing problem, when the true value of the nuisance
parameters is incorrectly specified in the construction of critical values.1 The problem is amplified by the possibility that
the nuisance parameters may be near the boundary relative to the sample size. Andrews and Guggenberger (2010b) show,
for example, that resampling methods, such as the m-out-of-n bootstrap, do not control asymptotic size in a uniform sense
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when a scalar nuisance parameter may be near or at the boundary.2 While it is possible to modify existing tests to ensure
asymptotic size control and/or to increase local asymptotic power by adapting critical values, possibly in a data-driven
way (see e.g.,McCloskey, 2017), suchmodifications typically are computationally expensive. Perhaps due to these difficulties,
researchers sometimes ignore restrictions onnuisance parameters andparameters of interest altogether, using critical values
that assume that the true parameter vector is in the interior of the parameter space. A prominent example is the random
coefficients logitmodel (Berry, Levinsohn and Pakes, 1995), where researchers typically rely on the standard two-sided t-test
to make inference about mean and variance parameters, which are known to be non-negative (see e.g., Nevo, 2001; Goeree,
2008).

Onemain contribution of this paper is to note that, under quite general assumptions, it is possible to obtain an asymptot-
ically normal estimator even when the true parameter vector is near or at the boundary. The proposed estimator does not
require the objective function to be defined outside the parameter space and is given by the unconstrainedminimizer of the
sample analogue of a quadratic approximation to the objective function, which also underlies the asymptotic distribution
results in Andrews (1999).3 It is easy to implement and obtained by a single Newton–Raphson-like iteration starting at the
constrained extremum estimator.4 While such an estimator is less attractive than a constrained estimator in terms of point
estimation, as it may take on values outside the parameter space, it is useful in the construction of tests; in particular, when
interest lies in testing subvector hypotheses, as its asymptotic distribution does not display any discontinuities. In that sense,
it makes it unnecessary to consider potentially difficult-to-implement modifications to existing tests.

In order to exploit the information contained in the asymptotically normal estimator as well as in the restrictions on
the parameter space for testing subvector hypotheses, we suggest using the Conditional ‘‘Likelihood Ratio’’ (CLR) statistic
(named for its asymptotic behavior). The test we propose relies on the conditionality principle of Moreira (2003). The idea is
to consider a transformation of the asymptotically normal estimator that yields two orthogonal subvectors, one of which
pertains to the parameters of interest while the other constitutes an asymptotically sufficient statistic for the nuisance
parameters that are not specified under the null hypothesis. Given the joint asymptotic normality, the orthogonality implies
that the two subvectors are asymptotically independent such that asymptotically the conditional null distribution of the
CLR statistic given the aforementioned sufficient statistic is nuisance parameter free. Therefore, the CLR test rejects the null
hypothesis if the CLR statistic exceeds an appropriately defined conditional critical value. We show that the confidence set
obtained by inverting the CLR test controls asymptotic size in a uniform sense, by verifying the high-level assumptions
in Andrews, Cheng and Guggenberger (2011). Furthermore, we show that, under some conditions, an ‘‘asymptotic version’’
of the CLR test defined in the Gaussian shift model is admissible and essentiallyweighted average power (WAP) maximizing
subject to a similarity constraint (Montiel-Olea, 2018) when the parameter of interest is scalar. We, then, show that the CLR
test inherits these optimality properties asymptotically, in the sense of Müller (2011).

Recently, Elliott, Müller and Watson (2015) (EMW) and Montiel-Olea (2018) (MO) have suggested alternative tests for
testing subvector hypotheses in theGaussian shiftmodel.5 EMWpropose tests that nearlymaximizeWAP in the class of level
α tests, while MO proposes tests that maximize WAP subject to a similarity constraint. WAP maximizing tests are attractive
when a researcher has a particular weight function in mind, where the weight function specifies the alternatives towards
which the test directs power. In order to compare our proposed test with the two tests proposed by EMWandMO for certain
choices of the weight function, we graphically evaluate their power functions. The analysis is done in the Gaussian shift
model and, thus, provides local asymptotic power functions of appropriately defined tests based on the novel, asymptotically
normal estimator. The comparison with the test suggested by MO reveals that the weights implicitly underlying the CLR
test are attractive. And while the test proposed by EMW has good power, it has the disadvantage of being computationally
expensive when the dimension of the nuisance parameter is large. Given its prevalence in applied work, we also analyze
an ‘‘asymptotic version’’ of the two-sided t-test that ignores possible boundary effects on the distribution of the underlying
constrained estimator. We find that it, in many cases, underrejects (see also Andrews and Guggenberger, 2010a, b), but that
it can also suffer from overrejection, notably if the dimension of the nuisance parameter is large. Based on these findings,
we recommend the CLR test for testing subvector hypotheses in practice: It is easy to implement, controls asymptotic size,
has good local asymptotic power properties, and is computationally cheap.

In order to illustrate the usefulness of the CLR test for empirical work, we turn to the random coefficients logit model,
which is widely used in the industrial organization and marketing literatures. While there is good reason to believe that
not all variance parameters are equal to zero, because in that case the model reduces to the simple multinomial logit
model, which is known to suffer from the Independence of Irrelevant Alternatives (IIA), it is seldom known a priori which
product characteristics interact with a random coefficient. And in a baseline specification, where all product characteristics
are interacted with a random coefficient, estimates of variance parameters are often found to be small. The application of
the random coefficients logit model to the European car market in Reynaert and Verboven (2014) is no exception, and the

2 Relatedly, Andrews (2000) shows that the asymptotic distribution of a constrained estimator cannot be consistently estimatedwhen the trueparameter
vector may be near or at the boundary.

3 To be precise, Andrews (1999) considers a quadratic approximation around a fixed true parameter, while we follow Andrews and Cheng (2012a) and
consider a quadratic approximation around a drifting sequence of true parameters; see Section 2 for more details.

4 The proposed estimator has recently been applied by Frazier and Renault (2016) in the context of Indirect-Inference.
5 The tests proposed in Moreira and Moreira (2013) could also be applied. However, given the existence of an asymptotically sufficient statistic for the

nuisance parameter, we do not consider them here.
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two-sided t-test, which represents common practice, only suggest the presence of consumer heterogeneity with respect to
one out of six product characteristics, namely horse power, at the 10% significance level. Using the CLR test, we find evidence
of additional consumer heterogeneity with respect to price and height of the car. Furthermore, we obtain shorter confidence
intervals for most of the mean parameters. This illustrates that, in practice, the CLR test can offer valuable power gains over
the two-sided t-test while ensuring asymptotic size control.

The plan of this paper is as follows. In Section 2, we introduce the new estimator and show that it is asymptotically
normal. Section 3 introduces the testing problem and our proposed test. It also presents the optimality results for the CLR
test defined in the Gaussian shift model. Section 4 contains the power comparison of the CLR test and several alternative
tests in the Gaussian shiftmodel, with some results relegated to Appendix D. Section 5 presents an application to the random
coefficients logit model. In this section, we perform a small Monte Carlo study to illustrate the finite sample behavior of
the CLR test and present our empirical findings. Proofs are collected in Appendices A and B. Results concerning asymptotic
properties of the CLR test are relegated to Appendix C.

Throughout this paper, we use the following notational conventions. For any set A and any k ∈ N, Ak
= A × · · · × A

denotes the Cartesian product of k copies of A. Furthermore, Ik denotes the (k × k) identity matrix. For any a ∈ R ∪ {±∞},
ak = (a, . . . , a)′ denotes the k-dimensional vector whose entries are all equal to a. Sometimes, we write 0 = 0k if the
dimension of 0k is clear from the context. For any two column vectors a and b, we sometimes write (a, b) instead of (a′, b′)′
and let a ≥ b denote the element-by-element inequality. For anymatrix A, Aij denotes the entrywith row index i and column
index j. Similarly, ai denotes the ith entry of vector a. We let int(A) and bd(A) denote the interior and the boundary of the set
A, respectively. Furthermore, ‘‘≡’’ denotes ‘‘equals by definition’’. Lastly,

p
→ and

d
→ denote convergence in probability and

distribution, respectively, while all limits are taken as ‘‘n → ∞’’, unless otherwise noted.

2. An asymptotically normal estimator

We consider a general class of extremum estimators, including, for example, (Quasi-) Maximum Likelihood (Q-ML)
and Generalized Method of Moments (GMM) estimators. The objective function, which is parameterized by the finite-
dimensional (J ×1) parameter θ , is denoted Qn(θ ) and depends on the data matrixWn whose column dimension is fixed and
whose n rows may be i.i.d., independent and nonidentically distributed, or temporally dependent. Andrews (1999) derives
the asymptotic distribution of the constrained estimator θ̂n, which is defined as the (approximate) minimizer of Qn(θ ) over
Θ , i.e., θ̂n ∈ Θ and

Qn(θ̂n) = inf
θ∈Θ

Qn(θ ) + op(1/n),

when the true parameter vector, say θ̄ , is at the boundary of Θ , i.e., θ̄ ∈ bd(Θ). Here, Θ ⊂ RJ denotes the true parameter
space, i.e., the set of all possible values for θ̄ as specified by the researcher. While, under quite general assumptions, θ̂n is
√
n-consistent for θ̄ ,

√
n(θ̂n − θ̄ ) is generally not asymptotically normal when θ̄ ∈ bd(Θ).6 This contrasts with the situation

where θ̄ ∈ int(Θ), in which case
√
n(θ̂n − θ̄ ) is asymptotically normal. This discontinuity in the asymptotic distribution of

√
n(θ̂n − θ̄ ) makes it difficult to construct tests for testing subvector hypotheses that control asymptotic size in a uniform

sense and have good local asymptotic power irrespective of whether θ̄ or, rather, its subvector that is not specified under
the null hypothesis is at the boundary, near the boundary, or far from the boundary relative to the sample size.

In order to derive asymptotic theory that provides good approximations to the finite sample distributions of estimators
and test statistics when the true parameter may be near or at the boundary, we rely on drifting sequences of true parameters
θn ∈ Θ with θn → θ∗

∈ Θ that are allowed to change with the sample size n. Here and in what follows, the superscript
∗ indicates a fixed limit point that does not change with n. Of particular interest are sequences of true parameters that
drift towards the boundary, θn → θ∗

∈ bd(Θ). For example, if Θ = [0, ∞), the asymptotic distribution theory obtained
for sequences of true parameters of the form θn =

µ
√
n with fixed µ ∈ [0, ∞), such that θn → θ∗

= 0, provides good
approximations to the finite sample behavior of, say, an estimator when the true parameter is near (or at) the boundary
relative to the sample size. The notion of ‘‘good approximations’’ is formalized in results concerning uniformity, where
drifting sequences of true parameters have been shown to play a crucial role (see e.g., Andrews and Guggenberger, 2010b).

In most applications, the distribution of the data Wn is not fully specified by θ , but depends on an additional, commonly
infinite-dimensional parameter, say ω. For example, in the context of conditional ML estimation ω indexes the distribution
of the conditioning variables. The parameter γ ≡ (θ, ω) fully specifies the distribution of the dataWn and the corresponding
true parameter space is compact and of the following form

Γ = {γ = (θ, ω) : θ ∈ Θ, ω ∈ Ω(θ )},

whereΘ is compact andΩ(θ ) ⊂ Ω ∀θ ∈ Θ for some compact metric spaceΩ with ametric that induces weak convergence
of (Wn,i,Wn,i+m) for all i,m ≥ 1, i.e., themetric is such that if γ 1

→ γ 2, then (Wn,i,Wn,i+m) under γ 1 converges in distribution

6 Unless Θ imposes only linear equality constraints.
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to (Wn,i,Wn,i+m) under γ 2 for all i,m ≥ 1.7 Here, Wn,i denotes the ith row of Wn. The assumptions listed below pertain to
sequences of true parameters γn = (θn, ωn) in the set

Γ (γ ∗) = {{γn ∈ Γ : n ≥ 1} : γn → γ ∗
∈ Γ },

where γ ∗
= (θ∗, ω∗). Throughout this paper, we use the shorthand ‘‘under {γn} ∈ Γ (γ ∗)’’ to mean ‘‘when the true

parameters are {γn} ∈ Γ (γ ∗) for any γ ∗
∈ Γ ’’. This general framework, which makes the dependence on ω explicit and

which we borrow from Andrews and Cheng (2012a), facilitates the derivation of asymptotic results that hold uniformly
over Γ .

The asymptotic distribution theory in Andrews (1999) relies on a quadratic approximation of the objective function
around the true parameter. For the reasons outlined above, we follow Andrews and Cheng (2012a) and consider a quadratic
approximation around a drifting sequence of true parameters, where, instead of allowing for lack of identification at some
point in the parameter space, we allow the sequence of true parameters to drift towards the boundary, i.e., θn → θ∗

∈ bd(Θ),
in the spirit of Andrews (1999). In particular, we rely on the following quadratic expansion

Qn(θ ) = Qn(θn) + DQn(θn)′(θ − θn) +
1
2
(θ − θn)′D2Qn(θn)(θ − θn) + Rn(θ ), (1)

where the remainder, Rn(θ ), is assumed to satisfy

sup
θ∈Θ:∥

√
n(θ−θn)∥≤ϵ

|Rn(θ )| = op(1/n)

for all constants 0 < ϵ < ∞, under {γn} ∈ Γ (γ ∗). Here, DQn(θ ) and D2Qn(θ ) denote the generalized first- and second-order
partial derivatives of the objective function, respectively. DQn(θ ) and D2Qn(θ ) are generalized in the sense that Eq. (1) does
not require them to be partial derivatives. In particular, Qn(θ ) may not be defined outside the parameter space, as generally
the case in random coefficients models, such that, at best, DQn(θ ) and D2Qn(θ ) may denote first- and second-order left/right
partial derivatives (Andrews, 1999).8 Furthermore,Qn(θ )may not be smooth but only ‘‘stochastically differentiable’’ (Pollard,
1985), as for example the case in quantile estimation, and/or given by a GMM (orminimum distance) objective function (see
e.g., Pakes and Pollard, 1989).9,10

The quadratic expansion in Eq. (1) can be used to derive asymptotic distribution theory for the constrained estimator if
the latter satisfies the following high-level assumption.

