
Supplementary material for “Testing overidentifying
restrictions with a restricted parameter space”

A Proofs

Proof of Proposition 1. The proof follows the outline in Section 3 and proceeds in four steps

(I-IV). (I) First, we verify that equation (4) holds. (II) Second, we show that, under {γn} ∈
Γ0(γ∗) and Assumptions 1–3,

√
n(θ̂n−θn) = Op(1) or, equivalently, that Jn is asymptotically

equivalent to equation (5) times 2n. (III) Then, we show that

nG′n(θn)WGn(θn)− Z ′nIZn
d→ χ2(H − p) (6)

under {γn} ∈ Γ0(γ∗) and Assumptions 1–4. (IV) Last, we show that qn(
√
n(θ̂n − θn)) is

asymptotically independent of nG′n(θn)WGn(θn)−Z ′nIZn and that it fails to be op(1) under

Assumptions 1–5, with γn = γ0 ∀n ≥ 1, where γ0 is given in Assumption 5, such that

lim supn→∞ Pγ0(Jn > χ2
1−α(H − p)) > α. The desired result then follows, because

α < lim sup
n→∞

Pγ0(Jn > χ2
1−α(H − p)) ≤ lim sup

n→∞
sup
γ∈Γ0

Pγ(Jn > χ2
1−α(H − p)) ≡ AsySzJ .

(I) Note that Assumption 1 implies Assumption 6∗ in Ketz (2018b), which, in turn, implies

Assumption 6 in Ketz (2018b), which states that θ̂n−θn = op(1), under {γn} ∈ Γ0(γ∗). Then,

equation (4) is implied by Assumption 7 in Ketz (2018b) with DQn(θ) = G′θWGn(θ) and

D2Qn(θ) = G′θWGθ, noting that

G′n(θn)WnGn(θn)−G′n(θn)WGn(θn) = op(1/n)

given Assumptions 1 and 3 and given that θ̂n − θn = op(1) under {γn} ∈ Γ0(γ∗). Assump-

tion 7 in Ketz (2018b) is implied by Lemma 10.3 in Andrews and Cheng (2014b), which

establishes that Assumptions GMM1, GMM2, and GMM5 in Andrews and Cheng (2014a)

imply Assumptions D1–D3 in Andrews and Cheng (2012), where the former “correspond” to

Assumptions 1–3 and the latter to Assumptions 2 and 3 in Ketz (2018a) and Assumption 7

in Ketz (2018b). Here, the “correspondence” is such that the assumptions in Ketz (2018a,b)

constitute simplified versions of the assumptions in Andrews and Cheng (2012, 2014a) in

that they do not allow for lack of identification in some part of the parameter space but

instead allow the true parameter vector to be near or at the boundary of the (optimization)

parameter space.
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(II) Given that Assumptions 2 and 3 in Ketz (2018a) and Assumptions 6 and 7 in Ketz

(2018b) are implied by Assumptions 1–3, it follows from Lemma 8 in Ketz (2018b) that
√
n(θ̂n − θn) = Op(1) under {γn} ∈ Γ0(γ∗) and Assumptions 1–3.

(III) To show that equation (6) holds, let W = AA′ and B = A′Gθ (such that B′B = I).

Then, the left hand side of equation (6) satisfies (recall the definition of Zn)

nG′n(θn)WGn(θn)− Z ′nIZn = (
√
nA′Gn(θn))′MB(

√
nA′Gn(θn)) = Y ′MBY + op(1),

under {γn} ∈ Γ0(γ∗) and Assumptions 1–4, where Y ∼ N(0H , IH) and where MB is an

idempotent matrix of rank H − p, and the result follows.

