Supplementary material for “Testing overidentifying
restrictions with a restricted parameter space”

A  Proofs

Proof of Proposition 1. The proof follows the outline in Section 3 and proceeds in four steps
(I-IV). (I) First, we verify that equation (4) holds. (II) Second, we show that, under {~,} €
LCo(v*) and Assumptions 1-3, \/ﬁ(én —0,) = O,(1) or, equivalently, that J,, is asymptotically

equivalent to equation (5) times 2n. (III) Then, we show that
NG (0.)WGn(0,) — ZLTZy % x*(H — p) (6)

under {y,} € Ty(7*) and Assumptions 1-4. (IV) Last, we show that g,(v/n(d, — 6,)) is
asymptotically independent of nG’,(6,,)WG,,(6,,) — Z]ZZ, and that it fails to be 0,(1) under
Assumptions 1-5, with v, = v Vn > 1, where ~; is given in Assumption 5, such that

limsup,,_, Pyo(Jn > Xi_o(H — p)) > . The desired result then follows, because

a < limsup P, (J, > x7_,(H — p)) < limsup sup P,(J,, > x_,(H — p)) = AsySz,.
n—»00 n—oo ~€lg
(I) Note that Assumption 1 implies Assumption 6* in Ketz (2018b), which, in turn, implies
Assumption 6 in Ketz (2018b), which states that 6, —6,, = 0,(1), under {y,} € To(y*). Then,
equation (4) is implied by Assumption 7 in Ketz (2018b) with DQ, () = GuWG,.(6) and
D%*Q,,(0) = G)WGy, noting that

G (O )WhGn(0n) — G, (0,) WG (0,) = op(1/n)

given Assumptions 1 and 3 and given that 6, — 6, = 0,(1) under {7,} € To(y*). Assump-
tion 7 in Ketz (2018b) is implied by Lemma 10.3 in Andrews and Cheng (2014b), which
establishes that Assumptions GMM1, GMM2, and GMM5 in Andrews and Cheng (2014a)
imply Assumptions D1-D3 in Andrews and Cheng (2012), where the former “correspond” to
Assumptions 1-3 and the latter to Assumptions 2 and 3 in Ketz (2018a) and Assumption 7
in Ketz (2018b). Here, the “correspondence” is such that the assumptions in Ketz (2018a,b)
constitute simplified versions of the assumptions in Andrews and Cheng (2012, 2014a) in
that they do not allow for lack of identification in some part of the parameter space but
instead allow the true parameter vector to be near or at the boundary of the (optimization)

parameter space.



(IT) Given that Assumptions 2 and 3 in Ketz (2018a) and Assumptions 6 and 7 in Ketz
(2018b) are implied by Assumptions 1-3, it follows from Lemma 8 in Ketz (2018b) that
V0, —60,) = O,(1) under {7,} € To(7*) and Assumptions 1-3.

(III) To show that equation (6) holds, let W = AA" and B = A’'Gy (such that B'B =T).
Then, the left hand side of equation (6) satisfies (recall the definition of Z,,)

NG (0)WG(0n) — ZLTZy = (vHA'Gr(0,)) Mp(vVRA Go(8,)) = Y' MpY + 0,(1),

under {v,} € T'o(7*) and Assumptions 1-4, where Y ~ N(Og,Iy) and where Mg is an
idempotent matrix of rank H — p, and the result follows.

(IV) Take 7, = v Vn > 1. Then, given Assumptions 1-5, it can readily be deduced from
Theorem 2(f) and Lemma 2 in Andrews (1999) and the continuous mapping theorem that