Assumption 1. Under {γn} ∈ Γ (γ ∗),
√
n(θ̂n − θn) = Op(1).

Sufficient conditions for Eq. (1) and Assumption 1 can, for example, be found in Andrews (1999, 2001, 2002), where only
minor modifications are required to accommodate drifting sequences of true parameters (cf. Andrews and Cheng, 2012a, b,
2014).

The reason for relying on a quadratic approximation rather than a (approximate) first order condition of theminimization
problem is that the latter does not hold (with probability approaching 1) under certain drifting sequences of true parameters
that are such that θn → θ∗

∈ bd(Θ). This is a direct consequence of the definition of θ̂n, which is constrained to lie in Θ

and whose (asymptotic) distribution is, therefore, subject to boundary effects. While an unconstrained estimator is often
unavailable, as Qn(θ ) may not be defined outside Θ , inspection of Eq. (1) reveals that the quadratic approximation of Qn(θ ),
i.e., Qn(θ ) − Rn(θ ), does permit an unconstrained minimizer, namely θn −

(
D2Q n(θn)

)−1DQ n(θn). Furthermore, it is easy to
see that this minimizer (appropriately centered and scaled) is asymptotically normally distributed, under {γn} ∈ Γ (γ ∗), if
the following two assumptions hold.

Assumption 2. Under {γn} ∈ Γ (γ ∗),
√
nDQn(θn)

d
→ N(0, V (γ ∗)), where V (γ ∗) is symmetric and positive-definite.

Assumption 3. Under {γn} ∈ Γ (γ ∗), D2Qn(θn)
p

→ J (γ ∗), where J (γ ∗) is symmetric and nonsingular.

However, this ‘‘estimator’’ is infeasible because it depends on the unknown true parameter, θn. In addition, DQn(θ ) and
D2Q n(θ ) may not be given by the first- and second-order (left/right) partial derivatives of Qn(θ ) and may, thus, also be

7 Note that Γ is a metric space with metric dΓ (γ1, γ2) = ∥θ1 − θ2∥ + dΩ (ω1, ω2), where γj = (θj, ωj) ∈ Γ for j = 1, 2 and where dΩ denotes the metric
on Ω .

8 A function f (x) has left/right partial derivatives (of order one) on X ⊂ Rk for some k ∈ N, if it (i) has partial derivatives at each x ∈ int(X ), (ii) partial
derivatives at each x ∈ bd(X ) with respect to coordinates that can be perturbed to the left and the right, and (iii) left (right) partial derivatives at each
x ∈ bd(X ) with respect to coordinates that can only be perturbed to the left (right).

9 Andrews (1999, 2001) and Andrews (2002) extend the asymptotic distribution theory in Pollard (1985) and Pakes and Pollard (1989), respectively, to
allow for the true parameter to be at the boundary and for the objective function to not be defined outside the parameter space. While the respective
‘‘stochastic differentiability’’ and ‘‘stochastic equicontinuity’’ conditions are not given in terms of drifting sequences of true parameters, the required
modifications are minor and obtained along the lines of Andrews and Cheng (2012a, b) and Andrews and Cheng (2014), respectively.
10 Note that Eq. (1) also allows for initial conditions adjustment to the objective function (necessary in certain time series models) as in Andrews (2001),

see also (Andrews and Cheng, 2012b).
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‘‘unknown’’. For example, if Qn(θ ) is a nonsmooth sample average, then DQn(θ ) is the ‘‘stochastic derivative’’ of Qn(θ ), while
D2Qn(θ ) equals the second-order (left/right) partial derivatives of the expected value ofQn(θ ) (cf. Andrews and Cheng, 2012a,
b).11 Replacing (possibly) unknowns with estimators, a feasible version is given by

θ̃n = θ̂n −

(
D̂2Q n(θ̂n)

)−1
D̂Q n(θ̂n), (2)

where D̂Q n(θ̂n) and D̂2Q n(θ̂n) are assumed to satisfy the following high-level assumption.

Assumption 4. Under {γn} ∈ Γ (γ ∗), (i)
D̂Q n(θ̂n) − DQn(θn) − D2Qn(θn)(θ̂n − θn)

 = op(1/
√
n) and

(ii)
D̂2Q n(θ̂n) − D2Qn(θn)

 = op(1).

In many cases, the sufficient conditions for Eq. (1) and Assumption 1 can also be used to verify Assumption 4.12 If Qn(θ )
is nonsmooth, D̂Q n(θ̂n) and D̂2Q n(θ̂n) typically involve numerical derivatives (see e.g., Pakes and Pollard, 1989).

The following Theorem states the first main result of this paper.13

Theorem 1. Under {γn} ∈ Γ (γ ∗) and Assumptions 1–4,
√
n(θ̃n − θn)

d
→ Z(γ ∗) ≡ N(0, Σ(γ ∗)),

where Σ(γ ∗) = J (γ ∗)−1V (γ ∗)J (γ ∗)−1.
The proof of Theorem 1 is given in Appendix A. In many cases, the results in Andrews (1999) suitably adapted imply that,

under certain drifting sequences of true parameters (and Assumptions 1–3), the asymptotic distribution of the constrained
estimator,

√
n(θ̂n−θn), is given by the unique projection ofZ(γ ∗) onto a cone, with respect to the norm ∥λ∥ = (λ′J (θ∗)λ)1/2.

Furthermore, if an unconstrained estimator is available, it is generally asymptotically equivalent to θ̃n.14 Consequently, θ̃n
can be considered a quasi unconstrained estimator. The advantage of a quasi unconstrained estimator over a constrained
estimator for testing is twofold. First, it simplifies the testing problem, due to the absence of discontinuities in its asymptotic
distribution. Second, it, in some sense, contains more ‘‘information’’. To see this, note that any test statistic based on θ̂n can
also be constructed using θ̃n, simply by considering its appropriately defined projection onto Θ , but not vice versa.

Before turning to our proposed test that exploits this additional ‘‘information’’, we introduce an estimator for Σ(γ ∗) that
will be used in its construction. Define

Σ̂ ≡

(
D̂2Q n(θ̂n)

)−1
V̂n(θ̂n)

(
D̂2Q n(θ̂n)

)−1
,

where V̂n(θ̂n) is assumed to satisfy the following high-level assumption.

Assumption 5. Under {γn} ∈ Γ (γ ∗), V̂n(θ̂n)
p

→ V (γ ∗).

Assumptions 1–5 imply that Σ̂
p

→ Σ(γ ∗) under {γn} ∈ Γ (γ ∗) such that Σ̂ is positive-definite with probability
approaching 1. For ease of exposition, we assume Σ̂ to be positive-definite and, thus, invertible in what follows.

3. A conditional likelihood ratio test

For the remainder of this paper, we assume that Θ is given by a (J × 1) Cartesian product of intervals equal to [0, c] or
[−c, c] for some c < ∞, where the use of a common end point is merely for notational ease. The boundary of the parameter
space is normalized to be ‘‘on the left’’ and at 0, without loss of generality.15 If θj ∈ [0, c] for j ∈ {1, . . . , J}, we say that θj is

11 In the context of GMM, it is convenient to take DQn(θ ) and D2Qn(θ ) equal to G′

θWGn(θ ) and G′

θWGθ , respectively, where Gθ denotes the (left/right)
partial derivatives of the limit of Gn(θ ) under {γn} ∈ Γ (γ ∗) evaluated at θ∗ , W denotes the limit of the weighting matrix under {γn} ∈ Γ (γ ∗) (possibly
evaluated at θ∗), and Gn(θ ) denotes the sample moment (cf. Andrews and Cheng, 2014).
12 For example, if Qn(θ ) has continuous (left/right) partial derivatives of order two on (a suitably defined superset of) Θ , then Eq. (1) and Assumption 4

can be shown to hold with D̂Q n(θ ) = DQ n(θ ) =
∂
∂θ

Qn(θ ) and D̂2Q n(θ ) = D2Q n(θ ) =
∂2

∂θ ′∂θ
Qn(θ ) given the following Assumption: Under {γn} ∈ Γ (γ ∗),

sup
θ∈Θ:∥θ−θn∥≤ϵn

 ∂2

∂θ ′∂θ
Qn(θ ) −

∂2

∂θ ′∂θ
Qn(θn)

 = op(1)

for all sequences of positive scalar constants {ϵn : n ≥ 1} for which ϵn → 0 (cf. Lemma 1 in Andrews, 1999). Note that the verification of Assumption 4, in
addition, requires that θ̂n is consistent, i.e., θ̂n − θn = op(1) under {γn} ∈ Γ (γ ∗). Furthermore, the above Assumption together with Assumptions 2 and 3
and consistency of θ̂n can be shown to imply Assumption 1 (cf. Theorem 1 in Andrews, 1999).
13 So-called one-step estimators, such as the one given in Eq. (2), are also discussed in Newey and McFadden (1994), who consider the standard setting

where the true parameter vector is assumed to be in the interior of the parameter space andmotivate them by noting that they are ‘‘[. . . ] particularly helpful
when simple initial estimators can be constructed, but an efficient estimator is more complicated [. . . ]’’. In the nonstandard setting considered here, they
are helpful because they are asymptotically normally distributed, whereas the form of the asymptotic variance matrix is only of secondary interest.
14 If the objective function is quadratic in θ , Rn(θ ) = 0, then θ̃n coincides with the unconstrained estimator.
15 If the jth entry of the original parameter vector, say ϑ , satisfies ϑj ∈ [c1, c2], where −∞ < c1 < c2 < ∞, and ϑj = c1 (ϑj = c2) is empirically relevant,

take θj = ϑj − c1 (θj = c2 − ϑj).
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restricted below by 0. If θj ∈ [−c, c] we say that θj is unrestricted, i.e., c is taken to be large. The reason for considering this
form of the parameter space is that it allows us to derive certain optimality results for our proposed test. Furthermore, it is
obtained for many models of interest, most notably in the context of random coefficients models.16

In what follows, we consider the following partition θ = (β, δ), where β denotes the (K × 1) parameter of interest and δ
denotes a (L×1) nuisance parameter, with 1 ≤ K ≤ J and L = J −K . Let θ̄ = (β̄, δ̄) andΘ = B×D denote the corresponding
partitions of the true parameter vector and space, respectively.17 Formally, we are interested in testing

H0 : β̄ = β0 ∈ B, δ̄ ∈ D vs. H1 : β̄ ̸= β0, β̄ ∈ B, δ̄ ∈ D. (3)

We consider the following transformation of the quasi unconstrained estimator Xn ≡ δ̃n − Σ̂δβΣ̂−1
ββ β̃n, where (β̃n, δ̃n) and[

Σ̂ββ Σ̂βδ

Σ̂δβ Σ̂δδ

]
denote conformable partitions of θ̃n and Σ̂ , respectively. For the purpose of testing (3), we suggest using the following
Conditional Likelihood Ratio (CLR) statistic

CLR(β0, β̃n, Xn, Σ̂/n, Be,De)

≡ inf
d∈De

(
β̃n − β0

Xn + Σ̂δβΣ̂−1
ββ β̃n − d

)′
(

Σ̂

n

)−1 (
β̃n − β0

Xn + Σ̂δβΣ̂−1
ββ β̃n − d

)

− inf
b∈Be,d∈De

(
β̃n − b

Xn + Σ̂δβΣ̂−1
ββ β̃n − d

)′
(

Σ̂

n

)−1 (
β̃n − b

Xn + Σ̂δβΣ̂−1
ββ β̃n − d

)
, (4)

where Be and De denote ‘‘extensions’’ of B and D such that they equal Cartesian products of intervals equal to [0, ∞) or
(−∞, ∞). This definition of the CLR statistic ensures that only boundaries at 0 are taken into account. The motivation
for using the CLR statistic is that it takes the restrictions on the entire parameter vector into account while allowing the
construction of a test that controls asymptotic size in a straight-forward manner. The idea of the proposed test relies on
the conditioning principle suggested byMoreira (2003). In particular, Xn asymptotically serves as a sufficient statistic for the

unknown nuisance parameter δ̄ such that the conditional distribution of the CLR statistic given Xn is approximately nuisance
parameter free. An easy-to-implement test is then obtained by using conditional critical values.