(IV) Take γn = γ0 ∀n ≥ 1. Then, given Assumptions 1–5, it can readily be deduced from

Theorem 2(f) and Lemma 2 in Andrews (1999) and the continuous mapping theorem that

qn(
√
n(θ̂n − θ0)) = inf

λ∈Λ
q(λ) + op(1),

where q(λ) = (λ + Z)′I(λ + Z) and where Z = I−1B′Y ∼ N(0p, I−1). Since I is pos-

itive definite (by Assumption 3) and since cl(λ) is a strict subset of Rp (by Assumption

5), we have that infλ∈Λ q(λ) 6= op(1) or, equivalently, that P (h(Z) > 0) > 0, where

h(Z) ≡ infλ∈Λ q(λ) ≥ 0. Furthermore, MBY and Z are (jointly) normally distributed and

uncorrelated (EMBY Z
′ = 0H×p) and, thus, independent. The desired result, then, follows,

since

lim sup
n→∞

Pγ0(Jn > χ2
1−α(H − p)) =P (Y ′MBY + h(Z) > χ2

1−α(H − p))

=

∫
P ((MBY )′MBY + h(z) > χ2

1−α(H − p)|Z = z)dFZ(z)

=

∫
P ((MBY )′MBY + h(z) > χ2

1−α(H − p))dFZ(z) > α,

where the third equality follows from the independence of MBY and Z.

Proof of Proposition 2. Given equation (6), it suffices to proof that

JMn = nG′n(θn)WGn(θn)− Z ′nIZn + op(1) (7)

under {γn} ∈ Γ0(γ∗) and Assumptions 1–4. In what follows, we omit the phrase “under

{γn} ∈ Γ0(γ∗) and Assumptions 1–4” whenever convenient. Note that, by Theorem 6 in

Andrews (1999), Assumption 1(ii) implies that

G(θ; γ∗) = G(θn; γ∗) +Gθ(θ − θn) + o(‖θ − θn‖),
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since ‖Gθ(θn; γ∗) − Gθ(θ
∗; γ∗)‖ = o(1); recall that Gθ = Gθ(θ

∗; γ∗) by definition. This,

together with Assumption 2, implies that

sup
θ∈Θ:‖

√
n(θ−θn)‖≤ε

‖Gn(θ)−Gn(θn)−Gθ(θ − θn)‖ = op(1/
√
n). (8)

Under {γn} ∈ Γ0(γ∗), equation (8), together with Assumption 3 and
√
n(θ̂n − θn) = Op(1)

(which follows from the proof of Proposition 1), implies that
√
nGn(θ̂n) = Op(1). This, in

turn, implies that

JMn = nG′n(θ̂n)WGn(θ̂n)− nG′n(θ̂n)WGθ (G′θWGθ)
−1
G′θWGn(θ̂n) + op(1)

given Assumptions 1 and 3, using Slutsky’s and the continuous mapping theorem. By equa-

tion (8), the first term of the previous equation satisfies

nG′n(θn)WGn(θn) + 2nG′n(θn)WGθ(θ̂n − θn) + (θ̂n − θn)G′θWGθ(θ̂n − θn) + op(1)

and the second term satisfies

nG′n(θn)WGθ (G′θWGθ)
−1
G′θWGn(θn)+2nG′n(θn)WGθ(θ̂n − θn)

+(θ̂n − θn)G′θWGθ(θ̂n − θn) + op(1).

Combining the last two displays, we obtain equation (7); recall the definitions of Zn and

I.

Proof of Corollary 1. The proof follows immediately from Corollary 2.1(c) in Andrews, Cheng,

and Guggenberger (2019) taking h(λ) = λ (using their notation).

B Verification of Assumptions 1–5 for Example 1

In this section, we verify Assumptions 1–5 for Example 1. For convenience, the following

Lemma reproduces Lemma 12.2 in Andrews and Cheng (2014b), which we use repeatedly.