4n(vn(0, = 0)) = inf g(A) + 0,(1),

where ¢(\) = A+ Z)Z(A + Z) and where Z = Z'B'Y ~ N(0,,Z!). Since Z is pos-
itive definite (by Assumption 3) and since cl()) is a strict subset of RP (by Assumption
5), we have that infyep g(A) # o0,(1) or, equivalently, that P(h(Z) > 0) > 0, where
h(Z) = infycp g(A) > 0. Furthermore, MpY and Z are (jointly) normally distributed and
uncorrelated (EMpY Z' = O y,) and, thus, independent. The desired result, then, follows,

since

limsup Py, (J, > XT_o(H —p)) =P(Y'MgY + h(Z) > xi_,(H — p))

n—oo
_ / P((MpYYMpY + h(z) > x2_o(H - p)|Z = 2)dFy()
= [ PUMSYYMaY 4 h(2) > 3 (H = p)dF(2) > a,
where the third equality follows from the independence of MgY and Z. O

Proof of Proposition 2. Given equation (6), it suffices to proof that
I3 =nG(0,)WG(0,) — Z1TZ, + 0,(1) (7)

under {v,} € T'o(7*) and Assumptions 1-4. In what follows, we omit the phrase “under
{7.} € To(7*) and Assumptions 1-4” whenever convenient. Note that, by Theorem 6 in
Andrews (1999), Assumption 1(ii) implies that

G(0:7%) = G(0n;7") + Go(0 — 0n) + o([|0 — O],
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since [|Gy(0,;7*) — Ga(0%;7%)|| = o(1); recall that Gy = Go(0*;7*) by definition. This,
together with Assumption 2, implies that
sup G (0) = Gn(0n) — Go(0 — On)| = 0p(1//n). (8)
0€0:[|v/n(0—0y)||<e
Under {y,} € To(7%), equation (8), together with Assumption 3 and \/n(6, — 6,) = O,(1)
(which follows from the proof of Proposition 1), implies that /nG,(6,) = O,(1). This, in

turn, implies that
JM = G (0, )G (0,) — nG.(0,)VGy (GYWGe) ™ GoWG,(0,) + 0,(1)

given Assumptions 1 and 3, using Slutsky’s and the continuous mapping theorem. By equa-

tion (8), the first term of the previous equation satisfies
nG. (0, ) WG (0,) + 2nG. (0, )WGo (0, — 0,) + (0, — 0,)GYWGy(6,, — 6,) + 0,(1)
and the second term satisfies

nG’. (0,)WGg (GOWGe) " GoWG,, (0,)+2nG! (0,) WGy (6, — 6,,)

+(, — 0,)GHYWG (6, — 0,) + 0p(1).

Combining the last two displays, we obtain equation (7); recall the definitions of Z, and
T O

Proof of Corollary 1. The proof follows immediately from Corollary 2.1(c) in Andrews, Cheng,
and Guggenberger (2019) taking A(\) = A (using their notation). O

B Verification of Assumptions 1-5 for Example 1

In this section, we verify Assumptions 1-5 for Example 1. For convenience, the following

Lemma reproduces Lemma 12.2 in Andrews and Cheng (2014b), which we use repeatedly.

Lemma 1. Suppose {w; : i > 1} is an iid sequence and © is compact. Suppose (i) for
some function M(w) : W — R, (where with an abuse of notation W denotes the support
of w;) and all 6 > 0, ||s(w,0;) — s(w, )] < M(w)d, V01,02 € © with ||0; — 61| < & and
Yw € W and (i) E, supgeg ||s(w,0)||' ¢ + E,M(w) < C ¥y € T for some C < co. Then,
SUpgee ||s(wi, 8) — Eyes(w;, 0)]| = 0,(1) under {y,} € I'(v*) and E,«s(w;,0) is uniformly

continuous on © for all v* € I'.



We first verify Assumption 1 for W,(#) = (£ Y7, 2zi2)~* to establish consistency of the
first-step estimator, 6,,. Here and in what follows, we apply Lemma 1 with ©® = © and
L(v*) =To(y*). Take s(w,0) = g(0,w) = z(y — 2’0). We have that

Is(w, 1) = s(w, O2)|| = [lz2" (02 — O0)|| < [|z2"[[|62 — 02]-

Taking M (w) = ||z2’|| and § = ||#; —63]|, condition (7) of Lemma 1 is satisfied. By Holder’s in-
equality and the conditions in (2), we have EzM (w;) = Eyl|zixk]| < (Egllzil|?)Y?(Eyllxi|?)Y? <