Before formally introducing our proposed test, we consider a slight modification of the above CLR statistic. Let s denote
a possibly empty subset of {1, . . . , L} with cardinality Ls. In what follows, the superscript s also indicates suitably defined
subvectors, matrices, and parameter spaces. For example, Ds

= D1 × · · · × Di × · · · × DL where i ∈ s, with Di denoting the
ith coordinate of D. Similarly, δs = Sδ, where S denotes a ‘‘selection matrix’’ given by (e1, . . . , ei, . . . , eL)′ where i ∈ s and
where ei denotes the (L × 1) unit vector with the ith entry equal to 1 and 0s elsewhere. We also let

Σ̂ s
=

[
Σ̂ββ Σ̂ s

βδ

Σ̂ s
δβ Σ̂ s

δδ

]
,

where Σ̂ s
βδ = Σ̂βδS ′, Σ̂ s

δβ = SΣ̂δβ , and Σ̂ s
δδ = SΣ̂δδS ′. Then, the ‘‘modified’’ CLR statistic is given by CLR(β0, β̃n, X s

n, Σ̂ s/n,
Be,De,s). The reason for considering this modification is that our asymptotic optimality results below will, in some cases,
only hold for certain subsets. Furthermore, our power analysis in Section 4 reveals that it may sometimes be advantageous
to consider tests based on subsets. Lastly, note that CLR(β0, β̃n, X s

n, Σ̂ s/n, Be,De,s) is equal to CLR(β0, β̃n, X s′
n , Σ̂ s′/n, Be,De,s′ )

where s′ is such that De,s′ only includes those entries of De,s that equal [0, ∞).18 In words, if a nuisance parameter is
unrestricted, our proposed test statistic and the resulting test are invariant to its true value; a property shared by many
standard tests when the true parameter is in the interior of the parameter space.

In what follows, we drop the term ‘‘modified’’ and define the CLR test for testing (3) as follows

ϕCLR(β0, β̃n, X s
n, Σ̂ s/n, Be,De,s) =

{
1 if CLR(β0, β̃n, X s

n, Σ̂ s/n, Be,De,s) > cv1−α(β0, X s
n, Σ̂ s/n, Be,De,s)

0 otherwise,

where cv1−α(β0, X s
n, Σ̂ s/n, Be,De,s) with α ∈ (0, 1) denotes the critical value function. Here,

cv1−α(β0, xs,Σ s, Be,De,s) = inf{q ∈ R :

P(CLR(β0, (Σ̂ββ/n)1/2Z + β0, X s
n, Σ̂ s/n, Be,De,s) ≤ q|X s

n = xs, Σ̂ s/n = Σ s) ≥ 1 − α} (5)

16 Including censored panel data models with slope heterogeneity (Abrevaya and Shen, 2014) and GARCH models (Francq and Zakoïan, 2009).
See Andrews (1999, 2001) for additional examples. A notable exception is given by random coefficients models that allow the random coefficients to
be correlated (Andrews, 2001).
17 Here, we consider fixed true parameters in order to introduce our proposed test, but we rely on drifting sequences of true parameters when deriving

the corresponding asymptotic theory.
18 This follows from Lemma 1 in Appendix B, assuming Σ̂ is positive-definite and ∥θ̃n∥ < ∞.
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where Z |X s
n = xs, Σ̂ s/n = Σ s

∼ N(0, IK ) and where xs andΣ s denote possible realizations of X s
n and Σ̂ s/n, respectively. In

Appendix C, we show that, under Assumptions 1–5, the confidence set obtained by inverting the CLR test controls asymptotic
size in a uniform sense, over Γ . We also show that, under certain conditions, the stronger result of asymptotic similarity
holds.

3.1. Asymptotic optimality results for K = 1

While asymptotic size control is a desirable property, we may also ask whether the CLR test enjoys some optimality
properties, at least asymptotically. Here, we show that an ‘‘asymptotic version’’ of the CLR test, defined in the relevant
Gaussian shift model, is admissible and essentially WAP-maximizing subject to a similarity constraint when K = 1. In
Appendix C, we then show that the CLR test based on θ̃n inherits these optimality properties asymptotically, in the sense
of Müller (2011).19

We say that (
√
n(θ̃n − θ∗), Σ̂) converges to a Gaussian shift model under {θn : n ≥ 1} local to θ∗ if

√
n(θ̃n − θ∗)

d
→ Y ∼ N(µ, Σ) and Σ̂

p
→ Σ, (6)

whereµ ∈ M(θ∗) ⊂ RJ andwhereΣ , suppressing the dependence on γ ∗, is positive-definite. Here,µ is fixed and denotes the
localization parameter,µ =

√
n(θn − θ∗).20 Solving for θn = θ∗

+
µ

√
n explains whywe say that Eq. (6) is obtained under {θn}

local to θ∗. Note that M(θ∗) depends on θ∗ in a non-trivial way. In particular, M(θ∗) equals a Cartesian product of intervals
equal to [0, ∞) if Θj = [0, c] and θ∗

j = 0 and (−∞, ∞) otherwise. We note that Eq. (6) holds under Assumptions 1–5 for
suitably defined drifting sequences of true parameters.

Let µ = (b, d), θn = (βn, δn), θ∗
= (β∗, δ∗), and M(θ∗) = B(β∗) × D(δ∗) denote conformable partitions, such that

b =
√
n(βn − β∗) and d =

√
n(δn − δ∗). Then, the testing problem given in (3) local to θ∗ can be written as

H0 : b = b0 ∈ B(β∗), d ∈ D(δ∗) vs. H1 : b ̸= b0, b ∈ B(β∗), d ∈ D(δ∗), (7)

where b0 ≡
√
n(βn,0 − β∗) or, equivalently, βn,0 ≡ β∗

+
b0√
n with b0 fixed, such that {βn,0 : n ≥ 1} denotes a drifting

sequence of null hypotheses. Here, we consider drifting sequences of true parameters and null hypotheses, i.e., H0 : βn =

βn,0 = β∗
+

b0√
n , δn = δ∗

+
d

√
n rather than, say, H0 : β̄ = β0 = β∗, δ̄ = δ∗, because the testing problem is not invariant to θ∗

if Θ ̸= [−c, c]J . In particular, our asymptotic optimality results below cover the case where sequences of null hypotheses
with b0 > 0 (b0 = 0) correspond to testing parameter values that are near (or at) the boundary relative to the sample size,
B(β∗) = [0, ∞). Similarly, our results cover the case where nuisance parameters, which are not specified under the null
hypothesis, are near (or at) the boundary relative to the sample size, D(δ∗)j = [0, ∞) for some (or all) j ∈ {1, . . . , L}.

In what follows, we consider tests defined in the Gaussian shift model where Y is observed, with µ unknown and Σ

known. Let CY denote the class of all tests based on Y for testing (7). Formally, a test is given by a measurable function
ϕ : Y → [0, 1], where Y = RJ denotes the support of Y , and ϕ(y) is to be understood as the probability of rejecting the null
hypothesis given a realization of Y , denoted y. Let

Eµ[ϕ(Y )] =

∫
Y

ϕ(y)dF (y; θ∗, µ, Σ)

denote the power function of ϕ, where F (y; θ∗, µ, Σ) denotes the distribution function of Y .21 Furthermore, let M0(θ∗) =

{b0} × D(δ∗) and M1(θ∗) = M(θ∗) \ M0(θ∗) such that Eq. (7) can equally be written as H0 : µ ∈ M0(θ∗) vs. H1 : µ ∈ M1(θ∗).
In order to compare tests, we consider the following risk function

Rϕ(µ) =

{
Eµ[ϕ(Y )] if µ ∈ M0(θ∗)
1 − Eµ[ϕ(Y )] if µ ∈ M1(θ∗),

which returns the type I error for µ ∈ M0(θ∗), i.e., the probability of rejecting the null hypothesis when it is true, and the
type II error for µ ∈ M1(θ∗), i.e., the probability of failing to reject the null hypothesis when it is false. A test ϕ′ is said to
dominate another test ϕ if Rϕ′ (µ) ≤ Rϕ(µ) for all µ ∈ M(θ∗) with strict inequality, Rϕ′ (µ) < Rϕ(µ), for some µ ∈ M(θ∗). A
test ϕ is called admissible in a class of tests C∗

Y ⊂ CY if there exists no ϕ′
∈ C∗

Y such that ϕ′ dominates ϕ. Admissibility is a
minimal optimality requirement for a test within a certain class of tests.

The following Theorem states the second main result of this paper. Define X ≡ Yd − ΣδβΣ−1
ββ Yb, where Y = (Yb, Yd)

and where Σδβ and Σββ denote the corresponding blocks of Σ . Note that (Yb, X) is a one-to-one function of Y , with Σ

known and positive-definite. Then, the CLR test based on Y or, equivalently, based on (Yb, X) for testing (7) is given by
ϕCLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s), where, without loss of generality (by Lemma 1 in Appendix B), s is a subset such that
D(δ∗)s = [0, ∞)L

s
.

19 The framework of Müller (2011) is well-suited to derive asymptotic optimality results in the context of extremum estimation as it does not necessitate
the specification of a (semi-)parametric statistical model (forWn), which underlies Le Cam’s limit of experiments framework (see e.g., Van der Vaart, 1998).
20 Some authors suppress the dependence of the true parameter on the sample size and write µ =

√
n(θ̄ − θ∗).

21 We write F (y; θ∗, µ, Σ) to highlight the dependence of (the parameter space for) µ on θ∗ .
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Theorem 2. ϕCLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s) is admissible in the class of tests CY if (i) B(β∗) = (−∞, ∞) or B(β∗) = [0, ∞)
and b0 > 0 and if (ii) B(β∗) = [0, ∞) and b0 = 0, as long as s is a subset for which Σ s

δβ ≥ 0 and α ≤ 0.5.

Note that conditions (i) and (ii) in Theorem 2 implicitly impose K = 1. The proof of Theorem 2 is given in Appendix B and
consists of two steps. First, it is shown that any similar testwith convex acceptance sections is admissible. Second, it is shown
that, under conditions (i) and (ii), ϕCLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s) is similar with convex acceptance sections. A test, ϕ, is
said to be similar if Eµ[ϕ(Y )] = α for all µ ∈ M0(θ∗) and conditionally similar if Eµ[ϕ(Y )|X = x] = Eµ[ϕ(Yb, X)|X = x] = α

for all µ ∈ M0(θ∗) and x ∈ X , where X = RL denotes the support of X . Let Yb = R denote the support of Yb. A test is said
to have convex acceptance sections if its acceptance region, Aϕ = {(yb, x) ∈ Yb × X : ϕ(yb, x) = 0}, is measurable and if the
acceptance region’s x-sections, Aϕ(x) = {yb ∈ Yb : (yb, x) ∈ Aϕ}, are closed and convex in Yb for all x ∈ X . The first step
of the proof follows from Matthes and Truax (1967). For the problem at hand, their Theorem 3.1 asserts that the class of
similar tests with convex acceptance sections is essentially complete. A class of tests, C∗

Y ⊂ CY , is essentially complete, if for
any ϕ ̸∈ C∗

Y , there exists a ϕ∗
∈ C∗

Y such that Rϕ∗ (µ) ≤ Rϕ(µ) for all µ ∈ M(θ∗). Admissibility of a similar test with convex
acceptance sections can then be derived given that Yb is scalar. The result relies on X being a complete sufficient statistic for
d. The second step of the proof exploits the form of the CLR statistic given in (4).

A comment about condition (ii) is in order. If B(β∗) = [0, ∞) and b0 = 0, i.e., if the testing problem is one-sided,
CLR(0, Yb, X s, Σ s, [0, ∞),D(δ∗)s) given X s

= xs has a probability mass at zero (see Appendix B). As a result, ϕCLR(0, Yb,
X s, Σ s, [0, ∞),D(δ∗)s) may cease to be conditionally similar and, thus, cease to be similar. Choosing s such that Σ s

δβ ≥

0 ensures that ϕCLR(0, Yb, X s, Σ s, [0, ∞),D(δ∗)s) is (conditionally) similar for α ≤ 0.5. In fact, under condition (ii),
ϕCLR(0, Yb, X s, Σ s, [0, ∞),D(δ∗)s) reduces to the standard one-sided test that rejects if Yb/Σββ > z1−α , where z1−α denotes
the 1 − α quantile of N(0, 1).

The testing problem given in (6) and (7) corresponds to the testing problem studied in Montiel-Olea (2018). There-
fore, his Theorem 1 applies, which states that any admissible and similar test is an extended WAP-similar test. As
ϕCLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s) is admissible and similar under conditions (i) and (ii), it follows that ϕCLR(b0, Yb, X s, Σ s,
B(β∗),D(δ∗)s) is an extended WAP-similar test. The appeal of an extended WAP-similar test is that there essentially exist
weights with respect to which the test maximizes WAP subject to a similarity constraint. See Appendix B for details.

4. Power function comparison

In this section, we compare the power functions of ϕCLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s) (CLRs) and several other tests based
on Y for testing (7). We write CLR if X s

= X . Given Eq. (6), the analysis carries over to local asymptotic power functions of
appropriately defined tests based on θ̃n. Since the distribution functions of the underlying test statistics are non-standard and
in many cases do not even have closed form expressions, we resort to a graphical evaluation using simulation. The rejection
frequencies are obtained for a 5% nominal level, using 10,000Monte Carlo draws.Without loss of generality,Σ is normalized
to a correlationmatrix. Given that the testing problem varies with B(β∗), D(δ∗), andΣ , we focus on several leading examples
that allow us to illustrate certain key properties of the tests under study. One test of particular interest is the ‘‘naive’’ t-test
that compares |b̂ML − b0| to the standard critical value, 1.96, where b̂ML denotes the maximum likelihood estimator for b
in (6). The reason for considering this test is that its power function corresponds to the local asymptotic power function of
the two-sided t-test based on β̂n that is used in practice, if V (γ ∗) = aJ (γ ∗) for some 0 < a < ∞. Note that all other tests
considered in this section require the novel quasi unconstrained estimator when implemented in practice.