Lemma 1. Suppose {wi : i ≥ 1} is an iid sequence and Θ is compact. Suppose (i) for

some function M(w) : W → R+ (where with an abuse of notation W denotes the support

of wi) and all δ > 0, ‖s(w, θ1) − s(w, θ2)‖ ≤ M(w)δ, ∀θ1, θ2 ∈ Θ with ‖θ1 − θ2‖ ≤ δ and

∀w ∈ W and (ii) Eγ supθ∈Θ ‖s(w, θ)‖1+ε + EγM(w) ≤ C ∀γ ∈ Γ for some C < ∞. Then,

supθ∈Θ ‖s(wi, θ) − Eγ∗s(wi, θ)‖ = op(1) under {γn} ∈ Γ(γ∗) and Eγ∗s(wi, θ) is uniformly

continuous on Θ for all γ∗ ∈ Γ.
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We first verify Assumption 1 for Wn(θ) = ( 1
n

∑n
i=1 ziz

′
i)
−1 to establish consistency of the

first-step estimator, θ̄n. Here and in what follows, we apply Lemma 1 with Θ = Θ̄ and

Γ(γ∗) = Γ0(γ∗). Take s(w, θ) = g(θ, w) = z(y − x′θ). We have that

‖s(w, θ1)− s(w, θ2)‖ = ‖zx′(θ2 − θ1)‖ ≤ ‖zx′‖‖θ1 − θ2‖.

Taking M(w) = ‖zx′‖ and δ = ‖θ1−θ2‖, condition (i) of Lemma 1 is satisfied. By Hölder’s in-

equality and the conditions in (2), we have EφM(wi) = Eφ‖zix′i‖ ≤ (Eφ‖zi‖2)1/2(Eφ‖xi‖2)1/2 ≤
C1 for some C1 <∞. Furthermore, we have

‖s(w, θ)‖ = ‖zx′(θ∗ − θ) + zu‖ ≤ ‖zx′(θ∗ − θ)‖+ ‖zu‖

by the triangle inequality. Thus,

‖s(w, θ)‖1+ε ≤ C∗2(‖zx′(θ∗ − θ)‖1+ε + ‖zu‖1+ε)

for some C∗2 <∞, using |a+ b|p ≤ 2p−1(|a|p + |b|p) for p > 0 (and a, b ∈ R). Furthermore,

sup
θ∈Θ̄

‖s(w, θ)‖1+ε ≤ C∗2(sup
θ∈Θ̄

‖zx′(θ∗ − θ)‖1+ε + ‖zu‖1+ε)

≤ C∗2( sup
θ∗∈Θ

sup
θ∈Θ̄

‖zx′(θ∗ − θ)‖1+ε + ‖zu‖1+ε)

≤ C∗∗2 (‖zx′‖1+ε + ‖zu‖1+ε)

for some C∗∗2 < ∞, since Θ̄ and Θ are compact. Then, by Hölder’s inequality and the

conditions in (2), we have Eφ supθ∈Θ̄ ‖s(w, θ)‖1+ε ≤ C2 for some C2 < ∞. Taking C =

max(C1, C2), condition (ii) of Lemma 1 is satisfied. Therefore, supθ∈Θ̄ ‖Gn(θ)−G(θ; γ∗)‖ p→ 0

under {γn} ∈ Γ0(γ∗), where G(θ; γ∗) = Eγ∗g(θ, wi) = Eγ∗zi(yi − x′iθ) = Eφ∗zix
′
i(θ
∗ − θ),

where the last equality follows since Eφ∗ziui = 0H for φ∗ ∈ Φ0. This verifies the first part of

Assumption 1(i) and Assumption 1(ii). Next, take s(w, θ) = zz′. Condition (i) of Lemma 1

is trivially satisfied (taking M(w) = ‖zz′‖) and condition (ii) of Lemma 1 is satisfied given

the conditions in (2). Therefore, ‖ 1
n

∑n
i=1 ziz

′
i − Eφ∗ziz′i‖

p→ 0 under {γn} ∈ Γ0(γ∗). By the

continuous mapping theorem and the conditions in (2), supθ∈Θ̄ ‖Wn(θ)−W(θ; γ∗)‖ p→ 0 under

{γn} ∈ Γ0(γ∗), where W(θ; γ∗) = (Eφ∗ziz
′
i)
−1. This verifies the second part of Assumption