(' for some C; < co. Furthermore, we have
Is(w, O)[| = [|22"(6" — ) + zul| < [|z2'(6" — )| + [|2ull
by the triangle inequality. Thus,
Is(w, O)[I"* < C3 (122" (0" — )" + || zul*)
for some Cj < oo, using |a + b|P < 2P~ *(Ja|? + |b|P) for p > 0 (and a,b € R). Furthermore,

sup [[s(w, 0) "7 < G5 (sup [|z2" (0" — 0)|"7° + [|zu ")
0cO 0cO

< C3(sup sup ||z (6" — )| + [|zul ")
0*€0 9co

< G (=1 + Jlzw )

for some C3* < oo, since © and © are compact. Then, by Holder’s inequality and the
conditions in (2), we have E,supyce ||s(w,0)||*" < Cy for some Cy < co. Taking C =
max(C}, Cy), condition (i4) of Lemma 1 is satisfied. Therefore, sup,eg |G (0) =G (0; )| = 0
under {v,} € I'o(v*), where G(0;7") = E,«g(0,w;) = E,-2(y; — x30) = Egez2,(0° — 0),
where the last equality follows since Fy-zu; = O for ¢* € ®¢. This verifies the first part of
Assumption 1(i) and Assumption 1(ii). Next, take s(w, ) = zz’. Condition (i) of Lemma 1
is trivially satisfied (taking M (w) = ||zZ’||) and condition (m) of Lemma 1 is satisfied given
the conditions in (2). Therefore, |1 3% | 22/ — Eye2:2/|| 5 0 under {7, } € To(y ) By the
continuous mapping theorem and the conditions in (2), supgeg [|[Wa(0)—=W(0;v*)|| = 0 under
{7} € To(v*), where W(0;~*) = (Eg-22;)~". This verifies the second part of Assumption
1(i) and Assumption 1(iii). Next, note that Q(0;7*) = (0*—0) Eg 2,2} ( Ep2:2}) "  Ege zia(6* —
0), where Egx;2/(Eg22)) "L Eye 22} is positive definite given the conditions in (2). Since ©
is convex, it follows that #* is the unique minimizer, cf. Section 4 in Perlman (1969), which

verifies Assumption 1(iv). As Assumption 1 implies that ||, — 6,|| = 0,(1), cf. Proof of



Proposition 1, we conclude that, under {7, } € T'o(7*),
16, — 67[| < [0 — Onl| + |60 — 67[] = 0,(1). (9)

Next, we verify Assumption 1 for W, = W,(0) = (1 37, 9(0n, w;)g(0,, w;)") L. To verify

n

the second part of Assumption 1(i), we apply Lemma 1 with s(w,0) = ¢g(6,w)g(0,w) =
22/ (y — 2'0)?; the first part as well as Assumption 1(ii) are the same as above. Using the

mean value theorem, we have
s(w, 0y) — s(w,0) = 222" (y — 2'0,)(6; — 62),
where 0, “lies between” 0; and 6. Plugging in y = 2'60* 4+ u, we have
s(w, 0y) — s(w, ) = 222" (2'(0* — 0,) + u) (01 — 6),
Taking 0 = ||, — ]|, we have, due to compactness of © and O,

Is(w, 61) = s(w, )| < 2[|22"('(0" — 61) + w)l|d
< 2(||22'2"(0" — 0.l + || 22"ul])
< 2(||z2[l2"(6" — 6.1 + 122" [[[ul)d
<207 (122" [[llll + 1122l ul)d

for some C} < oco. Taking M(w) = 2C5(||z2'|||u| + [|z2'||||=]|), condition (i) of Lemma 1 is
satisfied. By Holder’s inequality and the conditions in (2), we have E,M (w;) < C for some
C} < oo. With a slight abuse of notation, we have

122" (y = 2/0)%||7F = [l2(y — 2'0)[*"* < C5(||22"(0" — O)[*™ + [|zul[**)

for some O3 < oo. Then, due to compactness of © and ©, we have (with the same abuse of

notation)

sup [|22'(y — 2'0)%[)"° < G5 (sup [|z2' (0" — )17+ + [|zul**)
0co IEe)