4.1. Scalar parameter of interest

4.1.1. Scalar nuisance parameter near the boundary
We first consider the case where b and d are scalar, with B(β∗) = (−∞, ∞) and D(δ∗) = [0, ∞). Given that the testing

problem is invariant to b0, we take b0 = 0 without loss of generality. Here, Σ varies with a single correlation parameter,
ρ ≡ Σ12. We set ρ = 0.9.

Fig. 1 shows the rejection frequency as a function of b of the CLR, the regular t-test (t) that rejects if |Yb − b0| > 1.96, and
the aforementioned ‘‘naive’’ t-test (tN) for different values of d. For ease of reference, all figures include a horizontal line at
the 5% nominal level. We find that the tN is size-distorted, but does not overreject (for any d ∈ [0, ∞), see Appendix D).22
The CLR is by construction size-correct, although not unbiased. In terms of power, the CLR displays advantages over the tN,
except for large values of b when d is small. Compared to the t, which is unbiased, the CLR sacrifices power for b < 0, but
displays power advantages for b > 0.

Fig. 2 shows the rejection frequency of the WAP-similar (WS) test suggested by Montiel-Olea (2018), the Nearly Optimal
(NO) test suggested by Elliott, Müller and Watson (2015), and the CLR for ease of reference.23 The CLR and the WS both

22 For the testing problem at hand with B(β∗) = (−∞, ∞) and D(δ∗) = [0, ∞), this result is already known (Andrews and Guggenberger, 2010b). Note,
however, that the condition V (γ ∗) = aJ (γ ∗) for some 0 < a < ∞ is crucial for this result. If this condition is not satisfied, the resulting test can easily be
shown to overreject for certain ‘‘choices’’ of V (γ ∗) and J (γ ∗).
23 Both tests require the choice of weights. For the NO test, we use the same weights as Elliott, Müller and Watson (2015) and for the WS test we use

the weights suggested in the 2013 working paper version of Montiel-Olea (2018), which yield a closed form expression of the test statistic, indexed by λ.
We choose λ = 0.1. For larger values of λ, the test becomes more skewed with higher power for positive alternatives, b > 0, and lower power for negative
alternatives, b < 0.



P. Ketz / Journal of Econometrics 207 (2018) 285–306 293

Fig. 1. Rejection frequency as a function of b of CLR (solid), t (dashed), and tN (dotted) for testing H0 : b = 0 with d = 0, 1, 2 from left to right. ρ = 0.9.

Fig. 2. Rejection frequency as a function of b of CLR (solid), WS (dashed), and NO (dotted) for testing H0 : b = 0 with d = 0, 1, 2 from left to right. ρ = 0.9.

Fig. 3. Rejection frequency as a function of b of CLR (solid), t (dashed), and tN (dotted) for testing H0 : b = 0 with d = 010, 110, 210 from left to right.
ρ = 0.3.

(essentially) maximize WAP subject to a similarity constraint. Fig. 2 shows that the weights implicitly underlying the CLR
are attractive24 : compared to the WS, the CLR is more powerful for b < 0 when d is small and only slightly less powerful
for b > 0 at intermediate values of d. The NO nearly maximizesWAP among all level α tests. Since the CLR is admissible, the
NO does not dominate it. It does, however, offer considerable power gains for b > 0 when d is small at the cost of some loss
of power for b < 0. In Appendix D, we consider several additional tests for the testing problem at hand, notably ‘‘asymptotic
versions’’ of the tests considered in Andrews (2001) and two alternative conditional tests.

4.1.2. Multidimensional nuisance parameter near the boundary
Next, we consider the case where d is multidimensional, with B(β∗) = (−∞, ∞) and D(δ∗) = [0, ∞)L. We impose the

following structure on Σ: Σδβ = ρL and Σδδ , the lower-right submatrix of Σ , equals IL. We set L = 10 and ρ = 0.3.
Fig. 3 shows the rejection frequency of the CLR, the t, and the tN. We no longer implement the NO, because of its high

computational cost in the presence of a ‘‘high’’ dimensional nuisance parameter.We also refrain from implementing theWS,
although its computational cost is equivalent to that of the CLR, if the weights are chosen such that a closed form expression

24 While Theorem 1 in Montiel-Olea (2018) implies that there essentially exist weights with respect to which admissible and similar tests, such as the
CLR, are WAP-maximizing subject to a similarity constraint, it does not provide a characterization result.
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Fig. 4. Rejection frequency as a function of b1 of CLR (solid), Wald (dashed), and CLRs (dotted) for testing H0 : b1 = b2 = 0 with b2 = 0, 1, 2 from left to
right with d = 0. ρ = 0.9.

of the test statistic is available. Fig. 3 illustrates that the tN can suffer from overrejection and, thus, does not control size. As
in the case of a scalar nuisance parameter near the boundary, the CLR displays greater power than the t for b > 0. However,
the sacrifice of power for b < 0 is much more important and, arguably, in the case at hand the t may well be the preferred
choice.

4.2. Two-dimensional parameter of interest

We now turn to the case where b is two-dimensional, b = (b1, b2), and B(β∗) = (−∞, ∞) × [0, ∞). We consider the
case of a scalar nuisance parameter near the boundary, D(δ∗) = [0, ∞), and restrict all off-diagonal entries of Σ to be equal
to ρ. We set ρ = 0.9 and consider testing b0 = (0, 0). This null hypothesis corresponds, for example, to testing whether
a given regressor can be excluded from a random coefficients regression model. Note, however, that the testing problem is
not invariant to b0.

Fig. 4 shows the rejection frequency as a function of b1 of the CLR, the regular Wald test based on Yb (Wald), and the
CLRs with s being the empty subset, i.e., CLRs only uses Yb, for different values of b2. The three tests have equal power when
b2 = 0. For b2 > 0, the CLR offers power advantages over the other two tests, with the CLRs displaying power advantages
over the Wald.

4.3. Comments

The above analysis shows that the tN, representative of Wald tests that are based on a constrained extremum estimator
but, nevertheless, use standard χ2 critical values, is size-distorted: It can suffer from under- as well as overrejection. This
provides a strong argument for using tests that employ the quasi unconstrained estimator. The NO test displays good power
properties, but suffers from high computational costs in the presence of a multidimensional nuisance parameter. The CLR,
on the other hand, is computationally cheap, regardless of the dimension of the nuisance parameter, and also displays
good power properties. While the t may seem preferable to the CLR in case of a large dimensional nuisance parameter
(cf. Section 4.1.2), note that the t or, more generally, the Wald test can be obtained as a CLRs when B = [−c, c]K (such that
B(β∗) = (−∞, ∞)K for all β∗

∈ B) by choosing s equal to the empty set. We conclude that, given the testing problem, an
appropriate choice of s will provide a test that has not only theoretical optimality properties, but also good local asymptotic
power properties.

5. Application

The standard formulation of the random coefficients logit model (Berry, Levinsohn and Pakes, 1995) assumes that the
random coefficients are independently normally distributed such that the model parameters are given by a vector of means
and a vector of variances. Since variances are bounded below by zero, the model readily fits our theoretical framework.25
Before turning to the empirical application using data on the European car market, we present a small Monte Carlo study
to investigate the finite-sample behavior of the CLR test when implemented using the quasi unconstrained estimator.
Throughout this section, we take s to be the subset that includes all nuisance parameters that are restricted below by zero,
unless the parameter of interest is restricted below by zero in which case s is chosen to be the largest subset such that
Σ̂ s

δβ ≥ 0. For notational convenience, we omit the superscripts.

25 In applications, the model is – to the best of our knowledge – always parameterized with respect to standard deviations rather than variances. In Ketz
(2018), we show that Eq. (1) uponwhich Assumptions 1–5 are based is not or, rather, cannot be satisfied under this alternative parameterization and analyze
the consequences this has for inference. Here, we use the parameterization in terms of variances for which Assumptions 1–5 hold given an appropriately
defined parameter space, Γ , see Ketz (2018) for details.
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Table 1
Monte Carlo — Rejection frequencies.

True values H0 : µ1 = −2 H0 : µ2 = 2 H0 : µ3 = 2 H0 : σ 2
= 0

µ1 µ2 µ3 σ 2 tN CLR tN CLR tN CLR tN CLR

−2 2 2 0 0.035 0.037 0.035 0.041 0.032 0.049 0.023 0.049
−2 2 2 0.25 0.037 0.038 0.042 0.049 0.038 0.045 0.264 0.391
−2 2 1.5 0 0.035 0.037 0.030 0.043 0.324 0.383 0.029 0.054
−2 2 2.5 0 0.036 0.038 0.046 0.049 0.393 0.442 0.020 0.045

5.1. Monte Carlo

First, we describe the data generating process and introduce the model in more detail. For ease of reference, we use
the same data generating process as Reynaert and Verboven (2014). In what follows, we ‘‘recycle’’ some of the previous
notation. Berry, Levinsohn and Pakes (1995) define the demand for product j ∈ {1, . . . , J} in market t ∈ {1, . . . , T }

as a function of the product characteristics of all products in that market. Product characteristics can be classified into
observables, xt = (x1t , . . . , xJt ), and unobservables, ξt = (ξ1t , . . . , ξJt )′, where xjt and ξjt are vector-valued and scalar,
respectively. Here, we consider three product characteristics in xjt , xjt,1 through xjt,3. However, we only allow for a random
coefficient on xjt,3. The mean parameters, µ1 through µ3, are unrestricted, while the variance parameter, σ 2, is restricted
below by 0. Let φ(v, µ, σ 2) denote the pdf of a normal random variable with mean µ and variance σ 2.26 Then, the market
share for product j in market t is given by

sj(µ1, µ2, µ3, σ
2, xt , ξt ) =

∫
∞

−∞

eµ1xjt,1+µ2xjt,1+vxjt,3+ξjt

1 +
∑J

l=1 e
µ1xlt,1+µ2xlt,1+vxlt,3+ξlt

φ(v, µ3, σ
2)dv. (8)

Equating model implied market shares, given in (8), with market shares observed in the data, the model parameters are
estimated by GMM relying on a zero moment condition that interacts the error term, ξjt , with a set of instruments. For more
details on the model and the estimation procedure, see e.g., Nevo (2000). We follow Reynaert and Verboven (2014) and
implement an approximation to the optimal instruments (implying that V (γ ∗) = aJ (γ ∗) for some 0 < a < ∞).

We model xjt,1 to be endogenous. In particular, xjt,1 is generated as

xjt,1 = w′

jtπ1 + z ′

jtπ2 + ζjt ,

wherewjt = (xjt,2, xjt,3)′ denotes the exogenous product characteristics and zjt is a three-dimensional vector of instruments.
The endogeneity of xjt,1 arises, because the error terms, ξjt and ζjt , are drawn from a bivariate normal distribution with zero
means, unit variances, and correlation equal to 0.7. xjt,2 is a constant, xjt,3 is uniformly distributed on [1, 2], and zjt is a vector
of uniform random variables with support on [0, 1]. The true parameter values are chosen as π1 = (0.7, 0.7), π2 = (3, 3, 3),
µ1 = −2, and µ2 = 2 while we vary the true parameter values of µ3 and σ 2 in order to investigate size and power for
testing H0 : µ1 = −2, H0 : µ2 = 2, H0 : µ3 = 2, and H0 : σ 2

= 0. We choose T = 25 and J = 10 totaling 250 products over
all markets.

Table 1 reports the rejection frequencies of the CLR test and the ‘‘naive’’ t-test that is based on the constrained extremum
estimator (tN) over 1000 Monte Carlo replications. Since market shares, given in (8), and, thus, the GMM objective function
cannot be evaluated at negative values of σ 2, the quasi unconstrained estimator needs to be employed in order to construct
the CLR statistic. Table 1 shows that both tests control size, while the tN is undersized, and that the CLR test displays power
advantages over the tN. These finite sample results are in line with our asymptotic results (cf. Section 4.1.1) and we conclude
that our asymptotic theory provides good approximations.

5.2. Empirical results

We now turn to the empirical application using data from Reynaert and Verboven (2014) (RV). RV estimate the demand
for cars in several European countries spanning the years from 1998 to 2010. The product characteristics are price divided
by income (Price/Inc.), horse power per weight (Hp/We.), a dummy variable indicating whether the car brand is foreign
(Foreign), size (Size) obtained as length times width, height (Height), and fuel efficiency (e/km) given by price in e per
kilometer. See RV for more details on the dataset and its construction.

The first two columns of Table 2 show the estimates and the corresponding standard error estimates that RV obtain for the
baseline specification that allows for a random coefficient on each product characteristic, see the last two columns of their
Table 6.27 As the estimates of the variance parameters are all in the interior of the parameter space, the CLR statistic can,

26 φ(v, µ, 0) is defined as 1(v = µ), where 1(·) denotes the indicator function.
27 As standard in the literature, Table 6 in RV reports estimates and corresponding standard error estimates for standard deviations rather than variances,

see also footnote 25 above. The reported standard error estimates in Table 2 are obtained by a simple delta method argument, see Ketz (2018) for details.
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Table 2
Confidence intervals based on tN and CLR.