1(i) and Assumption 1(iii). Next, note thatQ(θ; γ∗) = (θ∗−θ)′Eφ∗xiz′i(Eφ∗ziz′i)−1Eφ∗zix
′
i(θ
∗−

θ), where Eφ∗xiz
′
i(Eφ∗ziz

′
i)
−1Eφ∗zix

′
i is positive definite given the conditions in (2). Since Θ̄

is convex, it follows that θ∗ is the unique minimizer, cf. Section 4 in Perlman (1969), which

verifies Assumption 1(iv). As Assumption 1 implies that ‖θ̄n − θn‖ = op(1), cf. Proof of
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Proposition 1, we conclude that, under {γn} ∈ Γ0(γ∗),

‖θ̄n − θ∗‖ ≤ ‖θ̄n − θn‖+ ‖θn − θ∗‖ = op(1). (9)

Next, we verify Assumption 1 for Wn ≡ Wn(θ) = ( 1
n

∑n
i=1 g(θ̄n, wi)g(θ̄n, wi)

′)−1. To verify

the second part of Assumption 1(i), we apply Lemma 1 with s(w, θ) = g(θ, w)g(θ, w)′ =

zz′(y − x′θ)2; the first part as well as Assumption 1(ii) are the same as above. Using the

mean value theorem, we have

s(w, θ1)− s(w, θ2) = 2zz′(y − x′θ+)(θ1 − θ2),

where θ+ “lies between” θ1 and θ2. Plugging in y = x′θ∗ + u, we have

s(w, θ1)− s(w, θ2) = 2zz′(x′(θ∗ − θ+) + u)(θ1 − θ2),

Taking δ = ‖θ1 − θ2‖, we have, due to compactness of Θ̄ and Θ,

‖s(w, θ1)− s(w, θ2)‖ ≤ 2‖zz′(x′(θ∗ − θ+) + u)‖δ

≤ 2(‖zz′x′(θ∗ − θ+)‖+ ‖zz′u‖)δ

≤ 2(‖zz′‖‖x′(θ∗ − θ+)‖+ ‖zz′‖|u|)δ

≤ 2C∗1(‖zz′‖‖x‖+ ‖zz′‖|u|)δ

for some C∗1 < ∞. Taking M(w) = 2C∗1(‖zz′‖|u| + ‖zz′‖‖x‖), condition (i) of Lemma 1 is

satisfied. By Hölder’s inequality and the conditions in (2), we have EφM(wi) ≤ C1 for some

C1 <∞. With a slight abuse of notation, we have

‖zz′(y − x′θ)2‖1+ε = ‖z(y − x′θ)‖2+ε ≤ C∗2(‖zx′(θ∗ − θ)‖2+ε + ‖zu‖2+ε)

for some C∗2 <∞. Then, due to compactness of Θ̄ and Θ, we have (with the same abuse of

notation)

sup
θ∈Θ̄

‖zz′(y − x′θ)2‖1+ε ≤ C∗2(sup
θ∈Θ̄

‖zx′(θ∗ − θ)‖2+ε + ‖zu‖2+ε)

≤ C∗2( sup
θ∗∈Θ

sup
θ∈Θ̄

‖zx′(θ∗ − θ)‖2+ε + ‖zu‖2+ε)

≤ C∗∗2 (‖zx′‖2+ε + ‖zu‖2+ε)

for some C∗∗2 <∞. By Hölder’s inequality and the conditions in (2), we haveEφ supθ∈Θ̄ ‖s(w, θ)‖1+ε ≤
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C2 for some C2 <∞. Taking C = max(C1, C2), condition (ii) of Lemma 1 is satisfied. There-

fore,

sup
θ∈Θ̄

∥∥∥∥∥ 1

n

n∑
i=1

ziz
′
i(yi − x′iθ)2 − Eγ∗ziz′i(yi − x′iθ)2

∥∥∥∥∥ p→ 0 (10)

under {γn} ∈ Γ0(γ∗). Given equations (9) and (10) and continuity of Eγ∗ziz
′
i(yi − x′iθ)