< C3(sup sup ||z’ (6" — O)[*"° + [|zul*")
0°€0 96

< G5 (=17 + 2wl )

for some C3* < co. By Holder’s inequality and the conditions in (2), we have Ey supgeg ||s(w, 8) '€ <



C for some Cy < co. Taking C' = max(Cy, Cy), condition (ii) of Lemma 1 is satisfied. There-

fore,
1 n
=D iy — 48)® — Epzii(y; — 216)”

n <
=1

sup 50 (10)

#cO

under {v,} € I'o(7*). Given equations (9) and (10) and continuity of E.«z;z}(y; — xi6)?
(which follows from Lemma 1), we conclude that, under {7, } € To(v*),

VL =W < WL = Byeziz(yi — 2i00) [l + (| By 22 (i — 2300)° = W = 0,(1),

where W = W(0*;v*) = (Eg-ziz/u?)~'. Applying the continuous mapping theorem, this
verifies the second part of Assumption 1(i). Furthemore, with W thus defined, Assumptions
1(iii) and (iv) are also verified, using the same arguments as above.

To verify Assumption 2, we proceed by verifying Assumption 2* in Ketz (2019), which
constitutes a sufficient condition. Assumption 2*(i) in Ketz (2019) is clearly satisfied. By
Holder’s inequality and the conditions in (2), Lemma 1 applies with s(w, ) = —z’, wich
verifies Assumption 2*(ii) in Ketz (2019).

Assumption 3(i) follows from Lemma 12.3 in Andrews and Cheng (2014b) given the
conditions in (2), noting that G,,(6,) = = 37" | zju;. Assumptions 3(ii) and (iii) are satisfied
given the conditions in (2), with Gy = —Fgz;x}, and W = (Ez2;2/u?) .

Assumption 4 follows immediately from the conditions in (2), given that the two-step
estimator uses W,, in the second step.

', z)" may, for example, be

1) 7

Assumption 5 is verified noting that @y is not empty: (u;,x

jointly normally distributed, with zero mean and appropriately chosen variance matrix.

C Details for Example 2

In this section, we use the subscript ¢ rather than i, where ¢ represents a market. In the

random coefficients logit model, g(w, 8) takes the following form

g(wt7 0) = 225(87 St xt)7

where z; is a J x H matrix of instruments, z; is a J x K; matrix of product characteristics
(with p = Ky + K3), s; is a J x 1 vector of market shares, and £(6, s, z;) is J x 1 vector of
residuals. Here, J denotes the number of products in each market. £(0, sy, z;) is defined as

the vector that satisfies
8(97 5(97 St xt)7 xt) = S,



where the j*® entry of the J x 1 vector of model implied market shares, s(6, &, z;), is given

b
y / Ko 2
emjtﬂ+£jt+zk:1 Tjt ky/ O Uk
Sj<07§t7$t) - / J / 4 +ZK2 \/—2 dFU(”)’
14 Zl:l ek it k1 Zlt,k\/ TiUk

where & = (&t .., &)y v = (@1, .. o) and zje = (Tjen, .- Tijer) V9 € {1,...,J},
0 = (01,...,0%,), v = (v1,...,Vk,), and where F,(v) denotes the cdf of N(0k,,Ix,).
We note that s;(6,&,z;) and, thus, g(wy, ) are not defined for o with of < 0 for some
ke {1,...,Ky}. For more details on the random coefficients logit model, we refer the reader
to Section 3 in Ketz (2019).

Note that Assumptions 1-4 are equivalent to Assumption 1-3 in Ketz (2019). The latter
are satisfied given the definition of the parameter space ®(6) in Ketz (2019) (or ®(6*) using
the notation in that paper), see Appendix D in Ketz (2019). Assumption 5 is satisfied
taking, for example, o = (6o, o) with 6y = 0, and ¢y equal to an arbitrary element in

®(6y), assuming the latter to be non-empty.
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