Est. Std. Err. 95% CI 90% CI

tN CLR tN CLR

Mean valuations µ

Price/Inc. −2.322 0.497 −3.297 −1.347 −3.3100 −1.390 −3.141 −1.504 −3.156 −1.522
Hp/We. −0.918 1.192 −3.253 1.418 −3.218 1.096 −2.878 1.043 −2.860 0.786
Foreign −0.853 0.216 −1.275 −0.430 −1.218 −0.425 −1.207 −0.498 −1.134 −0.492
Size 0.667 0.674 −0.654 1.987 −0.650 2.004 −0.441 1.775 −0.452 1.795
Height 0.183 0.052 0.080 0.286 0.087 0.287 0.097 0.269 0.101 0.271
e/km −3.972 1.344 −6.606 −1.338 −6.391 −1.425 −6.183 −1.761 −5.975 −1.815

Variances σ 2

Price/Inc. 0.274 0.176 0.000 0.619 0.000 0.623 0.000 0.564 0.045 0.569
Hp/We. 10.252 4.346 1.733 18.770 2.798 18.879 3.103 17.401 3.798 17.531
Foreign 0.515 0.736 0.000 1.958 0.000 1.976 0.000 1.726 0.000 1.748
Size 0.057 0.188 0.000 0.427 0.000 0.431 0.000 0.367 0.000 0.373
Height 0.011 0.006 0.000 0.023 0.000 0.023 0.000 0.021 0.002 0.021
e/km 4.424 19.835 0.000 43.299 0.000 43.795 0.000 37.049 0.000 37.644

Table 3
Wald and CLR for testing H0 : µj = σ 2

j = 0.

Wald p CLR p

Price/Inc. 30.261 0.000 106.542 0.000
Hp/We. 6.994 0.030 7.695 0.011
Foreign 754.818 0.000 780.757 0.000
Size 0.998 0.607 1.014 0.463
Height 12.496 0.002 14.022 0.000
e/km 11.308 0.004 12.880 0.001

in the application at hand, be constructed using the ‘‘constrained’’ estimates, cf. Eq. (2).28 The 95% and the 90% confidence
intervals based on the CLR test and the tN are given in the last eight columns of Table 2. The top half of Table 2 shows that the
CLR test can yield tighter confidence intervals (CI) for the mean parameters. For example the 95% CI for the mean parameter
of HP/We. is around 8% shorter than the CI based on tN. The bottom half of Table 2 shows that the CLR test and the tN agree
at the 95% significance level in that both indicate that only the variance on Hp/We. is significantly different from zero. At the
90% significance level, however, the CLR test also rejects the null of a zero variance for Price/Inc. and Height, while the tN
continues to reject that null only for Hp/We. Put differently, in the application at hand, the CLR test allows us to detect the
presence of additional heterogeneity in consumer preferences, which is not picked up by the standard two-sided t-test.

Table 3 computes theWald and the CLR statistic for testingH0 : µj = σ 2
j = 0, where j indexes the product characteristics,

along with the corresponding p-values. In line with the results in Section 4.1.2, the p-values for the CLR test are smaller.
However, here both tests qualitatively yield the same conclusions, at the commonly used significance levels.

Appendix A. Proof of Theorem 1

Proof of Theorem 1. Under {γn} ∈ Γ (γ ∗) and Assumption 4(i), Eq. (2) satisfies

θ̃n − θn = θ̂n − θn −

(
D̂2Q n(θ̂n)

)−1 (
DQn(θn) + D2Qn(θn)(θ̂n − θn) + op(1/

√
n)
)

.

Multiplying both sides by
√
n, we obtain

√
n(θ̃n − θn) = −

(
D̂2Q n(θ̂n)

)−1√
nDQn(θn)

+

(
IJ −

(
D̂2Q n(θ̂n)

)−1
D2Qn(θn)

)
√
n(θ̂n − θn)

−

(
D̂2Q n(θ̂n)

)−1
op(1).

By Assumptions 1, 3, and 4(ii) together with Slutsky’s Theorem, the second and third lines are op(1) under {γn} ∈ Γ (γ ∗). The
conclusion of the Theorem then follows by Assumptions 2, 3, and 4(ii) together with Slutsky’s Theorem. □

28 The construction of the CLR statistic requires an estimate of the asymptotic variance matrix of the estimator, which is not reported in RV. I thank
Mathias Reynaert and Frank Verboven for sharing their estimate of the asymptotic variance matrix with me.
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Appendix B. Results for the CLR test based on Y

In Appendix B.1, we formally introduce the concept of an extendedWAP-similar test (Montiel-Olea, 2018). Appendix B.2
presents several properties of CLR(·), including some Lemmas that are used in the proof of Theorem 2. All proofs, including
that of Theorem 2, are collected in Appendix B.3. Throughout this section, we suppress the dependence of Σ on γ ∗.

B.1. An extended WAP-similar test

Here and in what follows, we sometimes suppress the dummy variable of integration and write, for example,
∫

ϕdF (θ∗,

µ, Σ) for
∫
Y ϕ(y)dF (y; θ∗, µ, Σ). For ϕ ∈ CY define weighted average power over the distribution function w : M1(θ∗) →

[0, 1] as

WAP(ϕ, w) =

∫∫
ϕdF (θ∗, µ, Σ)dw(µ). (9)

Let C sim
Y ⊂ CY denote the class of α-similar tests, i.e., ϕ ∈ C sim

Y if∫
ϕdF (θ∗, µ, Σ) = α for all µ ∈ M0(θ∗). (10)

Let ϕ
sim,w
WAP denote the WAP-similar test with respect to w, i.e., ϕsim,w

WAP ∈ C sim
Y and

WAP(ϕ, w) ≤ WAP(ϕsim,w
WAP , w)

for all ϕ ∈ C sim
Y . A test ϕ ∈ C sim

Y is said to be extended WAP-similar (Montiel-Olea, 2018) if for any ϵ > 0 there exists wϵ such
that

WAP(ϕsim,wϵ

WAP , wϵ) − ϵ ≤ WAP(ϕ, wϵ) ≤ WAP(ϕsim,wϵ

WAP , wϵ). (11)

As stated in the main text, ϕCLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s) is extended WAP-similar if condition (i) or (ii) of Theorem 2 is
satisfied.

B.2. Properties of CLR(·)

In what follows, we provide several useful results pertaining to CLR(b0, yb, xs, Σ s, B,Ds) as a function of (yb, xs) ∈ RK+Ls ,
where Σ and, thus, Σ s is positive-definite and where, with a slight abuse of notation, B denotes a Cartesian product of
intervals equal to [0, ∞) or (−∞, ∞) and Ds

= [0, ∞)L
s
. This choice of Ds is without loss of generality (w.l.o.g.) in light of

the following Lemma.

Lemma 1. Let Ds′ be a Cartesian product of intervals equal to [0, ∞) or (−∞, ∞). Then, CLR(b0, yb, xs
′

, Σ s′ , B,Ds′ ) =

CLR(b0, yb, xs, Σ s, B,Ds), where s is such that Ds only includes those entries of Ds′ that equal [0, ∞).

In what follows, we suppress the dependence on (Σ s, B, Ds) and write, for example, CLR(b0, yb, xs). We normalize Σ to
be a correlation matrix w.l.o.g. Define

QF (yb, xs, b, d) =

(
yb − b

xs + Σ s
δβΣ−1

ββ yb − d

)′(
Σ s)−1

(
yb − b

xs + Σ s
δβΣ−1

ββ yb − d

)
. (12)

Furthermore, let

d∗(b, yb, xs) = argmin
d∈Ds

QF (yb, xs, b, d)

and

(b∗∗(yb, xs), d∗∗(yb, xs)) = argmin
b∈B,d∈Ds

QF (yb, xs, b, d),

which are well-defined given convexity of Ds and B × Ds, such that

CLR(b0, yb, xs) = QF (yb, xs, b0, d∗(b0, yb, xs)) − QF (yb, x, b∗∗(yb, xs), d∗∗(yb, xs)).

The following Lemma is used in the proofs of Lemmas 4 and 5, which, in turn, are used in the proof of Theorem 2.

Lemma 2. d∗(b, xs) ≡ d∗(b, yb, xs) does not depend on yb and QF (yb, xs, b, d∗(b, xs)) is quadratic in yb for any given xs ∈ RLs ,
with partial derivatives given by 2Σ−1

ββ (yb − b).

Note that d∗(b, xs) and (b∗∗(yb, xs), d∗∗(yb, xs)) are continuous functions of (yb, xs). Similarly, QF (yb, xs, b0, d∗(b0, xs)),
QF (yb, xs, b∗∗(yb, xs), d∗∗(yb, xs)), and, thus, CLR(b0, yb, xs) are continuous functions of (yb, xs).
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Remark 1. Note that QF (Yb, X s, b0, d∗(b0, X s)) can be considered a Conditional Score statistic when X s
= X . Note, further,

that the test that compares QF (Yb, X s, b0, d∗(b0, X s)) to its conditional critical value (defined analogously to Eq. (5)) is, by
Lemma 2, identical to the regular Wald test based on Yb that ignores possible restrictions on b.

In what follows, we take w.l.o.g. the first K − K c elements of B equal to (−∞, ∞) and the remaining 0 ≤ K c
≤ K equal

to [0, ∞), i.e., B = (−∞, ∞)K−K c
× [0, ∞)K

c
. Furthermore, we let 0r×c denote a matrix of zeros with r ∈ N rows and

c ∈ N columns. The following Lemma, which corresponds to Theorem 5 in Andrews (1999), provides a characterization of
(b∗∗(yb, xs), d∗∗(yb, xs)).

Lemma 3. Let z ≡ (yb, xs + Σ s
δβΣ−1

ββ yb). Then, (b
∗∗(yb, xs), d∗∗(yb, xs)) = PA(ĵ)z, where ĵ minimizes z ′C ′

j (CjΣ
sC ′

j )
−1Cjz over

j = 1, . . . , 2K c
+Ls for which PA(j)z ∈ B × Ds. Here, A(j) ≡ {a ∈ RK+Ls

: Cja = 0}, PA(j) = IK+Ls − Σ sC ′

j (CjΣ
sC ′

j )
−1Cj, and

{Cj : j = 1, . . . , 2K c
+Ls

} consists of all different matrices composed of some, possibly zero rows of [0(K c+Ls)×(K−K c ) − IK c+Ls ].

Note that PA(j) is the projection matrix onto A(j) with respect to the norm ∥a∥ = (a′(Σ s)−1a)−1/2. Since the probability
distribution function of (Yb, X s) has full support on RK+Ls for any (b, ds) ∈ B × Ds, we have the following Corollary, which
provides a sufficient condition for ϕCLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s) to be similar.

Corollary 1. For any (b, ds) ∈ B × Ds, the (conditional) distribution function of CLR(b0, Yb, X s) (given X s
= xs) is continuous

except if B = [0, ∞)K and b0 = 0K , in which case it has a discontinuity at zero.

Lemmas 2 and 3 together yield the following result.

Lemma 4. If B = (−∞, ∞), then b∗∗(y′′

b, x
s) > b∗∗(y′

b, x
s) whenever y′′

b > y′

b. If B = [0, ∞), then b∗∗(yb, xs) = 0 whenever
yb ≤ y∗

b(x
s) and b∗∗(y′′

b, x
s) > b∗∗(y′

b, x
s) whenever y′′

b > y′

b ≥ y∗

b(x
s) for some y∗

b(x
s) ∈ R. Furthermore, if Σ s

δβ ≥ 0, then
y∗

b(x
s) ≤ 0 ∀xs ∈ RLs .

It follows directly from Lemma 4 that b∗∗(yb, xs) → ∞ as yb → ∞ and b∗∗(yb, xs) → −∞ if B = (−∞, ∞) and
b∗∗(yb, xs) → 0 if B = [0, ∞) as yb → −∞. Furthermore, unless B = [0, ∞) and b0 = 0, there exists by continuity of
b∗∗(yb, xs) a unique ỹb(xs) such that b∗∗(ỹb(xs), xs) = b0 and, thus, CLR(b0, ỹb(xs), xs) = 0. While, if B = [0, ∞) and b0 = 0,
then b∗∗(yb, xs) = b0 and CLR(b0, yb, xs) = 0 for all yb ≤ y∗

b(x
s). Given Lemmas 2 and 4,we then also have the following result,

which is used in the proof of Theorem 2 to show that ϕCLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s) has convex acceptance sections.

Lemma 5. If B = (−∞, ∞) or B = [0, ∞) and b0 > 0, then CLR(b0, y′′

b, x
s) > CLR(b0, y′

b, x
s) (CLR(b0, y′′

b, x
s) < CLR(b0, y′

b, x
s))

whenever y′′

b > y′

b > ỹb(xs) (y′′

b < y′

b < ỹb(xs)). Similarly, if B = [0, ∞) and b0 = 0, then CLR(b0, y′′

b, x
s) > CLR(b0, y′

b, x
s)

whenever y′′

b > y′

b > y∗

b(x
s).

B.3. Proofs

Proof of Lemma 1. Lemma 1 follows from Theorem 4(e) in Andrews (1999). To see this, take q(λ) in Andrews (1999) equal
to QF (yb, xs

′

, b, d), defined in Eq. (12), with λ = (b, d), Z = (yb, xs
′

+ Σ s′
δβΣ−1

ββ yb), J = (Σ s′ )
−1

, p = K + Ls, q = Ls
′

− Ls, and

r = 0. Then, applying Theorem 4(e) twice, with Λ = β0 × [0, ∞)L
s
× (−∞, ∞)L

s′
−Ls (and Λβ = β0 × [0, ∞)L

s
) and with

Λ = B×D = B× [0, ∞)L
s
× (−∞, ∞)L

s′
−Ls (and Λβ = B× [0, ∞)L

s
), where we w.l.o.g. take the last Ls

′

− Ls elements of Ds′

to be equal to (−∞, ∞), yields the desired result, cf. equation (6.4) in Andrews (1999). Note that Assumption 3 in Andrews
(1999) (or, rather, the part that is used in the proof of Theorem 4(e)) is satisfied given the positive-definiteness of (Σ s′ )

−1

and given that (yb, xs
′

+Σ s′
δβΣ−1

ββ yb) ∈ RK+Ls
′

, while Assumptions 7 and 8 in Andrews (1999) are satisfied since β0 ×[0, ∞)L
s
,

B × [0, ∞)L
s
, and (−∞, ∞)L

s′
−Ls equal cones. □

In the proofs of Lemmas 2–5 and Corollary 1, we omit the superscript s for notational convenience.