2

(which follows from Lemma 1), we conclude that, under {γn} ∈ Γ0(γ∗),

‖W−1
n −W−1‖ ≤ ‖W−1

n − Eγ∗ziz′i(yi − x′iθ̄n)2‖+ ‖Eγ∗ziz′i(yi − x′iθ̄n)2 −W−1‖ = op(1),

where W ≡ W(θ∗; γ∗) = (Eφ∗ziz
′
iu

2
i )
−1. Applying the continuous mapping theorem, this

verifies the second part of Assumption 1(i). Furthemore, withW thus defined, Assumptions

1(iii) and (iv) are also verified, using the same arguments as above.

To verify Assumption 2, we proceed by verifying Assumption 2∗ in Ketz (2019), which

constitutes a sufficient condition. Assumption 2∗(i) in Ketz (2019) is clearly satisfied. By

Hölder’s inequality and the conditions in (2), Lemma 1 applies with s(w, θ) = −zx′, wich

verifies Assumption 2∗(ii) in Ketz (2019).

Assumption 3(i) follows from Lemma 12.3 in Andrews and Cheng (2014b) given the

conditions in (2), noting that Gn(θn) = 1
n

∑n
i=1 ziui. Assumptions 3(ii) and (iii) are satisfied

given the conditions in (2), with Gθ = −Eφzix′i and W = (Eφziz
′
iu

2
i )
−1.

Assumption 4 follows immediately from the conditions in (2), given that the two-step

estimator uses Wn in the second step.

Assumption 5 is verified noting that Φ0 is not empty: (ui, x
′
i, z
′
i)
′ may, for example, be

jointly normally distributed, with zero mean and appropriately chosen variance matrix.

C Details for Example 2

In this section, we use the subscript t rather than i, where t represents a market. In the

random coefficients logit model, g(wt, θ) takes the following form

g(wt, θ) = z′tξ(θ, st, xt),

where zt is a J ×H matrix of instruments, xt is a J ×K1 matrix of product characteristics

(with p = K1 +K2), st is a J × 1 vector of market shares, and ξ(θ, st, xt) is J × 1 vector of

residuals. Here, J denotes the number of products in each market. ξ(θ, st, xt) is defined as

the vector that satisfies

s(θ, ξ(θ, st, xt), xt) = st,
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where the jth entry of the J × 1 vector of model implied market shares, s(θ, ξt, xt), is given

by

sj(θ, ξt, xt) =

∫
ex
′
jtµ+ξjt+

∑K2
k=1 xjt,k

√
σ2
kuk

1 +
∑J

l=1 e
x′ltµ+ξlt+

∑K2
k=1 xlt,k

√
σ2
kuk

dFv(v),

where ξt = (ξ1t, . . . , ξJt)
′, xt = (x1t, . . . , xJt)

′ and xjt = (xjt,1, . . . , xjt,K1)
′ ∀j ∈ {1, . . . , J},

σ2 = (σ2
1, . . . , σ

2
K2

)′, v = (v1, . . . , vK2)
′, and where Fv(v) denotes the cdf of N(0K2 , IK2).

We note that sj(θ, ξt, xt) and, thus, g(wt, θ) are not defined for σ2 with σ2
k < 0 for some

k ∈ {1, . . . , K2}. For more details on the random coefficients logit model, we refer the reader

to Section 3 in Ketz (2019).

Note that Assumptions 1–4 are equivalent to Assumption 1–3 in Ketz (2019). The latter

are satisfied given the definition of the parameter space Φ(θ) in Ketz (2019) (or Φ̈(θ∗) using

the notation in that paper), see Appendix D in Ketz (2019). Assumption 5 is satisfied

taking, for example, γ0 = (θ0, φ0) with θ0 = 0p and φ0 equal to an arbitrary element in

Φ(θ0), assuming the latter to be non-empty.
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