Proof of Lemma 2. Note that QF (yb, x, b, d) can be written as

(yb − b)′(Σββ − ΣβδΣ
−1
δδ Σδβ )−1(yb − b)

+(2ΣδβΣ−1
ββ b + x − ΣδβΣ−1

ββ yb − d)′(Σδδ − ΣδβΣ−1
ββ Σβδ)−1(x + ΣδβΣ−1

ββ yb − d).

using the formula for the inverse of a partitioned matrix, i.e.,

Σ−1
=

[
(Σββ − ΣβδΣ

−1
δδ Σδβ )−1

−Σ−1
ββ Σβδ(Σδδ − ΣδβΣ−1

ββ Σβδ)−1

−(Σδδ − ΣδβΣ−1
ββ Σβδ)−1ΣδβΣ−1

ββ (Σδδ − ΣδβΣ−1
ββ Σβδ)−1

]
.
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Evaluating this function at y′

b = yb + a, where a ∈ RK , and rearranging terms, we obtain

(yb + a − b)′(Σββ − ΣβδΣ
−1
δδ Σδβ )−1(yb + a − b)

+(2ΣδβΣ−1
ββ b + x − ΣδβΣ−1

ββ yb − d)′(Σδδ − ΣδβΣ−1
ββ Σβδ)−1(x + ΣδβΣ−1

ββ yb − d)

−(2ΣδβΣ−1
ββ (yb − b) + ΣδβΣ−1

ββ a)
′(Σδδ − ΣδβΣ−1

ββ Σβδ)−1(ΣδβΣ−1
ββ a).

Inspection of the last display shows that the minimization problem at yb + a equals the minimization problem at yb
plus a constant, such that the arg min, d∗(b, yb, x), is the same in both cases and we write d∗(b, x). It follows that
QF (yb, x, b, d∗(b, x)) is quadratic in yb, given x ∈ RL. To see this, note that the first-order partial derivatives are given by

∂QF (yb, x, b, d∗(b, x))
∂yb

= 2
(

IK
ΣδβΣ−1

ββ

)′

Σ−1
(

yb − b
x + ΣδβΣ−1

ββ yb − d∗(b, x)

)
= 2Σ−1

ββ (yb − b). □

Proof of Lemma 3. Lemma 3 follows directly from Theorem 5 in Andrews (1999). To see this, take λβ = (b, d), Λβ = B× D
such thatΓb = [0(K c+L)×(K−K c) −IK c+L] (Γa does not appear), Zβ = z,J∗ = Σ−1,H = IK+L, and q = r = 0 (such that p = K+L).
Note that Assumption 3 in Andrews (1999) (as in the proof of Lemma 1) is satisfied given the positive-definiteness of Σ−1

and given that z ∈ RK+L, while Assumptions 7–9 in Andrews (1999) are satisfied given the definition of B × D. □

Proof of Corollary 1. Lemma 3 implies that b∗∗(yb, x) is a piecewise linear function of yb with ‘‘intercepts’’ that depend on
x and with ‘‘slopes’’ given by (Σ − ΣC ′

j (CjΣC ′

j )
−1CjΣ)(1:K )(1:K )Σ−1

ββ where {Cj : j = 1, . . . , 2K c
+L

} consists of all different
matrices composed of some, possibly zero rows of [0(K c+L)×(K−K c) − IK c+L]. Here, the subscript (1 : K )(1 : K ) denotes the K th
order leading principal submatrix. By positive-definiteness ofΣ , it follows that, for any given x ∈ RL, b∗∗(yb, x) is a nontrivial
function of yb almost everywhere (a.e.) unless K c

= K , i.e., B = [0, ∞)K , in which case b∗∗(yb, x) = 0 on a set with positive
Lebesgue measure. Therefore, given any x ∈ RL, CLR(b0, yb, x) is a nontrivial function of yb a.e. unless B = [0, ∞)K and
b0 = 0. Since the probability distribution function of (Yb, X) has full support on RK+L for any (b, d) ∈ B × D, the conclusion
of the Lemma follows. □

Proof of Lemma 4. Let B = (−∞, ∞). As in the proof of Corollary 1, Lemma 3, with K = 1 and K c
= 0 such that

{Cj : j = 1, . . . , 2L
} consists of all different matrices composed of some, possibly zero rows of [0 − IL], implies that b∗∗(yb, x)

is a piecewise linear function of yb with ‘‘slopes’’ given by (Σ − ΣC ′

j (CjΣC ′

j )
−1CjΣ)11 which is strictly positive for all j, by

positive-definiteness of Σ , all its principal submatrices that include Σββ (= 1), and their respective inverses. Therefore,
b∗∗(y′′

b, x) > b∗∗(y′

b, x) whenever y′′

b > y′

b.
Now, let B = [0, ∞). Then, the set of possible solutions for b∗∗(yb, x), given above, is augmented by b∗∗(yb, x) = 0, as

Lemma 3 applies with K = K ′
= 1 such that {Cj : j = 1, . . . , 21+L

} consists of all different matrices composed of some,
possibly zero rows of −I1+L. For any given x ∈ RL, however, there exists yb large enough such that all non-zero candidate
solutions for b∗∗(yb, x) become feasible, since they are all linear in yb with strictly positive slopes. Therefore, for yb large
enough we have b∗∗(yb, x) > 0.

Now, let Σβδ ≥ 0. Assume b∗∗(yb, x) = 0 for some yb > 0. Then, Lemma 2 implies that d∗∗(yb, x) = d∗(0, x) and,
thus, (b∗∗(yb, x), d∗∗(yb, x)) = (0, d∗(0, x)). But if Σβδ ≥ 0, all constraints become less binding as yb increases, cf. Eq. (12).
Therefore, b∗∗(yb, x) = 0 implies that the additional slackness is not picked up, even thoughQF (yb, x, b∗∗(yb, x), d∗∗(yb, x)) =

QF (yb, x, 0, d∗(0, x)) is, by Lemma 2, strictly increasing in yb for all yb > 0. A contradiction.
The conclusion of the Lemma then follows by continuity of b∗∗(yb, x). □

Proof of Lemma 5. Consider y′′

b > y′

b > ỹb(x). From Lemmas 2 and 4, it follows that QF (yb, x, b0, d∗(b0, x)) and
QF (yb, x, b∗∗(y′

b, x), d
∗∗(y′

b, x)) (using d∗∗(y′

b, x) = d∗(b∗∗(y′

b, x), x)) are quadratic functions of yb given x ∈ RL, where the
derivative of the latter is strictly smaller than the derivative of the former. Therefore, we have

QF (y′′

b, x, b0, d
∗(b0, x)) − QF (y′

b, x, b0, d
∗(b0, x)) > QF (y′′

b, x, b
∗∗(y′

b, x), d
∗∗(y′

b, x)) − QF (y′

b, x, b
∗∗(y′

b, x), d
∗∗(y′

b, x))

for all y′′

b > y′

b such that

QF (y′′

b, x, b0, d
∗(b0, x)) − QF (y′′

b, x, b
∗∗(y′

b, x), d
∗∗(y′

b, x)) > QF (y′

b, x, b0, d
∗(b0, x)) − QF (y′

b, x, b
∗∗(y′

b, x), d
∗∗(y′

b, x)).

Since by definition QF (y′′

b, x, b
∗∗(y′′

b, x), d
∗∗(y′′

b, x)) ≤ QF (y′′

b, x, b
∗∗(y′

b, x), d
∗∗(y′

b, x)), it follows that CLR(b0, y′′

b, x) > CLR(b0,
y′

b, x). The other conclusions of the Lemma follow by a similar argument. □

Proof of Theorem 2. As described in themain text, the proof proceeds in two steps. The first step follows from the argument
given in Section 4 of Matthes and Truax (1967). For sake of completeness, we reproduce it here. Let C sim,cas

Y denote the class
of similar tests with convex acceptance sections. Let ϕ be any test in C sim,cas

Y . Assume that ϕ is not admissible in the class CY .
Then there exists a test ϕ′

∈ CY that dominates ϕ. Using completeness of X , which follows from Theorem 4.3.1 in Lehmann
and Romano (2005), it can be shown that a test that dominates ϕ needs to satisfy the following two equations for all x ∈ X :∫

Yb

(ϕ′(yb, x) − ϕ(yb, x))f (yb|b0)dyb = 0 (13)
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and ∫
Yb

yb(ϕ′(yb, x) − ϕ(yb, x))f (yb|b0)dyb = 0, (14)

where f (yb|b) = f (yb|x, b, d) is the pdf of a normal with mean b and variance 1.29 Eq. (13) implies that ϕ′ needs to have the
same size as ϕ conditional on X = x. Eq. (14) implies that ϕ′ needs to have the same ‘‘center of gravity’’ as ϕ conditional
on X = x, i.e., the same conditional expected value over the rejection region. Since C sim,cas

Y is essentially complete, which
follows from Theorem 3.1 inMatthes and Truax (1967), we can assumew.l.o.g. that ϕ′

∈ C sim,cas
Y , i.e., ϕ′ is similar with convex

acceptance sections. Since yb is scalar, the conditional acceptance regions of ϕ and ϕ′ are given by intervals on the real line,
which are uniquely determined by the size and the conditional expected value. Consequently, ϕ′

= ϕ, a contradiction.
Next, we show that, under condition (i), ϕCLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s) is similar with convex acceptance sections.

Similarity follows from Corollary 1 together with the observation that, under the null hypothesis, CLR(b0, Yb, X s, Σ s, B(β∗),
D(δ∗)s) conditional on X s

= xs is, due to the independence of Yb and X s, distributed as CLR(b0, Z + b0, xs, Σ s, B(β∗),D(δ∗)s),
where Z |X s

= xs ∼ N(0, 1), whose 1−α quantile is given by cv1−α(b0, xs, Σ s, B(β∗),D(δ∗)s). Note that the acceptance region
of ϕCLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s) is measurable with respect to the Borel σ -algebra on Y × X and closed, by continuity
of CLR(b0, yb, xs) in (yb, x), suppressing the dependence on (Σ s, B(β∗),D(δ∗)s). Furthermore, its x-sections are convex, as
CLR(b0, yb, xs) is strictly quasiconvex on Yb given x ∈ X . To see this, note that, by Lemma 5, we have that for all λ ∈ (0, 1)
and all yb1, yb2 ∈ Y with yb1 < yb2, CLR(b0, λyb1 + (1 − λ)yb2, xs) < max{CLR(b0, yb1, xs), CLR(b0, yb2, xs)}.

Lastly, we show that, under condition (ii), ϕCLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s) is also similar with convex acceptance
sections. From Lemmas 4 and 5, it follows that CLR(0, yb, xs) is non-decreasing in yb for all yb ∈ Yb and all x ∈ X
and strictly increasing in yb for all yb ≥ 0 and all x ∈ X , as long as Σ s

δβ ≥ 0. This together with the definition of
cv1−α(0, X s, Σ s, [0, ∞),D(δ∗)s) implies that for α ≤ 0.5 ϕCLR(0, Yb, X s, Σ s, [0, ∞),D(δ∗)s) equals the one-sided test that
rejects if Yb > zα , which is similar with convex acceptance sections.30 □

Appendix C. Asymptotic results for the CLR test

In Appendix C.1, we show that the confidence set (CS) obtained by inverting the CLR test controls asymptotic size
and, under some conditions, is asymptotically similar, uniformly over Γ . In Appendix C.2, we show that the CLR test
asymptotically inherits the optimality properties of the CLR test based on Y , in the sense ofMüller (2011). Proofs are collected
in Appendix C.3. Throughout this section, we let R+ = [0, ∞) and R+,∞ = R+ ∪ {∞}.

C.1. Asymptotic size control

In this section,weheavily borrownotation fromAndrews, Cheng andGuggenberger (2011). The nominal 1−α CS obtained
by inverting the CLR test is given by

CSn ={β : ϕCLR(β, β̃n, X s
n, Σ̂ s/n, Be,De,s) = 0}

={β : CLR(β, β̃n, X s
n, Σ̂ s/n, Be,De,s) ≤ cv1−α(β, X s

n, Σ̂ s/n, Be,De,s)}.

The coverage probability of a CS for the true parameter vector β̄ , under γ̄ = (θ̄ , ω̄) ∈ Γ with θ̄ = (β̄, δ̄), is given by

CPn(γ̄ ) ≡ Pγ̄ (β̄ ∈ CSn) = Pγ̄ (CLR(β̄, β̃n, X s
n, Σ̂ s/n, Be,De,s) ≤ cv1−α(β̄, X s

n, Σ̂ s/n, Be,De,s)).

Here, the subscript on P(·) indicates the parameter value under which the probability is evaluated. The asymptotic size,
which approximates finite sample size, is given by

AsySz = lim inf
n→∞

inf
γ∈Γ

CPn(γ ).

Similarly, the asymptotic maximum coverage probability is given by

AsyMaxCP = lim sup
n→∞

sup
γ∈Γ

CPn(γ ).

Next, we provide a characterization result for AsySz and AsyMaxCP using results in Andrews, Cheng and Guggenberger
(2011). To that end,we first introduce some additional notation. Letβc denote the subvector ofβ whose entries are restricted
below by 0 and assume βc

= (β1, . . . , βK c )′ w.l.o.g., i.e., βc collects the first K c elements of β where 0 ≤ K c
≤ K . As before,

we assume w.l.o.g. that all elements of δs are restricted below by 0. Define

H = {h = (bc, ds, γ ∗) :
√
nβc

n → bc ∈ RK c

+,∞,
√
nδsn → ds ∈ RLs

+,∞, and γn → γ ∗ for some {γn ∈ Γ : n ≥ 1}}

29 f (yb|b) equals f (yb|x, b, d) because X is a sufficient statistic for d and Yb and X are independent.
30 Alternatively, note that the one-sided test is admissible by Theorem 4.4.1 and Problem 4.1 in Lehmann and Romano (2005). Note, further, that

admissibility of the one-sided test is obtained, although Yb , considered as an estimator of b, is inadmissible when b = 0, cf. Tripathi and Kumar (2007).
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and let hn(γ ) = (
√
nβc,

√
nδs, γ ). With a slight abuse of notation, let b = (g(bc), 0K−K c ), where g : RK c

+,∞ → RK c
+

with
gj(x) = xj if xj < ∞ and gj(x) = 0 otherwise ∀j ∈ {1, . . . , K c

}. Correspondingly, let B∞ = B∞,1 ×· · ·×B∞,K c × (−∞, ∞)K−K c

where B∞,j = [0, ∞) if bcj < ∞ and B∞,j = (−∞, ∞) otherwise ∀j ∈ {1, . . . , K c
}. Let s′ denote the possibly empty subset

of s for which dsj < ∞, where j ∈ {1, . . . , Ls}, such that ds
′

j < ∞ for all j ∈ {1, . . . , Ls
′

}. And let Ds′
∞

= [0, ∞)L
s′
. Then, for any

sequence {γn ∈ Γ : n ≥ 1} for which hn(γn) → h ∈ H , CPn(γn) → CP(h), where suppressing the dependence of Σ on γ ∗

CP(h) = P(CLR(b, Yb, X s′
− Σ s′

δβΣ−1
ββ b, Σ s′ , B∞,Ds′

∞
) ≤ cvalt1−α(b, X

s′ , Σ s′ , B∞,Ds′
∞
))

with (
Yb

X s′

)
∼ N

((
b
ds

′

)
,

(
Σββ 0
0 Σ s′

δδ − Σ s′
δβΣ−1

ββ Σ s′
βδ

))
.

Here and in what follows, cvalt1−α(b, X
s′ , Σ s′ , B∞,Ds′

∞
) ≡ cv1−α(b, X s′

− Σ s′
δβΣ−1

ββ b, Σ s′ , B∞,Ds′
∞
), i.e., cvalt1−α(b, X

s′ , Σ s′ ,

B∞,Ds′
∞
) denotes the conditional 1 − α critical value of CLR(·) given the first summand of the second entry and the third

entry of cv1−α(·).31 CP(h) is derived in the proof of the following Lemma.

Lemma 6. Under Assumptions 1–5, AsySz = infh∈HCP(h) and AsyMaxCP = suph∈HCP(h).

Lemma 6 follows from Corollary 2.1(b) in Andrews, Cheng and Guggenberger (2011) by verifying their Assumptions B1,
B2∗, C1, and C2.

The following Corollary shows that the CS obtained by inverting the CLR test controls asymptotic size and, under certain
conditions, is asymptotically similar.

Corollary 2. Suppose Assumptions 1–5 hold. Then, AsySz ≥ 1 − α. Furthermore, if B ̸= [0, c]K or B = [0, c], Σ̂ s
δβ ≥ 0, and

α ≤ 0.5, then AsySz = AsyMaxCP = 1 − α.32

Note that the condition for the CS obtained by inverting the CLR test to be asymptotically similar if B = [0, c] reflects
that the ‘‘asymptotic version’’ of the underlying test, as outlined in the main text, may cease to be similar when the testing
problem is one-sided and the corresponding condition is not satisfied. Note that similar but less succinct conditions apply if
B = [0, c]K with K > 1.

C.2. Asymptotic optimality

In this section, we heavily rely on the framework used in Müller (2011). Let Gn(θ∗, µ, Σ,m) denote the distribution
function of the data, Wn, under a given model m, parameterized by (θ∗, µ, Σ).33 The model m takes a similar role as ω
above. As before, we suppress the dummy variable of integration and, thus, the argument of the distribution function, for
notational convenience. Let ϕW denote a test for testing (7) based onWn and let CW denote the class of all such tests. We are
interested in the asymptotic properties of ϕW over a large set of models, sayM. In particular, we consider the set of models
that satisfy Eq. (6), i.e.,

M = {m : Fn(θ∗, µ, Σ,m) → F (θ∗, µ, Σ)},

where Fn(θ∗, µ, Σ,m) and F (θ∗, µ, Σ) denote the distribution functions of fn(Wn) ≡ (
√
n(θ̃n − θ∗), Σ̂) and (Y , Σ),

respectively. As Σ is known in the limit, we also let F (θ∗, µ, Σ), with a slight abuse of notation, denote the distribution
function of Y , cf. Section 3.1. Note that Fn(θ∗, µ, Σ,m) = fnGn(θ∗, µ, Σ,m), using the notational conventions in Müller
(2011).

Following Müller (2011), let C lev
W ⊂ CW denote the class of tests that is asymptotically level α for all models m ∈ M,

i.e., ϕW ∈ C lev
W if

lim sup
n→∞

∫
ϕWdGn(θ∗, µ, Σ,m) ≤ α for all µ ∈ M0(θ∗),m ∈ M. (15)

A test ϕW is said to be asymptotically admissible in a class of tests C∗

W ⊂ C lev
W if ϕW ∈ C∗

W and if for all ϕ′

W ∈ C∗

W

lim inf
n→∞

∫
ϕ′

WdGn(θ∗, µ, Σ,m) ≥ lim
n→∞

∫
ϕWdGn(θ∗, µ, Σ,m) for all µ ∈ M1(θ∗),m ∈ M

31 In the case at hand, Σ s′ is non-random such that

cvalt1−α(b, x
s′ , Σ s′ , B∞,Ds′

∞
) = inf{q ∈ R : P(CLR(b, Σ

1/2
ββ Z + b, X s′

− Σ s′
δβΣ−1

ββ b, Σ s′ , B∞,Ds′
∞
) ≤ q|X s′

= xs
′

) ≥ 1 − α},

where Z |X s′
= xs

′

∼ N(0, IK ) and where xs
′

denotes a possible realization of X s′ .
32 Note that s may change with n, to ensure that Σ̂ s

δβ ≥ 0 for all n.
33 Müller (2011) writes FT (m, θ, γ ) (see p. 414): Here, Gn ‘‘replaces’’ FT , µ ‘‘replaces’’ θ , and Σ ‘‘replaces’’ γ . Note that Müller (2011) suppresses the

dependence (of µ) on θ∗ (see e.g., his unit root test example on p. 400, where θ∗
= 1). Below, we will also let fn ‘‘replace’’ hT .
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implies

lim
n→∞

∫
ϕ′

WdGn(θ∗, µ, Σ,m) = lim
n→∞

∫
ϕWdGn(θ∗, µ, Σ,m) for all µ ∈ M1(θ∗),m ∈ M.

Note that this definition of asymptotic admissibility is weaker than the definition of admissibility given in Section 3, as
we only compare asymptotic rejection frequencies under the alternative and, thus, restrict asymptotic admissibility to (a
subclass of) C lev

W rather than CW . We employ this weaker definition because it allows us to directly apply the results inMüller
(2011).

Let C sim
W ⊂ CW denote the class of asymptotically similar tests, i.e., ϕW ∈ C sim

W if

lim
n→∞

∫
ϕWdGn(θ∗, µ, Σ,m) = α for all µ ∈ M0(θ∗),m ∈ M. (16)

Define WAP for ϕW ∈ CW in a given model m, analogous to Eq. (9), as

WAPn(ϕW , w,m) =

∫∫
ϕWdGn(θ∗, µ, Σ,m)dw(µ).

A test ϕW ∈ CW is said to be asymptotically extendedWAP-similar if ϕW ∈ C sim
W and if for all ϵ > 0 there exist weightswϵ such

that for allm ∈ M

lim sup
n→∞

WAPn(ϕ′

W , wϵ,m) ≤ lim
n→∞

WAPn(ϕW , wϵ,m) + ϵ

for all ϕ′

W ∈ C sim
W .

Lemma 7. Assume that fn(·) is measurable. Let K = 1 and take s to be a subset for which Σ̂ s
δβ ≥ 0 and α ≤ 0.5 if B = [0, c]

and b0 = 0. Then, ϕCLR(βn,0, β̃n, X s
n, Σ̂ s/n, Be,De,s) is (i) asymptotically admissible in the class of tests C lev

W and (ii) asymptotically
extended WAP-similar.

The proof of Lemma 7 follows from Theorem 1(ii) and Section 3.1 in Müller (2011) together with the observation that,
under m ∈ M, ϕCLR(βn,0, β̃n, X s

n, Σ̂ s/n, Be,De,s) is asymptotically equivalent to ϕCLR(b0, Yb, X s′ , Σ s′ , B(β∗),D(δ∗)s
′

) for some
s′. Note that Lemma 7 is obtained for all θ∗ (with a possible exception at β∗

= 0) such that the CLR test enjoys the above
asymptotic optimality properties, in some sense, uniformly.

C.3. Proofs

Proof of Lemma 6. As mentioned above, the conclusion of Lemma 6 follows from Corollary 2.1(b) in Andrews, Cheng and
Guggenberger (2011) (ACG). First, we derive CP(h) which verifies Assumption B1 in ACG. Let β

†
n ≡ (g ′(βc

n, b
c), 0K−K c ), where

g ′
: RK c

+
× RK c

+,∞ → RK c
+

with g ′

j (β
c
n, b

c) = βc
n,j if b

c
j < ∞ and g ′

j (β
c
n, b

c) = 0 otherwise for all j ∈ {1, . . . , K c
}. Let

δs
′

= (δs1, . . . , δ
s
Ls′
)′ w.l.o.g., i.e., δs

′

collects the first Ls
′

elements of δs where 0 ≤ Ls
′

≤ Ls. Let δ
s†
n be a (Ls × 1) vector

where δ
s†
n,j = 0 if j ∈ {1, . . . , Ls

′

} and δ
s†
n,j = δsn,j otherwise. Furthermore, let X s

n(β) ≡ δ̃n − Σ̂ s
δβΣ̂−1

ββ (β̃n −β) = X s
n + Σ̂ s

δβΣ̂−1
ββ β .

Then, for any sequence {γn ∈ Γ : n ≥ 1} for which hn(γn) → h ∈ H , we can write CPn(γn) as follows

Pγn (CLR(βn, β̃n, X s
n, Σ̂ s/n, Be,De,s) ≤ cv1−α(βn, X s

n, Σ̂ s/n, Be,De,s))

=Pγn (CLR(
√
nβn,

√
nβ̃n,

√
nX s

n(βn) − Σ̂ s
δβΣ̂−1

ββ

√
nβn, Σ̂ s,

√
nBe,

√
nDe,s) ≤ cvalt1−α(

√
nβn,

√
nX s

n(βn), Σ̂ s,
√
nBe,

√
nDe,s))

=Pγn (CLR(
√
nβ†

n ,
√
n(β̃n − βn + β†

n ),
√
nX s

n(βn) − Σ̂ s
δβΣ̂−1

ββ

√
nβ†

n , Σ̂ s,
√
n(Be

− βn + β†
n ),

√
nDe,s)

≤ cvalt1−α(
√
nβ†

n ,
√
nX s

n(βn), Σ̂ s,
√
n(Be

− βn + β†
n ),

√
nDe,s)).

Here,
√
n(Be

− βn + β
†
n ) = {b ∈ RK

: b =
√
n(b′

− βn + β
†
n ) for some b′

∈ Be
}. Other transformations of sets, above and

below, are defined similarly. Note that by Theorem 1, the Continuous Mapping Theorem (CMT), and Lemma 1

CLR(
√
nβ†

n ,
√
n(β̃n − βn + β†

n ),
√
nX s

n(βn) − Σ̂ s
δβΣ̂−1

ββ

√
nβ†

n , Σ̂ s,
√
n(Be

− βn + β†
n ),

√
nDe,s)

=CLR(
√
nβ†

n ,
√
n(β̃n − βn + β†

n ),
√
n(X s

n(βn) − δs†n ) − Σ̂ s
δβΣ̂−1

ββ

√
nβ†

n , Σ̂ s,
√
n(Be

− βn + β†
n ),

√
n(De,s

− δs†n ))
d

→CLR(b, Yb, X s
− Σ s

δβΣ−1
ββ b, Σ s, B∞,Ds

∞
)

∼CLR(b, Yb, X s′
− Σ s′

δβΣ−1
ββ b, Σ s′ , B∞,Ds′

∞
),

where

√
n
(

β̃n − βn + β†
n

X s
n(βn) − δs†n

)
=

√
n

⎛⎝ β̃n − βn + β†
n

X s′
n (βn)

X s−s′
n (βn) − δs−s′

n

⎞⎠ d
→

⎛⎝ Yb

X s′

X s−s′

⎞⎠ ≡

(
Yb
X s

)
,
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under any sequence {γn ∈ Γ : n ≥ 1} for which hn(γn) → h ∈ H . Here, Ds
∞

= Ds′
∞

× (−∞, ∞)L
s
−Ls

′

and X s−s′ has mean zero,
where the superscript s−s′ indicates the subvector that contains all entries of the corresponding vector with superscript s
whose indexes are in s\s′, e.g., X s

= (X s′ , X s−s′ ).
Next, we derive the asymptotic distribution of cvalt1−α(

√
nβ†

n ,
√
nX s

n(βn), Σ̂ s,
√
n(Be

− βn + β
†
n ),

√
nDe,s). By Lemma 5

in Andrews and Guggenberger (2010b),

cvalt1−α(
√
nβ†

n , x
s,Σ s,

√
n(Be

− βn + β†
n ),

√
nDe,s) → cvalt1−α(b, x

s,Σ s, B∞,Ds′
∞

× [0, ∞)L
s
−Ls

′

),

where xs and Σ s denote possible realizations of
√
nX s(βn) and Σ̂ s, respectively, and where cvalt1−α(b, x

s,Σ s, B∞,Ds′
∞

×

[0, ∞)L
s
−Ls

′

) is continuous in xs andΣ s, by arguments similar to those given at the bottom of page 38 in ACG. By continuity
in xs and Lemma 1

cvalt1−α(b, x
s,Σ s, B∞,Ds′

∞
× [0, ∞)L

s
−Ls

′

)

=cvalt1−α(b, x
s
− (0, xs−s′ ),Σ s, B∞,Ds′

∞
× ([0, ∞)L

s
−Ls

′

− xs−s′ ))

→cvalt1−α(b, x
s′ ,Σ s′ , B∞,Ds′

∞
)

as xs−s′
→ ∞Ls−Ls′ . We conclude that

cvalt1−α(
√
nβ†

n ,
√
nX s

n(βn), Σ̂ s,
√
n(Be

− βn + β†
n ),

√
nDe,s)

d
→ cvalt1−α(b, X

s′ , Σ s′ , B∞,Ds′
∞
).

As the above convergence results hold jointly, we obtain CP(h) which verifies Assumption B1 in ACG. Assumption B2∗ in ACG
is satisfied given the definition of Γ and hn(γ ). To conclude the proof, note that Assumptions C1 and C2 in ACG are satisfied
by CP(h).34 □

Proof of Corollary 2. The first part of Corollary 2 follows immediately from the observation that, due to the independence
of Yb and X s′ , CLR(b, Yb, X s′

− Σ s′
δβΣ−1

ββ b, Σ s′ , B∞,Ds′
∞
) conditional on X s′

= xs
′

is distributed as CLR(b, Σ
1/2
ββ Z + b, xs

′

−

Σ s′
δβΣ−1

ββ b, Σ s′ , B∞,Ds′
∞
), where Z |X s′

= xs
′

∼ N(0, IK ), whose 1 − α quantile is given by cvalt1−α(b, x
s′ , Σ s′ , B∞,Ds′

∞
). The

second part follows from the fact that the 1−α quantile of CLR(b, Yb, X s′
−Σ s′

δβΣ−1
ββ b, Σ s′ , B∞,Ds′

∞
) conditional on X s′

= xs
′

is unique for all xs
′

∈ Rs′ . If B ̸= [0, c]K , this follows from Corollary 1. If B = [0, c], Σ s
δβ ≥ 0, and α ≤ 0.5, this follows from

Lemmas 4 and 5. □

Proof of Lemma 7. First, note that, by continuity, ϕn
CLR ≡ ϕCLR(βn,0, β̃n, X s

n, Σ̂ s/n, Be,De,s) is a measurable function of Wn
given that fn(Wn) is measurable by assumption. The following steps closely follow the proof of Lemma 6. The rejection
frequency of ϕn

CLR for testing (7), under {θn} local to θ∗, is given by

P(CLR(βn,0, β̃n, X s
n, Σ̂ s/n, Be,De,s) > cv1−α(βn,0, β̃n, X s

n, Σ̂ s/n, Be,De,s))

=P(CLR(b0,
√
n(β̃n − β∗),

√
nX s

n(β
∗), Σ̂ s,

√
n(Be

− β∗),
√
nDe,s)

> cv1−α(b0,
√
n(β̃n − β∗),

√
nX s

n(β
∗), Σ̂ s,

√
n(Be

− β∗),
√
nDe,s)),

where X s
n(β) is defined as in the proof of Lemma 6 and where we have suppressed the dependence of P(·) on the true data

generating process. Underm ∈ M, we have

CLR(b0,
√
n(β̃n − β∗),

√
nX s

n(β
∗), Σ̂ s,

√
n(Be

− β∗),
√
nDe,s)

=CLR(b0,
√
n(β̃n − β∗),

√
n(X s

n(β
∗) − δ∗), Σ̂ s,

√
n(Be

− β∗),
√
n(De,s

− δ∗))
d

→CLR(b0, Yb, X s, Σ s, B(β∗),D(δ∗)s)

∼CLR(b0, Yb, X s′ , Σ s′ , B(β∗),D(δ∗)s
′

),

where s′ is such that D(δ∗)s
′

only includes those entries of D(δ∗)s that equal [0, ∞), by Lemma 1. Similarly, we have

cv1−α(b0,
√
n(β̃n − β∗),

√
nX s

n(β
∗), Σ̂ s,

√
n(Be

− β∗),
√
nDe,s)

d
→ cv1−α(b0, X s′ , Σ s′ , B(β∗),D(δ∗)s

′

).

As the above convergence results hold jointly, we have that ϕn
CLR is asymptotically equivalent to ϕCLR ≡ ϕCLR(b0, Yb, X s′ , Σ s′ ,

B(β∗),D(δ∗)s
′

), underm ∈ M. As in the proof of Theorem 1(i) in Müller (2011), it follows, by the CMT, that

lim
n→∞

∫
ϕn
CLRdFn(θ

∗, µ, Σ,m) =

∫
ϕCLRdF (θ∗, µ, Σ) for all µ ∈ M(θ∗) (17)

34 Note that CP(h) = CP−(h) = CP+(h) using the notation in ACG.
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and, consequently, by dominated convergence that

lim
n→∞

WAPn(ϕn
CLR, w,m) = WAP(ϕCLR, w). (18)

The proof of part (i) follows the reasoning of Comment 3 in Müller (2011). Consider the following constraint on ϕW ∈ CW

lim inf
n→∞

∫
ϕWdGn(θ∗, µ, Σ,m) ≥ π (µ) for all µ ∈ M1(θ∗),m ∈ M, (19)

where

π (µ) =

∫
ϕCLRdF (θ∗, µ, Σ).

The analogous constraint in the Gaussian shift model is given by∫
ϕdF (θ∗, µ, Σ) ≥ π (µ) for all µ ∈ M1(θ∗). (20)

Let C lev
Y ⊂ CY denote the class of level α tests based on Y , i.e., ϕ ∈ C lev

Y if∫
ϕdF (θ∗, µ, Σ) ≤ α for all µ ∈ M0(θ∗). (21)

SinceϕCLR is admissible inCY and, thus, inC lev
Y itmaximizesWAP subject to (20) and (21) for anyweight functionw. Therefore,

repeatedly applying Theorem 1(ii) and Section 3.1 in Müller (2011) with w putting all mass on a single point µ ∈ M1(θ∗)
implies that for any ϕW ∈ C lev

W that satisfies (19) we have35

lim sup
n→∞

∫
ϕWdGn(θ∗, µ, Σ,m) ≤ π (µ) for all µ ∈ M1(θ∗),m ∈ M.

and, thus,

lim
n→∞

∫
ϕWdGn(θ∗, µ, Σ,m) = π (µ) for all µ ∈ M1(θ∗),m ∈ M.

This together with (17) implies that ϕn
CLR is asymptotically admissible in C lev

W .
To prove part (ii), fix ϵ > 0 and let wϵ be such that Eq. (11) holds for ϕCLR. By Theorem 1(ii) and Section 3.1 in Müller

(2011), we have that for all ϕW ∈ C sim
W

lim sup
n→∞

WAPn(ϕW , wϵ,m) ≤ WAP(ϕsim,wϵ

WAP , wϵ) for allm ∈ M.

To see this, note that Eqs. (10) and (16) correspond to equations (6) and (11) in Müller (2011), respectively, with Θ̄0 equal
to M0(θ∗) and Fs = {1}. Using Eq. (11), we have that for any ϵ > 0 there exists wϵ such that for all ϕW ∈ C sim

W

lim sup
n→∞

WAPn(ϕW , wϵ,m) ≤ WAP(ϕCLR, wϵ) + ϵ for allm ∈ M.

The desired result then follows given Eq. (18). □

Appendix D. Additional tests for Section 4.1.1

Here, we consider several versions of the trinity of tests for the testing problem considered in Section 4.1.1. Fig. 5 shows
the rejection frequency of the Likelihood Ratio (LR), Score (S), and Wald (t) tests, using ‘‘naive’’ (N) critical values and using
‘‘boundary imposed’’ (BI) critical values, e.g., LRN denotes the test that compares the LR statistic to N critical values. For the
testing problem at hand, the Score statistic, suppressing the dependence on (B(β∗),D(δ∗), Σ), is given by

S(b0, Y ) = min
d∈[0,∞)

(
Yb − b0
Yd − d

)′

Σ−1
(
Yb − b0
Yd − d

)
and the Likelihood Ratio statistic is given by

LR(b0, Y ) = S(b0, Y ) − min
b∈(−∞,∞),d∈[0,∞)

(
Yb − b
Yd − d

)′

Σ−1
(
Yb − b
Yd − d

)
.

The N critical values are given by the 1 − α quantile of a χ2(1) (or its square root in case of the t) and the BI critical values
are given by the 1 − α quantiles of the test statistics under µ = (b0, 0).

35 To see this, note that Eqs. (15), (19), and (20) correspond to equations (8), (10) and (5) in Müller (2011), respectively.
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Fig. 5. Rejection frequency as a function of b for testing H0 : b = 0 with d = 0, 1, 2 from left to right. ρ = 0.9. 1st row: LRN (solid), SN (dashed), and tN
(dotted). 2nd row: LRBI (solid), SBI (dashed), and tBI (dotted).

Fig. 6. Rejection frequency as a function of b of CLR (solid), CS (dashed), and Ct (dotted) for testing H0 : b = 0 with d = 0, 1, 2 from left to right. ρ = 0.9.

Note that the LR and t statistics constitute ‘‘asymptotic versions’’ of the (rescaled) Quasi-Likelihood Ratio and Wald
statistics considered in Andrews (2001) when V (γ ∗) = aJ (γ ∗) for some 0 < a < ∞. Since the Wald and Score statistics
considered in Andrews (2001) are asymptotically equivalent when V (γ ∗) = aJ (γ ∗) for some 0 < a < ∞, the t statistic
also constitutes an ‘‘asymptotic version’’ of his Score statistic. The tests in Andrews (2001) use BI critical values when the
nuisance parameter is at the boundary, d = 0, and N critical values when they are in the interior, d = ∞. In practice, it
is seldom known whether the nuisance parameter is at the boundary or not. Furthermore, the nuisance parameter may be
near the boundary, 0 < d < ∞. We may, therefore, mistakenly use BI critical values when the true parameter is not at the
boundary, d > 0, or mistakenly use N critical values when the true parameter is near or at the boundary, d < ∞. Fig. 5
analyzes these mistakes.

Fig. 5 shows that LRN and SN overreject when d = 0, although it is, in case of the former, hard to see with naked eyes.36
This overrejection is a direct consequence of the fact that for both statistics, LR and S, the boundary, d = 0, turns out to be the
unique least favorable configuration. While SN overrejects for all d < ∞, as the 95th quantile of the null distribution of the
S statistic is strictly decreasing in d, the LRN starts to be undersized for d ⪆ 0.018; the 95th quantile of the null distribution
of the LR statistic is U-shaped in d. Equivalently, the corresponding tests that rely on BI critical values underreject for d > 0.
Although not shownhere, the LRBI and the SBI can have very poor powerwhen d is far from the boundary and L, the dimension
of d, is large. In the case at hand, the unique least favorable configuration for the t is given by d = ∞. As a result, we find that
the tN underrejects for all d < ∞. Similarly, the tBI overrejects for all d > 0, as the 95th quantile of the null distribution of
the t statistic is strictly increasing in d.

36 Kopylev and Sinha (2011) also document overrejection of LRN for several other constellations of the testing problem.



306 P. Ketz / Journal of Econometrics 207 (2018) 285–306

Fig. 6 shows the rejection frequency of the Conditional Score test (CS—with a slight abuse of notation), the Conditional
t-test (Ct), and the CLR for ease of reference. The CS compares the Conditional Score statistic, introduced in Remark 1, and the
Ct compares |b∗∗(Yb, X) − b0| using the notation of Appendix B to their respective conditional 1 − α critical values (defined
analogously to Eq. (5)). As noted in Remark 1, the CS equals the regular t-test, cf. Fig. 1. The Ct has slightly higher power than
the CLR for b > 0 when d > 0, at the cost of considerably lower power for b < 0.
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